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The Jacquard genetic identity coefficients are of fundamental importance in relatedness research. We address the estimation of
these coefficients as well as other relationship parameters that derive from them such as kinship and inbreeding coefficients using
a concise matrix framework. Estimation of the Jacquard coefficients via likelihood methods and the expectation–maximization
algorithm is computationally very demanding for large numbers of polymorphisms. We propose a constrained least squares
approach to estimate the Jacquard coefficients. A simulation study shows constrained least squares achieves root-mean-squared
errors that are comparable with those of the maximum likelihood approach, in particular when founder allele frequencies are
unknown, while obtaining enormous computational savings.
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INTRODUCTION
The estimation of the degree of genetic relatedness, either by
using pedigrees or molecular marker data, is of keen interest for a
variety of purposes (Weir et al. 2006). It is, among others, useful for
establishing genealogies, for paternity testing, and for maintaining
genetic diversity in breeding programs with endangered species.
Accounting for relatedness is crucial in genetic association studies
(Astle and Balding 2009). The definition of the concept of alleles
that derive from the same allele in some reference population as
identical-by-descent (IBD) alleles (Malécot 1969) was foundational
for relatedness research. Harris (1964) enumerated 15 modes of
identity-by-descent, which reduce to nine modes if the paternal
and maternal origins of the alleles are not distinguished. These
modes were represented pictorially by Jacquard (1972; 1974), and
are nowadays commonly referred to as Jacquard’s coefficients.
Jacquard’s coefficients underlie coancestry coefficients, inbreed-
ing coefficients and other relationship parameters (see section
“Theory”) and are practically important in quantitative genetics for
estimating non-additive components of variance in inbred
populations. Figure 1 shows the nine condensed states where
blue lines indicate an IBD relationship between two alleles. Non-
horizontal lines show IBD relationships between individuals of a
pair, horizontal lines refer to IBD relationships within an individual,
i.e., these refer to an inbred state. We use the symbol Δk to either
refer to the particular mode or its probability. When convenient,
we will use Δ

ði;jÞ
k to emphasize its pairwise probabilistic nature. For

pattern Δ7 the two individuals share two IBD alleles among them;
for pattern Δ1, the two individuals share one IBD allele across all
their four chromosomes; for patterns Δ3, Δ5 and Δ8 they share one,
and for the remaining states they share none. States Δ1 through Δ6

all refer to inbred states. When there is no inbreeding, the number
of states reduces to three (Δ7, Δ8 and Δ9), and their relative
probabilities are known as the Cotterman coefficients (1940).

Under non-inbred conditions, Thompson (1976) showed that the
Cotterman coefficients are limited to a subspace of the two-
dimensional three-part simplex, satisfying Δ2

8 � 4Δ7Δ9.
Probabilities of observed genotypes for pairs of individuals are

readily related to the Jacquard coefficients for given allele
probabilities (Cockerham 1971). We will use a 0 and a 1
respectively to represent the major and minor allele at a bi-
allelic locus, and use 0/0, 0/1 and 1/1 to represent the
corresponding diploid genotypes. Thus, for a bi-allelic variant
with minor allele probability (MAP) p and major allele probability
q, the probability of observing either two minor homozygotes or
two major homozygotes is, given state Δ1, p or q respectively.
Likewise, state Δ2 is compatible only with genotype pairs (0/0,1/1),
(0/0,0/0), (1/1,1/1) and (1/1,0/0), which will have probabilities pq,
p2, q2 and qp respectively, since the first allele of an individual is
necessarily the same as the second. By the same token, for each
given mode the joint genotype probabilities can be developed for
all nine possible genotype pairs and are given in Table 1.
Table 1 has been published in different forms by several authors

(Anderson and Weir 2007; Cockerham 1971; Csűrös 2014; Laporte
et al. 2017; Wang 2022; Weir et al. 2006), depending on whether or
not two or more alleles are considered, and depending on
whether the order of the individuals in a pair is taken into account
or not. Anderson & Weir (2007) developed a (multi-allelic)
extended parametrization of Table 1 in order to allow for
population substructure, i.e., allowing for a subpopulation whose
allele frequency has drifted away from that in the original parent
population. As given here, Table 1 is strictly for the bi-allelic case,
the order of the alleles of an individual is considered irrelevant
(i.e., heterozygotes 0/1 and 1/0 are not distinguished), but the
order of the individuals in a pair is taken into account. A
homogeneous population with no differentiation of allele
probabilities is assumed throughout.
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If we define g as the 9 × 1 vector of (marginal) joint genotype
probabilities, then by the law of total probability, we have

g ¼
X9
i¼1

P gjΔið ÞΔi ¼ MΔ: (1)

where M is the 9 × 9 matrix given in Table 1, whose entries are
determined by a single parameter, the minor allele probability, and
Δ ¼ ðΔ1;Δ2; ¼ ;Δ9Þ0 the column vector containing the coefficients
for one particular pair (i, j) of individuals. Alternative parametriza-
tions of the system in terms of genetic correlations coefficients
(Ackerman et al. 2017) are possible, but not considered here.
Equation (1) refers to the so-called condensed coefficients (Jacquard
1974), and we will refer to it as the bi-allelic condensed system.
Up to only a few years ago, much of relatedness research mostly

focused on the estimation of the Cotterman coefficients and the
derived kinship coefficient, where the latter is defined as the
probability that two alleles, each taken at random from an
individual, are IBD. The estimation of the IBD coefficients by
maximum likelihood (Thompson 1975), assuming non-inbred
individuals and known allele probabilities, was a milestone
achievement for relatedness research. Under absence of inbreeding,
the kinship coefficient is obtained from the Cotterman coefficients
as θ1 ¼ 1

