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Abstract

Complex traits such as human height or cardiovascular disease are highly polygenic, influenced by envi-

ronmental factors and common in the population. By studying complex traits, we might be able to answer

questions regarding the genetic contribution to a complex trait, gain insight into their genetic architecture

and narrow down the responsible genetic variants. Such findings can ultimately lead to better treatment,

prevention, diagnosis or prognosis of diseases.

Cost-effective DNA microarrays have made it possible to perform genetic studies at a large scale.

A genome-wide association study (GWAS) aims to quantify the statistical association of each available

genetic variant across the whole genome with a trait of interest in a group of individuals.

To eventually gain insight into the biological pathways underpinning traits, GWAS results (association

summary statistics) can be used for follow-up studies by integrating summary statistics with external

–omics data and applying additional statistical methods. For example, the heritability explained by typed

genetic variants can be estimated from GWAS association summary statistics. Another example is a

Mendelian randomisation, a method that is able to estimate the causal effect of one trait on another, and

vice versa.

These statistical follow-up methods often use either individual-level genotype data or summary statis-

tics combined external sequencing data as input. However, because effect sizes of genetic variants involved

in complex traits are typically small, studies with larger sample size have more statistical power, which

creates the need for combining public summary statistics, because access to individual-level data is often

limited. What is more, summary statistics-based methods require information for the same set of SNPs

for each study. To impute summary statistics of untyped variants, summary statistics imputation is used.

Summary statistic imputation follows the intuition that parts of the genome tend to be inherited to-

gether, which creates sets of correlated SNPs in close proximity (”in linkage disequilibrium (LD)”). Having

information about a subset of SNPs and knowing the local LD structure from external reference panels,

we can infer the summary statistics of untyped SNPs.

During my PhD, I investigated the limitations and potential of summary statistic imputation. First, I first

improved the measure of imputation quality. Second, I extended the method, to have higher accuracy

for imputation in cosmopolitan population cohorts. Third, I compared summary statistic imputation to

genotype imputation and identified groups of genetic variants that are hard to impute. Fourth, I applied

summary statistic imputation in a case study and discovered 34 additional height associated variants (19

of which replicated).





Résumé

Les traits complexes tels que la taille humaine, les maladies cardiovasculaires ou d’autres maladies sou-

vent fréquentes dans la population, sont hautement polygéniques mais aussi influencés par des facteurs

environnementaux. L’étude de ces traits complexes pourrait nous permettre de quantifier la contri-

bution des facteurs génétique impliqués, de mieux comprendre leur architecture génétique et d’affiner

l’identification des variants génétiques responsables. Ces résultats peuvent finalement conduire à améliorer

à la fois le traitement, le diagnostic et le pronostic des maladies, mais également les stratégies de préven-

tion mises en place.

L’arrivée sur le marché de puces à ADN à des prix accessibles a permis d’effectuer des études géné-

tiques à grande échelle. Les études d’association pangénomique (GWAS) visent à mettre en évidence et

à quantifier l’association statistique de chaque variant génétique (”Single Nucleotide Polymorphism” ou

SNP) avec un trait d’intérêt dans un groupe d’individus (cohorte).

Pour obtenir un aperçu des mécanismes biologiques sous-jacents, les résultats de GWAS (statistiques

synthétiques d’association) peuvent être utilisés pour des études additionnelles. Il est possible d’ utiliser

ces statistiques synthétiques pour appliquer des méthodes analytiques supplémentaires ou bien de les

combiner avec des données -omiques externes. Par exemple, l’héritabilité expliquée par les variants géno-

typés peut être estimée à partir des statistiques synthétiques d’un GWAS. Un autre exemple d’analyse,

appelé randomisation Mendélienne, permet d’estimer l’effet de causalité d’un trait sur un autre.

Ces méthodes d’analyses complémentaires nécessitent souvent des données génétiques au niveau in-

dividuel ou bien des statistiques synthétiques combinées avec des données de corrélation entre les SNPs.

Cependant, les effets génétiques observés sont généralement modestes, et il est intéressant de combiner

plusieurs cohortes pour augmenter la taille d’échantillon et ainsi obtenir une puissance statistique plus

importante. C’est pourquoi les méthodes basées sur les statistiques synthétiques sont souvent préférées.

En effet, l’accès aux données individuelles est limité, tandis que les statistiques synthétiques sont usuelle-

ment partagées publiquement. Néanmoins, pour pouvoir être combinées, ces statistiques synthétiques

doivent être disponibles pour un même ensemble de variants génétiques. Afin d’imputer les statistiques

synthétiques des variants non genotypés, et donc non disponibles dans certaines cohortes, l’imputation à

partir de statistiques synthétiques est utilisée.

L’imputation à partir de statistiques synthétiques repose sur le fait que certaines parties du génome ten-

dent à être héritées ensemble, ce qui crée des ensembles de SNPs, corrélés (en déséquilibre de liaison, ou

LD). A partir des statistiques synthétiques d’association pour un sous-ensemble de SNP et d’informations

sur la structure LD locale obtenue grâce à un panel de référence externe, il est possible d’inférer les

statistiques synthétiques des SNPs non génotypés.

Pendant mon doctorat, j’ai étudié les limites et le potentiel de l’imputation à partir de statistiques

synthétiques. Premièrement, j’ai amélioré la mesure de la qualité d’imputation de la méthode. Dans un

second temps, j’ai également amélioré la méthode elle-même, de manière à obtenir une meilleure précision

lors de l’imputation de cohortes multi-ethniques. Troisièmement, j’ai comparé l’imputation statistique à

partir de statistiques synthétiques à l’imputation basée sur les données génomiques au niveau individuel

et identifié des groupes de variants difficiles à imputer. Enfin, j’ai appliqué l’imputation à partir de

statistiques synthétiques à une étude de cas sur la taille humaine, ce qui a permis d’identifier 34 nouveaux

marqueurs génétiques associés avec les variations de taille humaine observées.
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1

Introduction

My PhD thesis is titled Integrative statistical analysis of -omics1 and 1 -omics: Data ending in -omics,
such as genomics, transcriptomics
or metabolomics.

GWAS2 data. To summarise, my thesis is about how statistical meth-
2 Genome-wide association study (GWAS):
Aims to identify genetic variants
associated with a trait of interest. This
is done by testing the association of
each available genetic variant across
the genome with a trait in a group of
individuals.

ods applied to -omics and GWAS data can lead to additional in-

sights into the genetic basis of diseases, and also demonstrates the

need for such methodology as summary level data can be accessed

freely, while individual-level data is scarce.

This document is a collection of my PhD output, accomplished

with the help of others in the domain of statistical genetics and un-

der the primary supervision of Zoltán Kutalik, as well as Valentin

Rousson and Pierre-Yves Bochud. I started my PhD with a manuscript

on estimating the attributable fraction of genetic and environmen-

tal/lifestyle factors in patients with Fibrosis after a Hepatitis C

infection. The majority of the remaining time was spent around

understanding and improving summary statistic imputation, while

also applying this method to various real data.

This chapter is an introduction to the analysis of complex traits3, 3 In this document, I use the terms
disease, trait and phenotype interchange-
ably.

the utility of GWASs and the inference of summary statistics of

untyped markers. The next chapter provides a summary of my

work. A discussion will set my output into context, discuss the

current challenges and give an outlook to future work. Lastly, my

two first author papers are attached.

First, let us define the overarching goal of genetic epidemiol-

ogy. Most diseases (or health, if viewed the other way around) are

partially driven by genetic risk factors. Statistical methods enable

us to quantify the genetic contribution to a disease, help to gain

insight into genetic architecture4 and narrow down the responsible 4 Genetic architecture refers to the
landscape of genetic contributions to
a given phenotype. It compromises
the number of genetic variants that
influence a phenotype, the size of
their effects on the phenotype, the
frequency of those variants in the
population and their interactions
with each other and the environment
(Timpson et al. 2018).

genetic variants5, ultimately leading to better treatment, prevention,

5 Genetic variant or genetic marker
are terms that include SNVs, copy
number variation, methylation and
other epigenetic variation. SNP: Single
nucleotide polymorphism. Strictly
speaking only common variants
(minor allele frequency > 0.05).
SNVs: Single nucleotide variant. A
general term that includes all variants
irrespective of minor allele frequency.

diagnosis and prognosis.

1.1 Recent development in genetics of complex traits

After the millennium, the technical progress made it possible to
measure biomedical data at low cost. For measuring DNA, having
low-cost DNA microarrays meant to move from expensive and hy-
pothesis driven candidate-gene studies and linkage analyses to a
hypothesis-free genome-wide approach.

In 2003, the first human genome sequence was completed
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(Collins et al. 2004). This milestone allowed other worldwide

genotyping & sequencing projects to take their course. The In-

ternational HapMap Consortium (2003), completed in 2005, and

later the 1000 Genomes Project Consortium (2010), completed in

2012, explored the genetic variation in a multitude of different pop-

ulations. One outcome of this investigation lead to insight into the

linkage disequilibrium (LD)6 structure across the genome and ul- 6 Linkage disequilibrium (LD): Non-
random association of SNPs. In hu-
mans, meiosis reduces the number of
chromosomes to 23 in the maternal
and paternal cell. Genetic recombi-
nation then combines maternal and
paternal chromosome pairs by split-
ting the chromosomes into pieces,
shuffling it and rearranging them.
Because of this mechanism, an indi-
viduals’ chromosome will consist of
a unique combination of maternal
and paternal DNA. The chromosome
is broken down at similar positions,
therefore certain blocks of DNA tend
to be inherited together. Hence the
variants within these blocks are in
linkage disequilibrium. Other influences
of LD structure include selection, drift,
mutation rate.

timately to a list of tag SNPs7 that are able to capture the majority

7 Tag SNPs: SNPs that are correlated
with neighbouring SNPs. When tag
SNPs are typed, they can serve as a
surrogate for untyped SNPs.

of common genetic variation (Visscher et al. 2012).

Cost-effective DNA microarrays (SNP arrays) make use of LD

structure, by containing a small fraction of all genome-wide SNPs,

each of them tagging multiple other variants (1.1).

Having an inexpensive way to extract DNA information, the

genetic variation affecting a complex trait can be explored in a

hypothesis-free, genome-wide manner. This is done by regressing

the trait in question onto each genotype in an univariate fashion,

whereby the resulting association summary statistics then helps to

decide, whether this variant is associated with the trait or not. This

is the basis of every genome-wide association study (GWAS). It is

an experimental design that scans systematically over the genome

in a set of individuals (Visscher et al. 2012).

The first GWAS, published in 2005 (Klein, Zeiss, and Chew 2005),

identified gene CFH to be associated with age-related macular

degeneration. The authors analysed 96 cases and 50 controls in age-

related macular degeneration, by screening 116’204 SNPs through-

out the genome.

Since then, a vast number8 of GWASs and meta-analysed GWASs 8 The GWAS Catalog (Welter et al.
2014), a curated repository for GWAS
results, contains SNP associations from
3’395 publications (May 21 2018).

have been performed.

ff

~ 3 bio bp

~ 3.5 mio SNVs

~ 15 mio SNVs

Genome

HapMap Project

1000 Genomes Project

GWAS data
Scaffold SNPs

To be imputed SNPs
~ 700K SNVs

Figure 1.1: Genetic variation: Al-
though ∼ 3.2 bio bp long, the genome
contains much less genetic variation.
Sequencing efforts such as HapMap
and the 1000 Genomes Project, give
evidence to more than 15 mio variants.
GWAS data can be imputed by infer-
ring LD structure from the most recent
reference panel, see Figure 1.8

The initial hope was, to identify the genetic mutations involved

by simply extrapolating the analysis approaches done in Mendelian

disorders to complex traits (Visscher et al. 2012). This hope was

quickly diminished as it became clear, that the genetic architec-

ture underlying complex traits is far more complicated than in

Mendelian disorders.

Correctly applied, GWAS can give insight into biology from

different angles. Firstly, GWAS results can propose candidate genes,

which are later verified in laboratory experiments. Secondly, GWAS

results can be used for follow-up studies integrating GWAS associ-

ation results with external data and applying additional analytical

methods, can allow insight into the biological pathways underpin-

ning traits.
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This latter option is what my PhD thesis aims to tackle.

1.2 Complex traits

In genetics, traits are classified as monogenic (or Mendelian) or com-
plex. In contrast to rare monogenic traits, complex traits9 involve more 9 For a review on complex traits, see

McCarthy et al. (2008).than one genetic variant that (often mildly) alters the predisposition
to a trait or disease. Complex traits are often highly polygenic and
thus common.

Traditionally, genetics has been done in monogenic diseases that

follow Mendelian inheritance. If large pedigrees are available, such

Mendelian diseases are easier to study, because the genetic vari-

ant(s) responsible for the disease susceptibility are rare and have

maximal penetrance. Finding the gene(s) involved in Mendelian

diseases involve sequencing and studying pedigrees.

Complex traits10 can be grouped into various (partially overlap- 10 Complex traits are either quantitative
traits (for example height) or a disease
(for example depression). However,
to simplify terminology, I will refer to
traits.

ping) subcategories of classical medicine:

• Anthropometric traits (e.g. height or BMI)

• Neurological traits (e.g. Alzheimer disease or schizophrenia)

• Immune-related traits (e.g. asthma or Crohn’s disease)

• Haematological traits (e.g. haemoglobin)

• Metabolic traits (e.g. type 2 diabetes)

• Reproductive traits (e.g. age at menarche or number of offspring)

• Social traits (e.g. educational attainment)

• Cardiovascular traits (e.g. coronary artery disease)

• Cancer (e.g. prostate cancer)

Like Mendelian traits, complex traits have been studied since

early 1900 in families to investigate heritability. For example, the

heritability of human height was studied in 1918 already (Fisher

1918).

Human height is an ideal model trait to study. With an estimated

broad-sense heritability of around 80% it is highly heritable and an

easy-to-measure model trait, and only moderately influenced by

environmental factors.

Studying complex traits involve much larger sample sizes than

linkage studies because of polygenicity with low penetrance vari-

ants. GWASs precisely aim to do that by estimating the association

summary statistics11 between each genetic variant and a complex 11 Summary statistics are aggregated
forms of individual-level data. In
the context of GWASs these are for
example sample size or minor allele
frequency for each SNP. Association
summary statistic is more specific in
that it quantifies the association with
a trait of interest, for example effect
size, Z-statistic or the corresponding
P-value for each SNP.

trait for a set of individuals. This way, thousands genetic variants

have been identified to be associated with complex traits (Welter et

al. 2014). For example, for human height the genetic variants found,

explain each up to 0.43% of the phenotypic variance (Wood and

others 2014; Marouli and others 2017)12.

12 For comparison, the explained
phenotypic variance of the FTO variant
(rs1558902) is 0.22% (Locke and others
2015).

Although GWASs are thought to be hypothesis-free (in the sense

of a non-targeted genome-wide scan), there are some assumption

regarding the underlying model, e.g. SNPs affect a trait in an addi-

tive way.
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McCarthy et al. (2008) illustrated (see Fig 1.2), how the pene-

trance of a variant is related to its MAF13. Common variants tend 13 Minor allele frequency (MAF): The
allele frequency of the less common
allele. Minor alleles can change across
populations, which is why large-scale
meta-GWASs often report EAF instead.
Effect allele frequency (EAF): The allele
frequency of the effect allele (and not
the reference allele).

to have smaller effect sizes (except for traits not under natural se-

lection) (Guo et al. 2018), while it is assumed that rare variants can

cover the full range of effect sizes. Although, so far, the rare vari-

ants discovered mainly display large effects. In order to be able to

detect small effects of rare variants, sample size must be large (to

have enough power and to observe the variant) and the data must

be high quality.

Besides effect sizes, the explained phenotypic variance is tied

to allele frequency too. For each variant, the explained phenotypic

variance can be estimated as 2β2 f (1 − f ), with f being the MAF,

β the effect size on the phenotype. Because of this relation, Robin-

son, Wray, and Visscher (2014) make the point, that rare variants

with high penetrance will still only explain a small fraction of the

phenotypic variance.

The underlying biological model of a complex trait is thought to

involve large gene regulatory networks, affecting for example gene

expression level of hundreds of acting genes, protein translation or

protein folding, in combination with environmental influences (that

potentially interact with the gene regulatory pathways). Currently,

there are two models proposed for complex traits. The polygenic

model is, that the causal genetic variants (e.g. SNPs, rare variants,

gene-gene interactions, copy number variants, DNA methylation or

histone modification) cluster into key pathways that are relevant for

a disease. The omigenic model (Boyle, Li, and Pritchard 2017) is, that

all gene regulatory networks are interconnected; all genetic varia-

tion is associated to a complex trait, but apart from the core genes

that represent real biology, the peripheral genes show association

only through indirect, non-trait specific effects. These two views

— polygenic and omnigenic — are part of an on-going discussion

(Wray et al. 2018).

To this end, GWAS results have been guiding several proposed

underlying biological models of complex traits.

1.3 Genome-wide association studies (GWAS)

In a GWAS14 a genome-wide scan of statistical genotype-trait associ- 14 For a review on GWASs see Mc-
Carthy et al. (2008), Visscher et al.
(2012) or Visscher et al. (2017).

ations in a set of individuals is done, to tests whether DNA variation
is related to an alteration in the trait.

To identify the genetic markers that act on complex traits, the

framework of GWASs is used to estimate univariate genotype-

trait associations. Typically, the association between each genetic

marker and the trait is estimated using linear regression (or an-

other statistical model depending on the outcome), with a trait as

the outcome, the genetic marker (genotype dosage) as a predictor,

and covariates to increase estimation accuracy and correct for con-

founders15. Such lean models are computationally inexpensive to 15 Confounder: A variable that is associ-
ated with a predictor and the outcome.
For example, GWASs often account for
population structure as a confounding
factor.

run and make follow-up analyses, such as meta-analyses, easier to
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Adapted from McCarthy et al. (2008) Figure 1.2: Allele frequency versus
penetrance: This figure is a schematic
representation of the (proposed)
relationship between allele frequency
and penetrance (or effect size). Most
GWAS findings so far have been
within the black arch ranging from
low-MAF-high-effect-size to high-
MAF-low-effect-size. In order to detect
genetic variants residing in the lower
left triangle, sample size must be large
for two reasons. Firstly, to observe rare
variants in a set of individuals, and
secondly, to have large enough power
to estimate low effect sizes.

apply, as described later.

Although the central goal of GWASs is to gain insight into the

genetic architecture of complex traits, the ultimate aim of doing

so is manifold (Fig 1.3) and can be broadly grouped into the four

cornerstones of healthcare: therapy, prevention, prognosis and diag-

nosis (McCarthy et al. 2008). In the context of genetic epidemiology,

these four goals can be achieved with different means (Figure 1.3).

Biomarkers, such as RNA levels, qualify to support all four goals;

polygenic risk scores help to predict disease progression, improve

diagnosis and prevent diseases; single SNPs have (so far) only been

useful in very special cases for diagnosis of diseases and stratifying

for treatment options. The case of gene IL28B in patients infected

with hepatitis C virus (Ge et al. 2009; Rauch et al. 2010) showed

that SNPs located in this specific gene can be used to predict treat-

ment response and spontaneous clearance, therefore allowing to

personalise treatment.

To tackle these four goals, we need (among others) to quantify

heritability, understand the underlying biology, identify (all) dis-

ease associated markers and build strong predictors.

Because of the genetic architecture underlying complex traits,

large sample sizes are required to study them to have enough

power to detect genetic variants with small effect sizes. For ex-

ample, if we assume that a variant has an explained phenotypic

variance of 0.3%16, then the sample size sufficient to detect such a 16 This is the explained phenotypic
variance of the FTO variant (Locke
and others 2015), the genetic variant
explaining most of the phenotypic
variance of BMI to date.

variant with a statistical test, needs to be larger than 7062 (given

80% power). As the explained phenotypic variance decreases, sam-

ple size needs to increase.

To accumulate such large sample sizes, population cohorts with

identical phenotypes and genetic data at hand collaborate in con-

sortia.
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Clinical findings from GWASs

Therapy
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Diagnosis
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Figure 1.3: How clinical findings
of GWASs play into the four goals
of healthcare: The four main cor-
nerstones of healthcare are: therapy
(including personalised treatment
options), prevention, prognosis and
diagnosis. Currently, a single SNP can
be used to personalise therapy and
to improve diagnosis. Polygenic risk
scores are used for prevention plans,
prognosis of disease progression and
diagnosis. Biomarker, for example
RNA levels, provide the most com-
plete capacity, ranging from therapy to
diagnosis.

However, privacy restrictions limit sharing individual-level data

(and analysing individual data from hundreds of thousands of

individuals would demand computing power and storage). To

circumvent these constraints, each cohort executes a GWAS accord-

ing to a study plan and then deposits the association summary

statistics on a server. Once every cohort has submitted its results,

an inverse variance weighted meta-analysis is run. The resulting

meta-analysed summary statistics are then published along with

a publication, ready for other researchers to be used. As an exam-

ple, GIANT, a consortium focusing on anthropometric traits, has

released complete summary statistics for 15 publications.

The challenges that such consortia face are rooted in the design

of the meta-analysis and quality control. The contributing cohort

might be heterogeneous in terms of design (for example a mix

of birth, prospective, cross-sectional or longitudinal cohorts) and

ancestry (mixed or admixed populations). Furthermore, there is

little control over the analysis performed by an individual cohort,

beyond using quality control tooling (Winkler et al. 2014).

Although these meta-analysed GWAS deserve a special term

(e.g. mGWAS17), I will for simplicity continue to call them GWAS. 17 Another caveat is, that the m in mG-
WAS could stand for meta, methylation,
microbiom or metabolom.

The caveats of GWASs can be broadly assigned into three groups:

experimental design, model formulation and interpretation. The

first group concerns for example how many individuals from which

population are selected and if there is a replication cohort (to date,

there are a only few study cohorts with more than 100K partici-

pants). Caveats concerning statistical modelling include outcome

and predictor transformation, accounting for measured environ-

mental correlates and confounders (such as population structure),

https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
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multiple testing correction and power issues. When interpreting or

utilising these results as input for other methods, a phenomenon

such as winner’s curse should be accounted for. Another interpre-

tation fallacy is to interpret the identified lead SNPs as the causal

ones. Instead, lead SNPs derived through pruning18 are often tag- 18 Pruning or clumping is a selection
strategy based on LD, MAF and/or
association summary statistic to define
top SNPs in a genomic loci.

ging one or more causal SNPs through LD. Complex LD structure

and sampling error make it hard to identify the causal variant(s)

with such simple strategies.

Most of the lead SNP arising from GWAS results found to date

are residing in non-coding regions, indicating regulatory mech-

anisms (Schork et al. 2013; Astle et al. 2017) or tagging of coding

variants. Taking LD structure between SNPs and information about

molecular function of SNPs (such as eQTL, methQTL or chromatin-

QTLs) into account can help narrowing down causal variants.

In a next step, summary statistics can be used for follow-up

analyses, for which traditionally individual-level data was used.

For example, Mendelian randomisation, a causal inference method,

uses GWAS summary statistics to identify how phenotypes are

related and is potentially able to assign cause and consequence.

1.4 Bridging the knowledge gap

Univariate GWAS summary statistics provide us with informa-

tion about the statistical association of genetic variants and a trait,

while controlling for some environmental covariates and genetic

confounding.

Combining19 such GWAS summary statistics with additional, exter- 19 For an overview on GWAS and
how it can be used to discover the
biology of diseases, translate into
new therapeutics, and understand the
underlying genetic architecture see
Visscher et al. (2017) and Timpson et
al. (2018).

nal data (such as the LD structure, curated pathways, other GWAS
studies, or simply algorithms) can leverage the GWAS results to
answer questions regarding heritability, narrow down regions that
harbour causal variants, quantify how traits relate to each other and
determine the actors in the genetic cascade of a certain gene (shown
in Figure 1.4).

Before going into the details of analytic approaches, let us first

define what we want to explore: (1) the ‘’black box” view, where

we care mostly about prediction and heritability (because effect

sizes can be translated into heritability or phenotypic variation), or

(2) understanding the biological system, where we are interested

the molecular pathways underlying traits, and how they work in

concert across traits. In the following I will describe both views in

detail.

1.4.1 The gap between heritability and GWAS findings

The heritability of a trait quantifies, how much of the variation of
that trait can be attributed to genetic variation (including additive
and non-additive effects, such as dominant, epistatic effects). This
is called broad-sense heritability (H2) and can be estimated from
family studies (H2

Ped).
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Figure 1.4: Central dogma and biolog-
ical cascade: This illustration shows
how the central dogma of molecular
biology fits into a the (hypothetical)
biological cascade. DNA information
flows within DNA, or from DNA to
proteins through RNA. The down-
stream effect of genetic variation
therefore affects everything from RNA
onwards. Environmental changes
(everything that is not genetic) do
not impact genetic variation (unless
radiation occurs), but affect molec-
ular, intermediate and more distant
phenotypes. Any phenotype to the
right can also loop back into molecular
or intermediate phenotypes. Height,
illustrated with a human body, is
assumed to be very distal from the
genome, involving many biological
processes to act on, and therefore
highly polygenic.

Narrow-sense heritability (h2) is simply the variance explained20 20 Variance explained: Proportion of
variance in an outcome explained by a
statistical model.

by additive genetic effects. This is sometimes called SNP-heritability

h2
SNP, the proportion of phenotypic variance explained by SNPs.

h2
GWAS is the total explained variance of genome-wide significant

loci. By definition, h2
GWAS < h2

SNP < H2
Ped.

The term missing heritability is the discrepancy between the H2
Ped

and h2
GWAS for most traits.

For example, height has an estimated broad-sense heritability

of 80%. Over the years, new findings have decreased the missing

heritability. In 2008, 40 loci associated with human height only

explained 5% of phenotypic variance (Visscher 2008). In 2014, an

increase in sample size to 250K discovered 697 additional height-

associated SNPs, that explain 19% of the phenotypic variance

(Wood and others 2014). In 2017, a focus on coding variants dis-

covered 120 new height associated loci that raised the explained

phenotypic variance to 22% (Marouli and others 2017). Finally, in

2018, a meta-analysis of ∼ 700K individuals explained 34.7% of the

phenotypic variance (using ∼ 15′000 SNPs with P < 0.001) (Yengo

et al. 2018).

The discrepancy between SNP-heritability (h2
SNP) and the her-

itability of associated SNPs only (h2
GWAS) is due to the fact, that

many genetic variants that might be associated with height do not

reach genome-wide significance because of power issues due to

insufficient sample size or are not genotyped/not imputable.

