










Δ̂9, and show it is very hard to estimate the gold Jacquard
coefficients reliably. Table 2 reports the RMSE for each coefficient
for both methods. This shows the CLS estimates have, over all, a
lower RMSE. The table confirms Δ6, Δ8 and Δ9 are most poorly
estimated. In relatedness studies it is common practice to filter out
low MAF variants. Previous simulation work by Weir and Goudet
(2017) has shown this leads to biased estimation of coancestry for
the allele-sharing estimator of coancestry. We investigated the
effect of MAF filtering by applying three MAF filters for both
methods, and considering both the standard Jacquard-coefficient
derived (θ̂) and the relative (ψ̂) estimates of coancestry and
inbreeding. The results in Table 2 show that MAF filtering at one or
five percent is detrimental for both the EM and the CLS algorithm,
whereas leaving out monomorphic SNPs does not seem to affect
the RMSE. The negative effect of MAF filtering is observed for both
the standard parameters as well as relative coancestry and
inbreeding. The estimates of the relative quantities have, in
general, a slightly lower RMSE. Consequently, the plots of our
simulation results below used no MAF filter and included all SNPs.
The poor estimation results are probably in part explained by

the fact the coefficients are not identified in the bi-allelic case; we
could focus on derived quantities that are identifiable: coancestry,
inbreeding and other relatedness parameters (Csűrös 2014).
Figure 3 shows scatterplots of the estimated coancestry and
inbreeding coefficients against their gold values for EM and CLS
respectively, and the corresponding RMSEs are given in the last
eight columns of Table 2.
Figure 3 and Table 2 both show that CLS estimates have, in

general, less variation and come closer to the y = x line. However,
both estimators substantially underestimate coancestry, inbreed-
ing and the probability that least one IBD pair out of three (θ3). We
repeated the estimation of the Jacquard coefficients and the
derived relationship parameters by CLS for two larger pedigrees,
the first with 50 male and 50 female founders totaling 589
individuals, and the second with 250 male and 250 female
founders totaling 4037 individuals. Plots of all coefficients against
their gold values are shown in Figs. S3 and S4. These plots show
less noise and diminished bias for the estimation of Jacquard
coefficients, coancestry, inbreeding and probability that least one
IBD pair out of three, as also reflected by the RMSE calculated for

these simulations (see bottom lines of Table 2). However,
underestimation of the relationship parameters and coefficients
Δ1, Δ3, Δ4, Δ6 and Δ8 as well as over-estimation of Δ7 and Δ9 is
clearly still an issue with a sample of over 500 individuals.
Weir and Goudet (2017, Tables 1 and 3) proposed unbiased

allele-sharing estimators for the compound quantities of relative
coancestry and relative inbreeding, which are obtained as follows:

ψ̂1 ¼
Aij � AS

1� AS
; ψ̂2 ¼

Ai � AS

1� AS
; (29)

where Aij and Ai are allele-sharing statistics, with Aij the proportion
of alleles carried by individuals i and j that are identical in state
(IBS), Ai the proportion of loci for which individual i is homozygous,
and AS the average of Aij over all pairs of distinct individuals (AS =
1/(n(n � 1))∑i≠j Aij). We suggest to convert the EM and CLS
estimators for coancestry (θ̂1) and inbreeding (θ̂2), which are
obtained from the estimated Jacquard coefficients, into estimators
of the relative compound quantities, by using a transformation
inspired by Eqs. (24) and (29):