2Δ7 þ 1
4Δ8. Milligan (2003) performed an extensive study

comparing the different estimators of the kinship coefficient, and
generally recommended the maximum likelihood estimator across a
broad spectrum of conditions. Over the last decade, interest for the
estimation of the full set of Jacquard coefficients has increased
(Guan and Levy 2024; Hanghøj et al. 2019; Korneliussen and Moltke

2015; Zheng et al. 2012). Nowadays, the ever-growing amount of
available genetic information and computational resources have
lead to an increased interest in the estimation of relationship
parameters such as coancestry, individual inbreeding coefficients,
and others. Multiple estimators have recently been proposed for
these parameters, including allele-sharing estimators (Goudet et al.
2018; Weir and Goudet 2017) for coancestry and inbreeding that
account for genetic sampling (Weir 1996). Most relationship
parameters of interest can be derived from Jacquard’s coefficients.
For family-based studies, efficient algorithms are available that allow
for the calculation of the theoretical Jacquard coefficients according
to a specified pedigree (Abney 2009; Karigl 1981; Lange and
Sinsheimer 1992). For population-based genetic studies, pedigrees
are often not available, and for those studies with available
pedigrees, the latter are known mostly not to be error-free and
often incomplete. It is therefore of great interest to estimate the
Jacquard coefficients from the molecular marker data. Correspond-
ingly, some attempts have been made to estimate the full set of
nine condensed Jacquard coefficients with SNP data, using different
methods (Hanghøj et al. 2019; Laporte et al. 2017; Wang 2022),
despite the fact that for bi-allelic data, Jacquard’s coefficients have
been shown not to be identifiable (Csűrös 2014).
In this article, we propose to estimate the nine Jacquard

coefficients and derived quantities by using a constrained least
squares (CLS) criterion, as described in section “Theory” below. We
perform pedigree-based simulations to compare CLS and EM
estimates, and also address the computational cost of scaling up
the algorithms to a full genome.
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Fig. 1 The IBD patterns for a pair (i, j) of individuals. Dots represent alleles. Blue lines connect pairs of alleles that are IBD.
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THEORY
Notation
We first develop our notation. Since many of the quantities involved
such as Jacquard coefficients, kinship coefficients and others are
pairwise quantities, we have found it convenient to use matrix
notation, using bold lowercase and uppercase letters to indicate
vectors and matrices respectively. We use a 1 to denote the minor
allele of a SNP, and 0 to denote its major allele. We use pi to refer to
minor allele probability of the ith SNP and qi = 1 − pi for its major
allele probability. We use, following Jacquard (1974), the scalar Δk to
denote the probability of state k for a pair of individuals. We will use
the scalar Δði;jÞ

k to emphasize the coefficient is used for a particular
pair (i, j). For convenience, we store all pairwise coefficients in n × n
subindexed matrices Δ1, Δ2, …Δ9, e.g., the element in row i and
column j of matrix Δ1 contains the probability Δ1 for a particular pair
of individuals. When convenient, we will make use of vector Δ (small
case without subscript), and Δ = (Δ1, …, Δ9) refers to the set of nine
Jacquard coefficients for a particular pair. We start by noting that the
probabilities of the nine possible states constitute a closed simplex
given by

S9 ¼ Δ1;Δ2; ¼ ;Δ9jΔk � 0;
X9
k¼1

Δk ¼ 1

( )
: (2)

Thompson (1978) derived multiple restrictions on the Jacquard
coefficients by considering specific subsets of the coefficients, most
notably the case of absence of inbreeding (Thompson 1976), which
leads to Δk = 0 for k≤ 6 and Δ2

8 � 4Δ7Δ9. In this article, we will make
no use of these restrictions, and allow all Jacquard coefficients to be
non-zero. We enumerate some of the well-known quantities that are
derived from the Jacquard coefficients, and stress their pairwise
nature using superscript (i, j) to indicate a pair (i, j); this paves the way
for our matrix notation below and clarifies the inbreeding coefficients
we use. The coancestry or kinship coefficient is given by

θ
ði;jÞ
1 ¼ Δ

ði;jÞ
1 þ 1

2
ðΔði;jÞ

3 þ Δ
ði;jÞ
5 þ Δ

ði;jÞ
7 Þ þ 1

4
Δ
ði;jÞ
8 : (3)

We define the probability that individual i of a given pair (i, j)
carries two copies of the same ancestral allele as:

θ
ði;jÞ
2i ¼ Δ

ði;jÞ
1 þ Δ

ði;jÞ
2 þ Δ

ði;jÞ
3 þ Δ

ði;jÞ
4 : (4)

Likewise, the probability of this for individual j of pair (i, j) is:

θ
ði;jÞ
2j ¼ Δ

ði;jÞ
1 þ Δ

ði;jÞ
2 þ Δ

ði;jÞ
5 þ Δ

ði;jÞ
6 : (5)

where we use subscripts 2i and 2j to refer to individual i or j of the
pair. We stress that the LHSs of Eqs. (4) and (5) sum pairwise
quantities and remain pairwise quantities. These quantities have
been termed θ2A, θ2B or fA, fB by others (Csűrös 2014; Jacquard
1974), and are generally referred to as inbreeding coefficients. We

prefer to use the term inbreeding coefficient for a truly individual
(non-pairwise) quantity, and consequently obtain these individual
inbreeding coefficients as