The discrepancy between the broad-sense heritability observed

in family studies (H2
Ped) and the narrow-sense heritability (h2

SNP)

(80% versus 55% in human height) is due to neglecting G-by-G21 21 G-by-G: Gene-gene interaction
(epistasis)interaction, G-by-E22 interaction, other genetic variation such as
22 G-by-E: Gene-environment interac-
tioncopy number variants or rare variants.

In principle, there are three ways to tackle missing heritability:
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1. Increase sample size in order to increase power and precision.

2. Genotype or sequence variants that are poorly imputable.

3. Exploit genetic correlation or causation between traits (McDaid

et al. 2017; Turley et al. 2018; Maier et al. 2018).

Broad-sense heritability is a measure that informs us about the

maximum potential of GWASs. Narrow-sense heritability guides

the discovery of new variants and tells us if the search has been

exhausted.

Details about the estimation of heritability are below.

1.4.2 Understanding biology

A second type of methods tries to understand the biological system

in its details. In Figure 1.4 this would be to discover all the molec-

ular processes that lead from genetic variation to a trait of interest.

Dermitzakis (2008) showed how genetic variation is linked to gene

expression that can translate into disease risk. Most importantly, the

article points out, how gene expression is a cellular phenotype, that

varies from tissue to tissue. The GTEx Consortium (2013) addressed

this hypothesis of genotype and tissue-specific gene expression

levels being correlated.

There are many global projects that seek to understand the

layers in between genetic variation and diseases:

• ENCODE is a consortium that aims to describe the functional el-

ements in the human genome (The ENCODE Project Consortium

2012) .

• The Roadmap epigenomics project focuses on epigenetic varia-

tion (DNA methylation, histone modification, chromatin acces-

sibility, small RNA transcripts) in stem cells and ex vivo tissues

(Roadmap Epigenomics Consortium 2015).

• GTEx provides univariate genotype-gene expression analysis

results for multiple human (post-mortem) tissues (The GTEx

Consortium 2013).

These datasets can be used to find eQTLs23 (Westra et al. 2013; 23 Expression quantitative trait loci
(eQTL): A QTL study is essentially a
GWAS with a molecular phenotype as
an outcome.

Zhernakova et al. 2017) or mQTLs (metabolomic QTLs) (Rueedi et

al. 2017).

Finding causal DNA-to-trait pathways can be approached from

different angles.

Tools such as PASCAL (Lamparter et al. 2016) and DEPICT (Pers

et al. 2015) combine GWAS summary statistic with tissue specific

pathway information and report back relevant gene sets for the trait

of interest.

A first step to understand the mechanism of action is to start

from GWAS association results and to narrow down causal variants

with fine-mapping methods.

Yet another way of unravelling SNP-trait pathways, is to look

at all intermediate layers between genetic variation and the trait

https://www.encodeproject.org/
http://www.roadmapepigenomics.org/
https://www.gtexportal.org/home/
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(e.g. gene expression or related traits), and to integrate this infor-

mation with the GWAS association results. Such methods are called

causal inference or multi-trait analyses.

1.5 Beyond GWASs

This section is dedicated to introduce methods that make use of

GWAS association summary statistics24. 24 For a review on statistical methods
that leverage summary association
data see Pasaniuc and Price (2017).

In the following I am listing for each class of methods at least

one approach that uses summary statistics, as well as one using

individual-level data. There is a trade-off between easy-to-use

summary statistics, and using individual-level genotype data. Because,

sample size is crucial, and summary statistics can be easier shared

and the necessary LD can be estimated from external reference

panels, methods using summary statistics are preferred.

1.5.1 Heritability

As introduced above, the heritability25 of a trait quantifies, how 25 An introduction to missing heritabil-
ity is provided by Visscher, Hill, and
Wray (2008), further reading by Yang
et al. (2017).

much of the variation of that trait can be attributed to genetic vari-
ation. This ‘’general” heritability is called broad-sense heritability.
Narrow-sense heritability is a subset of broad-sense heritability and
more straightforward to estimate.

Broad-sense heritability (H2) can be estimated with family-based

studies, such as parent-offspring regression or twin studies (H2
Ped).

For example; Visscher et al. (2006) studied full-sib pairs and es-

timated H2
Ped for height to be 0.8, although this figure will vary

depending on the variation of the environment (Visscher, Hill, and

Wray 2008).

Cost-effective genotyping and GWAS data make it possible to

estimate narrow-sense heritability (the proportion of phenotypic

variance explained by SNPs) or SNP heritability (h2
SNP) from geno-

type data of unrelated individuals (Yang et al. 2017). There are two

principle methods that estimate h2
SNP from individual-level genotype

data:

• GCTA (Yang et al. 2011)

• and LDAK (Speed et al. 2016).

Both methods fit a linear mixed effects model, treating all SNPs

as random effects and calculating the genetic relationship matrix

between individuals. The variance explained by all SNPs can then

be estimated using restricted maximum likelihood (REML) ap-

proach. While GCTA expects that each SNP contributes equally to

heritability, LDAK uses a more generalisable approach, by allowing

the expected heritability of each SNP to vary with LD levels, geno-

typing quality, and estimating relationship between heritability and

MAF.

To estimate narrow-sense heritability from summary statistics, two

methods can be used:
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• LD-score regression (LDSC) (B. K. Bulik-Sullivan et al. 2015)

uses the same model as GCTA and displays therefore the same

weaknesses.

• SUMHER (Speed and Balding 2018) is analogous to LDAK and

models the heritability as a function of MAF, LD levels and geno-

typing uncertainty.

Additionally, LDSC and LDAK can be used to quantify con-

founding in a GWAS and estimate genetic correlation between

traits.

All four presented methods are based on genome-wide data.

There are also attempts to calculate heritability locus-wise, for

example with BOLT-LMM (Loh et al. 2015) or partitioning the heri-

tability by functional annotation using LDSC (Finucane et al. 2015).

Finally, one approach is to calculate the heritability from genome-

wide significant SNPs only. However, this heavily underestimates

the narrow-sense heritability and is bound to winner’s curse (Wood

and others 2013).

1.5.2 Fine-mapping

The interpretation of GWAS results is often difficult because the

statistically significant variants detected by GWASs are typically

not the causal ones, but may rank high in terms of statistical sig-

nificance because of complex LD structure. Simply prioritising

variants by P-values is especially sub-optimal when more than one

causal variant is present at a locus (Pasaniuc and Price 2017). More-

over, the associated variants might fall into non-coding regions.

Linking the causal variant with a particular gene is complicated

through allelic heterogeneity, the presence of multiple causal vari-

ants of a trait at the same locus (Hormozdiari et al. 2017).

Fine-mapping26 is a technique that aims to refine the genomic local- 26 Review on fine-mapping: Schaid,
Chen, and Larson (2018)isation of causal variants at a given locus that are most likely to be

functional (which is different from variants that are in LD with the
causal variant).

Conditional analysis is one way to refine the association signals.

Approximate conditional analysis is the umbrella term for identifying

multiple signals at a locus using summary statistics:

• COJO (Yang et al. 2010) applies a step-wise conditional analysis

and assumes multivariate normal distribution.

• SOJO (Ning et al. 2017) uses the Lasso framework to select vari-

ants. The equivalent of these methods for individual-level geno-

type data are Lasso and conditional analysis to jointly fit multi-

ple SNPs.

Another approach is, to compute the posterior probabilities

of causality for every SNP using summary statistics, for example

CAVIAR (Hormozdiari et al. 2017), CAVIARBF (Chen et al. 2015)

(CAVIAR using Bayesian factors), FINEMAP (Benner et al. 2018) or
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fastPAINTOR (Kichaev et al. 2017). This type of analysis is compu-

tationally intensive; hence the maximum number of causal variants

is often restricted. Except for FINEMAP, all methods need the num-

ber of causal variants at a given locus as input. fastPAINTOR also

calculates the posterior probability using Bayesian statistics, but

integrates functional annotation as well. There are other Bayesian

fine-mapping methods that use individual-level data as input, such as

BIMBAM (Servin and Stephens 2007).

Note that, after applying fine-mapping techniques, further

follow-up investigations are essential, either through replication

in different studies or laboratory functional studies (Schaid, Chen,

and Larson 2018).

1.5.3 Causal inference

Causal inference27 methods help to determine the strength and 27 For an overview on Mendelian
randomisation see Pingault et al.
(2018).

direction between connected phenotypes.

The fundamental aim of epidemiology is to determine the causes

of diseases. Many epidemiological analyses focus on whether an

exposure modifies the severity or the risk of the disease.

These risk factors can be modifiable exposures (e.g. smoking

or nutrition), molecular phenotypes (proteins, gene expression,

metabolom), or related traits (e.g. cardiovascular disease, socio-

economic status).

However, causal inference of such complex networks with tra-

ditional techniques such as randomised control trials are often

impossible due to ethical issues, low sample size, limited time and

limited funding. Furthermore, randomised control trials require

careful randomisation and monitoring of participants is challeng-

ing.

Mendelian randomisation (MR) (Davey Smith and Ebrahim

2003; Burgess, Butterworth, and Thompson 2013; Bowden et al.

2015) exploits a natural randomising scheme of genetic variants

through meiosis, where genetic variants can be used as instrumen-

tal variables (Didelez and Sheehan 2007).

In order to apply MR, three key assumptions have to hold. They

are all centred around the genetic variants, the exposure/risk fac-

tor and the outcome, illustrated in Figure 1.5. The instrumental

variable G:

1. is associated with the risk factor X,

2. is not associated with any confounder C of the risk factor–

outcome association,

3. is conditionally independent of the outcome Y given the risk

factor X and confounders C.

MR had a boost over the recent years. The reason is, that GWAS

results enable instrumental variables that satisfy assumption #1

much better.
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Figure 1.5: Mendelian randomisation:
This illustration shows the underlying
model used for Mendelian randomi-
sation. An instrumental variable, a
genetic marker G, affects an outcome
Y through a risk factor X. The dashed
line illustrates potentially violated
assumptions. In Figure 1.4, the risk
factor would be anywhere after the
DNA, e.g. a molecular phenotype or
a modifiable exposure. α and γ repre-
sent the association summary statistic
GWAS with the outcome and the risk
factor. β is the MR effect size.

To perform MR with individual-level data, two-stage least squares

(TSLS) MR (Baum, Schaffer, and Stillman 2003) can be used. Un-

less large sample sizes are used (such as UK Biobank), this is not

feasible anymore.

Analogous to TSLS, there is two sample MR (Burgess, But-

terworth, and Thompson 2013) (summarized inverse-variance

weighted estimation) for summary statistics. Other pleiotropy-robust

methods include the ratio method, MR-Egger estimation (Bow-

den et al. 2015) and the weighted median estimator (Bowden et al.

2015).

Recent advances include SMR (summary-data-based MR) and

GSMR (generalised summary-data-based MR). These methods can

use eQTLs as instrumental variables, gene expression summary

statistics as risk exposure, and common complex traits as outcomes

(Zhu et al. 2016; Verbanck et al. 2018; Porcu and others 2018). This

setting allows identifying genes whose expression levels are associ-

ated with the trait.

MR is closely linked to multi-trait analysis. MR explores how

traits are causally connected, while a multi-trait analysis exploits

the more general concept of (genetic) correlation between traits

(correlation ≠ causation).

1.5.4 Multi-trait analysis

Multi-trait analyses can help to understand how traits are related to
each other.

From a genetic perspective, there are two ways how traits can

be related. Either on a locus-level through shared genetic variants

or loci (pleiotropy) or via a systematic correlation between SNP

effects (Pasaniuc and Price 2017). Figure 1.6 illustrates these two
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classes row-wise. The top row shows locus-level pleiotropy (spuri-

ous pleiotropy and biological pleiotropy), while the bottom row shows

systematic pleiotropy/correlation (mediated pleiotropy and pleiotropy

through confounding).

Quantifying the associations between traits, requires distinguish-

ing these different types of pleiotropy - mediated pleiotropy and true

pleiotropy - using colocalisation methods, MR or genetic correla-

tion. Seemingly related traits might fall under spurious pleiotropy or

pleiotropy through confounding.

“True” pleiotropy

GWAS hit is in LD with causal 
variants in two distinct loci (pathway is different).

“Mediated” pleiotropy

Trait I Trait II

Trait I Trait II

C
Causal variant(s) colocolizes 

in same locus.

A

B

GWAS hit

Trait I Trait II

LDLD

“Spurious” pleiotropy

A causal 
variant effects 
trait B through 
an effect on 
trait A.

Adapted from Hackinger & Zeggini (2017)

Linkage

Causality

Trait I Trait II

Confounder

D
genome-wide 

level

 locus  
 level 

displayed through 
genetic 

correlation

Confounding

Biological

Pleiotropy through 
shared confounding

Figure 1.6: Different types of
pleiotropy. When association sig-
nals of multiple phenotypes colocolise,
this can have many reasons: (A)
Spurious pleiotropy: A GWAS variant
(black dot) tags two other variants:
one (orange) that is linked to trait I
and one (red), that is linked to trait
II. (B) Mediated pleiotropy: The causal
variant affects trait II through trait I.
This type of pleiotropy can be detected
through MR and genetic correlation.
(C) Biological pleiotropy: the causal
variant affects two traits through in-
dependent pathways. (D) Pleiotropy
through confounding: genetic correlation
is introduced by common confounder.
(B) and (D): will display genetic corre-
lation on a genome-wide level, (A) and
(D): will display pleiotropy at a locus
level.

Polygenic risk scores (PRS) can be utilised to detect forms of

pleiotropy. PRS are an important concept in GWAS methodology,

originally developed to predict an individual’s disease risk. To

build a PRS, SNP effects are estimated from a discovery sample,

a score is build according to certain criteria and then applied in

an independent sample. Eventually, such PRS could be used in a

clinical setting to make genetic prediction of a disease for a single

individual. However, currently the prediction accuracy is for many

complex traits not high enough, so rather than making predictions,

PRSs are used to indicate which individuals locate at the lower

or the higher tail of the disease prediction distribution. Another

application is relevant for pleiotropy. If an out-of-sample PRS is

applied to individuals, and the genetic prediction is correlated with

other phenotypes, then there might be some type of pleiotropy.

Pleiotropy

True biological pleiotropy28 focuses on the influence that a single 28 See Hackinger and Zeggini (2017) for
a comprehensive review of methods
detecting different kinds of pleiotropy.

genetic marker has on multiple traits.

When a single genetic variant is causally implicated in more

than one trait, this is called pleiotropy (or true biological pleiotropy
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as there are other types, see Figure 1.6, C). The problem is, that

true biological pleiotropy is hard to study. In reality, other types

of pleiotropy are more common (Hackinger and Zeggini 2017),

such as mediated and spurious pleiotropy, and pleiotropy through

confounding (A, B & D in Figure 1.6).

Colocalisation with multiple phenotypes to dissect association

signals can be done with a number of methods:

• SCOPA (Mägi et al. 2017) uses reverse regression on individual-

level data (outcome is the genotype of an individual SNP and

phenotypes are predictors). META-SCOPA is the analogous tool

for summary statistics.

• MultiPhen (O’Reilly et al. 2012) models multiple phenotypes

simultaneously using ordinal regression.

• Aschard et al. (2014) applies principle component analysis

(PCA) on multiple traits.

However, using these tools, it is almost impossible to separate

any scenarios from each other (because different scenarios can give

rise to identical GWAS data).

Genetic correlation

Genetic correlation quantifies the extent to which genetic effects are
shared between two traits. Contrary to local pleiotropy, this is a more
systematic view of genome-wide ‘’pleiotropy”.

The primary reason for genetic correlation is a common (heri-

table) confounding factor that can create a seemingly strong genetic

correlation between the two traits (as in D in Figure 1.6). Another

reason is mediated pleiotropy, where genetic variants are acting on a

trait through another, intermediate trait, in a causal manner (as in B

in Figure 1.6).

Methods that explore genetic correlation are closely linked to

causal inference methods.

The growing number of consortia, the presence of semi-public

large-scale genetic data, and the increase in publicly available

GWAS results has made a variety of multi-trait analyses possible:

• Using LDSC, B. Bulik-Sullivan et al. (2015) estimated 276 genetic

correlations among 24 traits.

• O’Connor and Price (2017) proposed a model in which a latent

causal variable (LCV) mediates the genetic correlation between

two traits.

• Lu et al. (2016) established a better understanding of the genetic

basis and linking between anthropometric and cardiovascular

traits by analysing cross-phenotype associations.

• Pickrell (2014) used a hierarchical modelling approach to analyse

18 human traits jointly (GWAS summary statistics and genetic

annotation as input).
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• Pickrell et al. (2015) performed a systematic search for genetic

variants that influence pairs of traits (40 in total). Additionally,

they inferred causal relationships between traits.

• GSMR and SMR (Zhu et al. 2016; Zhu et al. 2018; Porcu and

others 2018) are multi-instrument MR methods based on sum-

mary statistic that aim to establish causal links from exposure to

phenotype level.

• Beyond establishing the relationship between traits, analysing

multiple traits at the same time can also boost power to detect

relevant loci (e.g. Turley et al. (2018) or McDaid et al. (2017)).

MTAG (Turley et al. 2018), is a method to analyse different study

results with overlapping samples (therefore boosting power).

Having access to individual-level data has the additional advan-

tage of estimating the trait-trait correlation directly, that otherwise

needs to be estimated from other sources (Cichonska et al. 2016).

1.5.5 Data

The statistical methods mentioned in the previous section use either

individual data or an aggregated form called summary statistics. A-C

in Figure 1.7 illustrate the difference between individual and aggre-

gated data in terms of information loss. Most importantly, because

of privacy restrictions, the LD structure between markers cannot be

retrieved anymore, once the data is aggregated and published, and

thus has to be estimated from external data.

Below is a list of resources of genetic data, in summarised or

individual form.

Individual-level data

This section refers to part (A) in Figure 1.7.

• HapMap Project phase III includes sequencing data from 1’397

individuals, 11 ancestry groups (The International HapMap

Consortium 2003) → this database is not maintained anymore.

• 1000 Genomes Project (1000 Genomes Project Consortium 2010):

phase III contains sequencing data from 2’504 individuals, from

26 populations, for 84.4 million variants markers → public data.

• UK10K (Moayyeri et al. 2013; Boyd et al. 2013): sequencing data

from 4000 individuals of European/British ancestry → restricted

access.

• UK Biobank (Sudlow et al. 2015; UK Biobank Phasing and Im-

putation Documentation 2015): genotype and genotype imputed

data for 500K individuals → restricted access.

Currently, 1000 Genomes Project and UK10K data are often used

as reference panels for imputation (part (B) in Figure 1.7).

GWAS summary statistic results

This section refers to part (C) in Figure 1.7.

https://www.sanger.ac.uk/resources/downloads/human/hapmap3.html
https://www.ncbi.nlm.nih.gov/variation/news/NCBI_retiring_HapMap/
http://www.internationalgenome.org/
http://www.uk10k.org/
http://www.ukbiobank.ac.uk/
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Adapted from Pasaniuc & Price (2017)

ID Trait SNV 1 SNV 2 ... SNV k ... SNV M
1 33 0 1 ... ? ... 1

2 24 ? 0 ... ? ... 0

... ... ... ... ... ? ... ...

... ... ... ... ... ? ... ...

K 5 1 2 ... ? ... 0

SNP array (genotype dosages)
Individual data

Type of summary 
statistics

SNV 1 SNV 2 ... SNV k ... SNV M

Sample 
size

N K-1 K ... ? ... K

Effect 
allele 

frequency

EAF 0.01 0.3 ... ? ... 0.04

Per allele 
effect size

... ... ... ? ... ...

Standard 
error beta

se(    ) 1 2 ... ? ... 0 PosSNV 1 SNV kSNV 2 SNV M

A

Genotype 
dosage

Tr
a
it

0 1 2

Estimated effect size for SNV i

= per allele 
effect size

C2

C1 Aggregate

D Imputation

LD between SNVs (C)B
  D   

Other  summary statistics

β̂

β̂

D   

 D(C2,B) 

 D(A,B) Genotype 
imputation

Summary 
statistic 
imputation

Aggregated data 
or 

Summary statistics

Standardised 
effect size 

Explained 
variance

Z-statistic

β̂

Z = β̂/se(β̂)

r̂2 = Z2/(Z2 +N)

r̂ = Z/
√

N

Figure 1.7: Individual-level geno-
type data to summary statistics: (A)
Genotype data for K individuals and
M markers. Note that for SNV k there
is no data. (B) LD structure between
SNVs estimated through the squared
correlation. (C1) Association summary
statistics: estimating per allele effect
sizes and the standard error. Using
these two summary statistics, along
with sample size (N) and MAF, we
can derive other association summary
statistics, such as Z-statistics (Z), the
explained phenotypic variance (r2) or
the standardised effect size (r). (C2)
Aggregated data form, also called
summary statistics, listing sample size,
effect allele frequency, effect size and
its standard error. Summary statis-
tics that quantify the association are
called association summary statistics.
(D) Imputation of the untyped SNV
k as a function of genotype data and
haplotype information (D(A, B)), or as
a function of summary statistics and
LD structure (D(C2, B)). For both op-
tions, haplotype information and LD
structure is estimated from external
reference panels. See also Figure 1.8.

• GIANT, a consortium focusing on anthropometric traits has

released all summary statistics of 15 large-scale meta-GWASs.

• The Catalog of published GWAS studies (Welter et al. 2014)

provides a curated list of all GWAS results.

• GRASP (Leslie, O’Donnell, and Johnson 2014) provides a genome-

wide repository of associations between SNPs and phenotypes.

• UK Biobank results (Abbott et al. 2017): GWAS summary statis-

tics from genotype imputed UK Biobank data, including 337’000

individuals and 2’419 phenotypes. Based on this, UKB phewas

takes a variant identifier as input and returns the association

results for the most relevant phenotypes.

• LD-Hub (Zheng et al. 2016): a centralised database of summary-

level GWAS results.

• eQTL (Westra et al. 2013): Cis- and trans-eQTLs results in whole

blood samples, limited to FDR=0.5.

• GTEx (The GTEx Consortium 2013): eQTL summary statistics

from over 20 different tissues.

• PhenoScanner: lookup of curated large-scale GWAS results,

takes a variant identifier as input.

• ExAC (Lek et al. 2016): Summary statistics (allele frequencies)

available through exome sequencing of 60’706 individuals (var-

ious disease-specific and population genetic studies, large-scale

sequencing projects).

• Table 1 in Pasaniuc and Price (2017) lists resources.

https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
https://www.genome.gov/gwastudies/
https://grasp.nhlbi.nih.gov/Overview.aspx
https://sites.google.com/broadinstitute.org/ukbbgwasresults/home?authuser=0
http://pheweb.sph.umich.edu:5000/
http://ldsc.broadinstitute.org/ldhub/
https://genenetwork.nl/bloodeqtlbrowser/
http://www.gtexportal.org/
http://www.phenoscanner.medschl.cam.ac.uk/phenoscanner
http://exac.broadinstitute.org/
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Follow-up summary statistics

Performing methods such as the ones described in ‘Beyond GWASs’,

also output summary statistics that can be accessed.

• MR-base (Hemani et al. 2016): a web application that displays

the result of a systematically performed MR analyses on a num-

ber of traits, using over 1000 GWAS summary statistic results.

MR-base PheWas takes a variant identifier as input, and returns

the traits with relevant MR results as output.

• LD-Hub (Zheng et al. 2016): a web application to look up pre-

run LDSC results.

1.6 Imputation methods

The methods described above (heritability estimation, fine-mapping,

causal inference and multi-trait analysis) require (in parts) 1) large

sample sizes, 2) the results to be harmonised in terms of markers,

and some 3) full genome summary statistics. Both, 2) and 3) can be

achieved by imputation (which will ultimately increase sample size

too).

The intuition of all imputation methods is, that parts of the genome
tend to be inherited together, which creates sets of correlated SNPs
in close proximity (‘in linkage disequilibrium (LD)’), are also called
haplotypes. Therefore, having information about a subset of SNPs and
knowing the local LD structure, we can reconstruct the remaining
SNPs with a certain confidence (see part (B) and (D) in Figure 1.7,
and Figure 1.8).

There are two commonly used methods to infer the summary

statistic of an unobserved genotype. The method of choice is geno-

type imputation. Imputing missing genotypes per individual in-

volves a two-step procedure, after which common association tests

can be performed at both, genotyped and imputed SNPs. An al-

ternative solution is summary statistic imputation, that uses sum-

mary statistics resulting from a genotype-based GWAS and imputes

the missing SNP estimates directly. Both imputation methods rely

on external reference panels to facilitate haplotype or LD estima-

tion.

In my thesis I focus on summary statistic imputation. Although

genotype imputation is more accurate than summary statistic im-

putation, it is in many cases the only option to impute summary

statistics. Privacy, logistic or computational constraints make

individual-level genotype data less likely to be shared, there-

fore genotype imputation is oftentimes not feasible. For example,

large consortia do meta-analyses on HapMap or 1000 Genomes

imputed markers. But the reference panels are changing and grow-

ing rapidly. Therefore, in order to have the newest results, every

cohort that is part of a consortium would need to re-impute with

the newest reference panel, re-submit and re-analyse the meta-

analysis. Another example where summary statistic imputation

http://www.mrbase.org/
http://phewas.mrbase.org
http://ldsc.broadinstitute.org/ldhub/
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comes in handy, are independently conducted downstream anal-

yses on GWAS data, such as the methods mentioned above, where

researcher need genome-wide association results at highly overlap-

ping genomic resolution.

SNP array

In
di
vi
du

al
s

Full genome

Reference panel (1KG or UK10K)

Genotype 
data

Imputed SNPs

Imputed 
data

Figure 1.8: Imputation with reference
panels: SNP arrays cover a relatively
small fraction of genetic variation
in the human genome, but are cost-
effective, hence more individuals can
be genotyped (blue). The power of
using SNP arrays is, to integrate them
with information from a relatively low
number of densely sequenced individ-
uals (black), leading to the genotype
imputed data (black rectangle).

Imputation of genetic variants can be done for completely miss-

ing or only partially missing variants.

1.6.1 Genotype imputation

Genotype imputation models the missing genotypes for each indi-
vidual. In brief, genotype imputation looks at each individual and
assigns - with the help of similar (distantly related) individuals - a
genotype dosage for a variant that was not genotyped. Having a
complete data set available one can then run a GWAS and obtain
summary statistics.