ψ̂1 ¼
ðθ̂1 � θ̂SÞ
ð1� θ̂SÞ

; ψ̂2 ¼
ðθ̂2 � θ̂SÞ
ð1� θ̂SÞ

; (30)

where θ̂S is the sample average of all pairwise coancestry
estimates (θ̂S ¼ 1

nðn�1Þ
P

i≠j θ̂ij). We note that the allele-sharing
estimators directly estimate the relative quantities of interest,
whereas Eq. (30) modifies pre-existing estimates of θ1 and θ2. The
resulting estimators may not be unbiased, though the simulations
suggest the relative parameters are better estimated (see the last
three columns of Table 2). Moreover, the gold values of θ1 and θ2
are clearly underestimated by both algorithms (see Fig. 3); this
improves if Eq. (30) is used to estimate the relative gold values
(see Fig. 4). We note the sample average of the relative coancestry
estimates is zero by construction. We also note the relative
estimators amount to a linear rescaling of their original EM and
CLS counterparts; consequently any estimator of coancestry will
have the same correlation with θ̂1 and ψ̂1; likewise for estimators
of inbreeding and θ̂2 and ψ̂2. Figure 4 shows the estimation of the
compound relative parameters is more successful for both the EM
and the CLS algorithm, and leads to improved estimation of the
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Fig. 2 Estimation of gold Jacquard coefficients. A EM estimates against the gold values. B CLS estimates against the gold values.
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gold values, as also witnessed by the RMSE statistics in Table 2. We
note that gold values for inbreeding are constant across all pairs
for a given individual, though the corresponding CLS and EM
estimates fluctuate, since not all pairs converge to the same value.
The quality of the different estimators depends on the sample

allele frequencies and pairs of individuals that are used for
comparison. In a simulation, for the estimation of the allele
probabilities one can use founders, last-generation individuals or
the full pedigree (as in Figs. 2 and 3). When the estimation is
carried out using only the last-generation individuals for estimat-
ing allele probabilities, RMSE statistics generally deteriorate for
CLS, whereas it was mostly impossible to obtain EM estimates in
most cases. This is a likely consequence of both a decrease in
sample size by 87% and a considerable increase in the percentage
of monomorphic SNPs (72% in the last generation, versus 11% in
the founder generation), as well as differences between functions
of observed allele frequencies and corresponding functions of
allele probabilities. When founder allele frequencies are used for
estimation, the fit, considering the full pedigree, improves
considerably (see Table 2 and Fig. 5), as those frequencies are
closer to the relevant allele probabilities. It reduces the RMSE for
all Jacquard estimates, and for Δ̂8 and Δ̂9 in particular, for both the
EM and CLS algorithm (see Table 2), and consequently also gives a
lower RMSE for the derived relatedness coefficients. With founder
allele frequencies, RMSE statistics for the EM algorithm are in
general, slightly lower than those of the CLS algorithm, suggesting
the allele frequencies are particularly crucial to the EM algorithm.
The best estimation results for coancestry and inbreeding are
obtained by using the EM algorithm with founder allele
frequencies, and estimating the relative quantities that account
for average coancestry. We also fitted the reduced bi-allelic
system. Supplementary Fig. S5 shows the estimates for the seven
reduced Jacquard coefficients and coancestry, inbreeding and θ̂3
obtained by fitting the reduced bi-allelic system. Despite fitting
two parameters less, the RMSE statistics obtained for coancestry,
inbreeding and θ3 are almost the same as obtained by fitting the
nine parameter condensed system.
We explored the computational cost of scaling up both

algorithms by using increasing numbers of SNPs, up to a million.
For the EM algorithm, we found estimation of the full set of
Jacquard coefficient to be infeasible for larger numbers of SNPs.
Figure 6 shows the CPU time spent for a sample of size 109. For
both algorithms the CPU time increases, as expected, linearly with
the number of polymorphisms. Figure 6 shows that the CLS
algorithm (with tolerance parameter 1E-8) is much faster than the
EM algorithm (used with convergence precision 1E-3).
The calculation of the Jacquard coefficients for one million SNPs

required 48.86 hours for the EM algorithm, whereas this takes only
0.36 hours for the CLS algorithm, where, for the sake of
comparison, we used a single core.