θ
ði;iÞ
2i ¼ Δ

ði;iÞ
1 and θ

ðj;jÞ
2j ¼ Δ

ðj;jÞ
1 ; (6)

which follows from the nullity of Δði;iÞ
k for k ∈ (2, 3, 4, 5, 6), and is

the scalar equivalent of our matrix equation (18) below. We
express (6) more concisely as θðiÞ2 ¼ Δ

ði;iÞ
1 , where the superscript (i)

indicates this is an individual-level quantity. In brief, we will use
θ
ðiÞ
2 to refer to the individual inbreeding coefficient of individual i

and θ
ði;jÞ
2i to refer to the probability that individual i of a given pair

(i, j) carries two copies of the same ancestral allele, and use θ̂
ðiÞ
2 and

θ̂
ði;jÞ
2i to refer to the sample estimators of these quantities.
The probability of at least one pair of IBD alleles among three

randomly selected alleles, of the four carried by individuals (i, j), is
given by

θ
ði;jÞ
3 ¼ Δ

ði;jÞ
1 þ Δ

ði;jÞ
2 þ Δ

ði;jÞ
3 þ Δ

ði;jÞ
5 þ Δ

ði;jÞ
7 þ 1

2
Δ
ði;jÞ
4 þ Δ

ði;jÞ
6 þ Δ

ði;jÞ
8

� �
:

(7)

finally, we define

θ
ði;jÞ
4 ¼ 1

2
Δ
ði;jÞ
4 � Δ

ði;jÞ
6

� �
; (8)

making for five identifiable relatedness parameters (Csűrös 2014).
A statistical model is identifiable if there is a one-to-one
correspondence between the values of the parameters of the
model and the probability distribution of the data. For bi-allelic
polymorphisms, the set of condensed Jacquard coefficients is not
identifiable because two different sets of coefficients can generate
the same probability distribution of joint genotypes, as illustrated
in Appendix A. All five identifiable relatedness parameters above
of a pair can be conveniently obtained by a linear transformation
(Q, of rank five) of the Jacquard coefficients as θ = QΔ, i.e.,

θ ¼

θ1

θ2i

θ2j

θ3

θ4

2
6666664

3
7777775
¼

1 0 1
2 0 1

2 0 1
2

1
4 0

1 1 1 1 0 0 0 0 0

1 1 0 0 1 1 0 0 0

1 1 1 1
2 1 1

2 1 1
2 0

0 0 0 1
2 0 � 1

2 0 0 0

2
6666664

3
7777775

Δ1

Δ2

Δ3

Δ4

Δ5

Δ6

Δ7

Δ8

Δ9

2
66666666666666664

3
77777777777777775

: (9)

We note that the vector of identifiable relatedness parameters θ
is not unique, and that alternative vectors of identifiable
relatedness parameters can be obtained by defining linear

Table 1. The bi-allelic condensed system, consisting of joint genotype probabilities for given IBD patterns and allele probabilities.

No. Genotype pair Δ1 Δ2 Δ3 Δ4 Δ5 Δ6 Δ7 Δ8 Δ9

1 (0/0,0/0) q q2 q2 q3 q2 q3 q2 q3 q4

2 (0/0,0/1) 0 0 pq 2pq2 0 0 0 pq2 2pq3

3 (0/0,1/1) 0 pq 0 p2q 0 pq2 0 0 p2q2

4 (0/1,0/0) 0 0 0 0 pq 2pq2 0 pq2 2pq3

5 (0/1,0/1) 0 0 0 0 0 0 2pq p2q + pq2 4p2q2

6 (0/1,1/1) 0 0 0 0 pq 2p2q 0 p2q 2p3q

7 (1/1,0/0) 0 pq 0 pq2 0 p2q 0 0 p2q2

8 (1/1,0/1) 0 0 pq 2p2q 0 0 0 p2q 2p3q

9 (1/1,1/1) p p2 p2 p3 p2 p3 p2 p3 p4

J. Graffelman et al.

3

Heredity



combinations of the rows of Q (Csűrös 2014, Theorems 4 and 5). It
is insightful to further develop the matrix notation, and the
simplex property implies that

X9
k¼1

Δk ¼ J ¼ 110: (10)

Note that for states Δ3 and Δ5, an interchange of the two
individuals i and j implies a change from state Δ3 to Δ5 for one
individual, and a change from state Δ5 to Δ3 for the other (see
Figure 1). Correspondingly, Δ3 and Δ5 are not symmetric but are
each other’s mutual transpose. The same holds true for states Δ4

and Δ6. For all other states, an interchange of individuals does not
bring about a change of state, and we therefore have that

Δ3 ¼ Δ5
0; Δ4 ¼ Δ6

0 and Δk ¼ Δk
0 8k 2 ð1; 2; 7; 8; 9Þ:

(11)

When a Jacquard coefficient of an individual with itself is
considered, all states have probability zero except Δ1 and Δ7,
because an individual always shares one or two IBD alleles with
itself, either inbred (Δ1) or not (Δ7). Consequently, we have

diagðΔ1Þ þ diagðΔ7Þ ¼ 1 and diagðΔkÞ
¼ 0 8k 2 ð2; 3; 4; 5; 6; 8; 9Þ; (12)

such that only Δ1 and Δ7 can have non-zero diagonals, and where
operator diag(⋅) extracts the diagonal of a matrix into a column
vector. We next develop matrices for relatedness coefficients. The
kinship matrix is defined as

θ1 ¼ Δ1 þ 1
2
ðΔ3 þ Δ5 þ Δ7Þ þ 1

4
Δ8: (13)

