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Abstract Let (X, Y ) = (RU1, RU2) be a given bivariate scale mixture random vec-
tor, with R > 0 independent of the bivariate random vector (U1, U2). In this paper
we derive exact asymptotic expansions of the joint survivor probability of (X, Y )

assuming that R has distribution function in the Gumbel max-domain of attraction,
and (U1, U2) has a specific local asymptotic behaviour around some absorbing point.
We apply our results to investigate the asymptotic behaviour of joint conditional
excess distribution and the asymptotic independence for two models of bivariate scale
mixture distributions.
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1 Introduction

Let (X, Y ) be a bivariate random vector with stochastic representation

(X, Y )
d= (RU1, RU2), (1)
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where R > 0 is independent of the bivariate random vector (U1, U2) (
d= stands for

equality of distribution functions). The random vector (X, Y ) has a scale mixture
distribution; a canonical example of such (X, Y ) is a bivariate spherical random
vector with rotational invariant distribution function (df) with (U1, U2) uniformly
distributed on the unit circle of R

2. In this model (see Cambanis et al. 1981) the
dependence between U1 and U2 is a functional one, namely U 2

1 + U 2
2 = 1 almost

surely, and

(U1, U2)
d= (

I1W, I2

√
1 − W 2

)
, (2)

with I1, I2 ∈ {−1, 1}, W ∈ (0, 1) almost surely, W 2 being beta distributed
with parameters {1/2, 1/2}, and P{I1 = 1} = P{I2 = 1} = 1/2. Furthermore,
I1, I2, R, W are mutually independent.

Our main interest in this paper is the tail asymptotics of the joint survivor proba-
bility of (X, Y ). If R is such that R2 is chi-square distributed with 2 dof, then X and
Y are independent Gaussian random variables with mean zero and variance 1. For
Gaussian random vectors the asymptotics of the joint survivor probability is investi-
gated by many authors, see e.g., Berman (1962), Dai and Mukherjea (2001), or Lu
and Li (2009). The elliptical model is obtained by extending Eq. 2 to

(U1, U2)
d= (

I1W, I1ρW + I2ρ∗
√

1 − W 2
)
, ρ ∈ (−1, 1),

ρ∗ :=
√

1 − ρ2. (3)

Hashorva (2007) generalises the known tail asymptotic results for Gaussian ran-
dom vectors to the more general class of elliptically symmetric (for short elliptical)
random vectors by exploiting the fact that the asymptotics of the joint survivor prob-
ability is determined by the asymptotics of the survivor function F := 1 − F of
the associated random radius R. Specifically, in the aforementioned paper the prin-
cipal assumption is that F is in the Gumbel max-domain of attraction (MDA), which
means that for some positive scaling function w

lim
x→∞

F(x + t/w(x))

F(x)
= exp(−t), ∀t ∈ R. (4)

As shown in Hashorva (2007) condition (4) is crucial when (X, Y ) is an elliptical
random vector with stochastic representation (1) and (U1, U2) satisfies Eq. 3. More
specifically, for any a ∈ (ρ, 1]

P{X > x, Y > ax} ∼ a2
ρρ3∗

2π(1 − aρ)(a − ρ)

1

v(aρx)
F(aρx), (5)

where

aρ := ρ−1∗
√

1 − 2aρ + a2 > 1, v(x) := xw(x), x ∈ R. (6)
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Throughout this paper f (x) ∼ g(x) means limx→∞ f (x)/g(x) = 1, and Eq. 4 is
abbreviated by F ∈ G M D A(w).

As shown in Manner and Segers (2011), if W 2 is beta distributed with positive
parameters α, β (its df is denoted by beta(α, β)), then (X, Y ) is a generalised Dirich-
let random vector. Hashorva (2009c) extends Eq. 5 for the class of Dirichlet random
vectors. As indicated in Hashorva (2009a, b) for certain asymptotic problems the
distributional properties of (U1, U2) do not need to be explicitly known.

A natural question that arises is that what models for the dependence between
U1 and U2 lead to asymptotic results similar to Eq. 5? In this paper we answer the
above question for two specific models: The first one is referred to as the uncon-
strained dependence model, or simply Model A. In that model we assume that
U1 ∈ (0, 1] almost surely. Additionally, we impose a local asymptotic assumption on
the behaviour of (U1, U2) around some absorbing point, see Eq. 10 below.

The second model (or simply Model B) motivated by Eq. 3 is referred to as the
functional dependence model where we assumes

(U1, U2)
d= (I1W, ρ I1W + I2z∗(W )), ρ ∈ (−1, 1), (7)

with z∗ some positive measurable function I1, I2 ∈ {−1, 1}, W ∈ (0, 1) almost
surely, and I1, I2, W are mutually independent. Model A differs substantially from
Model B since U1 and U2 are not related to each other. Model B is a natural gener-
alisation of the elliptical random vectors, however we do not impose distributional
assumptions for our asymptotic treatment.

For both models we present several examples and provide some applications. Our
first application establishes an asymptotic approximation of the joint conditional excess
distribution. In the second application we discuss the Gumbel MDA of bivariate dis-
tributions related to Model B. In the third application we derive an explicit expression
of the residual tail dependence index η for bivariate scale mixture random vectors.