DISCUSSION
Considerable research effort has been dedicated to the estimation
of relationship parameters such as kinship and inbreeding
coefficients. There is less work on the estimation of the full set
of Jacquard’s genetic identity coefficients with the use of
molecular marker data, though interest to do so has clearly
increased over the last decade (Guan and Levy 2024; Hanghøj
et al. 2019; Korneliussen and Moltke 2015; Zheng et al. 2012). For
bi-allelic genetic variants, at first sight there may seem to be little
point in reporting the full set because they are not identified (see
Fig. S1). Nevertheless, reporting the full set of coefficients is
ultimately informative for it will always permit the calculation of
any identifiable derived relationship parameter, most interestingly
θ3 and θ4 given that good estimators for coancestry and
inbreeding are available. Maximum likelihood estimation by
means of the EM algorithm (Laporte et al. 2017) is computationallyTa
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very expensive and not feasible on a genomewide scale. The
proposed CLS approach is seen to provide comparable estimates
of the Jacquard coefficients and derived quantities, and simula-
tions suggest these have smaller RMSE when the founder allele
frequencies are unknown. The likelihood approach is probabilistic
and multiplies over presumably independent loci, whereas such
independence is known not to hold for markers on the same
chromosome that are close. The proposed CLS approach averages

allele frequencies and joint genotype frequencies over markers
but is purely based on least-squares minimization and makes no
implicit assumptions about LD.
Our simulations show that the estimation of Jacquard and

relationship coefficients works best with founder allele frequen-
cies. Founder allele frequencies will usually be available in
breeding programs, but remain unknown in many other empirical
settings, where estimation of allele frequencies will typically be
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Fig. 3 Estimation of relatedness parameters. A EM estimates against gold values. B CLS estimates against gold values. For inbreeding, both
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ðiÞ
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ði;jÞ
2i ) are shown.
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based on all available individuals; the latter approach is inevitably
affected by the allelic dependencies in the sample. Our simula-
tions are necessarily of limited scope and do not consider the
effects of mating system, sex-ratio, genotyping error, depth of the
genealogical tree, as well as many other factors. The simulated
dataset used in this article focuses on the particularly challenging
scenario that combines imprecise allele frequencies (due to the
small sample size and the effects of genetic sampling) with strong
allelic dependence (high kinship and inbreeding).
The CLS approach proposed in this article is flexible, and can be

further extended for variants with multiple alleles, such as
microsatellites. In that case, the identification problem of the
Jacquard coefficients is resolved if the individuals of a genotype pair
are ordered. It is also easily adapted for the classical estimation,
under the assumption of no inbreeding, of the Cotterman
coefficients. In order to do so, one should just carry out the
minimization while restricting the first six Jacquard coefficients to be
zero. Additionally, Thompson’s (1976) condition for a genealogically
feasible (i.e., pedigree-compatible) relationship may be imposed if
desired. A common sense data-analytic strategy is to first estimate
the full set of Jacquard coefficients without any inbreeding
constraint, and to set the first six to zero in second instance in
case no obvious evidence for inbreeding is found. Thompson’s
constraint will hold for pedigree-derived coefficients, but not
necessarily so for the realized gold values. For empirical data it is
not a priori known if the gold values satisfy the constraint. A
practical solution is to carry out both minimizations (with and
without the constraint) and to choose the best solution of the two.
Interestingly, if pairs are known (or believed) to be unrelated, this
condition may be imposed by restricting all related states (Δ1, Δ3, Δ5,
Δ7 and Δ8) to be zero and estimating only Δ9 and the remaining
inbred states. Indeed, any subset of the Jacquard coefficients may
be set to zero as suggested by the results of a first exploratory
analysis, and to the benefit of reducing the identifiability problem.
Both the EM and CLS algorithms adhere to a strict probabilistic

interpretation of Jacquard’s coefficients, their estimates can not be
negative and consequently inbreeding and coancestry estimates
can neither be negative. The simulations suggest improved
approximation of gold inbreeding and coancestry may be possible
if negative values would be admitted (see Figs. 3 and 4), though
this is clearly less compelling if better estimates of the allele
probabilities are available, as is the case with founder allele
frequencies (see Fig. 5). Also, the flooring of coancestry estimates
at zero pulls estimates of average coancestry towards zero and
impacts the correction for average coancestry. EM and CLS
algorithms could be further developed towards explicitly estimat-
ing the relative quantities of interest, and possibly lifting the non-
negativity constraint.
There are some considerations that may be helpful to reduce