This matrix is symmetric because

θ1
0 ¼ Δ1 þ 1

2
ðΔ0

3 þ Δ0
5 þ Δ7Þ þ 1

4
Δ8 ¼ Δ1

þ 1
2
ðΔ5 þ Δ3 þ Δ7Þ þ 1

4
Δ8 ¼ θ1:

(14)

Note that for self-kinship

diagðθ1Þ ¼ diagðΔ1Þ þ 1
2
diagðΔ7Þ: (15)

Matrices of inbreeding coefficients are, according to Equation
(4), obtained as

θ2i ¼ Δ1 þ Δ2 þ Δ3 þ Δ4; and θ2j ¼ Δ1 þ Δ2 þ Δ5 þ Δ6:

(16)

So that

θ2j ¼ Δ1 þ Δ2 þ Δ0
3 þ Δ0

4 ¼ θ02i; (17)

which implies

diagðθ2jÞ ¼ diagðθ2iÞ ¼ diagðΔ1Þ: (18)

Multiplying (15) by two and combining with (11)

diagð2θ1 � IÞ ¼ diagð2Δ1 þ Δ7 � IÞ ¼ diagðΔ1Þ; (19)

which can be rewritten as

diagðθ1Þ ¼ 1
2
diagðIþ Δ1Þ; (20)

where the latter equation is the matrix formulation of the well-
known result that self-kinship relates to inbreeding

(θjj ¼ 1
2 ð1þ FjÞ, in a usual scalar notation). Inbreeding coefficients

for each individual are thus obtained as the diagonal elements of
Δ1, or equivalently, as the row means of θ2i or the column means
of θ2j. The obvious matrix formulation for θ3 is

θ3 ¼ Δ1 þ Δ2 þ Δ3 þ Δ5 þ Δ7 þ 1
2
ðΔ4 þ Δ6 þ Δ8Þ; (21)

which has diag(θ3) = 1, and is symmetric. Finally, for θ4

θ4 ¼ 1
2
ðΔ4 � Δ6Þ; (22)

is skew-symmetric (θ04 ¼ �θ4). The aforementioned close relation-
ship between states (Δ3, Δ5) and (Δ4, Δ6), suggests these states
might be joined by summation, reducing the number of
parameters to be estimated to seven. This reduction is developed
in Appendix B.
Following Thompson (2013), Weir and Goudet (2017) emphasized

the relative nature of coancestry and inbreeding, defining the
compound quantities of relative coancestry and relative inbreeding,
which we will indicate with ψ1 and ψ2 respectively. These quantities
are readily obtained from the previous expressions. We define the
theoretical average coancestry over all n(n − 1) pairs as

θS ¼ 10 θ1 �Wð Þ1=ðnðn� 1ÞÞ; (23)

where ⊙ represents the Hadamard product (i.e., elementwise
multiplication), and W a weight matrix of ones with zeros on the
diagonal (W = J − I). The symmetric matrix of relative coancestry
coefficients Ψ1, is obtained as

Ψ1 ¼ θ1 � θSJð Þ=ð1� θSÞ: (24)

We note that Ψ1 precisely contains the relative individual
inbreeding coefficients on its diagonal. Let ψ2 be a column vector
containing these coefficients. Using Eq. (18) We have that

ψ2 ¼ ðdiagðΔ1Þ � 1θSÞ=ð1� θSÞ ¼ diagðΨ1Þ: (25)

In the remainder, we will use θ̂i to refer to estimators of the
relationship parameters, and ψ̂i to refer to estimators of the
corresponding relative parameters.

Estimation
Equation (1) describes a theoretical population-genetic model,
giving an expected relationship between the joint pairwise
genotype probabilities, allele probabilities and Jacquard’s coeffi-
cients. Equation (1) has been solved with maximum likelihood
procedures, by assuming known allele probabilities and building
the multinomial likelihood function by multiplying this equation
over loci (Laporte et al. 2017). The latter authors estimate the
Jacquard coefficients by ML using an EM algorithm, using the
crossing design to improve identifiability of the coefficients.
In this article, we elaborate on the alternative approach initiated

by Csűrös (2014) and regard Equation (1) as a system of linear
equations that could be solved for Δ for each pair (i, j) if g and M
were known; one thus would need to estimate both g and M from
the genotype data, prior to estimating Δ. Csűrös (2014) pointed
out matrix M is structurally singular, and is expected to be of rank
seven. It is subject to two linear constraints, both for the columns
and the rows. When considering the rows of M, it is straightfor-
ward to show that these constraints amount to 10M ¼ 10 and
a0M ¼ 00, with a0 ¼ ð0;�1;�2; 1; 0;�1; 2; 1; 0Þ. Equation (1),
viewed as a system of linear equations, can be either consistent
or inconsistent, and we address both situations below.