Organisation of the paper: In the next section we state our first result dealing
with some general scale mixture bivariate random vectors which fall under Model A.
We introduce in Section 3 some constrains on the dependence function of (U1, U2)

via Eq. 7, and then investigate the tail asymptotics of interest for Model B giving
a generalisation of Eq. 5 in Theorem 3. The applications are presented in Section 4
followed by the proofs of all the results which are relegated to Section 5.

2 Tail asymptotics under unconstrained dependence

Consider a bivariate scale mixture random vector (X, Y ) = (RU1, RU2), where R
has df F (denote this R 	 F). We assume throughout this paper that F has an
infinite upper endpoint satisfying Eq. 4 with some positive scaling function w. It
is well-known (see e.g., Resnick 2008 or Falk et al. 2010) that w can be defined
asymptotically by

w(x) ∼ F(x)
∫ ∞

x F(s) ds
, (8)
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where the integral mentioned above is finite, and further

v(x) := xw(x) → ∞, x → ∞. (9)

Given a constant a ∈ (0, 1] we investigate the asymptotics of

pa,δ,η(x) := P{X > x[1 + δ/v(x)], Y > ax[1 + η/v(x)]} , x → ∞

for δ, η ∈ [0, ∞). The reason for dealing with pa,δ,η(x) is our interest concerning the
approximation of the joint conditional excess distribution, see the first application in
Section 4.

Throughout in the sequel we assume that U1 is a bounded random variable. With-
out loss of generality we consider only the case U1 has df with upper endpoint equal
1. This implies that pa,δ,η(x) ≤ F(x) for any x positive. For both Models A and B
we show below that this upper bound is too crude; roughly speaking we show the
asymptotic behaviour

pa,δ,η(x) ∼ ψ(x)F(x),

with ψ some positive function decaying polynomially fast to 0 as x → ∞.
In addition to the Gumbel MDA assumption in Eq. 4 we impose next a certain

asymptotic behaviour of (U1, U2) around (1, a), namely for δ, η ∈ [0, ∞)

lim
x→∞

P{U1 > 1 − (s − δ)/x, U2 > a(1 − (s − η)/x)}
P{Ua > 1 − 1/x}

= ξa(s, δ, η), s ∈ (0, ∞), (10)

with ξa a positive measurable function and Ua := min(U1, U2/a). Note that for
δ ∈ [0, η]

ξa(s + δ, 0, η − δ) = ξa(s, δ, η), ∀s ∈ (0, ∞). (11)

If δ = η = 0, then condition (10) reduces to

P{Ua > 1 − s} = sγ La(s), ξa(s, 0, 0) = sγ , ∀s > 0 (12)

for some γ ∈ [0, ∞), with La a positive measurable function such that
lims↓0 La(s)/La(ts) = 1, ∀t > 0, i.e., La is slowly varying; see Bingham et al.
(1987), De Haan and Ferreira (2006) or Jessen and Mikosch (2006) for more details
on regularly varying functions.

Theorem 1 Let (X, Y ) = (RU1, RU2) be a bivariate scale mixture random vector
with R 	 F a positive random variable being independent of (U1, U2), and let
a ∈ (0, 1], δ, η ∈ [0, ∞) be given constants. Suppose that F has an inf inite upper
endpoint satisfying Eq. 4 with some positive scaling function w, and U1 ∈ (0, 1] has
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df with upper endpoint 1. Assume that Eq. 12 is satisf ied with some function La and
γ ∈ [0, ∞), and if δ + η > 0 suppose further that Eq. 10 holds. Then we have

pa,δ,η(x) ∼ Jδ,ηLa(1/v(x))
F(x)

(v(x))γ
, v(x) := xw(x), (13)

with

Jδ,η :=
∫ ∞

δ

ξa(s, δ, η) exp(−s) ds ∈ (0, ∞).

Remarks

(a) In view of Lemma 6.1 in Hashorva (2009b) for any λ ∈ (1, ∞), c ∈ R and F as
in Theorem 1 we have

lim
x→∞

(v(x))c F(λx)

F(x)
= 0. (14)

In fact Eq. 14 follows directly from Proposition 1.1 in Davis and Resnick (1988),
see also Embrechts et al. (1997, p. 586), and A1. in Hashorva (2009c). We refer
to Eq. 14 as the Davis–Resnick tail property.

Further we have the self-neglecting property of w, i.e.,

w(x + t/w(x))

w(x)
∼ 1 (15)

holds locally uniformly for t ∈ R. Refer to Reiss (1989), Embrechts et al.
(1997), De Haan and Ferreira (2006), Resnick (2008), or Falk et al. (2010) for
details on the Gumbel MDA.

(b) Under the assumptions of Theorem 1 applying Theorem 4.1 in Hashorva et al.
(2010)

pa,δ,η(x) ∼ P{RWa > x} , (16)

with R independent of the random variable Wa which is positive and satisfies

P{Wa > 1 − 1/x} ∼ Jδ,η

�(γ + 1)
La(1/x)x−γ .