the computational burden. When the pairs of individuals of
interest are known in advance, the expensive calculation of all
relationship statistics for all pairs can be avoided. To obtain the
statistics of interest, one only needs to calculate the allele
frequencies, and subset the calculations of the relationship
statistics to the genotype data of the pairs of interest only. This
applies to both the CLS and the EM algorithm, as both operate in a
pairwise manner. If the estimation of inbreeding is of main
interest, for the CLS approach the pairwise calculations can be
greatly reduced, because in that case only n estimates of the first
Jacquard coefficient of an individual are needed instead of the
usual 12 nðn� 1Þ pairs. Many genetic studies filter genetic variants
by their MAF, with MAF ≤ 0.05 being a commonly used exclusion
criterion. Given the typically skewed distribution of the MAF in
empirical studies, such filtering implies the exclusion of huge
amounts of polymorphisms, and can so reduce computational
cost. However, previous simulation work of Weir and Goudet
(2017) has shown that MAF filtering introduces bias in the
estimation of (pedigree-based) coancestry, whereas our

simulations in Table 2 show increased RMSE for all Jacquard
coefficients and derived quantities. In the absence of genotyping
error, filtering is therefore in principle not appropriate, though it
may still be recommended for avoiding sequencing errors, which
have been reported to be more frequent among low MAF variants.
For both the EM and CLS methods currently written in plain R the
computational efficiency can be improved by rewriting the core
iterations in C or in Fortran.
Estimation of the Jacquard coefficients with either EM or CLS

relies on numerical optimization for which global convergence is
not always guaranteed. Proper convergence can be investigated
by modifying the tolerance criterion for convergence and by
choosing different initial points. If maximum likelihood estimation
is preferred, the CLS estimates can be used as initial points for the
EM algorithm, to the benefit of the convergence of the latter.
Both the EM algorithm and the proposed CLS approach rely on

adequate estimates of the allele probabilities, for which sample
allele frequencies are typically used, obtained from either the full
data set, or, if possible, from the founder generation only. Reliance
on sample allele frequencies is the current approach in related-
ness research, as most kinship and inbreeding coefficient
estimators do require allele frequency estimates. Alternatively,
allele sharing estimators that avoid the use of sample allele
frequencies have recently been developed (Goudet et al. 2018;
Weir and Goudet 2017). The latter estimators do not provide the
full set of Jacquard coefficients, but for estimating coancestry and
inbreeding they do not rely on iterative algorithms and are
computationally very cheap.

SOFTWARE
Estimates of Jacquard’s coefficients with the EM algorithm were
obtained with the R package Relatedness (Laporte et al. 2017;
Laporte and Mary-Huard 2017). Simulated pedigrees used in this
article were generated with R package JGTeach (Goudet 2022).
We developed R package Jacquard (Graffelman 2024) which
implements estimation of Jacquard’s coefficients and derived
quantities by constrained least squares, relying on the optimiza-
tion functions of R package Rsolnp (Ghalanos and Theussl 2015).
In the R environment, Jacquard coefficients can also be estimated
by maximum likelihood with the packages SNPRelate (Zheng
et al. 2012) and pedsuite (Vigeland 2021). Estimation of
Jacquard’s coefficients with next generation sequencing data,
while accounting for genotype uncertainty, is possible with the
ngsRelate software (Hanghøj et al. 2019; Korneliussen and
Moltke 2015). Very recently, a constrained least squares approach
has also been proposed by Guan and Levy (2024) and
implemented in the C program Kindred.

DATA AVAILABILITY
The simulated pedigree data used in the article is available in the R-package
Jacquard (Graffelman 2024). Instructions to regenerate the pedigree used in the
paper with R-package JGTeach (Goudet 2022) are given in Appendix C.
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