Genotype imputation29 (Marchini and Howie 2010,Howie et al. 29 Introduction to genotype imputation:
Marchini and Howie (2010).(2012)) comes in different flavours and involves two steps:

1. Pre-phasing: estimating haplotypes for each individual within the

GWAS sample in an iterative process (for example MaCH (Li et

al. 2010), IMPUTE (Howie et al. 2012) or SHAPEIT (Delaneau et

al. 2013)).

2. Imputation of missing genotypes into phased reference haplotypes

using hidden Markov models (minimac (Fuchsberger, Abecasis,

and Hinds 2015) or IMPUTE (Howie et al. 2012)).

IMPUTE is a software that is able to perform both steps.

Phased reference haplotypes (so called template haplotypes) have

to be estimated each time a new reference panel is published.

Genotype imputation has a high accuracy for a allele frequen-

cies down to 0.5%. Because it uses haplotypes, the accuracy de-

pends on the population diversity (and the size) of the reference
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panel (it is sufficient that the relevant haplotypes are present in the

reference panel, but the overall allele frequency does not need to

match the GWAS allele frequency).

Two downsides of genotype imputation are the long compu-

tation time and the storage space required. For example, for UK

Biobank, genotype imputation would take 4200 CPU days (com-

pared to 8.3 CPU days with summary statistic imputation), and

storing imputed and compressed UK Biobank data for 500K indi-

viduals, requires 5 TB of space.

Michigan Imputation Server offers automated genotype imputa-

tion using the Haplotype Reference Consortium (2016).

1.6.2 Imputation using summary statistics

Summary statistic imputation (Pasaniuc et al. 2014) has been pro-

posed as an efficient solution that only requires summary statistics

and the LD information estimated from the latest reference panel

to directly impute up-to-date meta-analysis summary statistics

(Pasaniuc and Price 2017). Because summary statistic imputation uses

summarised data as input, it is not bounded to privacy restrictions

related to the use of individual-level data. Another advantage is its

substantially lower computation time and storage space compared

to genotype imputation.

Summary statistic imputation in the context of genomic data was

first described by Wen and Stephens (2010), where they inferred

allele frequencies for an untyped SNV, by a linear combination of

observed allele frequencies. Lee et al. (2013) and Lee et al. (2014)

then further extended the method to the application of linear re-

gression estimates and a covariance matrix shrinkage depending

on the reference panel size. Later, Pasaniuc et al. (2014) included

a sliding window, which allowed partitioning of the genome into

smaller pieces to facilitate imputation on a larger scale, and intro-

duced a different shrinkage approach. Since then a few extensions

have been published, that mainly concentrate on summary statistic

imputation for admixed populations (Donghyung Lee, Bigdeli, et

al. 2015; Donghyung Lee, Williamson, et al. 2015; Park et al. 2015),

or including covariates (Xu et al. 2015).

Summary statistic imputation works through providing 1) sum-

mary statistics for a set of genotyped marks (called tag SNVs), and

2) the LD structure, described in part (B) and (C) in Figure 1.7.

For accurate inference, the current summary statistic imputation

method makes a few assumptions that I partially addressed in my

work.

• The LD structure reflects the correlation between Z-statistics

(meaning, the LD structure was estimated from the same set of

individuals).

– LD structure is typically estimated from an external reference

panel that might misrepresent the LD structure. Approach:

https://imputationserver.sph.umich.edu/index.html
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incorporate population (ad)mixture using the weighted LD structure

of subpopulations in the reference panel (see summary).

– The reference panel size might be small, which (1) requires to

tune the shrinkage to the correlation matrix (called λ), and

(2) leads to imprecise estimation of low frequency variants

(MAF<1%). Approach: investigate shrinkage parameter λ (see

discussion).

• An unbiased estimation incorporates the imputation quality.

– Without accounting for imputation quality, the summary

statistic estimation is underestimated for variants with im-

putation quality < 1. However, because of issues related to

LD estimation (item before) imputation quality is imprecisely

estimated.

– Approach: Improve the imputation quality towards a more accurate,

yet fast to compute measure (see summary in the next chapter).

• Sample size is constant over all tag SNVs. Approach (by Aaron

McDaid): account for varying sample size.

• Imputed variants are a linear combination of tag variant. The

imputation of summary statistics of an untyped SNV is essen-

tially the linear combination of the summary statistics of the

tag SNVs. Such a model cannot capture non-linear dependence

between tag- and target SNVs, which is often the case for rare

variants. Future research direction: estimation of imputed SNVs as a

non-linear function of tag SNPs.

Other contribution to summary statistic imputation was to

• compare summary statistic imputation to genotype imputation,

• and test the utility of summary statistic imputation on a real case

study on human height.

The following chapter lists my contribution to summary statistic

imputation and other publications.





2

Results

This chapter lists manuscripts that were either part of my efforts

in summary statistic imputation (here, here, and here), related work

in infectious diseases genetics (here) or originated through collab-

orations (here). For each manuscript I give a short summary and

indicate my contribution.

2.1 Evaluation and application of summary statistic imputation

The article Evaluation and application of summary statistic imputation to

discover new height-associated loci (Rüeger, McDaid, and Kutalik 2018)

explored the limitations and potential applications of inferring

summary statistics of untyped SNPs with summary statistic imputa-

tion by comparing it directly to summary statistics derived through

genotype imputation. The main conclusion was, that summary statistic

imputation is comparable to genotype imputation for common and

well-tagged variants. However, summary statistic imputation has low

power for rare variants and the true imputation quality is hard to

estimate, as its estimation depends on external reference panels.

RESEARCH ARTICLE

Evaluation and application of summary
statistic imputation to discover new height-
associated loci

Sina Rüeger1,2☯, Aaron McDaid1,2☯, Zoltán Kutalik1,2*

1 Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, 1010, Switzerland,
2 Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland

☯ These authors contributed equally to this work.
* zoltan.kutalik@unil.ch

Abstract

As most of the heritability of complex traits is attributed to common and low frequency

genetic variants, imputing them by combining genotyping chips and large sequenced refer-

ence panels is the most cost-effective approach to discover the genetic basis of these traits.

Association summary statistics from genome-wide meta-analyses are available for hun-

dreds of traits. Updating these to ever-increasing reference panels is very cumbersome as it

requires reimputation of the genetic data, rerunning the association scan, and meta-analys-

ing the results. A much more efficient method is to directly impute the summary statistics,

termed as summary statistics imputation, which we improved to accommodate variable

sample size across SNVs. Its performance relative to genotype imputation and practical util-

ity has not yet been fully investigated. To this end, we compared the two approaches on real

(genotyped and imputed) data from 120K samples from the UK Biobank and show that,

genotype imputation boasts a 3- to 5-fold lower root-mean-square error, and better distin-

guishes true associations from null ones: We observed the largest differences in power for

variants with low minor allele frequency and low imputation quality. For fixed false positive

rates of 0.001, 0.01, 0.05, using summary statistics imputation yielded a decrease in statisti-

cal power by 9, 43 and 35%, respectively. To test its capacity to discover novel associations,

we applied summary statistics imputation to the GIANT height meta-analysis summary sta-

tistics covering HapMap variants, and identified 34 novel loci, 19 of which replicated using

data in the UK Biobank. Additionally, we successfully replicated 55 out of the 111 variants

published in an exome chip study. Our study demonstrates that summary statistics imputa-

tion is a very efficient and cost-effective way to identify and fine-map trait-associated loci.

Moreover, the ability to impute summary statistics is important for follow-up analyses, such

as Mendelian randomisation or LD-score regression.

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1007371 May 21, 2018 1 / 32
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Figure 2.1: Download Evaluation
and application of summary statistic
imputation to discover new height-
associated loci here.

The manuscript entailed four parts:

1. Direct comparison of summary statistic imputation to genotype

imputation: I ran a GWAS on simulated traits and human height,

using data from 120’086 individuals from the UK Biobank. I

then compared the performance of summary statistic imputation

and genotype imputation to direct genotyping/sequencing as gold

standard.

2. Novel discoveries: I imputed association summary statistics

from a HapMap-based GWAS study in height to explore poten-

tially novel height-associated variants. These results were vali-

dated using results from a recent exome study and UK Biobank

data.

3. I derived a new, improved imputation quality measure.

4. With Aaron McDaid we incorporated variable sample size of tag

SNPs into summary statistic imputation, leading to increased accu-

racy of imputation estimates (described in the method section of

the manuscript and parts of the results).

This manuscript is appended at the end of this thesis or can be

https://doi.org/10.1371/journal.pgen.1007371
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downloaded here.

2.2 Improving summary statistic imputation for mixed popu-
lations
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Abstract

Motivation: Summary statistics imputation can be used to infer association summary statistics of an

already conducted, genotype-based meta-analysis to higher genomic resolution. This is typically needed

when genotype imputation is not feasible for some cohorts. Oftentimes, cohorts of such a meta-analysis

are variable in terms of (country of) origin or ancestry. This violates the assumption of current methods

that an external LD matrix and the covariance of the Z-statistics are identical.

Results: To address this issue, we present variance matching , an extention to the existing summary

statistics imputation method, which manipulates the LD matrix needed for summary statistics imputation.

Based on simulations using real data we find that accounting for ancestry admixture yields noticeable

improvement only when the total reference panel size is > 1000. We show that for population specific

variants this effect is more pronounced with increasing FST .

Contact: zoltan.kutalik@unil.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genotype data for genome-wide association studies (GWASs) are often

collected using DNA chips, which cover only a small fraction of the

variable genome. To be able to combine GWASs that measured different

sets of genetic markers (due to differences in the content of commercial

arrays), genetic information has to be inferred for a common set of markers.

Such inference exploits the fact the neighbouring SNVs are often in linkage

disequilibrium (LD), which has been well-quantified in different human

populations. Statistical inference of these untyped SNVs in a study cohort,

therefore, relies on an external reference panel of densely genotyped or

sequenced individuals. The inference process is termed imputation, of

which there are two main types. Genotype imputation (Marchini and

Howie, 2010) first estimates all haplotypes both in the reference panel

and the study cohort, then using a Hidden Markov Model every observed

haplotype in the study cohort is assembled as a probabilistic mosaic of

reference panel haplotypes. The reconstruction facilitates the computation

of the probability of each genotype for every SNV of the reference panel

in each individual of the study cohort. Having imputed the genotype data

set, one can then run an association scan with an arbitrary trait and obtain

association summary statistics. Summary statistics imputation Pasaniuc

et al. (2014) on the other hand starts off with association summary statistics

available for all genotyped markers and infers, combined with a reference

panel, directly the association summary statistics of SNVs available in

the reference panel. More specifically, estimating the local pair-wise

linkage disequilibrium (LD) structure of each genetic region using the

reference panel and combining it with association summary statistics

allows to calculate a conditional expectation of normally distributed

summary statistics. This latter approach is the central focus of our paper.

Compared to genotype imputation, summary statistics imputation is much

less demanding on computational resources, and requires no access to

individual level genetic data.

Methods making use of summary statistics, such as calculating genetic

correlation (Bulik-Sullivan et al., 2015), approximate conditional analysis

(Yang et al., 2012) or causal inference (Burgess et al., 2013), have gained

interest in recent years, because they bypass the need of genotype data,

but mimic it by making use of external reference panels. These methods

could profit from summary statistics being available on an arbitrarily

chosen panel of SNVs – provided by summary statistics imputation.

However, it is not clear how to optimally combine different LD reference

panels for summary statistics emerging from a meta-analysis of a large

number of different studies (coming from different countries/regions),

© The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

Figure 2.2: Download Improved im-
putation of summary statistics for mixed
populations here.

Parts of the computation of summary statistic imputation (and its

imputation quality) involve estimating the LD structure among

SNPs in the GWAS population1. However, by choosing an ad-hoc

1 More precisely, it is the correlation
among the Z-statistics that is approx-
imated by the correlation among
genetic variants.

reference panel, the estimated LD structure often misrepresents the

correlation structure in the GWAS, either caused by a mismatching

or a too small reference panel. In fact, for summary statistic impu-

tation to effectively work, the reference panel has to be large and

matching in terms of population structure. With limited reference

panel size and choice, and GWASs being highly heterogeneous in

terms of ancestry, this is currently not possible.

In Improved imputation of summary statistics for mixed populations

(Rüeger, McDaid, and Kutalik 2017) I addressed this problem with

the standard reference panels at hand and approximating the diag-

onal of the LD matrix with minor allele frequencies reported in the

GWAS. The method combines the LD matrices of sub-populations

in the reference panel with weights w, so that the overall error

(MSE) in the LD matrix is minimised. The weights w are deter-

mined for each genomic region separately.

For performance comparison, I used UK10K data that was up-

sampled to 25’000 individuals and simulated phenotype, and com-

pared the results our approach to existing methods. I observed a

variance-bias trade-off, with too small reference panels having the

MSE dominating by the variance, ultimately implying that opti-

misation of admixture is less relevant for small reference panels.

One drawback of the method is, that allele frequencies are often not

reported in a GWAS.

This manuscript2 is appended at the end of this thesis or can be 2 This manuscript is currently hosted
on bioRxiv and has been submitted
to Bioinformatics, where it is under
revision.

downloaded here.

2.3 Applications of summary statistic imputation

The publication Rare and low-frequency coding variants alter human

adult height (Marouli and others 2017) by the GIANT consortium

identified 120 new height associated loci (122 variants) (hereafter

called exome study). Previously, there had been 697 variants discov-

ered using HapMap imputed data of 253′288 individuals (hereafter

called HapMap study) (Wood and others 2014). The exome study

initially proposed 606 variants that had reached the exome-wide

significance threshold. Some of these variants were located nearby

HapMap study hits. Conditional analysis was used to fine-map the

proposed 606 exome study and 697 HapMap study hits. To do so, the

606 exome variants were conditioned onto 697 previously discov-

ered variants from the HapMap study using UK Biobank data. As

https://doi.org/10.1371/journal.pgen.1007371
https://www.biorxiv.org/content/early/2018/02/09/203927
https://www.biorxiv.org/content/early/2018/02/09/203927
https://academic.oup.com/bioinformatics
https://www.biorxiv.org/content/early/2017/10/16/203927
https://portals.broadinstitute.org/collaboration/giant/index.php?title=GIANT_consortium&oldid=251
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an orthogonal approach, I applied approximate conditional analy-

sis, which is based on summary statistics only.
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ARTICLE
doi:10.1038/nature21039

Rare and low-frequency coding variants 
alter human adult height
A full list of authors and affiliations appears in the online version of the paper. 

Human height is a highly heritable, polygenic trait1,2. The contri-
bution of common DNA sequence variation to inter-individual 
 differences in adult height has been systematically evaluated through 
genome-wide association studies (GWAS). This approach has thus 
far  identified 697 independent variants located within 423 loci that 
together explain around 20% of the heritability of height3. As is typical 
of complex traits and diseases, most of the alleles that affect height 
that have been  discovered so far are common (with a minor allele 
 frequency (MAF) >  5%) and are mainly located outside coding regions, 
complicating the identification of the relevant genes or functional  
variants. Identifying coding variants associated with a complex trait 
in new or known loci has the potential to help pinpoint causal genes. 
Furthermore, the extent to which rare (MAF <  1%) and low-frequency 
(1% <  MAF ≤  5%) coding variants also influence complex traits and 
diseases remains an open question. Many recent DNA sequencing 
studies have identified only a few of these variants4–8, but this limited 
success could be due to their modest sample size9. Some studies have 
suggested that common sequence variants may explain the majority of 
the heritable variation in adult height10. It is therefore timely to assess 
whether and to what extent rare and low-frequency coding variations 
contribute to the genetic landscape of this model polygenic trait.

In this study, we used an ExomeChip11 to test the association between 
241,453 variants (of which 83% are coding variants with a MAF ≤  5%) 
and adult height variation in 711,428 individuals  (discovery and 
 validation sample sizes were 458,927 and 252,501, respectively). The 
ExomeChip is a genotyping array designed to query in very large  sample 
sizes coding variants identified by whole-exome DNA sequencing  
of approximately 12,000 participants. The main goals of our project 
were to determine whether rare and low-frequency coding variants 
influence the architecture of a model complex human trait (in this case, 
adult height) and to discover and characterize new genes and biological 
pathways implicated in human growth.

Coding variants associated with height
We conducted single-variant meta-analyses in a discovery sample 
of 458,927 individuals, of whom 381,625 were of European ancestry. 
We validated our association results in an independent set of 252,501 
participants. We first performed standard single-variant association 
analyses (Extended Data Figs 1–3 and Supplementary Tables 1–11; 

technical details of the discovery and validation steps are presented 
in the Methods). In total, we found 606 independent ExomeChip 
variants at array-wide significance (P <  2 ×  10−7), including 252 non- 
synonymous or splice-site variants (Methods and Supplementary 
Table 11). Focusing on non-synonymous or splice-site variants 
with a MAF <  5%, our single-variant analyses identified 32 rare and  
51 low-frequency height-associated variants (Extended Data Tables 1, 2).  
To our knowledge, these 83 height variants (MAF range of 0.1–4.8%) 
represent the largest set of validated rare and low-frequency  coding 
variants associated with any complex human trait or disease to 
date. Among these 83 variants, there are 81 missense, one nonsense  
(in CCND3), and one essential acceptor splice site (in ARMC5) variants.

We observed a strong inverse relationship between MAF and effect 
size (Fig. 1). Although power limits our capacity to find rare variants 
with small effects, we know that common variants with effect sizes 
comparable to the largest seen in our study would have been easily 
discovered by prior GWAS, but were not detected. Our results agree 
with a model based on accumulating theoretical and empirical  evidence 
that suggest that variants with strong phenotypic effects are more likely 
to be deleterious, and therefore rarer12,13. The largest effect sizes were 
observed for four rare missense variants, located in the  androgen 
receptor gene AR (NCBI single nucleotide polymorphism (SNP) 
 reference ID: rs137852591; MAF =  0.21%, Pcombined =  2.7 ×  10−14), 
in CRISPLD2 (rs148934412; MAF =  0.08%, Pcombined =  2.4 ×  10−20), 
in IHH (rs142036701, MAF =  0.08%, Pcombined =  1.9 ×  10−23), and in 
STC2 (rs148833559, MAF =  0.1%, Pcombined =  1.2 ×  10−30). Carriers 
of the rare STC2 missense variant are approximately 2.1 cm taller 
than non- carriers, whereas carriers of the remaining three variants  
(or hemizygous men that carry a rare X-linked AR allele at 
rs137852591) are approximately 2 cm shorter than non-carriers. By 
comparison, the mean effect size of common height alleles is ten times 
smaller in the same dataset. Across all 83 rare and low-frequency 
non-synonymous variants, the minor alleles were evenly distributed 
between height-increasing and height-decreasing effects (48% and 52%, 
respectively) (Fig. 1 and Extended Data Tables 1, 2).

Coding variants in new and known height loci
Many of the height-associated variants discovered in this study are 
located near common variants previously associated with height.  

Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through 
genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele 
frequencies (in the range of 0.1–4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and 
CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-
increasing alleles of STC2 (giving an increase of 1–2 centimetres per allele) compromised proteolytic inhibition of PAPP-A 
and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 
height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological 
candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) 
involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency 
variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate 
relevant genes and pathways.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Figure 2.3: Download Rare and low-
frequency coding variants alter human
adult height here.

First, I imputed the summary statistics of all 606 exome variants

from the HapMap study results, as well as summary statistics of

all 697 previously published variants from the exome study results

(leading to two sets of 697 + 606 summary statistics: one based on

253′288 individuals in the HapMap study, one based on 381′625

individuals in the exome study). Second, I calculated effect sizes for

each exome variant conditioned on the top variants of the HapMap

study in two ways: (a) I conditioned the imputed summary statis-

tics of each exome variant on the summary statistics of the 697

HapMap variants (this is approximate conditional analysis based

on previously published summary statistics with n = 253′288); (b)

I conditioned the summary statistics of each exome variant on the

imputed summary statistics of the 697 HapMap variants (this is ap-

proximate conditional analysis based on exome summary statistics

with n = 381′625). Third, I then selected the option (a) or (b) that

yielded a higher imputation quality. My contribution is described

in the second paragraph of conditional analysis and Extended Data

Figure 4 (download manuscript here).
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The enormous variation in human lifespan is in part due to a myriad of sequence variants,
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related GWA studies to derive longevity priors for all HapMap SNPs. A Bayesian association
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studies combined; all but three are depleted of the life-shortening alleles in older Biobank

participants. Further analysis revealed that brain expression levels of nearby genes (RBM6,
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Figure 2.4: Download Bayesian asso-
ciation scan reveals loci associated with
human lifespan and linked biomarkers
here.

For the article Bayesian association scan reveals loci associated with

human lifespan and linked biomarkers (McDaid et al. 2017) I provided

the first author with the summary statistic imputation algorithm,

in order to enable fast imputation of all GWASs to the same set of

SNVs.

2.4 Contributions to research in infectious diseases

In Impact of common risk factors of fibrosis progression in chronic hepati-

tis C (Rüeger and others 2015) I estimated the impact of various risk

predictors of liver fibrosis progression for individuals with hepati-

tis C infection. The hepatitis C virus (HCV) affects about 130–170

mio individuals worldwide. In about 75%, individuals develop a

chronic hepatitis C infection that can lead to liver fibrosis, and fi-

nally progress into liver cirrhosis. Liver cirrhosis from HCV is a

major indication for liver transplantation. Establishing the contri-

bution that lead to fibrosis or accelerate fibrosis progression rate

(FPR) would help to develop pharmacological and behavioural in-

terventions for individuals at risk. Previously, there had been an

analysis by Innes et al. (2010) that looked at a Scottish HCV cohort,

but was limited to non-genetic risk factors. They concluded that

heavy alcohol use played a major role in cirrhosis.
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ABSTRACT
Objective The natural course of chronic hepatitis C
varies widely. To improve the profiling of patients at risk
of developing advanced liver disease, we assessed the
relative contribution of factors for liver fibrosis progression
in hepatitis C.
Design We analysed 1461 patients with chronic
hepatitis C with an estimated date of infection and at
least one liver biopsy. Risk factors for accelerated fibrosis
progression rate (FPR), defined as ≥0.13 Metavir fibrosis
units per year, were identified by logistic regression.
Examined factors included age at infection, sex, route of
infection, HCV genotype, body mass index (BMI),
significant alcohol drinking (≥20 g/day for ≥5 years), HIV
coinfection and diabetes. In a subgroup of 575 patients,
we assessed the impact of single nucleotide
polymorphisms previously associated with fibrosis
progression in genome-wide association studies. Results
were expressed as attributable fraction (AF) of risk for
accelerated FPR.
Results Age at infection (AF 28.7%), sex (AF 8.2%),
route of infection (AF 16.5%) and HCV genotype (AF
7.9%) contributed to accelerated FPR in the Swiss
Hepatitis C Cohort Study, whereas significant alcohol
drinking, anti-HIV, diabetes and BMI did not. In
genotyped patients, variants at rs9380516 (TULP1),
rs738409 (PNPLA3), rs4374383 (MERTK) (AF 19.2%)
and rs910049 (major histocompatibility complex region)
significantly added to the risk of accelerated FPR. Results
were replicated in three additional independent cohorts,
and a meta-analysis confirmed the role of age at
infection, sex, route of infection, HCV genotype,
rs738409, rs4374383 and rs910049 in accelerating FPR.
Conclusions Most factors accelerating liver fibrosis
progression in chronic hepatitis C are unmodifiable.

INTRODUCTION
The HCV is a major pathogen infecting 130 –170
million individuals worldwide.1 HCV causes persist-
ent infection in ∼75% of cases, mostly associated
with chronic hepatitis and characterised by a relent-
less deposition of fibrotic tissue, culminating in the
development of cirrhosis. The complications of cir-
rhosis are a major cause of mortality in hepatitis C
and a leading indication for liver transplantation.1

Hepatitis C progression towards cirrhosis is vari-
able, as it may be influenced by several factors,
such as older age at infection, male sex, excessive

alcohol drinking, obesity, insulin resistance, dia-
betes, HCV genotype 3, iron overload and
immunosuppression.2 –4 Patients cumulating two or

Significance of this study

What is already known on this subject?
▸ Hepatitis C progression towards cirrhosis varies

in each single patient, depending on the
occurrence of several factors affecting liver
fibrosis progression.

▸ Some factors influencing liver fibrosis
progression are modifiable (alcohol drinking,
obesity, diabetes, iron overload), whereas
others are not (age at infection, sex, route of
infection, HCV genotype and the host genetic
background).

▸ Managing modifiable factors positively affects
liver disease progression in hepatitis C,
although it is unclear what the relative
importance of modifiable versus unmodifiable
factors is.

What are the new findings?
▸ The factors contributing to the highest extent

to liver fibrosis progression in patients with
hepatitis C cannot be modified: older age at
infection, male sex, intravenous drug use
(IVDU) as risk factor for HCV infection and HCV
genotype 3 are the most important, together
with genetic variants associated with PNPLA3,
MERTK and the major histocompatibility
complex region, with the potential exception of
lifestyle associated with a past IVDU as risk
factor for HCV acquisition.

▸ Significant alcohol consumption contributes to
fibrosis progression, but only marginally,
whereas anti-HIV, diabetes and body mass
index do not.

▸ A significant proportion of the liver fibrosis
progression in hepatitis C is explained by
hitherto unidentified factors.

How might it impact on clinical practice in
the foreseeable future?
▸ These results may help improving patients’

profiling (including genetic testing) to prioritise
currently expensive therapeutic interventions.

Hepatology

Copyright Article author (or their employer) 2014. Produced by BMJ Publishing Group Ltd (& BSG) under licence. 

Figure 2.5: Download Impact of com-
mon risk factors of fibrosis progression in
chronic hepatitis C here.

Knowing that genetics plays a role in disease progression and

treatment of HCV, I wanted to investigate what the impact of ge-

netic and non-genetic risk factors was on FPR. As genetic risk fac-

tors, I used 10 SNPs known to affect HCV progression. I quantified

the impact of a risk factor by estimating the attributable fraction

(AF). The AF is the fraction of cases that would be prevented if the

risk factor could be eliminated. In the context of FPR, this is, the

https://doi.org/10.1038/nature21039
https://doi.org/10.1038/nature21039
https://www.nature.com/articles/ncomms15842
http://gut.bmj.com/content/64/10/1605.long
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fraction of fast progressors that could be turned into slow progres-

sors. To estimate the AF, I used data from Swiss Hepatitis C Cohort

Study, along with three additional cohorts to replicate the results.

The conclusion was, that most factors accelerating liver fibrosis

progression in chronic hepatitis C are unmodifiable (age at infec-

tion, sex, route of infection, HCV genotype, rs738409, rs4374383 and

rs910049). Furthermore, differently from the Scottish cohort results,

we did not observe a significant effect of alcohol consumption. One

major difficulty was to avoid pitfalls in estimating the attributable

fraction, as well as the lack of complete replication cohort data.