Furthermore, Eq. 13 holds locally uniformly for η, δ ∈ [0, ∞).
(c) By Eqs. 4, 13 and 15

Jδ,η = exp(−δ)J0,η−δ, ∀δ ∈ [0, η],

which follows also directly by the definition on Jδ,η and Eq. 11. Note that J0,0 =
�(γ + 1).
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We present next three illustrating examples.

Example 1 Let U1, U2 be two random variables taking values in [0, 1] such that
U2 ≥ U1 almost surely. Suppose that P{U1 > 1 − s} = sγ L(s), s ∈ (0, 1) with
γ ∈ [0, ∞) and L a slowly varying function at 0. If R is independent of (U1, U2)

satisfying the assumptions of Theorem 1, we obtain

P{RU1 > x} = P{RU1 > x, RU2 > x} ∼ �(γ + 1)L(1/v(x))
F(x)

(v(x))γ
. (17)

For U 2
1 	 beta(α, β) the asymptotics in Eq. 17 is shown in Berman (1983). For the

more general case that U1 has a regularly varying survivor function see Theorem 3.1
in Hashorva et al. (2010).

Example 2 Let Si 	 Gi , i = 1, 2 be two independent random variables with values
in [0, 1] such that

lim
x→∞

Gi (1 − s/x)

Gi (1 − 1/x)
= γi , ∀s > 0, i = 1, 2, (18)

with γi ∈ [0, ∞). Let λ1, λ2 ∈ (0, 1) be given constants with λ1 ≥ λ2, and set

Ui := λi S1 + λi S2, λi := 1 − λi , i = 1, 2.

For all x large and s > 0, for any δ, η ∈ [0, ∞) we may write (set G2,x (z) :=
G2(1 − z/x), s1 := s − δ, s2 := s − η)

P{U1 >1−s1/x, U2 >1−s2/x} = G1(1 − 1/x)G2(1 − 1/x)

×
∫ ∞

0

P
{

S1 > 1 − [si − λi z]/(xλi ), i = 1, 2
}

G1(1 − 1/x)

× dG2,x (z)/G2(1 − 1/x).

By Eq. 18 for s > max(δ, η) we obtain

P{U1 > 1 − (s − δ)/x, U2 > 1 − (s − η)/x}
∼ ξ̃ (s, δ, η)G1(1 − 1/x)G2(1 − 1/x), (19)

with

ξ̃ (s, δ, η) := γ2

∫ ∞

0

(
max

(
0, min([s − δ − λ1z]/λ1, [s − η − λ2z]/λ2)

))γ1

× zγ2−1 dz.
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Note that for s ∈ (0, max(δ, η)] Eq. 19 holds with ξ̃ (s, δ, η) = 0, and

ξ̃ (s, 0, 0) =
[

λ
−γ1
1

∫ 1

0

[
1 − λ1t

]γ1 tγ2−1 dt

+ λ
−γ1
2

∫ 1/λ2

1

[
1 − λ2t

]γ1 tγ2−1 dt

]

sγ1+γ2, s > 0. (20)

Consequently, Eq. 10 holds with

ξ1(s, δ, η) = ξ̃ (s, δ, η)

ξ̃ (s, 0, 0)
1(s > max(δ, η)), s > 0,

where 1() is the indicator function. Thus with R 	 F such that F ∈ GMDA(w) the
result of Theorem 1 holds.

Example 3 Let Ui 	 Gi , i = 1, 2 be two random variables with values in [0, 1].
Suppose that for some K ∈ [0, 1)

P{U1 > x, U2 > y} = G1(x)G2(y)[1 + K G1(x)G2(y)], ∀x, y ∈ [0, 1].

The bivariate random vector (U1, U2) possesses thus the Farlie–Gumbel–
Morgenstern distribution, see e.g., Hashorva and Hüsler (1999). If Eq. 18 holds,
then for any δ, η, s ∈ [0, ∞) we obtain

P{U1 > 1 − (s − δ)/x, U2 > 1 − (s − η)/x}
∼ (s − δ)

γ1+ (s − η)
γ2+ G1(1 − 1/x)G2(1 − 1/x),

with (x)+ := max(x, 0), x ∈ R. Consequently, if the positive random variable R 	
F is independent of (U1, U2) and F ∈ G M D A(w), then locally uniformly in δ, η

pa,δ,η(x) ∼
[∫ ∞

0
(t − δ)

γ1+ (t − η)
γ2+ exp(−t) dt

]

× G1(1 − 1/v(x))G2(1 − 1/v(x))F(x). (21)

For any a ∈ (0, 1) we observe another asymptotic behaviour, namely if G2(a) is
continuous at a with G2(a) ∈ (0, 1)

P{U1 > 1 − (s − δ)/x, U2 > a(1 − (s − η)/x)} ∼ (s − δ)
γ1+ G1(1 − 1/x)G2(a)

implying thus

pa,δ,η(x) ∼ �(γ1 + 1) exp(−δ)G2(a)G1(1 − 1/v(x))F(x).
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3 Tail asymptotics for functional dependence

In this section we deal with bivariate scale mixture random vectors assuming that the
dependence between the components is determined by some deterministic function.
Explicitly, let (X, Y ) be a bivariate random vector with stochastic representation

(X, Y )
d= (RI1W, ρRI1W + RI2z∗(W )), ρ ∈ (−1, 1), (22)

with (I1, I2), R > 0, W ∈ (0, 1) mutually independent, and z∗ : [0, 1] → [0, 1] a
positive measurable function.