The consistent system
Equation (1) will constitute a consistent system with infinitely
many solutions provided thatM and g are parametrized by exactly
the same minor allele probability p, and satisfy a0g ¼ a0MΔ ¼ 0. In
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that case, the system can be solved for some particular solution
either using Gaussian elimination or by the use of a generalized
inverse, such as the Moore-Penrose inverse (Searle 1982). Gaussian
elimination will reduce M to row-echelon form with trailing rows
of zeros, and retains the column-sum-one property. Consequently,
the obtained Jacquard coefficients will sum to one, but they can
be negative. In most cases, M will have rank seven due to the two
linear restrictions identified by Csűrös (2014). More precisely, the
rank of M depends on p and is at most seven; e.g., M will have
rank five whenever p = q = 0.5. Whenever M has rank seven,
Gaussian elimination leads to Δ̂8 ¼ Δ̂9 ¼ 0, whereas other
coefficients can be negative. This may, at first sight, be surprising,
for Δ8 and Δ9 typically correspond to the largest Jacquard
coefficients found in practice. However, since the order of the
variables in the system of equations is arbitrary, Jacquard
coefficients can be set to zero at will by permuting the columns
of M together with their corresponding elements of Δ, clearly
showing the coefficients are not identified. A consistent linear
system with a structurally singular coefficient matrix can also be
resolved using the Moore-Penrose inverse (M+) of M, and
estimating Δ as Δ̂ ¼ Mþg. This also gives some particular solution
with Jacquard coefficients that sum one, but some of them can be
negative. The obvious freedom of the coefficients has been
parametrized by Csűrös (2014), and his parametrization can be
used to map the coefficients to a set of strictly non-negative
Jacquard coefficients (i.e., probabilities) with the transformation

~Δ ¼ Δ̂þ ξz1 þ ηz2; (26)

where z1 = (0, 1, 0, −1, 0, −1, −1, 2, 0) and z2 = (0, 0, 0, 0, 0, 0, 1, 2,
1) + pq (−1, −1, 2, 0, 2, 0, −2, 0, 0) and where ξ and η are real
parameters that are constrained by a set of inequalities (Csűrös
2014, Eq. (8)) that warrant the non-negativity of ~Δ; typically this
transformation will also render Δ̂8 and Δ̂9 non-zero if one
attempted to solve the system by Gaussian elimination. Csűrös
(2014) used this result to explore the range of variation of the
Jacquard coefficients for an empirical pedigree. Here we use this
parametrization with molecular marker data to assess the range of
variation of the Jacquard coefficients in that setting. An example
case is described in Appendix A. However, it should be recognized
that observed joint genotype proportions generally do not
conform to Equation (1); in particular the condition a0g ¼ 0 is
generally not met. For empirical data, Equation (1) will be
inconsistent for one cannot merely equate theoretical probabil-
ities with sample statistics. We, therefore, capitalize on the
inconsistent case developed below.

The inconsistent system
For given allele probabilities, the parameters of model (1) can be
estimated by averaging, in the unweighted sense, over L SNPs
such that we need to resolve

1
L

XL

l¼1

gl ¼
1
L

XL

l¼1

MlΔ; (27)

which we write concisely as g ¼ MΔ, for Δ. In general, this system
will be inconsistent, but a best-fitting estimate for Δ can be found
using a least-squares criterion. Retaining a probabilistic interpreta-
tion of the Jacquard coefficients, we minimize the residual sum-of-
squares given by

σðΔÞ ¼ g�MΔ
� �0

g�MΔ
� �

; (28)

under the restrictions
P9

k¼1 Δk ¼ 1 and Δk ≥ 0. To our best
knowledge, this problem has no explicit solution, and we use
the R package Rsolnp (Ghalanos and Theussl 2015) to solve it
numerically. In our estimation procedure, the averaging of matrix
Ml over SNPs implies that higher-order terms of the allele
probability like p2 and p3 are simply estimated by the average

of quadratic and cubic allele probabilities. These estimators are
not unbiased (Wang 2022; Weir 1996), but can eventually be
corrected for bias due to small sample size. One can thus correct
for statistical sampling though this will not correct for genetic
sampling (Weir 1996), which makes the expected values of
squared allele frequencies, for example, depend on squared allele
probabilities plus inbreeding and coancestry values in the sample.
No correction for statistical sampling was applied, given the
sample size used in our simulations below. We also estimated the
Jacquard coefficients of individuals with themselves (Δði;iÞ

k ) needed
for inbreeding coefficients (see Eqs. (6) and (18)); this estimation
was carried out with the additional restriction that only Δ

ði;iÞ
1 and

Δ
ði;iÞ
7 can be non-zero.