This manuscript can be downloaded here.

In Gauthiez et al. (2017), I supported the first author with con-

ducting a meta-analysis of polymorphisms influencing hepatitis C

virus clearance.

Lastly, I calculated power for various Cox proportional hazard

regression models for two publications of Swiss Transplant Cohort

Study data (Wójtowicz, Lecompte, et al. 2015; Wójtowicz, Gresnigt,

et al. 2015).

2.5 Minor contributions to other publications

Winkler et al. (2015) looked at the influence of age and sex strati-

fication on heritability of body size and shape. Using GCTA (Yang

et al. 2011), I calculated heritability of anthropometric traits in

various age- and sex-groups in the CoLaus study (Firmann et al.

2008).

http://gut.bmj.com/content/64/10/1605.long
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Discussion

In the introduction I presented various statistical methods that

can be applied to genetic data — individual-level data or in a sum-

marised form — to answer questions regarding heritability and

predictability of complex traits, or to explore the underlying disease

aetiology.

• Narrow-sense heritability — the proportion of phenotypic vari-

ance explained by SNPs — can be estimated in various ways

from individual-level genotype data or from summarised data.

Updated heritability estimations from GWAS results are key

measures that guide and assess novel findings.

• Fine-mapping is used to identify causal variants in a genomic

region associated with a complex trait. Fine-mapping methods

are mostly based on summary statistics, Bayesian modelling, and

functional annotation.

• Most causal inference methods are centred around Mendelian ran-

domisation (MR) and extensions of it. Because two sample MR

has been developed and more and larger GWASs have become

publicly available, it has become easier to use reliable instrumen-

tal variables for MR.

• Finally, multi-trait analyses give insight into genetic correlation

between traits and potential pleiotropy.

Note, that because effect sizes of genetic variants involved in

complex traits are typically small, sample size is key; studies with

larger sample size will have more statistical power.

These statistical methods often work with individual-level geno-

type data or with summary statistics combined with LD data1 as 1 Linkage disequilibrium (LD) structure,
the non-random association of SNPs,
structure is estimated from an external
reference panel, such as the 1000

Genomes Project Consortium (2010).

input. However, methods relying on access to genetic data are lim-

ited by the analyst’s access to cohort data, hence sample size is

limited. The use of summary statistics, combined with information

from external reference panels is a compromise to make up for the

lack of individual level data.

Most publications that are centred around GWAS data use such

methods. For example, Porcu and others (2018) used summary

statistics-based MR to estimate the causal impact of gene expres-

sion on 43 complex traits. Doing so, Porcu et al. uncovered 2′277

putative genes causally associated with at least one complex trait,
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while also evaluating shared causal effects of gene expression on

pairs of traits. In the case of Porcu et al., SNP summary statistics

(instrumental variables) need to be available for both sets of sum-

mary statistics: the eQTL study and the GWAS of the complex trait.

In another example Winkler et al. (2015) screened for age- and

sex-specific effects in BMI and WHRadjBMI (weight-hip-ratio ad-

justed for BMI) via a genome-wide interaction meta-analysis. For-

mally, this is a G-by-E2 design, where E is dichotomous, leading to 2 G-by-E: Gene-environment interaction

four strata (men ≤ 50y, men > 50y, women ≤ 50y, women > 50y).

The meta-analysis included > 320′000 from 114 studies with differ-

ing SNP panels (HapMap imputed, Illumina Metabochip), yielding

a common set of 2.8 million SNPs. SNPs were only included in the

analysis if being available in at least half of the maximum sample

size in all four strata, leading to SNPs not being tested or having

lower sample size (thus lower power).

In fact, oftentimes, summary statistics-based methods require

results for the same set of SNPs to have full power (e.g. a meta-

analysis). To harmonise results, imputation methods are used.

Therefore, in order to answer questions regarding heritability

and disease aetiology, not only is it important to have statistical

methods available that use summary statistics as input, but also

a methodology that imputes summary statistics for unmeasured

SNPs.

My PhD evolved around methods that integrate GWAS and

other -omics data with statistical methods. The results are described

in the previous chapter. My main occupation was the improvement

of summary statistic imputation. In parallel, I also ran GWASs, other

statistical analyses and contributed to collaborations. In this dis-

cussion, I will therefore focus on summary statistic imputation, the

future of GWAS, and give an outlook into future work that involves

integrating GWAS results and drugbank data.

3.1 Summary statistic imputation: limitations and future work

In my two publications (Rüeger, McDaid, and Kutalik 2018; Rüeger,

McDaid, and Kutalik 2017) I proposed an improved summary statis-

tic imputation3 method (improved imputation quality and optimised 3 Summary statistic imputation is a
statistical method that is used to im-
pute the summary statistic (often the
Z-statistic) of an untyped SNP by
combining summary statistics of typed
SNPs with LD information. More
specifically, Z-statistics are modelled
to follow a multivariate normal distri-
bution. The correlation between typed
and untyped Z-statistics is estimated
through the correlation between SNPs
estimated from an external reference
panel (LD).

assembly of the LD matrix). I also compared summary statistic im-

putation to genotype imputation, identified groups of genetic variants

that are hard to impute, and demonstrated in a case study the util-

ity of summary statistic imputation.

3.1.1 Estimation error of LD structure

Estimating the correlation matrix between the Z-statistics is one of

the major challenges in summary statistic imputation4. In reality, the
4 Estimating the LD structure with
the correlation matrix is a general
problem to any method that uses
GWAS summary data combined
with reference panel data. Deng and
Pan (2018) pointed out an increased
type 1 error rate in the context of
approximate conditional and joint
analysis.

correlation structure between SNPs in the GWAS is approximated

through the correlation between the SNPs from external reference

panels. The accuracy of imputation is reduced when the LD struc-
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ture between typed and imputed SNPs is misspecified.

Ideally, the reference panel population needs to match the GWAS

population. Even if this is the case, the reference panel needs to be

sufficiently large in order not to run into sparsity problems when

inverting the LD matrix (which is part of the summary imputation

algorithm). The current situation of reference panels requires care-

ful considerations of the choice of sub-populations, and shrinkage

of the LD matrix in order to reduce MSE at the cost of introducing

some bias.

Ultimately, imprecise LD estimations lead to more false posi-

tives and false negatives, and also to imprecise imputation quality

estimation.

I addressed the issue of estimating the LD matrix in two ways:

First, I searched for an adaptive shrinkage method of the LD

matrix. Shrinkage methods help to process correlation matrices

that describe a large number of variables from only a few samples

(n >> p problem). As a simple example consider a correlation

matrix of 2000 neighbouring SNPs, estimated from 100 individuals.

SNPs at the very start and at the very end of the range are likely in

low LD with each other, but still display some non-zero correlation

due to estimation error, which can be inflated when inverting the

matrix.

By multiplying the off-diagonal values in the LD matrix with a

scalar (0 ≤ λ ≤ 1), the matrix becomes invertible. Any λ < 1 will

make the correlation matrix invertible, but a stronger shrinkage can

reduce estimation error. Choosing the optimal λ is key to keep the

estimation error low. For example, λ can be applied as a function

of the reference panel size n: λ = 2/
√

n. I also worked on an alter-

native approach where the shrinkage parameter would change ac-

cording to the underlying local genetic architecture of each region,

however, was not successful. I hypothesised that optimal shrink-

age depends on local LD structure, and sought to optimise λ for

each genomic region using the effect sizes of tag SNVs as training

data set in a leave-one-out fashion. When looking at null variants,

however, maximum shrinkage (λ = 1) usually leads to the smallest

MSE. Therefore, when looking at a specific genomic region with a

mixture of null and associated SNVs, the selected λ will be shifted

towards 1 and shrink the estimation of associated SNVs towards 0,

which is not ideal.

Second, in the article Rüeger, McDaid, and Kutalik (2017) I

showed how imputation accuracy changes according to reference

panel composition and reference panel size. My results imply

that simply enforcing allele frequencies between the GWAS and

reference panel to match might decrease the bias of imputing the

summary statistic but increase the variance to a much larger extent.

This phenomenon is known as the variance-bias trade-off. The

MSE of an estimate (in this case the imputed summary statistic) is

composed of the squared bias and the variance. The goal is a min-

imal MSE. Parameter configurations (such as the reference panel
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composition) can increase or decrease the contribution of the bias

and the variance term, and as such the MSE.

To improve imputation of admixed or mixed GWASs, access to

larger and more diverse reference panels are needed.

3.1.2 Improve the estimation of imputation quality

Imputation quality is defined as the squared correlation r2 be-

tween the imputed and true genotypes. In reality, this is estimated

through the variance of the imputed version of the SNP divided

by the variance of the true underlying variance (which can be esti-

mated from the reference panel) r̂2 of the tag SNPs. Therefore, the

imputation quality can vary from 0 to 1, with r̂2 = 1 indicating

perfect imputation.

Because r̂2 is estimated from an external reference panel, it suf-

fers from similar problems to the ones mentioned above (reference

panel size and composition). I tackled this problem by looking at

variations of the classical r̂2 (e.g. using ridge regression for tag SNP

selection or by accounting for sample size and the effective number

of variants).

Additionally, r̂2 — being simply the tag-ability of a SNP — does

not incorporate any of the factors that might decrease confidence

in an imputed summary statistic (such as mismatching reference

panel, the impact of the shrinkage parameter λ, number of tag

SNPs or variable missingness among tag SNPs). This last topic has

not been explored yet.

3.1.3 Summary statistic imputation before meta-analysis

To date, most published GWASs from consortia are meta-analyses

based on HapMap imputed genotype data. Updating genotype

imputed data to newer reference panels (such as 1000 Genomes

Project Consortium (2010) or Haplotype Reference Consortium

(2016)) is cumbersome for contributing cohorts, often leading to

partial contribution, hence only a few consortia have done this

(e.g. Early Growth Genetics Consortium (Horikoshi et al. 2016),

CKDGEN Consortium (Gorski et al. 2017)).

This problem could be avoided (and sample size increased) by

using summary statistic imputation instead. For example, cohorts

could provide summary statistics on a varying genomic resolution.

The consortium could then first impute each single cohort sum-

mary statistics to a common set of SNPs (and using an appropriate

reference panel), before meta-analysing all cohort summary statis-

tics. Imputing each single cohort summary statistics before meta-

analysing them is important for imputation accuracy, as different

cohorts require different settings (e.g. choice of reference panel).

This is a topic that could be explored in the future.
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3.1.4 Software implementation

I believe that in order for summary statistic imputation to be used

widely as an alternative to genotype imputation, an easy-to-use

software implementation must be available. People developing

statistical methods are often capable of programming and can easily

implement methods from other researchers. But others, with an

expertise in a different domain than programming and statistical

genetics, will likely struggle with an implementation, therefore not

using the algorithm and turning to an easier solution instead.

Currently, there are various different implementations of sum-

mary statistic imputation (e.g. ImpG-Summary). These methods are

not straightforward to use and computationally very slow.

This is why, I and Aaron McDaid, a former colleague, aimed

for a more flexible summary statistic imputation implementation.

Although I already had an implementation in R, Aaron opted for

a C++ implementation, allowing fast computation and command

line operation. Meanwhile, I was responsible for the conceptual

planning and design of the tool.

More specifically, my aims in terms of functionality were:

• to use commonly used file formats as input (GWAS output such

as that from PLINK, QuickTest, METAL or SNPTEST),

• to provide a simple output as a text format,

• to include sanity checks (such as re-imputing tag SNPs),

• to allow flexibility in terms of SNP identifiers,

• to have the user semi-guided in terms of parameter choice

(e.g. shrinkage parameter λ is set to 2/sqrt(n), but can be adapted

to any value between 0 and 1),

• to compute the correlation matrices on the fly (after the reference

panel has been downloaded),

• to implement a my new version of imputation quality and ac-

count for variable missingness,

• to allow quick imputation of single SNPs.

Having the software on Github, I hope that future improvements

of summary statistic imputation can be directly implemented by oth-

ers.

3.2 Key resources for future GWASs

In this section I list elements that, if improved, would best facilitate

advancement of GWAS and could therefore ensure a thriving future

of methods using association summary statistics5. 5 The concept of GWASs has its own
challenges (Marigorta et al. 2018).Large & diverse reference panels: To improve imputation of

admixed or mixed GWASs, access to larger reference panels would

be needed. For example, Haplotype Reference Consortium (2016)

could release LD matrices, which could then be used as input for

summary statistic imputation and similar methods.

Mutliethnic GWASs: Conducting GWASs in non-European in-

dividuals. So far, GWASs have predominantly focussed on samples

http://bogdan.bioinformatics.ucla.edu/software/impg/
https://www.cog-genomics.org/plink2
https://wp.unil.ch/sgg/quicktest/
https://genome.sph.umich.edu/wiki/METAL_Documentation
https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html
https://github.com/zkutalik/ssimp_software
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with European ancestry, and have therefore missed a substantial

portion of the genetic variation that is present in the human popu-

lation. According to Popejoy and Fullerton (2016), in 2016 only 19%

of the GWAS in the GWAS Catalog (Welter et al. 2014) were non-

European and 14% were of Asian decent. Meaning, the remaining

5% were shared among GWASs of individuals in African, Hispanic

& Latin American, Pacific Islander, Arab & Middle Eastern, and

indigenous descent. This has implications on (non-)transferability

of GWAS results, for example in the context of polygenic risk scores

(Martin et al. 2017; Kim et al. 2017).

Public data: To boost power with summary statistic imputation

and other summary statistic based methods, GWAS results must be

publicly easily accessible, and include information for all tested

SNPs regarding: effect size, standard error of the effect size, sample

size, effect allele, and effect allele frequency.

More -omics data: Most GWASs focus on SNP data. But explor-

ing other -omics data as outcome and predictors (e.g. transcrip-

tome, proteome, metabolome) will be needed for new discoveries.

Rare variant detection: Genotype imputation and summary

statistic imputation both have limitations to impute rare variants.

Therefore, specially designated sequencing studies are the only

option to explore rare variants. Other genetic variation than SNVs

(e.g. copy number variation, sex chromosomes) will also be needed.

In principle, as long as a correlation structure is provided, summary

statistic imputation can be performed for other genetic variation.

3.3 Future work on translational GWASs

To conclude this discussion I would like to repeat the overarching

goal that was stated in the beginning of the introduction: apply-

ing statistical methods to genetic data to identify the genetic risk

factors underlying complex diseases, which then could lead to

improved treatment, prevention, diagnosis and prognosis.

So far, I have discussed statistical methods that analyse genetic

data to identify key genes, SNPs or other genetic actors. However,

I have not elaborated on how to translate these findings into better

therapies for patients. In this section I will present a method that

connects GWAS and MR findings with a pharmacological database

to enable repositioning existing drugs.

A few GWAS results have been validated using knockout models

in animals or in-vitro experiments. These approaches are expen-

sive and not applicable in a high-throughput manner. In the past

there have been various attempts to define the druggable part of

the genome by linking GWAS results to drug targets in a systematic

way (Finan et al. 2017; Gaspar and Breen 2017). However, using

GWAS results only, these studies were underpowered and the sig-

nal seems to be weak.

Recently, two sample MR methods have been developed that

combine GWAS results with eQTL data, leading to a list of putative
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causal genes for a number of complex traits (Zhu et al. 2016). Such

a well-powered study was performed by my colleague Eleonora

Porcu (Porcu and others 2018), which estimated gene expression-

trait associations in 43 traits using an extended MR technique.

At the same time, a web database called drugbank.ca (Wishart et

al. 2018) contains gene target information for over 7’000 drugs. I

combined the MR results with information of drug-gene pairs from

the drugbank.

My goal was:

• To validate the MR study results. Do drugs for specific diseases

tend to target genes whose expression is causally linked to those

diseases?

• To understand why some of the identified genes overlap with the

trait-specific treatment of the complex traits but others do not.

• To evaluate repositioning of drugs.

3.3.1 Method

From my colleague I received a dataset with three columns (gene,

trait, and the association p-value) and 603′404 rows.6 6 The association was estimated with
an extended MR approach to whole
blood expression of 15′985 genes
(exposure) and 43 traits/diseases. This
yielded 603′404 causal effect estimates
(of which 5′009 are significantly non-
zero).

I then combined all 603′404 causal effect estimates with known

drug target genes using the drugbank database. For this, I devel-

oped a score to quantify for each drug-trait pair how well the drug

targets correspond to the set of genes causally implicated for the

given trait. Figure 3.1 illustrates this with a fictional example. This

step provided me with a matrix of 89’913 trait-drug scores (2′091

drugs, 43 traits).

Trait - gene expression  
associations

-log(P)Gene

A

Trait

T1 1
8
20

3

B
C
D

2E

DrugBank.ca
Target	
GenesIndication

T1

Drug

DB001 A,B,C

DB002 A,C,D

DB003 E

DB004 T1,T2 A,E

T

D

Trait

Dr
ug

s

Score matrix

= -log[min(P) * #genes]

S

2’091	x	42

S

Example: S(DB001, T1) = 20 - log[3]

Score 
the overlap in 

genes

... ... ...

T1

T1

Figure 3.1: Combining MR and drug-
bank info into a score matrix: These
two datasets are a schematic illustra-
tion of the MR results (LSH-top) and
the drugbank database (LHS-bottom).
For any trait-drug combination, I
calculated a score (RHS). As an exam-
ple, we can calculate the overlap of
the gene targets of drug DB001 and
the gene-trait association of trait T1:
Drug DB001 has gene A, B, C as gene
targets. These genes have -log10(P)-
values of 1, 8 and 20. We can distil
this info into a score (e.g. sum of the
-log10(P)-values).

Next, I defined a set of drugs for each complex trait. I call these

drugs trait-specific drugs (and drugs not used to treat the trait trait-

https://www.drugbank.ca/


40 sina rüeger

unspecific drugs). Because I manually curated these looking up in-

dications, I did this only for a limited number of diseases (below, I

will list results for total cholesterol).

Finally, I analysed the score matrix in two ways. Approach (A)

compares the scores for a given trait between trait-specific drugs

and trait-unspecific drugs. If scores of trait-specific drugs have

on average higher scores, this means that genes detected through

MR are specifically related (target/transporter) to the trait-specific

drugs. Furthermore, trait-unspecific drugs that have high scores

can potentially be repositioned for this trait. Figure 3.2 shows a

schematic view.

Approach A

!1

Trait

Trait-specific drugs Trait-unspecific drugs

Scores

Sc
or

e

1) Select trait of interest. 

3) Compare scores

2) Group drugs 
into two categories. 

Figure 3.2: Approach A - comparing
drugs: For a given trait I compared the
scores of trait-specific drugs (LHS) and
trait-unspecific drugs (RHS).

Approach (B) focuses on trait-specific drugs and compares the

scores to other traits, see Figure 3.3 for an illustration. If scores of

trait-specific drugs rank high, this means that the MR results are

highly trait specific (in terms of drugs).

3.3.2 Results

As a showcase, I will present the results for total cholesterol (TC).

In approach (A) I analysed whether the scores of TC-specific

drugs are enriched in MR results compared to TC-unspecific drugs

scores. Figure 3.4 shows that the scores of TC drugs are indeed en-

riched (one-sided Wilcoxon rank sum test, P = 5x10−5), pointing to

an agreement between the trait-specific drugs and the MR results.

There are a number of TC-unspecific drugs that rank higher than

the maximum score in TC-specific drugs. For example Olsalazine

(an anti-inflammatory drug used in the treatment of the intestines),

Bendroflumethiazide (a high-blood pressure treatment) or Cetuximab

(cancer treatment). By understanding why these TC-unspecific

drugs are in such high agreement with the MR results in TC, and



phd thesis 41

Approach B
Trait t

Drugs

Score

Trait t all other traits

1) Select trait of interest, 
call it “t” 

4) Compare the scores.

3) Extract all 
scores for these 
drugs, seperately 
for trait t and all 
other traits.

2) Select all drugs 
relevant for trait t. 
These are the trait-
specific drugs.

Score

Figure 3.3: Approach B - comparing
traits: For a specific trait ”t” I extracted
all trait-specific drugs, and then
compared their scores for that specific
trait ”t” (solid dots) to all other traits
(circles).

investigating their mechanism of action (including side effects),

some TC-unspecific drugs could potentially be candidates for high

cholesterol treatment.
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Figure 3.4: Approach A in Total
Cholesterol: Y-axis shows the scores,
each point is a drug, with a boxplot
overlayed. LHS displays TC-unspecific-
drugs, the RHS are the TC-specific
drugs. One-sided Wilcoxon rank sum
test (P = 5x10−5)

In approach (B) I analysed whether TC-specific drugs are en-

riched in MR results in TC, compared to other traits. Figure 3.5

shows that for 8 out of 17 drugs, scores for TC ranks first or second

(P = 7.6x10−7).

3.3.3 Limitations

This work-in-progress method has a number of limitations.
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Cholesterol: The x-axis shows scores,
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dot is one trait, with TC as a solid
dot. Drugs are ordered according to
the ranking of the black dot (score
for TC). Binomial test rank 1st or
2nd (#successes=8, #trials=17): P =
7.6x10−7.

Approach (A) works best with a large number of drugs. For

example, for amyotrophic lateral sclerosis (ALS) there are currently

only two drugs listed in the drugbank. However, diseases such as

ALS precisely need drug discoveries.

Some diseases display symptoms that are highly general and for

which a vast number of drugs is available. For example, rheuma-

toid arthritis (RA) has 164 drugs enlisted. This makes approach

(B) difficult to work, as many diseases will have the same drugs as

treatment. Excluding diseases with similar treatments, or account-

ing for such diseases might be a solution to that.

There are two factors that increase uncertainty of the results of

this method. First, the gene targets listed in the drugbank were es-

tablished with various methods of differing reliability. Second, the

MR results are limited to peripheral blood, thus not generalisable

to other (important) tissues. Some known drug targets are not part

of the results. Other tissue was analysed, but sample size restricts

statistical power.

Most importantly, for this method to work, establishing a general

and widely applicable disease-indication-drug network is key.

Such a network could be established through using ATC codes.

3.4 Conclusion

With my work on summary statistic imputation I have helped to im-

prove linking incomplete GWAS summary statistics with follow-up

methods. I have emphasised the need of publicly available sum-

mary statistics for a range of traits, as well as large and diverse

reference panels. In combination with statistical methods, these two

data sources could help to unravel the biology of diseases currently

relevant in public health.

https://www.whocc.no/atc/structure_and_principles/
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For example, besides better treatment, a key factor in improv-

ing life quality for sick individuals are early stage diagnoses of

diseases that require well-timed therapeutic interventions (e.g. mul-

tiple sclerosis). Future efforts in solving such riddles in genetic

epidemiology involve the usual suspects, such as the exploration of

rare variation with more sequencing studies, deep phenotyping and

cohorts from diverse ethnicity.

What I think will be highly relevant in the future are public

health intervention that tackle highly complex and prevalent dis-

eases such as obesity. Understanding how genetic and environmen-

tal risk factors related to obesity are causally linked to each other

can for example be done with deep molecular phenotyping that can

help to bridge the connection between genetic variants and obesity.

Identifying the responsible (actionable) risk factors for obesity is

currently far from being solved; although statistical methods are be-

ing developed that can handle more complex models across many

different populations and environments.

Another important factor for future genetic epidemiology is how

data is collected. Currently, genetic and phenotypic data is in the

hands of researcher (e.g. cohort studies) or companies (e.g. genetic

testing companies). This setup has one principle limitation: the

data ‘’owners” are in charge of giving researchers access to the

data - and not the individuals, that provided the data. New data

collection initiatives let an individual own and control its data

(e.g. Nebula Genomics). This is done with new technologies that

enhance data privacy, and as such potentially increase the size of

genomic data.

Bringing the attention back to the individuals that provided the

data, is also part of the last point that I believe will become more

relevant in the upcoming years: returning genetic research results

back to individuals. Individuals that become part of a cohort or

data collection must sign a consent form (see an example here).

Part of such a consent form is whether the individual wishes to

have the genetic risk reported back to them. An individual has also

the right ‘’not to know”. So far, mostly rare diseases were reported

back, ideally through a genetic counselling. However, for complex

diseases reporting back the disease risk proved more difficult, as

these diseases needed more investigation to derive reliable risk

predictors. For well-studied complex diseases, we can now report

back an individual’s disease risk through polygenic risk scores

derived from large-scale GWASs. The Estonian Biobank (EGCUT) is

making a step into this direction. A new pilot programme returns

an individual risk information to EGCUT participants for certain

diseases, for example type 2 diabetes.

https://www.nebulagenomics.io/
https://www.geenivaramu.ee/en/access-biobank
http://www.bbmri-eric.eu/news-events/estonian-biobank-to-provide-personalised-feedback-to-biobank-participant/
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Abstract

As most of the heritability of complex traits is attributed to common and low frequency

genetic variants, imputing them by combining genotyping chips and large sequenced refer-

ence panels is the most cost-effective approach to discover the genetic basis of these traits.

Association summary statistics from genome-wide meta-analyses are available for hun-

dreds of traits. Updating these to ever-increasing reference panels is very cumbersome as it

requires reimputation of the genetic data, rerunning the association scan, and meta-analys-

ing the results. A much more efficient method is to directly impute the summary statistics,

termed as summary statistics imputation, which we improved to accommodate variable

sample size across SNVs. Its performance relative to genotype imputation and practical util-

ity has not yet been fully investigated. To this end, we compared the two approaches on real

(genotyped and imputed) data from 120K samples from the UK Biobank and show that,

genotype imputation boasts a 3- to 5-fold lower root-mean-square error, and better distin-

guishes true associations from null ones: We observed the largest differences in power for

variants with low minor allele frequency and low imputation quality. For fixed false positive

rates of 0.001, 0.01, 0.05, using summary statistics imputation yielded a decrease in statisti-

cal power by 9, 43 and 35%, respectively. To test its capacity to discover novel associations,

we applied summary statistics imputation to the GIANT height meta-analysis summary sta-

tistics covering HapMap variants, and identified 34 novel loci, 19 of which replicated using

data in the UK Biobank. Additionally, we successfully replicated 55 out of the 111 variants

published in an exome chip study. Our study demonstrates that summary statistics imputa-

tion is a very efficient and cost-effective way to identify and fine-map trait-associated loci.