We assume that the df F of R has an infinite upper endpoint, and the df of
W has upper endpoint equal 1. In the sequel I1, I2 take values in {−1, 1} with
P{I1 = I2 = 1} ∈ (0, 1]; we allow I1 and I2 to be dependent.

The random vector (X, Y ) is a scale mixture random vector for which the depen-
dence of the components is being determined by ρ, z∗ and the random variables
R, W, Ii , i = 1, 2. We refer to the implied dependence of the components as the
functional dependence. Note in passing that if

W 2 	 beta(1/2, 1/2), z∗(x) =
√

1 − x2, x ∈ [0, 1],

and I1, I2 are independent with E{I1} = E{I2} = 0, then (X, Y ) is a bivariate
elliptical random vector.

Generally speaking, it turns out that under Eq. 22 the local asymptotics of the
probability density function (pdf) of W is important. More precisely, we shall derive
an asymptotic expansion of

pa(x) := P{X > x, Y > ax} , a ∈ (0, 1], x > 0

requiring further that for some constant aρ ∈ (1, ∞)

P
{
W − 1/aρ ∈ (K1s, K2s)

} ∼ L K1,K2(s)s
γa , γa ∈ [0, ∞) (23)

holds for all s > 0 small with K1 < K2, K1, K2 ∈ R some given constants such that
L K1,K2 is a locally bounded slowly varying function at 0. Additionally, we need to
impose a local asymptotic condition on the inverse of the transformation z (see below
(Eq. 24)).

We state first the result for pa(x).

Theorem 2 Let (X, Y ), R 	 F, ρ ∈ (−1, 1) be a bivariate random vector with
stochastic representation (Eq. 22), where z∗ : [0, 1] → [0, 1] is a positive measur-
able function, and let a ∈ (0, 1], aρ ∈ (1, a/|ρ|) be given constants. Suppose that
for some ε ∈ (0, 1) the function z(x) := ρx + z∗(x), x ∈ [0, 1] is decreasing in
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Vε := [1/aρ − ε, 1/aρ + ε] and z(x) ≤ a/aρ, ∀x ∈ (1/aρ, 1]. Assume further that
the inverse zε of z in Vε satisf ies

zε(a/aρ − 1/x) − 1/aρ ∼ c

x
(24)

locally uniformly for x > 0 with c ∈ (0, ∞). If F ∈ G M D A(w), and Eq. 23 is
satisf ied with K1 := −1/aρ, K2 := ca/aρ , then aρ is unique and

pa(x) ∼ P{I1 = I2 = 1}�(γa + 1)L K1,K2(1/v(x∗))
F(x∗)

(v(x∗))γa
, (25)

where x∗ := aρx, v(x) := xw(x), x > 0.

Remarks

(a) If W in Eq. 22 possesses a positive pdf h continuous at 1/aρ , then under the
assumptions of Theorem 2 the asymptotics in Eq. 23 holds for any K1 < K2,

with γa = 1 and

L K1,K2(u) = (K2 − K1)h(1/aρ), u > 0. (26)

(b) In view of Eq. 14 pa(x) given by Eq. 25 converges faster to 0 than F(x). In
fact for any constant μ > 0 we have (recall Eq. 9 and the Davis–Resnick tail
property)

lim
x→∞

pa(x)

(v(x))μF(x)
= 0.

(c) As it can be seen from the proof of Theorem 2 the local behaviour of z at 1/aρ

is crucial. Another tractable specification for the function z is to assume that
it is increasing in (1/aρ − ε, 1/aρ) and decreasing in (1/aρ, 1/aρ + ε) with
1/aρ a local maximum. In this case we can still find the asymptotics of pa(x),
provided that additionally z−

ε and z+
ε are the inverses of z in (1/aρ − ε, 1/aρ)

and (1/aρ, 1/aρ + ε), respectively satisfying

z±
ε (a/aρ − 1/x) − 1/aρ ∼ −c±

x
, c± ∈ (0, ∞)

locally uniformly for x > 0.
In the setting of Model B we shall approximate pa,δ,η,ρ(x) defined by

pa,δ,η,ρ(x) := P
{

X > x[1 + δ/v(aρx)], Y > ax[1 + η/v(aρx)]} , x > 0,

with δ, η ∈ [0, ∞) and aρ ∈ (1, a/|ρ|).
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Theorem 3 Under the assumptions and notation of Theorem 2, if further F has pdf
f which is positive and continuous at 1/aρ , then aρ is unique. If also

zε(a/aρ + 1/x) − 1/aρ ∼ − c

x
(27)

locally uniformly for x > 0, then for any η, δ ∈ [0, ∞)

pa,δ,η,ρ(x) ∼ P{I1 = I2 = 1} h(1/aρ)

aρ

(ca + 1) exp
(
−δ + caη

ca + 1

) F(x∗)
v(x∗)

(28)

holds locally uniformly for δ, η ∈ [0, ∞).