SIMULATIONS
We designed a simulation study for assessing the quality of the
CLS-based estimator for Jacquard coefficients and derived
inbreeding and coancestry coefficients, and compared these with
estimates obtained by EM (Laporte et al. 2017). We simulated a
pedigree with 20 unrelated founders, 10 males and 10 females,
generating seven non-overlapping generations (founders
included) totaling 111 individuals using the R-package JGTeach
(Goudet 2022). Allele frequencies of the founders were generated
by taking independent draws from a Beta(α = 1, β = 10)
distribution, which has positive skew and correspondingly
relatively more variants with a low MAF. A picture of the simulated
pedigree is shown in Supplementary Fig. S2. For each generation,
females had a fertility rate of two, and fifty percent of the males
were allowed to breed in order to increase the proportion of
related individuals. We generated 20,000 bi-allelic loci on a map of
five Morgans (one marker every 0.025 cM). For the simulated
pedigree, alleles were dropped along the pedigree by gene
dropping using the given recombination map. The number of
crossing overs per meiosis was drawn from a Poisson distribution
with parameter λ equal to the genetic map length, and their
positions were drawn from a uniform distribution between 0 and
the number of loci minus one (this assumes markers are equally
spaced along the genome). These settings allowed a considerable
degree of relatedness to build up within a few generations. We
found it convenient to use the JGTeach package which is
available for the R environment (R Core Team 2023), though other
stand-alone softwares are available, notably the SimPedim
program by Leal et al. (2005). R instructions for generating the
data are given in Appendix C, and the simulated genotype data is
also included in R-package Jacquard (Graffelman 2024). In order
to assess the quality of the different estimators, we use the root-
mean-squared-error (RMSE), which is directly interpretable in the
scale of the coefficient of interest. We prefer the RMSE over the
use of correlation coefficients, as the latter can be affected by
truncation and non-linearity (see Fig. 2). The RMSE can be
calculated with respect to the theoretical pedigree values, whose
values can be obtained using algorithms like IdCoefs (Abney
2009). However, realized IBD probabilities in a pedigree typically
differ from the theoretical values, due to the random nature of
meiosis, and given a finite genetic map. We therefore calculated
all RMSE statistics with respect to these realized coefficients, which
we call gold standard or just gold Jacquard coefficients. Likewise,
in RMSE calculations for derived coefficients (inbreeding, coan-
cestry, etc.) we will also use gold values for these coefficients,
which are obtained by applying the equations of section “Theory”
to the gold standard Jacquard coefficients. By using gold values
based on realized IBD rather than expected values of the
coefficients according to the pedigree, the extra variation due to
deviations from pedigree expectations is avoided. Figure 2 shows
scatterplots of the estimated Jacquard coefficients against their
gold values for EM and CLS respectively. These plots are very
noisy, revealing large errors in particular for estimates Δ̂6; Δ̂8 and
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Δ̂9, and show it is very hard to estimate the gold Jacquard
coefficients reliably. Table 2 reports the RMSE for each coefficient
for both methods. This shows the CLS estimates have, over all, a
lower RMSE. The table confirms Δ6, Δ8 and Δ9 are most poorly
estimated. In relatedness studies it is common practice to filter out
low MAF variants. Previous simulation work by Weir and Goudet
(2017) has shown this leads to biased estimation of coancestry for
the allele-sharing estimator of coancestry. We investigated the
effect of MAF filtering by applying three MAF filters for both
methods, and considering both the standard Jacquard-coefficient
derived (θ̂) and the relative (ψ̂) estimates of coancestry and
inbreeding. The results in Table 2 show that MAF filtering at one or
five percent is detrimental for both the EM and the CLS algorithm,
whereas leaving out monomorphic SNPs does not seem to affect
the RMSE. The negative effect of MAF filtering is observed for both
the standard parameters as well as relative coancestry and
inbreeding. The estimates of the relative quantities have, in
general, a slightly lower RMSE. Consequently, the plots of our
simulation results below used no MAF filter and included all SNPs.
The poor estimation results are probably in part explained by

the fact the coefficients are not identified in the bi-allelic case; we
could focus on derived quantities that are identifiable: coancestry,
inbreeding and other relatedness parameters (Csűrös 2014).
Figure 3 shows scatterplots of the estimated coancestry and
inbreeding coefficients against their gold values for EM and CLS
respectively, and the corresponding RMSEs are given in the last
eight columns of Table 2.
Figure 3 and Table 2 both show that CLS estimates have, in

general, less variation and come closer to the y = x line. However,
both estimators substantially underestimate coancestry, inbreed-
ing and the probability that least one IBD pair out of three (θ3). We
repeated the estimation of the Jacquard coefficients and the
derived relationship parameters by CLS for two larger pedigrees,
the first with 50 male and 50 female founders totaling 589
individuals, and the second with 250 male and 250 female
founders totaling 4037 individuals. Plots of all coefficients against
their gold values are shown in Figs. S3 and S4. These plots show
less noise and diminished bias for the estimation of Jacquard
coefficients, coancestry, inbreeding and probability that least one
IBD pair out of three, as also reflected by the RMSE calculated for

these simulations (see bottom lines of Table 2). However,
underestimation of the relationship parameters and coefficients
Δ1, Δ3, Δ4, Δ6 and Δ8 as well as over-estimation of Δ7 and Δ9 is
clearly still an issue with a sample of over 500 individuals.
Weir and Goudet (2017, Tables 1 and 3) proposed unbiased

allele-sharing estimators for the compound quantities of relative
coancestry and relative inbreeding, which are obtained as follows:

ψ̂1 ¼
Aij � AS

1� AS
; ψ̂2 ¼

Ai � AS

1� AS
; (29)

where Aij and Ai are allele-sharing statistics, with Aij the proportion
of alleles carried by individuals i and j that are identical in state
(IBS), Ai the proportion of loci for which individual i is homozygous,
and AS the average of Aij over all pairs of distinct individuals (AS =
1/(n(n − 1))∑i≠j Aij). We suggest to convert the EM and CLS
estimators for coancestry (θ̂1) and inbreeding (θ̂2), which are
obtained from the estimated Jacquard coefficients, into estimators
of the relative compound quantities, by using a transformation
inspired by Eqs. (24) and (29):

ψ̂1 ¼
ðθ̂1 � θ̂SÞ
ð1� θ̂SÞ

; ψ̂2 ¼
ðθ̂2 � θ̂SÞ
ð1� θ̂SÞ

; (30)

where θ̂S is the sample average of all pairwise coancestry
estimates (θ̂S ¼ 1

nðn�1Þ
P

i≠j θ̂ij). We note that the allele-sharing
estimators directly estimate the relative quantities of interest,
whereas Eq. (30) modifies pre-existing estimates of θ1 and θ2. The
resulting estimators may not be unbiased, though the simulations
suggest the relative parameters are better estimated (see the last
three columns of Table 2). Moreover, the gold values of θ1 and θ2
are clearly underestimated by both algorithms (see Fig. 3); this
improves if Eq. (30) is used to estimate the relative gold values
(see Fig. 4). We note the sample average of the relative coancestry
estimates is zero by construction. We also note the relative
estimators amount to a linear rescaling of their original EM and
CLS counterparts; consequently any estimator of coancestry will
have the same correlation with θ̂1 and ψ̂1; likewise for estimators
of inbreeding and θ̂2 and ψ̂2. Figure 4 shows the estimation of the
compound relative parameters is more successful for both the EM
and the CLS algorithm, and leads to improved estimation of the
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Fig. 2 Estimation of gold Jacquard coefficients. A EM estimates against the gold values. B CLS estimates against the gold values.
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gold values, as also witnessed by the RMSE statistics in Table 2. We
note that gold values for inbreeding are constant across all pairs
for a given individual, though the corresponding CLS and EM
estimates fluctuate, since not all pairs converge to the same value.
The quality of the different estimators depends on the sample