Moreover, the ability to impute summary statistics is important for follow-up analyses, such

as Mendelian randomisation or LD-score regression.
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Copyright: © 2018 Rüeger et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by the

Leenards Foundation (http://www.leenaards.ch),

the Swiss National Science Foundation [31003A-

143914, 31003A-169929]. The funders had no role

in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pgen.1007371
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007371&domain=pdf&date_stamp=2018-06-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007371&domain=pdf&date_stamp=2018-06-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007371&domain=pdf&date_stamp=2018-06-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007371&domain=pdf&date_stamp=2018-06-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007371&domain=pdf&date_stamp=2018-06-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007371&domain=pdf&date_stamp=2018-06-01
https://doi.org/10.1371/journal.pgen.1007371
https://doi.org/10.1371/journal.pgen.1007371
http://creativecommons.org/licenses/by/4.0/
http://www.leenaards.ch


Author summary

Genome-wide association studies (GWASs) quantify the effect of genetic variants and

traits, such as height. Such estimates are called association summary statistics and are typi-

cally publicly shared through publication. Typically, GWASs are carried out by genotyp-

ing* 500
0
000 SNVs for each individual which are then combined with sequenced

reference panels to infer untyped SNVs in each’ individuals genome. This process of geno-

type imputation is resource intensive and can therefore be a limitation when combining

many GWASs. An alternative approach is to bypass the use of individual data and directly

impute summary statistics. In our work we compare the performance of summary statis-

tics imputation to genotype imputation. We observe that genotype imputation shows a 3- to

5-fold lower RMSE compared to summary statistics imputation, as well as a better capabil-

ity to distinguish true associations from null results. Furthermore, we demonstrate the

potential of summary statistics imputation by presenting 34 novel height-associated loci,

19 of which were confirmed in UK Biobank. Our study demonstrates that given current

reference panels, summary statistics imputation is a very efficient and cost-effective way to

identify common or low-frequency trait-associated loci.

Introduction

Genome-wide association studies (GWASs) have been successfully applied to reveal genetic

markers associated with hundreds of traits and diseases. The genotyping arrays used in these

studies only interrogate a small proportion of the genome and are therefore typically unable to

pinpoint the causal variant. Such arrays have been designed to be cost-effective and include

only a set of tag single nucleotide variants (SNVs) that allow the inference of many other

unmeasured markers. To date, thousands of individuals have been sequenced [1, 2] to provide

high resolution haplotypes for genotype imputation tools such as IMPUTE and minimac [3,

4], which are able to infer sequence variants with ever-increasing accuracy as the reference

haplotype set grows.

Downstream analyses such as Mendelian randomisation [5], approximate conditional

analysis [6], heritability estimation [7], and enrichment analysis using high resolution anno-

tation (such as DHS) [8] often require genome-wide association results at the highest possi-

ble genomic resolution. Summary statistics imputation [9] has been proposed as a solution

that only requires summary statistics and the linkage disequilibrium (LD) information esti-

mated from the latest sequencing panel to directly impute up-to-date meta-analysis sum-

mary statistics [10]. Because summary statistics imputation uses summarised data as input, it

is not bounded to privacy restrictions related to the use of individual data. Another advan-

tage is its substantially lower computation time compared to genotype imputation. For

example, for imputation of the UK Biobank data, it is about 500 times faster (4200 vs 8.3

CPU days comparing Minimac [4] to our SSIMP software [11]).

This study compares summary statistics imputation directly to genotype imputation and

focuses on its practical advantages using real data. In particular, we evaluated two experiments:

1) we ran a GWAS on both simulated traits and human height using data from 120
0
086 indi-

viduals from the UK Biobank and compared the performances of summary statistics imputa-

tion and genotype imputation, using direct genotyping/sequencing as gold standard; 2) we

imputed association summary statistics from a HapMap-based GWAS study [12] using the

UK10K reference panel to explore new potential height-associated variants which we validated

using results fromMarouli et al. [13] and the UK Biobank height GWAS (n = 336
0
474). We

Applications of summary statistic imputation
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extended summary statistics imputation [9, 14] which yields increased imputation accuracy by

accounting for variable sample sizes. For all applications presented in this manuscript we are

using this improved version of summary statistics imputation.

Materials andmethods

Summary statistics imputation (SSimp)

By combining summary statistics for a set of variants and the fine-scale LD structure in the

same region, we can estimate summary statistics of new, untyped variants at the same locus.

We assume a set of univariate effect size estimates ai are available for SNVs i = 1, . . ., I from

a linear regression between a continuous phenotype y and the corresponding genotype gimea-

sured in N individuals. Without loss of generality we assume that both vectors are normalised

to have zero mean and unit variance. Thus ai ¼
ðg iÞ0$y
N

and a ¼ ða
1
; a

2
; . . . ; aIÞ

0 %N ða;SÞ. S
represents the pairwise covariance matrix of effect sizes of all i = 1, . . ., I SNVs.

To estimate the univariate effect size αu of an untyped SNV u in the same sample, one can

use the conditional expectation of a multivariate normal distribution. The conditional mean of

the effect of SNV u can be expressed using the effect size estimates of the tag SNVs [9, 15]:

âu ¼ aujM ¼ au þ ΣuMΣ
'1

MMða' αÞ ; ð1Þ

whereM is a vector of so-called tag SNVs, ΣuM represents the covariance between SNV u and

allMmarkers and ΣMM represents the covariance between allMmarkers.

We assume that estimates for the two covariances are available from an external reference

panel with n individuals and denote them s ¼ Σ̂Mu, S ¼ Σ̂MM. The corresponding correlation
matrices are γ and Γ, with c = N $ s and C = N $ S being the estimates for the correlation matri-

ces. Further, by assuming that SNV u and the trait are independent conditioned on theM
markers, i.e. au ' ΣuMΣ

'1

MMα ¼ 0, Eq (1) becomes

âu ¼ aujM ¼ s0S'1a ¼ c0C'1a ð2Þ

One can also choose to impute the Z-statistic instead, as derived by Pasaniuc et al. [9]:

ẑ ujM ¼ c0C'1z ð3Þ

with z ¼ a
ffiffiffiffi

N
p

, when the effect size is small (as is the case in typical GWAS).

Similar to Pasaniuc et al. [9], we choseM to include all measured variants within at least

250 Kb of SNV u. To speed up the computation when imputing SNVs genome-wide, we apply

a windowing strategy, where SNVs within a 1 Mb window are imputed simultaneously using

the same set ofM tag SNVs the 1 Mb window plus 250 Kb flanking regions on each side.

Shrinkage of SNV correlation matrix. To estimate C (and c) we use an external reference

panel of n individuals. Since the size of C often exceeds the number of individuals (q( n),

shrinkage of matrix C is needed to guarantee that it is invertible.

Off-diagonal values of C are shrunk towards zero and the extent of which is characterised

by a shrinkage parameter λ. As a consequence, it also lowers the RMSE in summary statistics

imputation [16], as values in C close to zero, may represent pure noise (and zero LD), which

can be inflated when inverting the matrix.

By applying shrinking, the modified matrix becomes

C
l
¼ ð1' lÞC þ lI ð4Þ

Applications of summary statistic imputation
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Even though c is not inverted, we still shrink it to curb random fluctuations in the LD esti-

mation in case of no LD.

c
l
¼ ð1' lÞc ð5Þ

Inserting cλ and Cλ, Eq (2) then becomes

âu ¼ aujM ¼ c0
l
C'1

l
a ð6Þ

Note that λ can vary between 0 and 1, with λ = 1 turning C to the identity matrix, while

λ = 0 leaves C unchanged. Schäfer & Strimmer [16] find an optimal λ by minimising the vari-

ance of matrix C. Wen & Stephens [17] propose to adjust matrix C in a way that they represent

recombination hotspots correctly. A similar idea is to set small absolute correlation values to 0.

Here, we mainly focus on two commonly used λ values: λ fixed at 0.1 [9], and λ changing with
the reference panel size n: l ¼ 2=

ffiffiffi

n
p

[18].

Imputation quality. Imputation quality, r2, is defined as the squared correlation between

the imputed and true genotypes. An r2 value of 1 means perfect imputation, whereas r2 of 0

indicates poor imputation [19]. In summary statistics imputation this quantity is the total vari-

ance explained by a linear model where the imputed genotype is regressed onto all measured

markers. It was proposed by Pasanuic et al. [9] to be estimated as

r̂2pred ¼ c0
l
C'1

l
c
l

ð7Þ

Furthermore, we introduce an adjusted form to account for the ratio between the number of

parameters (q) and sample size (n) [20]. Due to the fact that many measured SNVs are corre-

lated, we further modify the formula by adjusting the number of parameters in the formula to

the effective number of variants qeff [21]:

r̂2pred;adj ¼ 1' ð1' r̂2predÞ
n' 1

n' qeff ' 1
ð8Þ

Negative values in Eq (8) are set to zero.

Summary statistics imputation accounting for varying sample size and missingness. All

previously published summary statistics imputation methods assume that all effect estimates

are based on the same set of N individuals. This assumption does not hold most of the time

since meta-analysis studies use different genotyping chips or different imputation reference

panels. As a result, the covariance between effect estimates will change. In the extreme case

when effect estimates are computed in two non-overlapping samples, the correlation will be

zero even if there is very high LD between the two SNVs.

To perform imputation, we require the correlation between any target complete Z-statistic,

zu, and any observed partial Z-statistic, z)k , (with k 2M),

dk ≔ Cor ½zu; z)k + ¼ cuk

ffiffiffiffiffiffiffiffiffi

Nk

Nmax

s

We define Nk as the sample size of SNV k, N as a vector recording the sample size of each

tag SNV, Nmax as the maximum in N, and assume that every tag SNV k the sample of individu-

als is a subset of a complete sample of Nmax individuals.

Applications of summary statistic imputation
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By defining dkl ≔ Nk\l
ffiffiffiffiffiffiffi

NkNl

p , we can calculate the adjusted (estimated) correlation matrix D,

where each element is calculated as follows:

Dkl ¼ ckldkl : ð9Þ

We present two estimators of δkl. Typically, we do not know the details of the exact sample

overlap for every pair of SNVs, Nk\l, and instead simply know Nmax and the vector N. There-

fore, we must derive the sample overlap Nk\l based on assumptions about the dependence

structure of missingness.

The most conservative assumption is maximum possible overlap, resulting in maximum

dependence, as this minimises the imputed Z-statistic. If each SNV has a corresponding binary

missingness vector, the correlation between these missingness vectors will be maximised when

the sample overlap is at its maximum, Nk\l = min(Nk, Nl). To enable the dependent approach,

we construct aDmatrix by replacing Nk\l with min(Nk, Nl),

DðdepÞ
kl ¼ Ckld̂

ðdepÞ
kl ¼ Ckl min

ffiffiffiffiffi

Nk

p
ffiffiffiffiffi

Nl

p ;

ffiffiffiffiffi

Nl

p
ffiffiffiffiffi

Nk

p
" #

: ð10Þ

If the missingness vectors are independent of each other, the expected overlap can be esti-

mated as

DðindÞ
kl ¼ Ckld̂

ðindÞ
kl ¼ Ckl

ffiffiffiffiffiffiffiffiffiffi

NkNl

p

Nmax

: ð11Þ

Finally, we impute zujz)M as

ẑ u ¼ d0D'1z)M : ð12Þ

by using d from Eq (9) andD from either, Eq (10) or Eq (11).

In order to convert ẑu into the corresponding estimate of the standardised effect, we con-

sider

âu ¼
ẑ u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nmaxd
0D'1d

p : ð13Þ

Note that d0D−1 d is the corresponding imputation quality.

Details to the estimation of δ can be found in S3 Appendix.

Comparison of summary statistics imputation versus genotype imputation

UK Biobank data. The UK Biobank [22] comprises health related information about

500
0
000 individuals based in the United Kingdom and aged between 40-69 years in 2006-2010.

For our analysis we used Caucasians individuals (amongst people who self-identified as Brit-

ish) from the first release of the genetic data (n = 120
0
086). For SNVs, the number of individu-

als range between n = 3
0
431 and n = 120

0
082. Additionally to custom SNP array data, UK

Biobank contains imputed genotypes [23]. A subset of 820
0
967 variants were genotyped and

imputed, and 72M variants were imputed by UK Biobank, using SHAPEIT2 and IMPUTE2
[23].

Imputation of height GWAS summary statistics conducted in UK Biobank. We

imputed GWAS Z-statistics (ran on directly genotyped data) using summary statistics imputa-

tion within 1 Mb-wide regions, by blinding one at the time and therefore allowing the remain-

ing SNVs to be used for tagging. As tag SNVs we used all SNVs except the focal SNV within a

1.5 Mb window.

Applications of summary statistic imputation
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Selection of regions and SNVs. We selected 706 regions in total, consisting of 535 loci

containing height-associated SNVs [12, 13] and 171 regions not containing any height-associ-

ated (all P, 10
−5
) SNV. More specifically, within each height-associated region we only

imputed SNVs that have LDmax> 0.2. LDmax was defined as the largest squared correlation

between a SNV and all height-associated SNVs on the same chromosome. In the 171 null

regions we chose only those variants with LDmax- 0.05 with any associated marker on the

same chromosome. These selection criteria lead to 44
0
992 variants being imputed. We did not

analyse palindromic SNVs (A/T and C/G) (3
0
306 variants), SNVs with missing genotypes for

more than 36
0
024 (30%) individuals (2

0
317 variants), SNVs with MAF< 1% (3

0
010 variants).

These restrictions left us with 37
0
467 of the 44

0
992 imputed SNVs.

Comparison of summary statistics imputation and genotype imputation. To compare

the performance between summary statistics imputation and genotype imputation followed by

association we compared each method to the directly genotyped data association as gold stan-

dard. Fig 1 gives an overview of how these three types of summary statistics are related and

compared. We used RMSE, bias, correlation, and the regression slope (no intercept) to evalu-

ate these approaches against the truth.

Fig 1. Overview of genotype vs. summary statistics imputation. From genotype data (top-left, G) we can calculate summary statistics (top-right, SS). Summary

statistics for an unmeasured/masked SNV can be obtained via two ways: we can impute genotype data (bottom-left, G-GTimp) using genotype imputation and then

calculate summary statistics via linear regression (bottom-middle, SS-GTimp), or by applying summary statistics imputation on the summary statistics calculated

from genotype data (bottom-right, SS-SSimp). For the purpose of our analysis, we are only looking at genotyped (and genotype imputed) SNVs, thus masking one

focal SNV at the time and imputing it using summary statistics from neighbouring SNVs. We can then compare the three summary statistics calculated for a particular

focal SNV in Figs 4, 5 and S11–S14.

https://doi.org/10.1371/journal.pgen.1007371.g001
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More precisely, the RMSE and the Bias for a set of k = 1 . . . K SNVs is:

dk ¼ ZSSimp
k ' Zk

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

K

X

K

k¼1

d2

k

s

Bias ¼
1

K

X

K

k¼1

dk

with ZSSimp
k being the Z-statistic resulting from summary statistics imputation for SNV k and

Zk the Z-statistic resulting from genotype data for SNV k (our gold standard). Likewise, we

replaced ZSSimp
k with ZGTimp

k , to calculate RMSE and bias for genotype imputation.

Note that for height-associated SNPs with missing genetic data we rescaled the association

Z-statistic Zu as follows Z
.
u ¼ Zu $

ffiffiffiffiffiffiffi

Nmax

Nu

q

in order to make it comparable with its imputed ver-

sion (ZGTimp
, ZSSimp

), derived from the full sample.

Additionally, we calculated power and false positive rate (FPR) for each method. For this,

we randomly selected 3
0
390 SNVs and used each once as null and once as associated SNV.

For the null scenario, we simulated a random, standard normal phenotype. For the alterna-

tive scenario, we simulated a phenotype such that the SNV explained 0.01% of the simulated

phenotype variance (corresponding to typical a GWAS effect size). For both scenarios we cal-

culated the summary statistics via genotype imputation and summary statistics imputation.

For summary statistics imputation, we first ran a GWAS within ± 0.75 Mb of the focal SNV,

and subsequently used the estimated summary statistics to perform summary statistics impu-

tation. For SNVs with a real association we calculated the power as the fraction qA of SNVs

with a P< α (qA = fA/mA, withmA being the number of associated SNVs and fA among them

those with P< α), whereas for SNVs with no association we calculated FPR as the fraction

qN of SNVs with P< α (qN = fN/mN, withmN being the number of null SNVs and fN among

them those with P< α). We varied α between 0 and 1 and visualised FPR versus power for

each method. The standard deviation was calculated based on the assumption of a binomial

distribution for fA and fN: fi * B(mi, qi). The respective variance estimation for qi is then:

Var(qi) = qi(1 − qi)/mi.

Stratifying results. The obtained (summary statistics) imputation results were grouped

based on the imputed SNVs (i) being correlated (LD> 0.3) to any height-associated SNV on

the same chromosome or being a null SNV (LD< 0.05); (ii) low-frequency (1%<MAF- 5%)

or common SNV (MAF> 5%); (iii) being badly-(r̂2pred;adj - 0:3), medium- (0:3 < r̂2pred;adj - 0:7)

or well-imputed (0:7 < r̂2pred;adj - 1). Height-associated SNVs are exclusively from 535 regions

and termed associated SNVs, while SNVs not associated with height stem from 171 regions and

are termed null SNVs. Throughout the manuscript, LD is estimated as the squared correlation

[24].

Summary statistics imputation of the height GWAS of the GIANT
consortium

GIANT consortium summary statistics. In 2014 the GIANT consortium published

meta-analysed height summary statistics involving 79 cohorts, 253
0
288 individuals of Euro-

pean ancestry, and 2
0
550

0
858 autosomal HapMap SNVs [12], leading to the discovery of 423

height-associated loci (697 variants). Later, Marouli et al. [13] published summary statistics of

the exome array meta-analysis (241
0
419 SNVs in up to 381

0
625 individuals), finding 122 novel
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variants (located in 120 loci) associated with height. Of the 122 exome variants, four were not

available in UK10K and seven were on chromosome X, and could therefore not be imputed

(because Wood et al. [12] did not include chromosome X), leaving 111 variants. We refer to

the summary statistics by Wood et al. [12] as HapMap study, and to Marouli et al. [13] as

exome chip study.

Summary statistics imputation of Wood et al.. We imputed all non-HapMap variants

that were available in UK10K, using the summary statistics in Wood et al. [12] as tag SNVs. In

general, we only imputed variants with MAFUK10K , 0.1% (this allows a minimal allele count

of 8’ 0.001 $ 3781 $ 2), except for the 111 exome variants reported in Marouli et al. [13],

which we imputed regardless of their MAF. We divided the genome into 2
0
789 core windows

of 1 Mb. We imputed the summary statistics of each variant using the tag SNVs within its

respective window and 250 Kb on each side. Fig 2 gives an overview of the datasets and meth-

ods involved.

Definition of a candidate locus. After applying summary statistics imputation we

screened for SNVs with r̂2pred;adj , 0:3 and an (imputed) P-value- 10
−8
and applied conditional

analysis, aiming to limit the results to SNVs acting independently from known HapMap find-

ings. The significance threshold of 10
−8

was chosen based on the effective number of SNVs

evaluated (< 9
0
276

0
018). For each imputed 1 Mb window, we started the conditional analysis

by defining two sets of SNVs. The first set contained all imputed SNVs that had an imputed P-

value- 10
−8
, ranging from position bp

(1)
to bp

(2)
. The second SNV set contained all reported

HapMap SNVs (697 in total) within a range of bp
(1) − 1 Mb and bp

(2)
+ 1 Mb. Having two

SNV sets—the first set with newly detected variants, the second set with reported HapMap

Fig 2. Overview of imputation and replication scheme. This illustration gives an overview how we used> 2M GIANT

HapMap summary statistics (black rectangle) as tag SNVs to impute> 10M variants with MAF, 0.1% in UK10K. After

adjusting the summary statistics for conditional analysis we applied a selection process that resulted in 35 candidate loci. To

confirm these 35 loci we used summary statistics from UK Biobank (blue) as replication as well as summary statistics from

the exome chip study, if available [13] (red). Loci that had not been discovered by the exome chip study, were termed novel.

https://doi.org/10.1371/journal.pgen.1007371.g002
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variants—we could then condition each SNV in the first set on all SNVs in the second set,

using approximate conditional analysis [25] and UK10K as the reference panel. Next, we

declared a region as a candidate locus if at least one imputed variant in that locus had a condi-

tional P-value- 10
−8
. Additionally, for each (35) lead variant in the candidate regions we per-

formed conditional analysis using each HapMap SNV (in turn) within 1 Mb vicinity. Finally,

we performed a conditional analysis for nearby candidate loci (neighbouring windows), to

avoid double counting. In each candidate locus we report the imputed variant with the smallest

conditional P-value as the top variant.

Replication of candidate loci emerging from summary statistics imputation. We repli-

cate our findings using our UK Biobank height GWAS results and for SNVs present on the

exome chip we also use the recent height GWAS [13]. For both attempts to replicate our find-

ings, UK Biobank and the exome chip study, the significance threshold for replication is α =
0.05/k, with k as the number of candidate loci.

For replication using UK Biobank we used summary statistics based on the latest release of

genetic data with n = 336
0
474 individuals, provided by the Neale lab [26]. For SNVs that were

not present in the latest release we used summary statistics from the first release of genetic data

(n = 120
0
086)).

Annotation of candidate loci. We use two databases to annotate newly discovered SNVs.

First, we use GTEx [27], an eQTL database with SNV-gene expression association summary

statistics for 53 tissues. Second, we conduct a search in Phenoscanner [28], to identify previous

studies (GWAS and metabolites) where the newly discovered SNVs had already appeared.

For these two databases we report the respective summary statistics that pass the significance

threshold of α = 10
−6
. We only extract the information for variants that were defined as as

novel discoveries.

Simulation

We simulated genetic data on 25’000 individuals was used. In brief, we used data from the five

European subpopulations CEU, GBR, FIN, TSI and IBR of the 1000 Genomes reference

panel [1]. We chose to up-sample chromosome 15 using HAPGEN2 [29] to 5
0
000 individuals

for each subpopulation, yielding a total of 25
0
000 individuals. Of these, half of the data was

used to estimate the LD structure C and the other half to simulate the association study with

an in silico phenotype. The simulation procedure is described in more detail in S1 Appendix.

Forty regions were selected with one non-HapMap causal variant in each and all HapMap

SNVs were used as tag SNVs. Sample size distributions were drawn from two published

GWAS studies (on HDL [30] and T2D [31]). Missingness was assigned at random positions

while respecting the missingness correlation parameter θmiss, with zero value reflecting miss-

ingness at random and one corresponding to the maximum possible sample overlap between

SNVs.

Reference panels

To estimate LD structure in C and c (Eq (2)) we used 30781 individuals from UK10K data [32,

33], a reference panel of British ancestry that combines the TWINSUK and ALSPAC cohorts.

Software

All analysis was performed with R-3.2.5 [34] programming language, except GWAS sum-

mary statistics computation for UK Biobank genotype and genotype imputed data, for which

SNPTEST-5.2 [35] was used. For summary statistics imputation we used SSIMP [11].
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Results

To assess the performance of summary statistics imputation in realistic scenarios we used two

different datasets. In Section “Comparison of summary statistics imputation versus genotype

imputation” we compare the performance of summary statistics imputation to genotype imputa-

tion, using measured and imputed genotype data from 120
0
086 individuals in the UK Biobank.

In Section “Summary statistics imputation of the height GWAS of the GIANT consortium”, we

use published association summary statistics from 253
0
288 individuals to show that summary

statistics imputation can be used to identify novel associations. For all analyses we used an

improved estimation of the standardised effect sizes that is robust to variable sample missing-

ness. We validate this method in the next Section “Varying sample size and missingness”. Both

analyses are centered around the genetics of human height. In the following we will often refer

to two GIANT (Genetic Investigation of ANthropometric Traits) publications: Wood et al.

[12], an analysis of HapMap variants that revealed 423 loci, and Marouli et al. [13], an exome

chip based analysis that revealed 120 new height-associated loci. Together, these two studies—

the HapMap and the exome chip study—constitute the most complete collection of genetic

associations with height.

Varying sample size and missingness

The conventional estimate of the standardised effect of a SNV u, âðconvÞ
u , (Eq (2)) is unbiased,

under certain assumptions, but can have large variance when there is variation in the sample

sizes recorded in NM. In this section, we used upsampled 1000 Genomes data [1] and simu-

lated phenotype with known standardised effect α and various missingness design. We com-

pare the MSE of the conventional estimation to the MSE of two other estimators, Eq (13) using

D(dep)
andD(ind)

, derived in the method section.

In general, the size of the overlap is unknown and we recommend using the assumption of

maximum dependence (D(dep)
) as it is the most conservative assumption. An alternative is to

assume randomly distributed missingness (D(ind)
). Most pairs of SNVs in GIANT attain close

to the maximum possible missingness-overlap (S10 Fig) and therefore this assumption is not

overly-conservative.

The results in Fig 3 demonstrate that the conventional method has the largest MSE across

all the simulation parameters tested. Where the variance in sample size is very large (top row

of Fig 3), the true correlation is often very close to zero. Both of our methods effectively make

this same (correct) assumption of low correlation and therefore they both perform equally

well.

Where the variation in sample size is less extreme, as in the simulations on the bottom

row of Fig 3, there is less shrinkage of correlation and the simulated missingness correlation

becomes more relevant. Where the simulated data has the maximum possible missingness cor-

relation (on the right hand side of the subplots in Fig 3), i.e. the sample overlap between each

pair of SNVs is as large as possible given their two sample sizes,D(dep)
performs better (as

expected). With lower overlap (first column) D(ind)
performs better.

Comparison of summary statistics imputation versus genotype imputation

By having two types of genetic data at hand, genotype and imputed genotype data, we were

able to compare summary statistics of 37
0
467 typed SNVs resulting from (1) associations calcu-

lated from original genotype data (ground truth); (2) associations calculated from imputed

genotype data (genotype imputation) and (3) associations imputed from summary statistics cal-

culated using genotype data (Fig 1). For our analysis, we defined 706 genomic regions in total,
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among which 535 contain SNVs associated with height [12, 13], while the remaining 171

regions were selected to be free of any known height associated SNVs.