We present next two examples.

Example 4 Let (X, Y ) be a bivariate scale mixture random vector with stochastic
representation (Eq. 22) where ρ = 0. Define next

z∗(x) = z(x) = (1 − |x |p)1/p, p ∈ (0, ∞), x ∈ [−1, 1],

where z has the inverse function z−1(y) = (1− y p)1/p, y ∈ [0, 1]. For any a ∈ (0, 1]
the equation

z−1(a/s) = 1/s, s ∈ (1, ∞)

has the unique solution aρ = (1 + a p)1/p ∈ (1, ∞). Furthermore Eqs. 24 and 27
hold with c = a p−1.

Let W > 0 with pdf h being further independent of the positive random variable
R 	 F . If F ∈ G M D A(w), then by Theorem 3

pa,δ,η,ρ(x) ∼ P{I1 = I2 = 1} a p−2
ρ h(1/aρ) exp

(
−δ + a pη

1 + a p

)
F(aρx)

xw(aρx)
. (29)

Note that when (RI1W, I2 Rz∗(W )) is a generalised symmetrised Dirichlet ran-
dom vector, then I1, I2, R, W are independent and W possesses the pdf h(x) =
px p−1g(x p), with g the pdf of beta(α, β), see Fang and Fang (1990).

Example 5 Under the setup of Example 4 redefine z∗ as

z∗(x) := ρ∗
√

1 − x2, z(x) := ρx + z∗(x), ρ, x ∈ (−1, 1), ρ∗ :=
√

1 − ρ2.

First note that z(ρ) = 1 is the maximal value of z(x) for any x ∈ [−1, 1]. Hence
in order to apply Eq. 28 necessarily a ∈ (ρ, 1]. The assumptions of Theorem 2 are
satisfied for aρ = ρ−1∗

√
1 − 2aρ + a2, and Eq. 24 is satisfied for c = (a − ρ)/(1 −

aρ) ∈ (0, ∞). Note further that aρ < a/|ρ| and also Eq. 27 holds. In view of Eq. 28
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we obtain

pa,δ,η,ρ(x) ∼ P{I1 = I2 = 1} ρ2∗h(1/aρ)

1 − aρ

F(aρx)

xw(aρx)

× exp

(

−a2η + δ − aρ(η + δ)

ρ2∗a2
ρ

)

. (30)

In the special case that W 2 	 beta(1/2, 1/2) and P{Ii = 1} = 1/2, i = 1, 2 with
I1, I2 independent we have

h(1/aρ) = 2aρ

π
√

a2
ρ − 1

= 2aρ(1 − ρ2)

a − ρ
.

Consequently Eq. 30 reduces to Eq. 5 for δ = η = 0.

4 Applications

Let (X, Y ) be a given bivariate random vector. For some high threshold x the
approximation of the joint conditional excess random vector

(X [x], Y [ax]) := (X − x, Y − ax)|X > x, Y > ax, x ∈ (0, ∞), a ∈ (0, 1]

is of some interest in statistical applications if in particular suitable norming constants
can be found so that the df of (X [x], Y [ax]) can be approximated by some known df,
see De Haan and Ferreira (2006), Reiss and Thomas (2007) and Falk et al. (2010).
Another interesting problem of the bivariate extreme value theory is the asymptotic
independence of X and Y . When X and Y are asymptotically independent an interest-
ing topic also for application (see e.g., De Haan and Ferreira 2006; Reiss and Thomas
2007; or Peng 1998, 2008, 2010) is the estimation of the residual dependence index
η. In our last application we give an explicit formula for η.

4.1 Asymptotics of conditional excess distribution

We start by considering Model A as in Section 2. For any s, t positive and some
positive scaling function w we have

P
{

X [x] > s/w(t), Y [ax] > t/w(t)
}

= pa,s,t (x)

pa,0,0(x)
, x > 0.

Under the assumptions of Theorem 1

pa,s,t (x)

pa,0,0(x)
∼ Js,t

J0,0
, x → ∞,
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where Js,t depends on the limit function ξa . Denote by (E1, E2) a bivariate ran-
dom vector with positive components and survivor function given by Js,t/J0,0, s, t ∈
(0, ∞). Then the above asymptotics can be cast into joint convergence in distribu-
tions. Specifically, if (Xn, Yn), n ≥ 1 is a sequence of bivariate random vectors

defined in the same probability space such that (Xn, Yn)
d= (X [n], Y [an]), n ≥ 1, then

we have the convergence in distributions

(g(n)X [n], g(n)Y [an]) d→ (E1, E2), n → ∞, (31)

where the scaling function g equals w. The limiting random vector has df which
clearly depends on ξa . Further, E1 and E2 can be dependent, for instance in the setup
of Example 3 taking a = 1.

Assume next that (X, Y ), a, aρ, ρ satisfy the assumptions of Theorem 3. For any
s, t positive Eq. 28 implies

P
{

X > x + s/w(aρx), Y > ax + t/w(aρx)
}

P{X > x, Y > ax} ∼ exp(−s Da,c − t D∗
a,c),

where

Da,c := aρ

ca + 1
, D∗

a,c := aρc

ca + 1
.