allele frequencies and pairs of individuals that are used for
comparison. In a simulation, for the estimation of the allele
probabilities one can use founders, last-generation individuals or
the full pedigree (as in Figs. 2 and 3). When the estimation is
carried out using only the last-generation individuals for estimat-
ing allele probabilities, RMSE statistics generally deteriorate for
CLS, whereas it was mostly impossible to obtain EM estimates in
most cases. This is a likely consequence of both a decrease in
sample size by 87% and a considerable increase in the percentage
of monomorphic SNPs (72% in the last generation, versus 11% in
the founder generation), as well as differences between functions
of observed allele frequencies and corresponding functions of
allele probabilities. When founder allele frequencies are used for
estimation, the fit, considering the full pedigree, improves
considerably (see Table 2 and Fig. 5), as those frequencies are
closer to the relevant allele probabilities. It reduces the RMSE for
all Jacquard estimates, and for Δ̂8 and Δ̂9 in particular, for both the
EM and CLS algorithm (see Table 2), and consequently also gives a
lower RMSE for the derived relatedness coefficients. With founder
allele frequencies, RMSE statistics for the EM algorithm are in
general, slightly lower than those of the CLS algorithm, suggesting
the allele frequencies are particularly crucial to the EM algorithm.
The best estimation results for coancestry and inbreeding are
obtained by using the EM algorithm with founder allele
frequencies, and estimating the relative quantities that account
for average coancestry. We also fitted the reduced bi-allelic
system. Supplementary Fig. S5 shows the estimates for the seven
reduced Jacquard coefficients and coancestry, inbreeding and θ̂3
obtained by fitting the reduced bi-allelic system. Despite fitting
two parameters less, the RMSE statistics obtained for coancestry,
inbreeding and θ3 are almost the same as obtained by fitting the
nine parameter condensed system.
We explored the computational cost of scaling up both

algorithms by using increasing numbers of SNPs, up to a million.
For the EM algorithm, we found estimation of the full set of
Jacquard coefficient to be infeasible for larger numbers of SNPs.
Figure 6 shows the CPU time spent for a sample of size 109. For
both algorithms the CPU time increases, as expected, linearly with
the number of polymorphisms. Figure 6 shows that the CLS
algorithm (with tolerance parameter 1E-8) is much faster than the
EM algorithm (used with convergence precision 1E-3).
The calculation of the Jacquard coefficients for one million SNPs

required 48.86 hours for the EM algorithm, whereas this takes only
0.36 hours for the CLS algorithm, where, for the sake of
comparison, we used a single core.

DISCUSSION
Considerable research effort has been dedicated to the estimation
of relationship parameters such as kinship and inbreeding
coefficients. There is less work on the estimation of the full set
of Jacquard’s genetic identity coefficients with the use of
molecular marker data, though interest to do so has clearly
increased over the last decade (Guan and Levy 2024; Hanghøj
et al. 2019; Korneliussen and Moltke 2015; Zheng et al. 2012). For
bi-allelic genetic variants, at first sight there may seem to be little
point in reporting the full set because they are not identified (see
Fig. S1). Nevertheless, reporting the full set of coefficients is
ultimately informative for it will always permit the calculation of
any identifiable derived relationship parameter, most interestingly
θ3 and θ4 given that good estimators for coancestry and
inbreeding are available. Maximum likelihood estimation by
means of the EM algorithm (Laporte et al. 2017) is computationallyTa
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very expensive and not feasible on a genomewide scale. The
proposed CLS approach is seen to provide comparable estimates
of the Jacquard coefficients and derived quantities, and simula-
tions suggest these have smaller RMSE when the founder allele
frequencies are unknown. The likelihood approach is probabilistic
and multiplies over presumably independent loci, whereas such
independence is known not to hold for markers on the same
chromosome that are close. The proposed CLS approach averages

allele frequencies and joint genotype frequencies over markers
but is purely based on least-squares minimization and makes no
implicit assumptions about LD.
Our simulations show that the estimation of Jacquard and

relationship coefficients works best with founder allele frequen-
cies. Founder allele frequencies will usually be available in
breeding programs, but remain unknown in many other empirical
settings, where estimation of allele frequencies will typically be
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based on all available individuals; the latter approach is inevitably
affected by the allelic dependencies in the sample. Our simula-
tions are necessarily of limited scope and do not consider the
effects of mating system, sex-ratio, genotyping error, depth of the
genealogical tree, as well as many other factors. The simulated
dataset used in this article focuses on the particularly challenging
scenario that combines imprecise allele frequencies (due to the
small sample size and the effects of genetic sampling) with strong
allelic dependence (high kinship and inbreeding).
The CLS approach proposed in this article is flexible, and can be