We examined imputation results for different SNV categories. These were grouped based

on (i) their association status (being correlated with the causal SNV vs. null SNVs) with the

lead SNV of each of the 535 height-associated regions (6
0
080 variants were correlated, 31

0
567

were not); (ii) frequency (MAF: 1%< low-frequency- 5%< common; 13
0
857 and 23

0
790

variants, respectively); and (iii) imputation quality based on summary statistics imputation

(r̂2pred;adj: low- 0.3<medium- 0.7< high; 724, 9
0
792, and 27

0
131 variants, respectively). S1

and S2 Figs show the distribution of SNV counts in each of these twelve subgroups. We term

the 6
0
080 SNVs correlated with a height-associated lead SNV as associated SNVs. Conversely,

we refer to the 31
0
567 SNVs that are not correlated with any height-associated lead SNV as null

SNVs. For both, null and associated SNV groups, the largest group of analysed variants were

common and well-imputed (S1 Fig). The fraction of SNVs with low quality imputation

increases with lower minor allele frequency (S2 Fig). However, the number of rare variants

(MAF< 1%) were too small (2
0
411 variants, among these only 13 associated variants), similar

Fig 3. Accounting for variable sample size. Effect of missingness on accuracy of imputation of standardised effects, evaluated via simulations where true effect is

known. The y-axis is the MSE (on log-scale) between the true standardised effect and the conventional estimate which ignores missingness (Eq (1), grey), our estimate

D(dep)
(Eq (10), green), and our estimateD(ind)

(Eq (11), blue). The x-axis is the ‘missingness-correlation’ (θmiss), where a value of 1 means the number of individuals in

the samples had maximum overlap with each other, and 0 means they were simulated independently leading to smaller overlap. Each boxplot shows the MSEs across

the 40 regions simulated. Top row is where theN’s (simulated sample sizes) are selected randomly from a study of T2D [31], with sample sizes varying between 13 and

110
0
219 individuals. Bottom row is based on HDL [30], with sample sizes ranging between 50

0
000 and 187

0
167 individuals. All sample sizes are scaled to 0-to-12500 as

this is the size of the simulated GWAS.

https://doi.org/10.1371/journal.pgen.1007371.g003
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to the number of badly-imputed SNVs (724 variants, among these only one associated variant)

to draw meaningful conclusions and hence we limited our analysis to common and low-fre-

quency, and medium- and well-imputed variants.

We focused on two aspects of the imputation results. First, we compared how summary sta-

tistics imputation and genotype imputation perform relative to the ground truth (direct geno-

typing). For this we used four measures: the root mean squared error (RMSE), bias, the linear

regression slope, and the correlation. Second, we calculated power and false positive rate for

genotype imputation and summary statistics imputation directly.

Genotype imputation outperforms summary statistics imputation for low allele fre-

quency. Fig 4 shows in green the comparison between summary statistics resulting from

measured genotype data (ground truth) and imputed summary statistics for 6
0
080 height-asso-

ciated variants. As expected, the performance drops as the imputation quality and as the MAF

decrease. For well-imputed common SNVs (the largest subgroup with 5
0
714 variants), sum-

mary statistics imputation performs on average well with a correlation and a slope close to 1

(cor = 0.998 and slope = 0.98), but it drops to cor = 0.928 and a slope = 0.83) for low imputa-

tion quality, low-frequency variants. On the other hand, for genotype imputation (Fig 4, blue

dots) all subgroups of SNVs show near perfect slope and correlation. Note that imputation

quality for summary statistics imputation and genotype imputation differ in definition and we

find that the latter was consistently higher (S3 and S4 Figs) and showed little variation across

SNVs. To be able to compare the performance between genotype imputation and summary sta-

tistics imputation for the same subgroups of SNVs we used the imputation quality defined by

summary statistics imputation to classify SNVs.

For the 31
0
567 null SNVs we present the same metrics as for associated SNVs. We analysed

13
0
556 low-frequency and 18

0
011 common variants. First, the green dots in Fig 5 show sum-

mary statistics from genotype data and summary statistics imputation. We find that both the

correlation and slope gradually decrease with dropping imputation quality and MAF. For

example, the correlation is 0.91–0.94 for well-imputed, 0.73–0.76 for medium and 0.42–0.66

for badly-imputed SNVs. The blue dots in Fig 5 show the respective results for genotype impu-

tation, which exhibits an almost perfect (> 0.98) slope and correlation.

Effect estimate accuracy and precision. We then compared summary statistics imputa-

tion and genotype imputation in terms of RMSE among associated variants (for the same six

SNV categories), shown in the upper part of Table 1. For all six subgroups, genotype imputation

had a smaller RMSE than summary statistics imputation. The difference between the two meth-

ods in terms of RMSE increases as imputation quality decreases. For the largest SNV subgroup

—well-imputed and common SNVs—summary statistics imputation had a RMSE of 0.33 ver-

sus 0.093 for genotype imputation. In case of summary statistics imputation, the RMSE is more

influenced by a decrease in imputation quality than by a reduction of MAF. For example, the

RMSE for common variants with medium-quality imputation is 1.02 (a 3.1-fold increase),

while the RMSE for low-frequency variants with high-quality imputation is 0.48 (a 1.4-fold

increase). However, for genotype imputation a decrease in MAF or imputation quality seems to

have a similar effect. For example, the RMSE for well-imputed, low-frequency variants is 0.14

for genotype imputation (a 1.5-increase), and the RMSE for medium-imputed, common vari-

ants is 0.19 for genotype imputation (a 2.1-increase) (Fig 6). For null SNVs we observe for sum-

mary statistics imputation a RMSE of 0.38 for well-imputed and common SNVs up to 0.95 for

badly-imputed and low-frequency SNVs (lower part in Table 1). For genotype imputation the

RMSE ranges are much lower, between 0.09 for badly-imputed and common SNVs and 0.19

for badly-imputed and low-frequency SNVs. The bias is very close to zero for both approaches

and for null and associated SNVs, and does not significantly vary with MAF or imputation

quality.
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Fig 4. Summary statistics imputation versus genotype imputation for associated variants. The x-axis shows the Z-statistics of the genotype data
(ground truth), while the y-axis shows the Z-statistics from summary statistics imputation (green) or genotype imputation (blue). Results are grouped
according to MAF (columns) and imputation quality (rows) categories and the numbers top-right in each window refers to the number of SNVs

represented. The identity line is indicated with a dotted line. The estimation for correlation and slope are noted in the bottom-right corner for

summary statistics imputation and in the top-left corner for genotype imputation. Blue dots are plotted over the green ones. S11 and S13 Figs provide

scatterplots with the imputation quality of summary statistics imputation and genotype imputation as colors.

https://doi.org/10.1371/journal.pgen.1007371.g004
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Fig 5. Summary statistics imputation versus genotype imputation for null variants. The x-axis shows the Z-statistics of the genotype data (ground
truth), while the y-axis shows the Z-statistics from summary statistics imputation (green) or genotype imputation (blue). Results are grouped according
to MAF (columns) and imputation quality (rows) categories and the numbers top-right in each window refers to the number of SNVs represented.

The identity line is indicated with a dotted line. The estimation for correlation and slope are noted in the bottom-right corner for summary statistics
imputation and in the top-left corner for genotype imputation. Blue dots are plotted over the green ones. S12 and S14 Figs provide scatterplots with the

imputation quality of summary statistics imputation and genotype imputation as colors.

https://doi.org/10.1371/journal.pgen.1007371.g005
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Summary statistics imputation displays lower false positive rate. Analogous to a

ROC curve Fig 7 presents simultaneously power and false positive rate (FPR) with varying

significance threshold (α from 0 to 1) for simulated phenotypes. As before, we stratified the

results by MAF and imputation quality categories. We observe that for common SNVs with

r̂2pred;adj > 0:7 the results for genotype imputation and summary statistics imputation are almost

identical in terms of FPR and power. For low-frequency and well-imputed variants, genotype

imputation offers some power advantage compared to summary statistics imputation, in partic-

ular for intermediate FPRs. As we approach lower imputation quality and MAF, genotype

imputation advantage becomes more and more apparent for all range of FPR values. Averaged

over all SNV categories, for false positive rates of 0.001, 0.01, 0.05, summary statistics imputa-

tion yielded a decrease in statistical power by 9, 43 and 35%, respectively.

Summary statistics imputation of the height GWAS of the GIANT
consortium

While previous studies have examined the role of (common) HapMap variants for height [12,

36], the impact of rare coding variants could not be investigated until bespoke genotyping

chips (interrogating low-frequency and rare coding variants) were designed to address this

question in a cost-effective manner. Such an exome chip based study was conducted by the

GIANT consortium in 381
0
000 individuals and revealed 120 height-associated loci, of which 83

loci were rare or low-frequency [13]. These association results enabled us to compare the use-

fulness of imputation-based inference with direct genotyping done in Wood et al. [12], since

the two studies are highly comparable in terms of ancestry composition and statistical analysis,

evidenced by S6 Fig confirming very high concordance between summary statistics for the sub-

set of 2
0
601 SNVs correlated to a height-associated variant which were available in both studies.

Discovery and replication of 19 new loci. By imputing > 6M additional SNVs sum-

mary statistics using HapMap variants [12] as tag SNPs we were interested in two aspects:

(1) discovering new height-associated candidate loci, and (2) replicating these candidate

Table 1. RMSE for summary statistics imputation and genotype imputation.

MAF r̂ 2pred;adj SSimp GTimp # SNVs

RMSE Bias RMSE Bias

Associated 1-5% 0-0.3 0.8484 -0.8484 0.0059 -0.0059 1

1-5% 0.3-0.7 1.0120 0.1960 0.2729 0.0170 38

1-5% 0.7-1 0.4785 -0.0137 0.1407 0.0073 262

5-50% 0.3-0.7 1.0266 -0.3455 0.1916 -0.0041 65

5-50% 0.7-1 0.3333 0.0011 0.0929 -0.0023 5714

Null 1-5% 0-0.3 0.9479 -0.0267 0.1944 0.0083 665

1-5% 0.3-0.7 0.7262 0.0006 0.1765 0.0006 7292

1-5% 0.7-1 0.4549 -0.0002 0.1491 0.0022 5599

5-50% 0-0.3 0.8780 0.0057 0.0926 -0.0077 58

5-50% 0.3-0.7 0.6906 -0.0115 0.1445 -0.0013 2397

5-50% 0.7-1 0.3816 -0.0010 0.1022 -0.0004 15556

This table shows RMSE and bias for summary statistics imputation (SSimp) and genotype imputation (GTimp) in each variant subgroup (based on MAF and imputation

quality) for associated SNVs (upper rectangle) and null SNVs (lower rectangle). The rightmost column reports the number of variants in each SNV subgroup. For MAF

and r̂ 2pred;adj notation, the lower bound is excluded while the upper bound is included. For example, 1 − 5% is equivalent to 1<MAF- 5. RMSE differences are also

displayed in Fig 6.

https://doi.org/10.1371/journal.pgen.1007371.t001
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loci in the UK Biobank and the GIANT exome chip look-up (Fig 2). We used the HapMap-

based height study and the UK10K reference panel as inputs for summary statistics imputa-

tion and used all HapMap SNVs as tag SNVs. We imputed variants that were available in

UK10K with a MAFUK10K , 0.1%, as well as all reported exome variants in Marouli et al.

[13]. In total we imputed 10
0
966

0
111 variants, of which 9

0
276

0
018 (84%) had an imputation

quality , 0.3.

We subjected all 9
0
276

0
018 variants with an imputation quality, 0.3 to a scan for novel

candidate loci. A region was defined as a candidate locus if at least one imputed variant was

independent from any reported HapMap variant nearby (conditional P-value- 10
−8
). We

identified 35 such candidate loci. Within each locus we defined the imputed variant with the

lowest conditional P-value as the top variant. All 35 variants are listed in S1 Table and locus-

zoom plots are provided in S7 Fig.

Fig 6. Visualising RMSE of summary statistics imputation and genotype imputation. This figure uses boxplots to compare the absolute difference |d|
(used for calculation of RMSE) for each variant between Z-statistics of summary statistics imputation (SSimp, green) and genotype imputation (GTimp,

blue) of associated SNVs (left column) and null SNVs (right column). Results are grouped according to MAF (x-axis) and imputation quality (rows)

categories. The numbers printed above the boxplot represents the number of SNVs used for the |d| calculation in that MAF and imputation quality

subgroup. The corresponding RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Pn

i d
2
i

q

is shown in Table 1.

https://doi.org/10.1371/journal.pgen.1007371.g006
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Next, we used the UK Biobank to replicate the associations with height of these 35 candi-

date variants and subsequently grouped them into replicating (20 variants) and not replicating

(15 variants) (at α = 0.05/35 level).

An overview of the 20 replicating variants is given in Table 2. One region had already been

discovered in the GIANT exome chip study: rs28929474, located in gene SERPINA1. Fig 8
shows this region as locus-zoom plot with summary statistics from the HapMap study, sum-

mary statistics imputation, and the exome chip study. To annotate these 20 novel candidate

variants further, we investigated whether they are eQTLs or associated with other traits. We

Fig 7. FPR versus power. This figure compares the false positive rate (FPR) (x-axis) versus the power (y-axis) for genotype imputation (blue) and summary
statistics imputation (green) for different significance thresholds (α), including a 95%-confidence interval in both directions (vertically as a ribbon and

horizontally as lines). The vertical, dashed line represents FPR = 0.05. Results are grouped according to MAF (columns) and imputation quality (rows)

categories. A zoom into the area of FPR between 0 and 0.1 can be found in S5 Fig.

https://doi.org/10.1371/journal.pgen.1007371.g007
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report this in Table 3 where we list eQTLs detected by GTEx [27] and Table 4 that presents a

curated association-trait list by Phenoscanner [28]. In the following we describe variants that

replicated in UK Biobank which are either eQTLs or have previously been associated with

another trait.

We can classify the 35 candidate loci into three categories that reflect the type of conditional

analysis performed. Group (i) includes SNVs replicating already published exome chip associ-

ations (one locus), group (ii) includes SNVs that contain no reported HapMap variant nearby

(three loci), and group (iii) includes SNVs that contain one or more reported independent

HapMap variants nearby (31 loci). Replication success with UK Biobank is 1/1 in group (i),

2/3 in group (ii), 17/31 in group (iii). We only term categories (ii) and (iii) as novel candidate

loci, therefore limiting the number of novel candidate loci to 34, with 19 replicating in UK

Biobank.

Although group (ii) only contains loci that had no reported HapMap variants nearby,

three candidate loci (#2, #3, #21 in S1 Table) contain borderline significant HapMap signals

(P-value between 10
−6

and 10
−8

in [12]).

Table 2. Twenty replicating candidate loci for height.

# SNV Chr Pos Allele Gene(1) MAF(2) SSimp UK Biobank Group

R/E P N P N

1 rs112635299(
.
) 14 94838142 G/T - 2.33% 4.21E-14 234380 5.16E-77 336474 (i)

2 rs76306191 1 155006451 C/G DCST1 [E] 20.30% 6.51E-10 245908 2.74E-16 336474 (ii)

3 rs73029259 6 164111348 T/A - 12.77% 7.61E-09 251161 1.02E-15 336474 (ii)

4 rs67807996 1 149995265 G/A - 40.16% 1.48E-43 219605 2.75E-102 336474 (iii)

5 rs12795957 11 67242216 G/A - 5.46% 1.52E-24 193457 1.75E-76 336474 (iii)

6 rs503035 5 134353734 A/G - 30.39% 6.34E-24 248110 5.46E-39 336474 (iii)

7 rs568777 6 81809121 C/G - 26.61% 7.08E-24 252456 3.11E-35 336474 (iii)

8 rs75975831 19 17264961 G/C MYO9B [I] 22.52% 3.59E-10 233765 9.19E-22 336474 (iii)

9 rs56006730 12 103132740 G/A - 10.41% 1.80E-09 250070 1.05E-19 336474 (iii)

10 rs35374532 6 26163345 A/AT HIST1H2BD [I] 38.85% 2.97E-27 252327 8.64E-18 120086 (iii)

11 rs80171383 11 46084677 G/A PHF21A [I] 14.72% 3.53E-16 247885 2.05E-16 336474 (iii)

12 rs13108218 4 3443931 A/G HGFAC [I] 39.72% 2.15E-10 222502 5.05E-15 336474 (iii)

13 rs428925 5 173022921 G/A - 27.59% 1.34E-16 206987 4.31E-13 336474 (iii)

14 rs6085649 20 6665532 A/G - 45.61% 1.24E-09 251393 1.65E-12 336474 (iii)

15 rs78566116 6 32396146 G/T - 7.67% 2.74E-19 248592 4.18E-12 336474 (iii)

16 rs350889 19 4118481 A/G MAP2K2 [I] 24.28% 8.17E-10 207571 7.11E-12 336474 (iii)

17 rs7955819 12 20677958 T/C PDE3A [I] 23.23% 6.13E-10 250048 3.25E-08 336474 (iii)

18 rs7971674 12 1513526 A/T ERC1 [I] 14.12% 8.10E-09 240270 2.19E-07 336474 (iii)

19 rs12939056 17 7754993 G/A KDM6B [E] 43.26% 1.09E-12 245015 7.64E-07 336474 (iii)

20 rs58402222 1 46059835 T/TA NASP [I] 45.72% 7.50E-13 252901 1.79E-04 120086 (iii)

This table presents 20 regions that contain at least one imputed variant that is independent from top HapMap variants nearby and that replicated in the UK Biobank (at

α = 0.05/35 level). Each row represents one region (#), indicating the SNV with the lowest conditional P-value. The first seven columns provide general information for

each variant, followed by the P-value and sample size from summary statistics imputation, P-value and sample size from the UK Biobank. The second last column assigns

each of the 35 candidate loci to one of three groups: candidate loci (i) that were reported by [13] already, (ii) that had no reported HapMap variant nearby and (iii) that

had reported HapMap variants nearby. r̂2pred;adj of all variants listed was greater than or equal to 0.3. We provide a more detailed table for all 35 variants (both replicating

and not replicating) in S1 Table.

(
.
) rs28929474, exome chip study results: P = 1.39 × 10

−45
, N = 365

0
451.

(1)
[I] intronic, [E] exonic, - intergenic.

(2)
MAF was computed in UK10K.

https://doi.org/10.1371/journal.pgen.1007371.t002
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Fig 8. Replication of exome variant. rs28929474 is a missense variant on chromosome 14 in gene SERPINA1, low-frequency (MAF = 2.3%), imputed summary

statistics (PSSimp = 1.06×−13), replication in the UK Biobank (PUKBB = 6.49×−78). rs112635299 has the strongest signal in this region (P = 4.21 × 10
−14

), but is highly

correlated to rs28929474 (LD = 0.95). This figure shows three datasets: Results from the HapMap and the exome chip study, and imputed summary statistics. The

top window shows HapMap P-values as orange circles and the imputed P-values (using summary statistics imputation) as solid circles, with the colour representing the
imputation quality (only r̂2pred;adj , 0:3 shown). The bottom window shows exome chip study results as solid, grey dots. Each dot represents the summary statistics of

one variant. The x-axis shows the position (in Mb) on a, 2 Mb range and the y-axis the −log10(P)-value. The horizontal line shows the P-value threshold of 10−6

(dotted) and 10
−8
(dashed). Top and bottom window have annotated summary statistics: In the bottom window we mark dots as black if it is are part of the 122

reported hits of [13]. In the top window we mark the rs-id of variants that are part of the 122 reported variants of [13] in bold black, and if they are part of the 697

variants of [12] in bold orange font. Variants that are black (plain) are imputed variants (that had the lowest conditional P-value). Variants in orange (plain) are
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We observed that variants with higher MAF have higher chance to replicate. Among the

20 candidate variants that did replicate in UK Biobank, 19 were common and one a low-fre-

quency variant (rs112635299,MAF = 2.32%). Conversely, among the 15 candidate variants

that did not replicate in the UK Biobank, 10 are rare, three are low-frequency variants, and

only two are common.

Locus #1: rs112635299 (imputed P-value 4.21 × 10
−14

), is a proxy of rs28929474
(LD = 0.88), has been associated with alpha-1 globulin [37] and is associated with multiple

lipid metabolites [38]. rs28929474was identified in the GIANT exome chip study to be

height-associated (P = 1.39 × 10
−45

) [13]. The P-value calculated with summary statistics

imputation was P = 1.06 × 10
−13

. rs28929474 is a low-frequency variant (MAF = 2.3%)

and replicates in the UK Biobank with P = 1.66 × 10
−25

.

Locus #2: rs76306191 is a common variant on chromosome 1, located in gene DCST1.
There was no reported HapMap variant nearby to condition on. However, the absolute cor-

relation to the HapMap variant with the lowest P-value (> 10
−8
) in the same region was 0.8.

One of the 122 variants reported by the exome chip study, rs141845046, was in this

region, but had an imputed P-value> 10
−3
. rs76306191 replicated in the UK Biobank

with P = 1.09 × 10
−7
. rs76306191 is an eQTL in artery (tibial) for gene ZBTB7B and in

thyroid gland for gene DCST2.

Locus #5: rs12795957 is a variant on chromosome 11 and an eQTL for gene RAD9A in

artery (tibial).

Locus #6: rs503035 is a variant on chromosome 5. It is an eQTL for gene PITX1 in testis

tissue. rs62623707, one of the 122 reported exome variants, was in this region, but had

an imputed P-value> 10
−3
.

Locus #15: rs78566116 is a variant on chromosome 6. rs78566116 has been associated

with HPV8 seropositivity in cancer [39], rheumatoid arthritis [40] and ulcerative colitis

[41].

HapMap variants, but were not among the 697 reported hits. Each of the annotated variants is marked for clarity with a bold circle in the respective colour. The genes

annotated in the middle window are printed in grey if the gene has a length< 5
0
000 bp or is an unrecognised gene (RP-).

https://doi.org/10.1371/journal.pgen.1007371.g008

Table 3. GTEx annotation results for variants in eQTLs.

# SNV PSSimp PUKBB GTEx tissue Gene P

2 rs76306191 6.51E-10 1.09E-07 Artery_Tibial ZBTB7B 3.97E-09

Thyroid DCST2 2.41E-08

5 rs12795957 1.52E-24 6.17E-41 Artery_Tibial RAD9A 6.48E-10

6 rs503035 6.34E-24 8.06E-12 Testis PITX1 2.91E-07

20 rs58402222 7.50E-13 1.79E-04 Cells_Transformed_fibroblasts MAST2 8.84E-23

Cells_Transformed_fibroblasts CCDC163P 1.11E-19

Cells_Transformed_fibroblasts TMEM69 2.16E-08

Thyroid GPBP1L1 3.26E-11

This table shows SNVs which are significant eQTLs in GTEx [27]. We only report SNV-gene expression associations where the summary statistics pass the significance

threshold of α = 10
−6
. The first four columns represent the region number, SNV, P-value from summary statistics imputation and the P-value in the UK Biobank. The

four remaining columns are information extracted from GTEx, with the tissue name, gene name, the P-value of the association between the SNV and the gene

expression, and the gene type. For each region, we only include the tissue with the lowest P-value per SNV-gene associations. The full version of this table is available in

S2 Table. # refers to the region number.

https://doi.org/10.1371/journal.pgen.1007371.t003
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Locus #20: rs58402222 is an intronic variant on chromosome 1, located in gene NASP. It is
an eQTL for genes CCDC163P,MAST2 and TMEM69 in cells (transformed fibroblasts); and

for GPBP1L1 in thyroid tissue.

Replication of 55/111 reported GIANT exome chip variants. Next, we focussed on 122

novel variants of Marouli et al. [13]. For this analysis we did not apply any MAF restrictions.

Of these 122 variants, 11 variants were either not referenced in UK10K or on chromosome X,

and were therefore not imputed, limiting the number of loci and variants to 111—78 common,

25 low-frequency, eight variants rare (S3 Table). By grouping results below or above the P-

value threshold of α = 0.05/111 we could classify variants into the ones that replicated and

those that failed replication. This is summarised in Table 5 and S8 Fig, which shows that 55 of

Table 4. Known trait association results for variants in Table 2.

# SNV PSSimp PUKBB Study PMID Ancestry Trait P N

1 rs112635299 4.21E-14 3.52E-25 Wood 23696881 Mixed Alpha 1 globulin 2.51E-12 5278

Kettunen J 27005778 European Glycoprotein acetyls 1.27E-10 17772

mainly a1Lacid glycoprotein

Kettunen J 27005778 European Total cholesterol in small LDL 6.59E-10 20057

Kettunen J 27005778 European M.LDL.C 4.03E-09 20060

Kettunen J 27005778 European Cholesterol esters in medium LDL 6.19E-09 17774

Kettunen J 27005778 European Total lipids in medium LDL 7.26E-09 17774

Kettunen J 27005778 European Total cholesterol in LDL 8.66E-09 20060

Kettunen J 27005778 European Total lipids in small LDL 1.56E-08 17774

Kettunen J 27005778 European Conc. of medium LDL particles 1.67E-08 17774

Kettunen J 27005778 European Conc. of small LDL particles 2.77E-07 17774

Kettunen J 27005778 European Cholesterol esters in large LDL 4.72E-07 17774

Kettunen J 27005778 European Total cholesterol in large LDL 7.36E-07 20053

Kettunen J 27005778 European Total lipids in large LDL 9.86E-07 17774

15 rs78566116 2.74E-19 9.80E-04 Chen D 21896673 Mixed HPV8 seropositivity in cancer 3.30E-16 6885

Okada Y 24390342 European Rheumatoid arthritis 3.80E-94 58284

Okada Y 24390342 Mixed Rheumatoid arthritis 2.30E-90 80799

IBDGC 26192919 European Ulcerative colitis 4.06E-08 27432

This table describes SNVs previously associated with other traits. The search was conducted with Phenoscanner [28]. We only list SNVs for which Phenoscanner had

information available regarding GWAS traits or metabolites. The first four columns specify region, SNV-id, followed by the P-value from summary statistics imputation

and the P-value from the UK Biobank. Column five to ten contain information extracted from Phenoscanner. We report the respective summary statistics that pass the

significance threshold of α = 10
−6
. # refers to the region number, conc. to concentration.

https://doi.org/10.1371/journal.pgen.1007371.t004

Table 5. 111 variants: Fraction of top variants in exome chip study retrieved with imputation of HapMap study.

r̂ 2pred;adj MAF

5 − 50% 1 − 5% 0 − 1%

0.7-1 65% (49/75) 50% (4/8) -

0.3-0.7 67% (2/3) 0% (0/17) 0% (0/3)

0-0.3 - - 0% (0/5)

This table presents summary statistics imputation results, limited to 111 variants identified as “novel” by [13]. We

summarised the results according to their allele frequency and imputation quality category. For each subgroup we

calculated the fraction of top exome variants that had a P-value- 0.05/111 with summary statistics imputation.

https://doi.org/10.1371/journal.pgen.1007371.t005
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the 111 variants could be retrieved, four of them with MAF- 5%. When looking at imputation

quality, of the 111 top variants 83 variants were imputed with high confidence (r̂2pred;adj , 0:7).