Consequently, Eq. 31 holds with

g(x) = w(aρx), x > 0

and E1, E2 two independent exponential random variables with mean 1/Da,c and
1/D∗

a,c, respectively.
Under the setup of Example 5

Da,c = 1 − aρ

aρ(1 − ρ2)
, D∗

a,c = a − ρ

aρ(1 − ρ2)
, ρ ∈ (−1, 1).

Consequently, Eq. 31 holds in the special case that (U1, U2) is uniformly distributed
on the unit circle of R

2.

4.2 Asymptotic independence and MDA

A common measure of the asymptotic dependence between (X, Y ) is the tail
dependence function

lim
x→∞

P{G1(X) > 1 − s/x, G2(Y ) > 1 − t/x}
min(P{G1(X) > 1 − s/x} , P{G2(Y ) > 1 − t/x}) =: l(s, t), s, t ∈ (0, ∞)

(when it exists) where G1, G2 are the distribution functions of X and Y , respec-
tively. If l(1, 1) = 0, then we say that X and Y are asymptotically independent.
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See for instance De Haan and Ferreira (2006), Reiss and Thomas (2007), Hüsler
and Li (2009), Peng (2010), Das and Resnick (2011) and Haug et al. (2011) for
more details concerning the modelling of asymptotic independence in the context of
extreme values.

We discuss briefly the asymptotic independence for scale mixture distributions
with (U1, U2) specified by Model A. It can be seen by Example 1 that for par-
ticular (U1, U2) the dependence function l(s, t) can be positive, thus asymptotic
independence does not hold. However, under the setup of Example 2, Eq. 21 implies
l(s, t) = 0, ∀s, t ∈ (0, ∞). Consequently, X and Y are asymptotically independent
with df in the Gumbel MDA.

In the framework of Model B we consider (X, Y ) with stochastic representation
(Eq. 22) where ρ ∈ [0, 1). The case ρ ∈ (−1, 0) follows with similar arguments,
therefore omitted here. Next, we specify the asymptotic behaviour of W and z(W ).
Assume that for some γ1, γ2 ∈ [0, ∞)

lim
x→∞

P{W > 1 − s/x}
P{W > 1 − 1/x} = sγ1 , lim

x→∞
P{z(W ) > 1 − s/x}
P{z(W ) > 1 − 1/x} = sγ2 , ∀s > 0.

As in Example 1, applying Eq. 17 we obtain

P{RW > x} ∼ �(γ1 + 1)P{W > 1 − 1/v(x)} F(x)

and

P{Rz(W ) > x} ∼ �(γ2 + 1)P{z(W ) > 1 − 1/v(x)} F(x).

Suppose that z∗(x) ≤ b < 1, ∀x ∈ [0, 1], and set z(x) := ρx + z∗(x). Applying
Eq. 14 we obtain

P{Y > x} ∼ P{I1 = 1, I2 = 1} P{Rz(W ) > x}

and

P{X > x} ∼ P{I1 = 1}�(γ1 + 1)P{W > 1 − 1/v(x)} F(x).

Consequently, by Eq. 15 both X and Y have distribution functions in the Gumbel MDA
with the same scaling function w. Let bi (x), i = 1, 2 be defined asymptotically by

bi (x) := G−1
i (1 − 1/x), x > 1,

where G−1
i is the generalised inverse of Gi , i = 1, 2. In view of Eq. 14 we have

lim
x→∞

b1(x)

b2(x)
= 1. (32)

Furthermore (see e.g., Falk et al. 2010)

w(bi (x))[G−1
i (1 − s/x) − bi (x)] = − ln s, ∀s ∈ (0, ∞). (33)
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If X, Y are such that the conditions of Theorem 2 hold, then comparing the asymp-
totics of P{X > b1(x/s), Y > b2(x/t)} and P{X > b1(x/s)} , P{Y > b2(x/t)}
utilising further Eqs. 14 and 32 we obtain l(s, t) = 0, ∀s, t ∈ (0, ∞). Consequently,
X and Y are asymptotically independent.

4.3 Residual tail dependence

Modeling of the asymptotic dependence is often done in the framework of copulas,
see e.g., De Haan et al. (2008), Li and Peng (2009) and Peng and Qi (2011). For
X, Y with asymptotically independent components it is of some interest to quantify
the asymptotic independence in terms of some indices. Let G1, G2 be the distribution
functions of X and Y , respectively. One successful approach to model the asymptotic
independence is the estimation of the residual dependence index η ∈ (0, 1] (see e.g.,
Peng 1998, 2008, 2010; De Haan and Ferreira 2006; Reiss and Thomas 2007; Falk
et al. 2010; or Hashorva 2010). So if for some x, y positive

Su(x, y) := P{G1(X) > 1 − x/u, G2(Y ) > 1 − y/u}
P{G1(X) > 1 − 1/u, G2(Y ) > 1 − 1/u} → S(x, y), u → ∞,

then for any c > 0

S(cx, cy) = c1/ηS(x, y),

where Su(1, 1) is regularly varying with index −1/η.