further extended for variants with multiple alleles, such as
microsatellites. In that case, the identification problem of the
Jacquard coefficients is resolved if the individuals of a genotype pair
are ordered. It is also easily adapted for the classical estimation,
under the assumption of no inbreeding, of the Cotterman
coefficients. In order to do so, one should just carry out the
minimization while restricting the first six Jacquard coefficients to be
zero. Additionally, Thompson’s (1976) condition for a genealogically
feasible (i.e., pedigree-compatible) relationship may be imposed if
desired. A common sense data-analytic strategy is to first estimate
the full set of Jacquard coefficients without any inbreeding
constraint, and to set the first six to zero in second instance in
case no obvious evidence for inbreeding is found. Thompson’s
constraint will hold for pedigree-derived coefficients, but not
necessarily so for the realized gold values. For empirical data it is
not a priori known if the gold values satisfy the constraint. A
practical solution is to carry out both minimizations (with and
without the constraint) and to choose the best solution of the two.
Interestingly, if pairs are known (or believed) to be unrelated, this
condition may be imposed by restricting all related states (Δ1, Δ3, Δ5,
Δ7 and Δ8) to be zero and estimating only Δ9 and the remaining
inbred states. Indeed, any subset of the Jacquard coefficients may
be set to zero as suggested by the results of a first exploratory
analysis, and to the benefit of reducing the identifiability problem.
Both the EM and CLS algorithms adhere to a strict probabilistic

interpretation of Jacquard’s coefficients, their estimates can not be
negative and consequently inbreeding and coancestry estimates
can neither be negative. The simulations suggest improved
approximation of gold inbreeding and coancestry may be possible
if negative values would be admitted (see Figs. 3 and 4), though
this is clearly less compelling if better estimates of the allele
probabilities are available, as is the case with founder allele
frequencies (see Fig. 5). Also, the flooring of coancestry estimates
at zero pulls estimates of average coancestry towards zero and
impacts the correction for average coancestry. EM and CLS
algorithms could be further developed towards explicitly estimat-
ing the relative quantities of interest, and possibly lifting the non-
negativity constraint.
There are some considerations that may be helpful to reduce

the computational burden. When the pairs of individuals of
interest are known in advance, the expensive calculation of all
relationship statistics for all pairs can be avoided. To obtain the
statistics of interest, one only needs to calculate the allele
frequencies, and subset the calculations of the relationship
statistics to the genotype data of the pairs of interest only. This
applies to both the CLS and the EM algorithm, as both operate in a
pairwise manner. If the estimation of inbreeding is of main
interest, for the CLS approach the pairwise calculations can be
greatly reduced, because in that case only n estimates of the first
Jacquard coefficient of an individual are needed instead of the
usual 12 nðn� 1Þ pairs. Many genetic studies filter genetic variants
by their MAF, with MAF ≤ 0.05 being a commonly used exclusion
criterion. Given the typically skewed distribution of the MAF in
empirical studies, such filtering implies the exclusion of huge
amounts of polymorphisms, and can so reduce computational
cost. However, previous simulation work of Weir and Goudet
(2017) has shown that MAF filtering introduces bias in the
estimation of (pedigree-based) coancestry, whereas our

simulations in Table 2 show increased RMSE for all Jacquard
coefficients and derived quantities. In the absence of genotyping
error, filtering is therefore in principle not appropriate, though it
may still be recommended for avoiding sequencing errors, which
have been reported to be more frequent among low MAF variants.
For both the EM and CLS methods currently written in plain R the
computational efficiency can be improved by rewriting the core
iterations in C or in Fortran.
Estimation of the Jacquard coefficients with either EM or CLS

relies on numerical optimization for which global convergence is
not always guaranteed. Proper convergence can be investigated
by modifying the tolerance criterion for convergence and by
choosing different initial points. If maximum likelihood estimation
is preferred, the CLS estimates can be used as initial points for the
EM algorithm, to the benefit of the convergence of the latter.
Both the EM algorithm and the proposed CLS approach rely on

adequate estimates of the allele probabilities, for which sample
allele frequencies are typically used, obtained from either the full
data set, or, if possible, from the founder generation only. Reliance
on sample allele frequencies is the current approach in related-
ness research, as most kinship and inbreeding coefficient
estimators do require allele frequency estimates. Alternatively,
allele sharing estimators that avoid the use of sample allele
frequencies have recently been developed (Goudet et al. 2018;
Weir and Goudet 2017). The latter estimators do not provide the
full set of Jacquard coefficients, but for estimating coancestry and
inbreeding they do not rely on iterative algorithms and are
computationally very cheap.

SOFTWARE
Estimates of Jacquard’s coefficients with the EM algorithm were
obtained with the R package Relatedness (Laporte et al. 2017;
Laporte and Mary-Huard 2017). Simulated pedigrees used in this
article were generated with R package JGTeach (Goudet 2022).
We developed R package Jacquard (Graffelman 2024) which
implements estimation of Jacquard’s coefficients and derived
quantities by constrained least squares, relying on the optimiza-
tion functions of R package Rsolnp (Ghalanos and Theussl 2015).
In the R environment, Jacquard coefficients can also be estimated
by maximum likelihood with the packages SNPRelate (Zheng
et al. 2012) and pedsuite (Vigeland 2021). Estimation of
Jacquard’s coefficients with next generation sequencing data,
while accounting for genotype uncertainty, is possible with the
ngsRelate software (Hanghøj et al. 2019; Korneliussen and
Moltke 2015). Very recently, a constrained least squares approach
has also been proposed by Guan and Levy (2024) and
implemented in the C program Kindred.

DATA AVAILABILITY
The simulated pedigree data used in the article is available in the R-package
Jacquard (Graffelman 2024). Instructions to regenerate the pedigree used in the
paper with R-package JGTeach (Goudet 2022) are given in Appendix C.
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