Of these, 53 were retrieved when using the typical candidate SNV threshold (0.05/111). Details

to the imputation of all 111 variants are listed in S3 Table.

Discussion

In this article, we focussed on the comparison between genotype and summary statistics impu-

tation. In contrast to previous work by others [9, 14], here we systematically assessed the per-

formance and limitations of summary statistics imputation through real data applications for

different SNV subgroups characterised by allele frequency, imputation quality and association

status (null/associated).

First, we adapted the published summary statistics imputation method [9], by allowing

the LD structure to be adaptive according to varying sample size in summary statistics of tag

SNVs. Our simulation study has shown that this version of summary statistics imputation has a

lower MSE in all scenarios. We then evaluated the performance of our improved summary sta-

tistics imputation method in terms of different measures and showed that summary statistics

imputation is a very efficient and fast method to separate null from associated SNVs. However,

genotype imputation outperforms summary statistics imputation by a clear margin in terms of

accuracy of effect size estimation. By imputing GIANT HapMap-based summary statistics we

have demonstrated that summary statistics imputation is a rapid and cost-effective way to dis-

cover novel trait associated loci. We also highlight that the principal limitations of summary

statistics imputation are rooted in the LD estimation and in imputing very rare variants with

sufficient confidence. Finally, we implemented summary statistics imputation that accounts for

varying sample size as a command-line tool [11].

Accounting for varying sample size

Imputation accuracy is affected by the varying sample size across tag SNVs. If two SNVs were

observed in two different samples, the correlation between the summary statistics will decrease

with the number of individuals in common between the two samples. Our approach addresses

this problem by shrinking the correlation matrix according to sample size overlap. We present

two ways of estimating this overlap: D(ind)
for independentmissingness, which is randomly dis-

tributed; andD(dep)
for dependentmissingness, which is highly correlated.

To evaluate the performance ot these two methods we simulated data with two different dis-

tributions of missingness (narrow or wide range of sample sizes) and varying correlation in

missingness between variants (from completely random to maximal overlap, Fig 3). We then

compared the performances of conventional summary statistics imputation and our proposed

dependent (D(dep)
) and independent (D(ind)

) approaches. Overall, replacing C and c withD

and d yields a lower RMSE. Furthermore, we note that the dependent approach has lower

RMSE when the sample size variance is low and the missingness correlation approaches one.

S15 Fig shows the comparison between the conventional estimation and usingD(dep)
for

imputing GIANT height association summary statistics.

Ideally, for any pair of SNVs that are in LD with each other, we would know the exact num-

ber of individuals that are in the overlap, i.e. the number of individuals for which both SNVs

were genotyped. Using the individual study missingness and sample sizes from the Genetic

Investigation of ANthropometric Traits (GIANT) consortium, we demonstrate in Fig. S10 Fig

that the size of the overlap is generally larger than would be the case under a strict ‘missing inde-

pendently at random’ assumption. Furthermore, the correlation of missingness is typically posi-

tive (Nk\l >
NkNl

Nmax
) and often approaches the maximum possible overlap (Nk\l =min(Nk, Nl)).

Applications of summary statistic imputation

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1007371 May 21, 2018 22 / 32

https://doi.org/10.1371/journal.pgen.1007371


The reason for this is that SNPs are either entirely missing from a study or being available for all

study participants depending on its genotyping chip or imputation panel, which induces posi-

tive missingness correlation between markers.

Comparison of summary statistics imputation versus genotype imputation

We compared summary statistics imputation and genotype imputation by using individual-

level data from the UK Biobank.

In general, imputation using summary statistics imputation leads to a larger RMSE than

genotype imputation in all twelve SNV subgroups investigated (Fig 6). Among associated

SNVs, summary statistics imputation performs similar to genotype imputation for well-

imputed SNVs, but shows a trend for underestimation of the Z-statistics and lower correla-

tion with the true effect size for medium-imputed SNVs (Fig 4). Conversely, genotype impu-

tation has more consistent results for most of the twelve SNV subgroups (Figs 4 and 5), that

is reflected in a correlation close to one between Z-statistics from genotype data and genotype

imputation data.

When investigating power and FPR for both methods (Fig 7) we observe that for a given

significance threshold, summary statistics imputation has lower power compared to genotype

imputation, an effect that is amplified for SNVs with lower imputation quality (r̂2pred;adj - 0:7)

and lower MAF (MAF- 5%).

Underestimation for null and associated SNVs

Ultimately, the underestimation of imputed Z-statistics with summary statistics imputation

leads to a lower type I error. This effect is amplified for SNV groups with lower imputation

quality (r̂2pred;adj < 1). For associated SNVs with r̂2pred;adj < 1 we expect an underestimation for

associated SNVs due to the fact that we are imputing summary statistics under the null model,

whereas for null SNVs with r̂2pred;adj < 1 we expect an underestimation due to decreased vari-

ance of the summary statistics imputation estimation.

Ideally, for an unbiased estimation of causal and null SNVs, the imputed Z-statistics (Eq

(2)) should be divided by r̂2. However, as the imputation quality r̂2pred;adj is noisily estimated

from small reference panels (discussed below) and it is not guaranteed that the SNV we impute

is causal, we risk to overestimate the summary statistics of associated SNVs. This is the reason

why refrain from doing so.

S9 Fig shows the P-value distribution of summary statistics imputation for null SNVs with

an accumulation of low P-values for well-imputed SNVs and an accumulation of high P-val-

ues for badly-imputed SNVs. We think that two factors are in play here. First, mostly due to

polygenicity, the genomic lambda for height is λGC = 1.94, therefore we expect even seem-

ingly null variants to show inflation. Second, for null SNVs, the sample variance of the

imputed Z-statistics should be proportional to the average imputation quality. We calculated

for each of the null SNV subgroups the ratio between the sample variance for Z-statistics

from summary statistics imputation and the sample variance for Z-statistics from genotype

data. For common null SNVs we observe a ratio that gradually decreases with imputation

quality (0.86 for perfectly-, 0.61 for medium- and 0.32 for badly imputed SNVs). For low-fre-

quency null variants the ratio is up to 0.6 lower (0.80 for perfectly-, 0.54 for medium- and

0.30 for badly imputed SNVs). The inflation for well-imputed SNVs can be explained by the

genomic lambda, while for badly-imputed SNVs it is aggravated by the underestimated stan-

dard error.
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Atypical allele frequency distribution and rare variants exclusion

Because the number of associated SNVs with MAF< 1% was too low (13 variants) to draw

any meaningful conclusions, we refrained from analysing this MAF group. One other reason

to exclude rare variants from this analysis is, that the reference panel used (UK10K) contains

3
0
871 individuals and therefore estimations for LD of rare variants are unreliable and rare vari-

ants can (in theory) only be covered down to MAF = 1/(2 $ 30871). We believe improving sum-

mary statistics imputation for rare variants will require not only larger reference panels to

allow estimation of LD of rare variants, but also methods which would allow non-linear tag-

ging of variants. It should be kept in mind that, just like for genotype imputation, even with

very large reference panels, one will not be able to impute variants with extremely rare allele

counts. To investigate these SNVs full genome sequencing is indispensable [42].

Imputation quality metric discrepancies

We find that our imputation quality measure r̂2pred;adj is conservative and probably underesti-

mates the true imputation quality (S4 Fig). To calculate the imputation quality r̂2pred;adj, we need

—similar to imputing summary statistics in Eq (2)—to compute correlation matrices c and C

estimated from a reference panel (Eq (8)) and therefore encounter similar challenges as sum-

mary statistic imputation itself due to difficulties of reliable LD estimation.

The discrepancy in imputation quality metric between summary statistics imputation and

genotype imputation (S4 Fig) can be explained by the fact that: (1) genotyped variants that were

imputed too, were also used for phasing, (2) it is indeed more difficult to impute summary

statistics using summary statistics imputation, and therefore the imputation quality is shifted

towards zero, and (3) r̂2pred;adj is an estimation that can either be erroneous due to choosing the

wrong reference panel (and therefore r̂2pred;adj does not represent the true imputation quality) or

it can be imprecise due to small sample size of the reference panel. For example, UK10K con-

tains 3
0
871 individuals and is too small to precisely estimate these matrices (the standard error

for a correlation estimated from n = 3
0
871 is 0.016), which becomes problematic in cases of

low correlation.

Summary statistics imputation of the height GWAS of the GIANT
consortium

As a showcase of the utility of summary statistics imputation we imputed Wood et al. [12] to

higher genomic resolution (limited to variants with MAF, 0.1% as well as 111 previously

reported exome variants) [13], then selected imputed variants that act independently from all

variants reported in Wood et al. and from each HapMap SNP, we then replicated these using

(independent) UK Biobank data.

While Wood et al. [12] is the largest height study to date in terms of number of markers

(covering HapMap variants in 253
0
288 individuals), Marouli et al. [13] exceeds their sample

size by more than 100
0
000 individuals, but is limited to 241

0
419 exome variants. The similarity

between both GIANT studies made the exome chip study ideal for replication. We chose the

UK Biobank as a second replication dataset, despite its limitation to individuals of British

ancestry, as it covers more variants than the exome chip study.

We identify 35 regions, of which one had already been identified in the recent GIANT

height exome chip study (rs28929474) and 19 replicated in UK Biobank (at α = 0.05/35

level). Two candidate loci (#2, #3 in Table 2) that replicate in UK Biobank have borderline sig-

nificant HapMap signals in close proximity (P-value between 10
−6

and 10
−8
in [12]) and were

therefore not reported in the study in 2014.
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The 15 non-replicating candidate loci were on average on a lower allele frequency spectrum

(ten are rare, three are low-frequency variants, and two are common). Allele frequency was

higher among the 20 replicating candidate variants (19 were common and one a low-fre-

quency variant).

We also ran an additional approximate conditional analysis, where we conditioned each of

the 35 variants onto their neighbouring HapMap SNP (one-by-one). The resulting maximum

conditional P-value per locus, is provided as an additional column S1 Table. Correcting for the

testing of 529 windows (α = 0.05/529) we find evidence that 18 of the 35 variants are not only

independent from all [12] reported SNPs, but also of each HapMap variant too.

Replicating GIANT exome chip imputation results. We then focussed on the summary

statistics imputation of the the 111 reported exome chip variants [13]. Knowing from our pre-

vious findings that rare variants are challenging to impute due to reference panel size, we

expected to retrieve a larger fraction of common and low-frequency than rare variants.

Among variants with lower imputation quality only two common and medium-imputed vari-

ants could be retrieved. As shown in Figs 4 and 7, the power of summary statistics imputation

decreases with lower MAF and imputation quality.

Limitations

For replication of summary statistics from European individuals we use the UK Biobank,

which represents only a subset of all European ancestries and is genotype-imputed (instead of

sequenced), but on the other hand provides a reliable resource due to its sample size.

Furthermore, in UK Biobank, genotype imputation done for genotyped variants can only

partially be compared to genotype imputation for untyped variants, as genotyped variants were

used for phasing (therefore genotype imputation of genotyped variants is easier and leads

imputation qualities close to one, S4 Fig). Due to the small number of height-associated rare

variants (13) we can not draw meaningful conclusions for this group and hence avoided their

analysis.

The choice of the reference panel to conduct summary statistics imputation depends on the

fine balance between maximising the sample size of the reference panel (which determines

the error in estimated LD) and matching the population diversity of the conducted GWAS. At

the first glance, 1000 Genomes reference panel could have been used to appropriately match

GIANT allele frequencies, however, the 8-fold higher sample size of UK10K panel offers a

larger benefit, ultimately reducing the RMSE [43].

For the simulation study comparing standard summary statistics imputation to our method

taking into account variable missingness, we used an upsampling technique called HAPGEN2

[29], which limits the lower bound of the global allele frequency to 1/(2 $ 503). Furthermore,

the outcome used for the simulated GWAS is based on one causal variant with an explained

variance of 0.02, therefore it might not be fully representative for a polygenic phenotype with

more than one causal variant.

The summary statistics imputation method itself has several limitations too.

Due to the size of publicly available sequenced reference panels we can not explore the per-

formance of rare variants (MAF< 1%).

The imputation of summary statistics of an untyped SNV is essentially the linear combina-

tion of the summary statistics of the tag SNVs (Eq (2)). Such a model cannot capture non-lin-

ear dependence between tag- and target SNVs [10], which is often the case for rare variants

[44, 45]. In contrast, genotype imputation is able to capture such non-linear relationships by

estimating the underlying haplotypes (a non-linear combination of tagging alleles). Further-

more, in case of genotype imputation it is sufficient that the relevant haplotypes are present in
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the reference panel, but the overall allele frequency does not need to match the GWAS allele

frequency.

Summary statistics imputation relies on fine tuning of parameters, such as shrinkage of

the correlation matrix. Any λ> 0 will make the correlation matrix invertible, but a stronger

shrinkage can compensate for estimation error. We hypothesised that optimal shrinkage

depends on local LD structure, and sought to optimise λ for each genomic region using the

effect sizes of tag SNVs as training data set in a leave-one-out fashion. When looking at null

variants, however, maximum shrinkage (λ = 1) usually leads to the smallest RMSE. Therefore,

when looking at a region with a mixture of null and associated SNVs, the selected λ will be
shifted towards 1 and shrink the estimation of associated SNVs towards 0, which is not ideal.

The imputation quality metric r̂2pred;adj tends to be inaccurate in case of small reference pan-

els. The metric is commonly estimated as the total explained variance of a linear model given

the reference panel, where the unmeasured SNV is regressed onto all measured markers in the

reference panel (Eq (7)). We noticed that for reference panel sizes smaller than 1000 individu-

als, the conventional estimation of imputation quality in Eq (7) is biased towards overestima-

tion. We extend the existing imputation quality (Eq (7)) by accounting for sample size and the

effective number of variants (Eq (8)). The most accurate imputation quality estimations are

obtained using an out-of-sample prediction after model selection by fitting a ridge regression

model for each unmeasured SNV (r̂2 ridge). However, due to the computational complexity, the

calculation takes longer than the actual imputation. We provide a more detailed analysis in S2

Appendix.

Supporting information

S1 Fig. UK Biobank: Absolute frequencies of allele frequency and imputation quality of

imputed SNVs. This figure shows how many of the null and associated SNVs were categorised

into common, low-frequency and rare MAF subgroups, and into well-imputed, medium

imputed and badly imputed imputation subgroups. Associated SNVs are presented in the left

window, and null SNVs are presented in the right window. MAF category (x-axis), # of SNVs

on the y-axis, colour refers to imputation quality category.

(PDF)

S2 Fig. UK Biobank: Relative frequencies of imputation quality within each allele fre-

quency group. This figure shows the fraction of badly-, medium- and well-imputed SNVs

within each MAF subgroup. Null and associated SNVs were categorised into common, low-

frequency and rare MAF subgroup, and into well-imputed, medium imputed and badly

imputed imputation subgroup. Associated SNVs are presented in the left window, and null

SNVs are presented in the right window. MAF category (x-axis), fraction of SNVs on the y-

axis, colour refers to imputation quality category. Numbers within the stacked barplot refer to

the number of SNVs imputed in each subgroup.

(PDF)

S3 Fig. UK Biobank: Comparison of imputation quality methods. MACH r̂2 [46] (x-axis) ver-

sus IMPUTE’s info measure used by genotype imputation (y-axis). To avoid clumping of dots,

we used tiles varying from grey (few dots) to black (many dots). The identity line is dotted.

(PDF)

S4 Fig. UK Biobank: Comparison of imputation quality methods. IMPUTE’s info measure

used by genotype imputation (x-axis) vs r̂2pred;adj used by summary statistics imputation (y-axis).

To avoid clumping of dots, we used tiles varying from grey (few dots) to black (many dots).
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The identity line is dotted.

(PDF)

S5 Fig. UK Biobank (simulation): FPR versus power. This figure compares false positive rate

(FPR) (x-axis on log10-scale) versus power (y-axis) for genotype imputation (blue) and sum-

mary statistics imputation (green) for different significance thresholds (α). It includes 95%-

confidence intervals in both directions (vertically as a ribbon and horizontally as lines). This

figure is a zoom into the bottom-left area of Fig 7 and shows FPR between 0 and 0.1. The col-

oured dots represent the α = 0.05. The vertical, dashed line represents FPR = 0.05. Results are

grouped according to MAF (columns) and imputation quality (rows) categories.

(PDF)

S6 Fig. GIANT: Concordance between genotyping and exome chip results. This graph shows

the Z-statistics of the exome chip study on the x-axis versus the Z-statistics of SNP-array study

on the y-axis. Each dot shows one of the 2
0
601 variants that had LDmax> 0.1 (LD with one of

the top variants in the exome [13] or HapMap study [12]). To make the density more visible,

dots have been made transparent. The solid line indicates a linear regression fit, with the slope

in the top right corner (including the 95%-confidence interval in brackets). The dashed line rep-

resents the ratio between the two median sample sizes 0:82 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NHapMap'study

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nexome'study
p ¼

ffiffiffiffiffiffiffiffiffiffi

2510647
p
ffiffiffiffiffiffiffiffiffiffi

3700529
p .

(PDF)

S7 Fig. Locus-zoom plots of all 35 regions. Filename according to column ‘filename’ S1

Table. This figure shows three datasets: Results from the HapMap and the exome chip study,

and imputed summary statistics. The top window shows HapMap P-values as orange circles

and the imputed P-values (using summary statistics imputation) as solid circles, with the col-

our representing the imputation quality (only r̂2pred;adj , 0:3 shown). The bottom window

shows exome chip study results as solid, grey dots. Each dot represents the summary statistics

of one variant. The x-axis shows the position (in Mb) on a, 2 Mb range and the y-axis the

−log10(P)-value. The horizontal line shows the P-value threshold of 10
−6

(dotted) and 10
−8

(dashed). Top and bottom window have annotated summary statistics: In the bottom win-

dow we mark dots as black if it is are part of the 122 reported hits of [13]. In the top window

we mark the rs-id of variants that are part of the 122 reported variants of [13] in bold black,

and if they are part of the 697 variants of [12] in bold orange font. Variants that are black

(plain) are imputed variants (that had the lowest conditional P-value). Variants in orange

(plain) are HapMap variants, but were not among the 697 reported hits. Each of the anno-

tated variants is marked for clarity with a bold circle in the respective colour. The genes

annotated in the middle window are printed in grey if the gene has a length< 5
0
000 bp or is

an unrecognised gene (RP-).
(ZIP)

S8 Fig. Summary of exome results replication. This graph shows for all 111 variants the

−log10(p)-value of the exome chip study on the x-axis and the imputed −log10(p)-value on

the y-axis. The first row refers to the highest imputation quality (between 0.7 and 1), with the

columns as the different allele frequency categories. The number of dots in each window is

marked top left. The vertical and horizontal dotted lines mark the significance threshold of

−log10(0.05/111) (dashed). The width of the x-axis is proportional to the range of the y-axis.

For MAF and r̂2pred;adj notation, the lower bound is excluded while the upper bound is included.

For example, 1 − 5% is equivalent to 1<MAF- 5.

(PDF)
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S9 Fig. UK Biobank: Distribution of P-values from summary statistics imputation. These

QQ-plots show the distribution of p-values resulting from summary statistics imputation, for

associated variants (left window), null variants (right window). The colours refer to the impu-

tation quality categories. Note that the P-value in these plots are not λGC corrected.
(PDF)

S10 Fig. Variable sample size in GIANT. In the GIANT meta-analysis (BMI, women over 50

years of age) the set of SNVs is different in each cohort, allowing us to create a binary ‘missing-

ness’ vector for each SNV recording whether a given individual in the combined population

was genotyped for this SNV. For 10
0
000 randomly selected pairs of nearby SNVs, we compute

the correlation between these missingness vectors and plot the density plot. The correlations

are usually greater than zero, and often quite close to one, confirming that a ‘missing indepen-

dently at random’ assumption is not appropriate.

(PDF)

S11 Fig. Summary statistics imputation versus genotype imputation for associated variants

colored by imputation quality. The x-axis shows the Z-statistics of the genotype imputation

summary statistics, while the y-axis shows the Z-statistics from summary statistics imputation.

The color of each point refers to the imputation quality of summary statistics imputation.

Results are grouped according to MAF (columns) and imputation quality (rows) categories

and the numbers top-right in each window refers to the number of SNVs represented. The

identity line is indicated with a dotted line. The estimation for correlation and slope are noted

in the bottom-right corner.

(PDF)

S12 Fig. Summary statistics imputation versus genotype imputation for non-associated

variants colored by imputation quality. The x-axis shows the Z-statistics of the genotype

imputation summary statistics, while the y-axis shows the Z-statistics from summary statistics

imputation. The color of each point refers to the imputation quality of summary statistics impu-

tation. Results are grouped according to MAF (columns) and imputation quality (rows) cate-

gories and the numbers top-right in each window refers to the number of SNVs represented.

The identity line is indicated with a dotted line. The estimation for correlation and slope are

noted in the bottom-right corner.

(PDF)

S13 Fig. Summary statistics imputation versus genotype imputation for associated variants

colored by info measure. The x-axis shows the Z-statistics of the genotype imputation sum-

mary statistics, while the y-axis shows the Z-statistics from summary statistics imputation. The

color of each point refers to the imputation quality of genotype imputation. Results are grouped

according to MAF (columns) and imputation quality (rows) categories and the numbers top-

right in each window refers to the number of SNVs represented. The identity line is indicated

with a dotted line. The estimation for correlation and slope are noted in the bottom-right cor-

ner.

(PDF)

S14 Fig. Summary statistics imputation versus genotype imputation for non-associated vari-

ants colored by info measure. The x-axis shows the Z-statistics of the genotype imputation

summary statistics, while the y-axis shows the Z-statistics from summary statistics imputation.

The color of each point refers to the imputation quality of genotype imputation. Results are

grouped according to MAF (columns) and imputation quality (rows) categories and the num-

bers top-right in each window refers to the number of SNVs represented. The identity line is
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indicated with a dotted line. The estimation for correlation and slope are noted in the bottom-

right corner.

(PDF)

S15 Fig. Accounting for missingness in GIANT. The x-axis shows the Z-statistics of the con-

ventional estimate, the y-axis the Z-statistics when accounting for missingness (dependent

approach). The dotted line marks the genome-wide threshold. There are 11
0
200

0
403 variants

displayed in a binned fashion.

(PDF)

S1 Table. GIANT: Detailed results of 35 candidate loci. This table presents details of the

35 candidate loci discovered with summary statistics imputation. Within each candidate

locus, we provide for the top variant the imputation results (.imp), along with conditional

analysis results (.cond), the UK Biobank replication (.ukbb, whether it replicated or not

(replication), and (if available) the exome chip study results (.exome). filename
shows the filename of the locus-zoom plot in S7 Fig. SNP.cond.infopresents each Hap-

Map SNV used for conditional analysis, including its MAF, LD between the HapMap SNV

and the imputed SNV, and a reversed conditional analysis result (HapMap variant condi-

tioned on the imputed SNV). The column Group classifies each row into candidate loci (i)

that were reported by [13] already, (ii) that had no reported HapMap variant nearby, (iii)

that had at least one reported HapMap variants nearby. The column max.P.cond.hm rep-
resents the maximum P-value from a conditional analysis performed with each HapMap

variant nearby. P = P-value, N = sample size, r2 = imputation quality, eff = effect size,

EAF = effect allele frequency, MAF = minor allele frequency. If a candidate locus was not

available in the UK Biobank, we provide a replication for a second variant that is in high LD

with the primary variant, hence duplicated region numbers for some candidate loci.

(CSV)

S2 Table. GTEx annotation results for variants in eQTLs. This table shows SNVs which are

significant eQTLs in GTEx [27]. We only report SNV-gene expression associations where the

summary statistics pass the significance threshold of α = 10
−6
. The first four columns represent

the region number, SNV, P-value from summary statistics imputation and the P-value in the

UK Biobank. The three remaining columns are information extracted from GTEx, with the

tissue name, gene name and the P-value of the association between the SNV and the gene

expression. For each region, we order SNV-gene-tissue associations according to their P-value.

# refers to the region number.

(CSV)

S3 Table. GIANT: Results of 122 exome variants. This table presents the summary statistics

imputation results (.imp) for all 122 variants shown as “novel” in [13]. The right hand part

of the table shows the original exome chip results for comparison (.exome). P = P-value,

N = sample size, r2 = imputation quality, eff = effect size, EAF = effect allele frequency. 11 vari-

ants were not referenced in UK10K or on chromosome X and therefore not imputed (see col-

umn ‘comment’). The position corresponds to hg19.

(CSV)

S1 Appendix. Simulation framework.

(PDF)

S2 Appendix. Imputation quality.

(PDF)
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S3 Appendix. Summary statistics imputation accounting for varying sample size and miss-

ingness.

(PDF)
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Abstract

Motivation: Summary statistics imputation can be used to infer association summary statistics of an

already conducted, genotype-based meta-analysis to higher genomic resolution. This is typically needed

when genotype imputation is not feasible for some cohorts. Oftentimes, cohorts of such a meta-analysis

are variable in terms of (country of) origin or ancestry. This violates the assumption of current methods

that an external LD matrix and the covariance of the Z-statistics are identical.

Results: To address this issue, we present variance matching , an extention to the existing summary

statistics imputation method, which manipulates the LD matrix needed for summary statistics imputation.

Based on simulations using real data we find that accounting for ancestry admixture yields noticeable

improvement only when the total reference panel size is > 1000. We show that for population specific

variants this effect is more pronounced with increasing FST .

Contact: zoltan.kutalik@unil.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genotype data for genome-wide association studies (GWASs) are often

collected using DNA chips, which cover only a small fraction of the

variable genome. To be able to combine GWASs that measured different

sets of genetic markers (due to differences in the content of commercial

arrays), genetic information has to be inferred for a common set of markers.

Such inference exploits the fact the neighbouring SNVs are often in linkage

disequilibrium (LD), which has been well-quantified in different human

populations. Statistical inference of these untyped SNVs in a study cohort,

therefore, relies on an external reference panel of densely genotyped or

sequenced individuals. The inference process is termed imputation, of

which there are two main types. Genotype imputation (Marchini and

Howie, 2010) first estimates all haplotypes both in the reference panel

and the study cohort, then using a Hidden Markov Model every observed

haplotype in the study cohort is assembled as a probabilistic mosaic of

reference panel haplotypes. The reconstruction facilitates the computation

of the probability of each genotype for every SNV of the reference panel

in each individual of the study cohort. Having imputed the genotype data

set, one can then run an association scan with an arbitrary trait and obtain

association summary statistics. Summary statistics imputation Pasaniuc

et al. (2014) on the other hand starts off with association summary statistics

available for all genotyped markers and infers, combined with a reference

panel, directly the association summary statistics of SNVs available in

the reference panel. More specifically, estimating the local pair-wise

linkage disequilibrium (LD) structure of each genetic region using the

reference panel and combining it with association summary statistics

allows to calculate a conditional expectation of normally distributed

summary statistics. This latter approach is the central focus of our paper.