η for Model A
Example 1 shows that the asymptotic independence is not always observed for our
first dependence model. We consider next the setup of Example 2 which exhibits
asymptotic independence calculating η for that example. Since limu→∞ b1(u) =
limu→∞ b2(u) = ∞, by Eqs. 21 and 33 for any x, y ∈ (0, 1] we obtain

lim
u→∞

Su(x, y)

Su(1, 1)

= lim
u→∞

P{X > b1(u) − ln x/w(b1(u)), Y > b2(u) − ln y/w(b2(u))}
P{X > b1(u), Y > b2(u)}

= 1

�(γ1 + γ2 + 1)

∫ ∞

0
(t + ln x)

γ1+ (t + ln y)
γ2+ exp(−t) dt (34)

implying that η = 1.

η for Model B
Let (X, Y ) be as in our second application satisfying further the assumptions of The-
orem 3. Since X, Y are asymptotically independent we calculate next η assuming that
the scaling function w satisfies

lim
u→∞

w(cu)

w(u)
= cλ−1, ∀c ∈ (0, ∞), (35)
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with λ ∈ [0, ∞). Thus w(x) = xλ−1L(x) with L a positive slowly varying function
at infinity. If λ = 0 suppose further that limu→∞ L(u) = ∞.

Case lim supu→∞ w(u) ∈ [0, ∞) In view of Eq. 32 for any y ∈ (0, ∞)

b2(u) − ln y

w(b2(u))
= b1(u) − (1 + o(1))

ln y

w(b1(u))
, u → ∞.

Since limu→∞ b1(u) = ∞, Eqs. 34 and 35 imply for any x, y ∈ (0, 1) (set τ(u) :=
1/w(αρb1(u)))

lim
u→∞

Su(x, y)

Su(1, 1)

= lim
u→∞

P
{

X > b1(u) − αλ−1
ρ τ (u) ln x, Y > b1(u) − (1 + o(1))αλ−1

ρ τ (u) ln y
}

P{X > b1(u), Y > b1(u) + o(1)τ (u)}

= exp
(
αλ−1

ρ (Da,c ln x + D∗
a,c ln y)

)
.

Consequently, since further αρ > 1

η = α1−λ
ρ

D1,c + D∗
1,c

= α−λ
ρ ∈ (0, 1],

with η = 1 only when λ = 0.

Case limu→∞ w(u) = ∞ In order to calculate η we assume further

lim
u→∞ w(b2(u))[b2(u) − b1(u)] = ξ ∈ R. (36)

As above for any x, y ∈ (0, 1) as u → ∞ we obtain

lim
u→∞

Su(x, y)

Su(1, 1)

= lim
u→∞

P
{

X > b1(u) − αλ−1
ρ τ (u) ln x, Y > b1(u) − (1 + o(1))αλ−1

ρ τ (u)(ln y + ξ)
}

P
{

X > b1(u), Y > b1(u) + (1 + o(1))αλ−1
ρ ξτ(u)

}

= exp
(
αλ−1

ρ (Da,c ln x + D∗
a,c ln y)

)
.

Hence again η = α−λ
ρ ∈ (0, 1], with η = 1 only for λ = 0.
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5 Proofs

Proof of Theorem 1 Since R is independent of the bivariate random vector (U1, U2),
and U1 ≤ 1 almost surely for any δ, η ∈ [0, ∞) we have

pa,δ,η(x) = P{RU1 > x(1 + δ/v(x)), RU2 > ax(1 + η/v(x))}

=
∫ ∞

x
P{U1 > x(1 + δ/v(x))/r, U2 > ax(1 + η/v(x))/r} d F(r),

∀x > 0.

Let ε be a positive constant. The assumption (Eq. 12) implies that for any c ∈ (1, 1+
ε) we have P{U1 > 1/c, U2 > a/c} ∈ (0, 1). In view of Eq. 14

lim
x→∞

F(αx)

F(x)
= 0, ∀α ∈ (1, ∞), (37)

hence we obtain (set Fx (s) := F(s/w(x) + x))

pa,δ,η(x) ∼
∫ cx

x(1+δ/v(x))

P{U1 > x(1 + δ/v(x))/r, U2 > ax(1 + η/v(x))/r} d F(r)

=
∫ (c−1)v(x)

δ

qδ,η(s, v(x)) d Fx (s),

with

qδ,η(s, v(x)) := P
{

U1 >
1 + δ/v(x)

1 + s/v(x)
, U2 >

a(1 + η/v(x))

1 + s/v(x)

}
, s ≥ δ.

Condition (10) implies

qδ,η(s, v(x))

P{Ua > 1 − 1/x} → ξa(s, δ, η), x → ∞

locally uniformly s ≥ δ. Hence in view of Eqs. 4 and 9 Fatou’s Lemma yields

lim inf
x→∞

1

F(x)

∫ (c−1)v(x)

δ

qδ,η(s, v(x))

P{Ua > 1 − 1/x} d Fx (s) ≥
∫ ∞

δ

ξa(s, δ, η) exp(−s) ds.

(38)

When δ = η = 0, by Eq. 12 qδ,η(s, 1) is regularly varying at 0. Utilising further
Potter’s bounds (see e.g., De Haan and Ferreira 2006) for the integrand and utilising
Lemma 7.5 and 7.7 in Hashorva (2007) we obtain

lim sup
x→∞

1

F(x)

∫ (c−1)v(x)

δ

q0,0(s, v(x))

P{Ua > 1 − 1/x} d Fx (s) ≤ J0,0,
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and further

lim
M→∞

1

F(x)

∫ (c−1)v(x)

M

q0,0(s, v(x))

P{Ua > 1 − 1/x} d Fx (s) = 0

Since for any s ≥ δ

qδ,η(s, v(x)) ≤ q0,0(s, v(x)), δ, η ≥ 0

this implies

lim
M→∞

1

F(x)

∫ (c−1)v(x)

M

qδ,η(s, v(x))

P{Ua > 1 − 1/x} d Fx (s) = 0,

hence the general case with δ, η ∈ [0, ∞) is established by utilising further Eqs. 10,
38, and thus the proof is complete. 
�

Proof of Theorem 2 Define

x∗ := aρx, v(x) = xw(x), Fx (s) := F(x∗[1 + s/v(x∗)]), s ∈ R, x > 0.

By the independence of I1, I2 and RW we may write for any x > 0

pa(x) = P
{

RW > x, ρRW − z∗(W ) > ax
}

P{I1 = 1, I2 = −1}
+ P{RW > x, Rz(W ) > ax} P{I1 = 1, I2 = 1}

=: C1 P{I1 = 1, I2 = −1} + C2 P{I1 = 1, I2 = 1} .

If ρ ≤ 0, then the fact that z∗ is non-negative implies pa(x) = C2. When ρ ∈ (0, 1)

by the assumption a/ρ > aρ

C1 ≤ P{RW > a/ρx} ≤ P{R > a/ρx} = F(a/ρx).

Since z(s) ≤ a/aρ for any s ∈ [1/aρ, 1] we have

P{W > x/r, z(W ) > ax/r} ≤ P
{
W > 1/aρ, z(W ) > ax/r

}

≤ P
{
W > 1/aρ, z(W ) > a/aρ

}

= 0, ∀x, r > 0, x ≤ r ≤ aρx .

Hence for any ε ∈ (0, 1)

C2 =
∫ (aρ+ε)x

aρ x
P{W > x/r, z(W ) > ax/r} d F(r)

+
∫ ∞

(aρ+ε)x
P{W > x/r, z(W ) > ax/r} d F(r).
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Since (by the assumption) the function z is decreasing and possesses an inverse
function zε in [1/aρ − ε, 1/aρ + ε] for some given ε > 0, we have

∫ (aρ+ε)x

aρ x
P{W > x/r, z(W ) > ax/r} d F(r)

=
∫ εv(x∗)

0
P

{
W > 1/aρ[1 + s/v(x∗)]−1, z(W ) > a/aρ[1 + s/v(x∗)]−1

}
d Fx (s)

=
∫ εv(x∗)

0
P

{
W > 1/aρ[1 + s/v(x∗)]−1, W < zε(a/aρ[1 + s/v(x∗)]−1)

}
d Fx (s)

=
∫ εv(x∗)

0
P∗{cas/(aρv(x∗))(1+o(1))>W −1/aρ >−s/(aρv(x∗))(1+o(1))

}
d Fx (s).

Hence by the assumptions on W and F applying Potter’s bound for the integrand and
utilising Lemmas 7.5 and 7.7 in Hashorva (2007) we obtain

∫ (aρ+ε)x

aρ x
P{W > x/r, z(W ) > ax/r} d F(r)

∼
∫ ∞

0
sγa exp(−s) dsL−1/aρ,ca/aρ (1/v(x∗))

F(x∗)
(v(x∗))γa

.

In view of Eq. 37 aρ is necessarily unique, hence applying Eq. 14 we obtain as
x → ∞

pa(x) = F(a/ρ) + (1 + o(1))P{I1 = I2 = 1}�(γa + 1)L−1/aρ,ca/aρ (1/v(x∗))

× F(x∗)
(v(x∗))γa

+ O
(

F((aρ + ε)x)
)

∼ P{I1 = I2 = 1}�(γa + 1)L−1/aρ,ca/aρ (1/v(x∗))
F(x∗)

(v(x∗))γa
,

and thus the result follows. 
�

Proof of Theorem 3 By the assumption on the density function h of W we have that
Eq. 23 holds for any K1 < K2, K1, K2 ∈ R with γa = 1. As in the proof above for
any δ ∈ [0, ∞) and ε > 0 small enough we obtain (set ξ := (caη + δ)/(ca + 1))

pa,δ,η,ρ(x)=(1 + o(1))P{I1 = I2 = 1}

×
∫ εv(x∗)

ξ

P
{
(1+o(1))ca(s−η)

aρv(x∗)
>W −1/aρ >

(1+o(1))(δ−s)

aρv(x∗)

}
d Fx (s)

∼ P{I1 = I2 =1}
∫ ∞

ξ

[(ca+1)s−δ−η] exp(−s)ds
h(1/aρ)

aρ

F(x∗)
v(x∗)

, x →∞,

hence the result follows. 
�
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