Compared to genotype imputation, summary statistics imputation is much

less demanding on computational resources, and requires no access to

individual level genetic data.

Methods making use of summary statistics, such as calculating genetic

correlation (Bulik-Sullivan et al., 2015), approximate conditional analysis

(Yang et al., 2012) or causal inference (Burgess et al., 2013), have gained

interest in recent years, because they bypass the need of genotype data,

but mimic it by making use of external reference panels. These methods

could profit from summary statistics being available on an arbitrarily

chosen panel of SNVs – provided by summary statistics imputation.

However, it is not clear how to optimally combine different LD reference

panels for summary statistics emerging from a meta-analysis of a large

number of different studies (coming from different countries/regions),

© The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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with potentially different ancestries. To ensure accurate imputation of such

“admixed” meta-analyses, we propose a method called variance matching

that, for each genomic region, optimally combines reference panels to best

match the local LD pattern of the underlying GWAS population. Using a

simulation framework, we compare variance matching to a benchmark

solution and one of previously proposed approaches (Lee et al., 2015a,b;

Park et al., 2015).

2 Methods

2.1 Summary statistics imputation (SSimp)

We assume a set of univariate effect size estimates ai are available for

SNVs i = 1, . . . , I from a linear regression between a continuous

phenotype y and the corresponding genotype gi measured in N

individuals. Without loss of generality we assume that both vectors are

normalised to have zero mean and unit variance. Thus ai =
(gi)′·y

N
and

a = (a1, a2, . . . , aI)
′ ∼N (α,Σ).Σ represents the pairwise covariance

matrix of effect sizes of all i = 1, . . . , I SNVs.

To estimate the univariate effect size αu of an untyped SNV u in the

same sample, one can use the conditional expectation of a multivariate

normal distribution. The conditional mean of the effect of SNV u can be

expressed using the effect size estimates of the tag SNVs (Eaton, 1983;

Pasaniuc et al., 2014):

âu = au|M = αu +ΣuMΣ
−1
MM(a−α) , (1)

whereM is a vector of marker SNVs, ΣuM represents the covariance

between SNV u and all M markers and ΣMM represents the covariance

between all M markers.

We assume that estimates for the two covariances are available from an

external reference panel with n individuals and denote them s = Σ̂Mu,

S = Σ̂MM. The corresponding correlation matrices are c = N · s and

C = N ·S (with γ and Γ as the corresponding true correlation matrices).

Further, by assuming that SNV u and the trait are independent conditioned

on the M markers, i.e. αu −ΣuMΣ
−1
MMα = 0, Eq. (1) becomes

âu = au|M = s′S−1a = c′C−1a (2)

One can also choose to impute the Z-statistic instead, as derived by

Pasaniuc et al. (2014):

ẑu|M = c′C−1z (3)

with z = a
√
N , when the effect size is small (as is the case in typical

GWAS).

Similar to Pasaniuc et al. (2014), we chose M to include all measured

variants within at least 250 Kb of SNV u. To speed up the computation

when imputing SNVs genome-wide, we apply a windowing strategy,

where SNVs within a 1 Mb window are imputed simultaneously using

the same set of M tag SNVs the 1 Mb window plus 250 Kb flanking

regions on each side.

Shrinkage of SNV correlation matrix

To estimate C (and c) we use an external reference panel of n individuals.

Since the size of C often exceeds the number of individuals (q ≫ n),

shrinkage of matrix C is needed to guarantee that it is invertible. By

applying shrinking, the modified matrix C becomes

Cλ = (1− λ)C + λI (4)

Even though c is not inverted, we still shrink it to curb random

fluctuations in the LD estimation in case of no LD.

cλ = (1− λ)c (5)

Inserting cλ and Cλ, Eq. (2) then becomes

âu = au|M = c′λC
−1
λ a (6)

Note that λ can vary between 0 and 1, with λ = 1 turning C to the

identity matrix, while λ = 0 leaves C unchanged. Here, we mainly focus

on λ changing with the reference panel size n: λ = 2/
√
n (Lee et al.,

2014).

2.2 Optimal combination of reference panel subpopulations

to match the GWAS sample

For summary statistics imputation we would like to estimate the local LD

structure of each region in the GWAS population (ΣMM and ΣuM) and

to do so we use a (sequenced) reference population, yielding estimates C

and c. Clearly, the closer these estimates are to the real values, the better

the imputation will be (i.e. smaller the estimation error in Eq. (6)). Our

aim is to find a weighted mixture of the reference sub-populations that has

an LD structure as similar as possible to the LD in the GWAS population.

Park et al. (2015) proposed an elegant, generalised approach to weight

population LD structure. Their algorithm Adapt-Mix choses weights

(wam) based on optimising an objective function. In the case of imputation

the objective function is the MSE of the (re-)imputed Z-statistics at

observed SNVs. Lee et al. (2015a) developed Distmix, which minimises

the Euclidean distance between allele frequencies of the reference panels

and the GWAS study, but ignores the variance-bias trade-off.

While the true LD structure of the actual GWAS population is rarely

known, the GWAS allele frequencies are routinely calculated (even if not

always reported for out-dated privacy preserving reasons) in meta-analytic

studies. In the following we show how this information can be exploited

to improve summary statistics imputation.

First, suppose that the reference panel is made up of P subpopulations

of sizes n(1), n(2), . . . , n(P ). Next, we introduce a set of weights w =

(n(1), n(2), . . . , n(P ))/n = w1, w2, . . . , wP , which can be viewed as

the collection of weights that determine the reference population mixture,

i.e.
∑

P

p=1 wp = 1 and wp ≥ 0.

We can calculate the covariances as a function of these weights (s(w)),

i.e. for each subpopulation we calculate the covariance separately (s(p)),

and then combine them, weighted by their weights w:

skl(w) =
P∑

p=1

wp

[
s
(p)
kl

+ t
(p)
kl

]
, (7)

where t
(p)
kl

is the between-group covariance for variants k and l in

population p:

t
(p)
kl

=
(
ḡp
k
− ḡk

)(
ḡp
l
− ḡl

)
(8)

and s
(p)
kl

denotes the covariance for variants k and l in population p:

s
(p)
kl

=
1

n(p) − 1

n
(p)
∑

i∈Ip

(gi,k − ḡp
k
)(gi,l − ḡp

l
) (9)

gi,k refers to genotype of variant k for individual i. The overall,

mean population genotype dosage (i.e. twice the allele frequency) is

naturally defined as the weighted mean sub-population genotype dosage

ḡk =
∑

p
wp ·ḡpk and ḡp

k
being the average genotype dosage in population

p: ḡp
k

= 1
n(p)

∑
i∈Ip

gi,k and Ip refers to the indices of individuals

contained in population p.

While the reference panel population sizes are being fixed at n(p) and

we defined wp ∝ np, we could use any arbitrary weights w in order to

match a GWAS population, which has different population proportions

than the reference panel. This manipulation of the covariance estimation
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can be used to adapt the reference panel population structure towards the

population structure that is observed in GWAS summary statistics.

The corresponding correlation between SNV k and l from a reference

panel with specific chosen weights w is

cwkl =
skl(w)

√
skk(w) · sll(w)

(10)

Our goal is to quantify the mean squared error (MSE) between the

true GWAS LD matrix (ΣMM) and the LD matrix estimated from the

reference panel (Cw

MM). Since we cannot estimate the off-diagonal values

of the GWAS covariance matrix, we focus on its diagonal elements and

estimate them from the GWAS allele frequencies. The MSE of Eq. (7) for

SNV k can be written as

MSE
[
skk(w)

]
= Bias2

[
skk(w)

]
+ Var

[
skk(w)

]
(11)

In short, the MSE of Eq. (7) depends on known quantities (mean

genotype dosage ḡp
k

for SNV k in population p; sample sizes n(p) of

the reference panel population p; average genotype for SNV k in the

GWAS study: ḡobs
k

) and the unknown mixing parameter w. Assuming

Hardy-Weinberg equilibrium (HWE), we showed that the variance term is

a sixth-degree, while the squared bias is a fourth-degree polynomial in w.

Details to derivations of the MSE are provided in Supplement A.2.

We aim to find a w that minimises the MSE in Eq. (11) for a set of

M SNVs, for which we know the allele frequencies ḡobs in the GWAS

population and can estimate ḡp from a reference panel:

wVM = argmin
w

M∑

k=1

MSE
[
skk(w)

]
(12)

with
∑

P

p=1 wp = 1 and wp ≥ 0. We call this method variance

matching (vm), as we are using the GWAS allele frequencies to match

genotype variances. Parameter wVM gives us an estimation of the

population weights used in Eq. (7).

Finally, we substitute wVM into Equation Eq. (10) and plug it into

Eq. (6):

âu = au|M = cw
′

λ (Cw
λ )−1a (13)

Detailed derivations of Eqs. (7) to (12) can be found in Supplement A.

2.3 Reference panels

As reference panels we used genetic data from the 1000 Genomes Project

Consortium (2010).

2.4 Simulation

2.4.1 Simulation of GWAS summary statistics

For simulation of GWAS summary statistics we used data from the five

European subpopulationsCEU, GBR, FIN, TSI and IBR of the 1000

Genomes project (1KG). We chose to up-sample chromosome 15 using

HAPGEN2 (Su et al., 2011) to 5′000 individuals for each subpopulation,

yielding a total of 25′000 individuals. Of these 5000 individuals per

population we used half each to generate a GWAS with an in silico

phenotype. The remaining12′500 individuals were used as reference panel

for summary statistic imputation.

We split chromosome 15 into 74 disjoint regions of 1.5 Mb. Due to the

sliding window imputation approach we did not include regions at the very

start and end of the chromosome. In each region we chose a causal variant

g randomly from all SNVs with minor allele frequency between 0.05 and

0.2. We simulated an in silico phenotype y using a normal linear model

y = βg + ε with ε ∼ N (0, 1 − β2 · 2q(1 − q)), where q is the allele

frequency of the causal SNV and β was selected such that the explained

variance β2 · 2q(1− q) is set to 0.02. To obtain the association summary

statistics we ran linear regression for each variant k in the 1.5 Mb region,

yielding effect size and standard error estimates ak , se(ak), from which

we calculated the standardised effect size estimate ak/se(ak)/
√
N (N

being the sample size).

2.4.2 Applying summary statistics imputation and comparing methods

We constructed GWAS genotype datasets with a fraction w+ of Finnish

individuals. The total number of individuals in the GWAS genotype dataset

was constant at 2’500. Next, we calculated a re-weighted C from our

reference panel (with weight w). We then created different scenarios by

repeating this procedure for many different GWAS compositions (i.e. we

varied the Finnish fraction w+ between 0 and 1 in 0.2 increments) and

weights w of Finnish for the correlation matrix of the reference panel

(which we varied between 0 and 1 in 0.05 increments). For each scenario,

we calculated three MSE for a set of imputed SNVs (Eq. (14)): first, the

MSE of the standardised effect size; second, for the variance matching

approach we calculated the MSE of (the diagonal of) matrix C estimated

from the reference panel; third, for the Adapt-Mix approach we calculated

the MSE of the standardised effect sizes of observed SNVs, as described

in Park et al. (2015).

h(w) =
M∑

m=1

(
cw

′

(Cw)−1a−m − am
)2

(14)

By minimising each error measurement over all w, the first MSE will

determine w∗, which gives the theoretically best possible solution.

w∗ = argmin
w

h(w) (15)

In our approach, the estimated MSE of matrix C will determine wVM.

While in the best competing algorithm, Adapt-Mix, the minimised MSE of

the reimputed Z-statistics determines the value of wAM. We chose to vary

the proportion of the Finnish population, as it differs the most from other

populations in Europe in terms of allele frequencies and LD structure Lim

et al. (2014), McEvoy et al. (2009). The remaining four populations of the

European 1000 Genomes populations share equal weights in all scenarios.

In our simulation we are looking at HapMap SNVs only as tag SNVs.

There are between 167 and 1103 tag SNVs per region with mean 635. We

imputed on average 1’743 SNVs per region (out of 74 in total).

3 Results

Summary statistics imputation works through combining summary

statistics from a set of SNVs with pairwise SNV LD information obtained

from an external reference panel. We extended the most recent summary

statistics method (Pasaniuc et al., 2014) by an optimal assembly of the

LD matrix from a mixture of reference panels. Because our approach

optimises the diagonal of the covariance matrix, we term our method

variance matching. We compare our it to Adapt-Mix by Park et al. (2015)

and a benchmark solution.

3.1 Simulation framework

To assess variance matching we used upsampled datasets, yielding 25′000

European individuals in total. GWASs were simulated using in silico

phenotypes. This semi-simulation framework allowed us to study the

impact of the reference panel sizes (up to 12′500) and their composition.

In brief, for various ancestry compositions of simulated GWAS sample

we computed association summary statistics, masked a fraction of SNVs

and imputed them. When imputing a single SNV we used tag SNVs within

at least 250 Mb. For the imputation of an entire region we used a sliding

window of 1 Mb with 250 Kb flanking regions on each side.



“method_bioinformatics” — 2018/4/30 — page 4 — #4

4 Rüeger et al.

More specifically, for each simulated GWAS, we fixed the proportion

of the Finnish subpopulation of the European reference panel of 1000

Genomes Project Consortium (2010) in the GWAS, then let the proportion

of this population vary in the reference panel used for LD estimation.

We repeated this for different Finnish proportions in the GWAS and in

the reference panel (varying from 0 to 1), calculated each time the MSE

between the estimated and the imputed standardised effect sizes (h(w),

Eq. (14)) and determined the benchmark weight that yields a minimal

MSE (denoted as w∗, Eq. (15)). In parallel, we applied for each fixed

proportion of Finnish in the GWAS the variance matching and the Adapt-

Mix approach to determine their optimal weight — wVM and wAM — in

the reference panel (Figure S1). To identify other factors that influence the

choice of weights, we grouped the 637′153 SNVs into population specific

(76′013) and population non-specific (561′140) groups (based onFST ≥
1% vs FST < 1%, respectively), and ran the simulation from small to

large reference panels (n = {500, 1′000, 2′500, 5′000, 12′500}).

3.2 Improving summary statistics imputation via variance

matching

Ultimately, we are interested in two comparisons. First: the optimisation

of weights versus the ad-hoc reference panel (which has roughly equal

weights in the European sub-panel, i.e. w = 0.2). Second: how Adapt-

Mix and our notvel method variance matching perform compared to the

benchmark estimation (the best possible choice if we were to know the

true effect size). These two comparisons are presented in Fig. 1, where

we compare the MSE of the three optimal weights (wVM, wAM, w∗)

determined by each method relative to the MSE when using equal weights:

MSE-ratio = h(w)/h(w = 0.2), with h denoting the MSE between the

estimated and the imputed effect sizes described in Eq. (14).

From the extensive simulation results (Fig. 1) it is clear, that the ad-

hoc reference panel with equal weights works best (i.e. MSE-ratio close

to 1) in two scenarios: for an equally partitioned GWAS (independent of

reference panel size or whether the variants are population specific) and

when the reference panel is small in size (n <= 1000). For all other

scenarios, i.e. either n > 1000 or the fraction of Finnish in the GWAS is

not 0.2, the MSE-ratio is well below 1, therefore indicating a smaller MSE

for the optimisation scenario. Note that the benchmark MSE-ratio is, by

definition, always lower than Adapt-Mix and variance matching (as it the

best theoretically possible MSE).

When comparing variance matching and Adapt-Mix to the benchmark

solution, we find that both optimising methods show a similar trend (greater

advantage of using specific weights for population specific markers, large

reference panel and heterogeneous GWAS). Except for three instances

(population non-specific variants when imputed with a reference panel

with 5′000 individuals and a GWAS with 40% or 80% Finnish individuals,

and specific variants when imputed with a reference panel with 12′500

individuals and a GWAS with 100% Finnish individuals), variance

matching offers equal or lower MSE than Adapt-Mix. When comparing the

median MSE-ratio of the optimisation methods to the benchmark, Adapt-

Mix is performing worst among population specific variants, a reference

panel size of 500 and a GWAS with Finnish individuals only. Variance

matching is performing worst in similar conditions, but when the GWAS

consists of no Finnish individuals.

For a reference panel of 500 individuals, population specific variants

and a GWAS with 80% Finnish individuals we observe a median MSE-ratio

for the theoretically best possible reference panel composition of 0.886,

while it is 0.892 for variance matching and 0.926 for Adapt-Mix. When

increasing sample size to12′500 the MSE-ratio for the benchmark solution

using becomes 0.648 and 0.658 for variance matching and Adapt-Mix,

respectively.

Fig. 1. Comparison of methods accounting for population structure. This figure shows the

comparison of eachw-optimisation method with respect to choosing the full European panel

of 1000 Genomes project (which corresponds to equal weights). Each vertical line represents

a summary of 74 simulated regions (the dot being the median, the line range representing

0.025 to 0.975 quantile). The x-axis shows the three different strategies: using theoretical

best possible weights in black (if the estimated effect sizes were to be known), variance

matching in green and Adapt-Mix in blue. The y-axis shows the MSE-ratio. The MSE-ratio

represents the MSE when choosing the weights according to the respective optimisation

relative to the MSE when choosing equal weights for all populations (hence a weight of

0.2 for all five populations), i.e. in black h(w∗)/h(0.2), in green h(wVM)/h(0.2),

and in blue h(wAM)/h(0.2). Function h(w) is the MSE between the estimated and the

imputed effect sizes described in Eq. (Eq. (14)). Values on the y-axis smaller than 1 show

a smaller MSE in imputation with a specific w compared to the choice of an unadjusted

reference panel with equal weights, while values larger than 1 indicate a higher MSE.

Each row represents a subset of different sizes of reference panels, while a msubset of the

different Finnish fractions in the GWAS populations are grouped by column. Variants are

also grouped according to FST , with population specific results being on the lower and

population unspecific results on upper part of the graph. Figure S3 shows the same graph

for all reference panel sizes and GWAS compositions. Table Table 1 provides the same

information in a text file. Table B provides the results for all reference panel sizes and

fraction of Finnish in the GWAS.

For variants that are not population specific we see a similar trend with

increasing fraction of Finnish individuals and reference panel size, but

as expected, less pronounced. For a reference panel of 500 individuals,

population unspecific variants and a GWAS with 80% Finnish individuals

we observe a median MSE-ratio of 0.957, while it is 0.959 for variance

matching and 0.966 for Adapt-Mix. When increasing sample size to

12′500 it drops to 0.742, 0.747 and 0.751, for w∗, variance matching

and Adapt-Mix, respectively.

For details to wVM, w∗ and wAM check Fig. S1.

4 Discussion

Summary statistics are used more and more frequently for downstream

analyses, but are not always available for all desired variants. These

missing summary statistics can, however, be directly imputed from

publicly available data using summary statistics imputation. The

covariance matrices required for this are difficult to estimate from publicly

available reference panels due to their size and population structure,
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FST Sample size Method Fraction Finnish in GWAS

reference panel 20% 60% 80%

0-1% 500 w∗ 0.996 (0.97-1) 0.974 (0.925-1) 0.957 (0.886-0.996)

0-1% 500 wVM 1 (0.996-1.01) 0.975 (0.929-1.02) 0.959 (0.89-1.02)

0-1% 500 wAM 1 (0.984-1.02) 0.985 (0.935-1.03) 0.966 (0.892-1)

0-1% 5000 w∗ 1 (0.974-1) 0.923 (0.798-0.976) 0.8 (0.652-0.927)

0-1% 5000 wVM 1 (0.999-1.02) 0.924 (0.803-0.997) 0.805 (0.656-0.937)

0-1% 5000 wAM 1 (0.997-1.03) 0.93 (0.821-0.981) 0.805 (0.667-0.947)

0-1% 12500 w∗ 1 (0.975-1) 0.891 (0.769-0.966) 0.742 (0.582-0.884)

0-1% 12500 wVM 1 (0.996-1.02) 0.892 (0.77-0.977) 0.747 (0.596-0.895)

0-1% 12500 wAM 1 (0.994-1.03) 0.9 (0.774-0.969) 0.751 (0.591-0.913)

1-100% 500 w∗ 0.979 (0.781-1) 0.928 (0.637-1) 0.886 (0.596-1)

1-100% 500 wVM 1 (0.983-1.02) 0.937 (0.781-1.1) 0.892 (0.66-1.12)

1-100% 500 wAM 1 (0.936-1.15) 0.969 (0.805-1.04) 0.926 (0.733-1.07)

1-100% 5000 w∗ 0.996 (0.906-1) 0.853 (0.555-0.99) 0.708 (0.377-0.951)

1-100% 5000 wVM 1 (0.986-1.03) 0.861 (0.559-1.09) 0.722 (0.38-1.06)

1-100% 5000 wAM 1 (0.982-1.1) 0.875 (0.56-1.05) 0.736 (0.386-1)

1-100% 12500 w∗ 0.995 (0.908-1) 0.814 (0.507-0.975) 0.648 (0.334-0.908)

1-100% 12500 wVM 1 (0.99-1.03) 0.83 (0.522-1.03) 0.658 (0.34-0.951)

1-100% 12500 wAM 1 (0.968-1.08) 0.845 (0.522-1.01) 0.658 (0.341-0.944)

Table 1. This table presents the results corresponding to Figure Fig. 1: each

entry represents the median MSE (in bold) and the 0.025 - 0.975 quantile in

brackets for different Finnish fractions in the GWAS populations are (columns),

FST , different methods (w∗, wVM and w
AM) and reference panel size.

requiring their careful adjustment with shrinkage parameters. To address

these limitations, we extended the summary statistics imputation method

as presented in Pasaniuc et al. (2014) with an optimal combination of

covariance matrices form reference panel subpopulation.

Choice of reference panel

Formulae for summary statistics imputation have two components: GWAS

summary statistics and LD matrix estimates which represent the correlation

between SNVs. The latter matrix is highly dependent on the reference

panel composition: if the ancestry is different between the GWAS and

the reference panel, the LD estimation will be biased and yield erroneous

summary statistics. An adequate reference panel is therefore critical to the

accuracy of summary statistics imputation, unlike genotype imputation

where the Hidden Markov Model makes panel composition much less

relevant. Most often, the reference panel for summary statistics imputation

is often chosen ad-hoc, guessing the underlying GWAS population

admixture.

Variance matching and Adapt-Mix

To tackle this problem, Park et al. (2015) proposed Adapt-Mix and we

propose variance matching (Eqs. (12) and (13)). Both methods assume that

the GWAS sample is composed of a mixture (or admixture) of populations

and that we have a separate reference panel for each population. They then

calculate the local LD structure as a linear combination of population-

specific estimates, where the weight of each population depends either on

the Z-statistics (Adapt-Mix) or the allele frequency (variance matching).

Variance matching performed consistently, yet not significantly better than

Adapt-Mix in 57 out of 60 subgroups that we explored (95% quantile ranges

are overlapping in Figure S3). We also found, that variance matching offers

performance very close to the best possible reference panel composition

w∗.

Variance-bias tradeoff

Although the aim is to approximate the true mixing weights in the

GWAS sample, the weights returned will usually deviate from that in

an attempt to minimise the MSE. For example, given a GWAS performed

in an exclusively Finnish population and using the 1000 Genomes project

reference panel, we could either use only the 99 Finnish individuals (weight

of 1 for the Finnish population, 0 for others), or select all 503 individuals

of the European panel (weight of about 0.2 for the Finnish population).

Using only Finnish individuals would more closely match the GWAS allele

frequencies and reduce bias, however using the full panel would increase

the precision of the estimated correlation matrix, reducing variance (Figure

S2). Our approach aims to strike a balance between bias and variance

by finding an optimal weight, somewhere between 0.2 and 1 in this

example. We find that for smaller reference panels (n = 500) the optimal

weight tends towards lower values, relying more on information from

other populations, whereas for larger panels (n = 12′500) the optimal

weights tend to be closer to the true underlying population composition in

the GWAS (Fig. 2).

Limitations

Variance matching assumes that the population admixture that is reflected

in the variance of tag SNVs (diagonal in matrix C) is the same as the

covariance between tag SNVs (off-diagonal of C) as well as between tag

SNVs and SNVs to impute (matrix c). Furthermore, our analytical solution

to Eq. (11) involves approximations of the variance and the bias (Eq. (S7)

and (S8)).

In general, finding a reference panel whose ancestry composition

matches that of the GWAS is difficult because the mixture/admixture

of populations is usually unknown. With variance matching we are

addressing this by composing a matching LD matrix. However, there are

other challenges too: publicly available reference panels have a limited

number of populations with a limited number of individuals. To this end,

we could not validate our approach in real data as diverse reference panels
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Fig. 2. Comparing w determined by different methods. This figure compares the weights

chosen by all three optimisation methods for population specific variants: w
∗ as best

possible weight (black), w
VM by variance matching (green), and w

AM by Adapt-Mix

(blue). w∗ represents the benchmark weight: the best possible choice if we were to know

the true effect size, but given the same reference panel as for Adapt-Mix and variance

matching. The x-axis displays the weights for the reference panel chosen by each method,

and the y-axis shows the density. The results are split into columns and rows, with the rows

for different reference panel sizes and the columns different Finnish fractions in the GWAS

populations (also highlighted with the vertical dashed line). Each window contains w
∗ ,

w
VM and w

AM for each of the 74 regions.

with sample sizes > 500 per population are not publicly available at this

time.

Due to lack of large, sequenced reference panels we used an

upsampling technique called HAPGEN2 (Su et al., 2011), which limits

the lower bound of the global allele frequency to 1/(2 · 503). Finally, the

outcome used for the simulated GWAS is based on one causal variant with

an explained variance of 0.02, therefore it might not be fully representative

for a polygenic phenotype with more than one causal variant.

Finally, our method is not applicable to GWAS studies that decided

not to share allele frequency information.

5 Conclusion

With variance matching we present an extension to the published summary

statistics imputation method (Pasaniuc et al., 2014) by allowing the LD

structure to be adaptively estimated according to population admixture.

To evaluate this extension, we performed GWAS on upsampled 1000

Genomes project data in combination with a simulated phenotypes. Due

to the bias-variance trade-off, accounting for differences in population

admixture between GWAS and reference panel yields better results with

increasing panel size.
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