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Abstract

A large part of mammalian physiology and behaviour shows regular daily variations. This tempo-

ral organisation is driven by the activity of an endogenous circadian clock, whose molecular basis

consists of diurnal waves in gene expression. Circadian transcription is the major driver of these

rhythms, yet post-transcriptional mechanisms, some of which occur in response to systemic cues and

in a tissue-specific fashion, have central roles in ultimately establishing the oscillatory gene expres-

sion programme as well. Regulatory control that occurs at the level of translation is emerging as an

important player in the generation and modulation of protein accumulation rhythms. As a mecha-

nism, translation lies at a privileged position to integrate genetically encoded rhythmic signals with

other, external and internal stimuli, including nutrient-derived cues. In this review, we summarise

our current knowledge of how diurnal control of translation affects both bulk protein levels and

gene-specific protein biosynthesis. We discuss mechanisms of regulation, in particular with regard

to the complex interplay between circadian cycles and feeding/fasting cycles, as well as emerging

roles for upstream open reading frames (uORFs) in clock control.
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1. Introduction

Environmental changes can represent threats to be avoided and opportunities to be seized -

predicting them thus lies in an organism′s best interest. This also holds true for the sharp, yet

foreseeable 24-h periodic changes that are associated with the rotation of the Earth around its axis

and that engender daily rhythms in light and temperature conditions, humidity, food availability,5

predator exposure and other parameters. It is thus not surprising that most living beings have

evolved sophisticated endogenous time-keeping devices, known as circadian clocks, to anticipate

daily variations in living conditions and to synchronize their behavior, physiology and metabolism

to geophysical time.

A spectrum of model organisms - ranging from cyanobacteria to plants, fungi, insects and mam-10

mals - has served scientists to illuminate from various angles, how nature has constructed its clocks

and, given that circadian clocks appear to have arisen several times in evolution [1], how this oc-

curred on independent occasions. While many of the genes and proteins that make up the core

clock mechanism differ across evolutionarily distant organisms, it is noteworthy that most currently

known circadian clocks rely on a similar molecular architecture for the generation of self-sustained15

oscillations in gene expression, which is through negative feedback loops in transcription [2]. In

the simplest form, the typical core clock architecture thus consists of clock genes encoding tran-

scriptional activators that drive the expression of clock genes encoding transcriptional repressors.

Through physical interactions, the repressor proteins inhibit the activators to suppress further re-

pressor synthesis, and due to their intrinsic instability, repressor mRNA and protein abundances20

rapidly drop below the threshold required for autorepression, clearing the way for a new cycle. Of

note, it was the discovery of this mechanism, along with the identification of the first core clock

genes in Drosophila, that earned the 2017 Nobel Prize in Physiology or Medicine.

With rhythmic transcription driving the core clock, the simplest way to relay timing informa-

tion to downstream effector pathways would be by transcriptional mechanisms as well. A wealth25

of studies dedicated to the identification of mRNAs whose abundance periodically changes over the

day, as well as the detailed understanding of the complex molecular events occurring at rhythmically

active promoters [3], indeed leave little doubt that rhythmic transcription is key to generating the

majority of cyclic gene expression in most organisms and cell types. However, there are notable

exceptions. A radical revision of the transcription-centric model came from the findings that the30

cyanobacterial clocks can operate in the absence of any transcription at all and that self-sustained

rhythmic phosphorylation of the essential clock component KaiC even occurs in vitro using recom-
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binant clock proteins and ATP [4]. Transcription-independent molecular rhythms have also been

observed in human erythrocytes. In these naturally nucleus-free cells, antioxidant proteins known

as peroxiredoxins undergo changes in their redox status, which show self-sustained, entrainable, and35

temperature-compensated 24-hour periodicity in the absence of transcription and translation [5]. In

the wake of such surprising discoveries (and as a consequence of the technical advances made in the

fields of high-throughput nucleic acid sequencing and proteomics), the longstanding concept which

places daily changes in transcriptional activity at the heart of rhythmic gene expression was revisited

as well. A more nuanced picture has arisen that accords a significant role to post-transcriptional40

mechanisms in the generation of rhythmic clock outputs in mammals. Furthermore, it has become

clear that a significant proportion of RNA and protein oscillations is not necessarily a direct output

of the local, cellular clock, but rather driven by systemic cues, in particular by signals related to

feeding.

This review aims at presenting and discussing our current knowledge of how one of the implicated45

post-transcriptional mechanism, i.e. translation, can generate, modulate, and sustain circadian

rhythms. Our main focus will lie on the mammalian circadian system. Before we delve into the

details, however, we shall take this opportunity for a brief digression into findings from two of the

more exotic organisms that have been used in circadian clock research, namely green algae and marine

dinoflagellates. It is in these systems that the first, and most compelling evidence for translationally50

driven clock activity was collected many years ago. An important case is provided by the green algae

Acetabularia, which is an organism that is unicellular, yet the giant single cell consists of a rhizoid

that contains the cell’s single nucleus, a long stalk, and an umbrella of branches that can fuse into

a cap. The rhizoid allows complete cellular regeneration when its cap is removed, and the caps of

two Acetabularia cells can be experimentally exchanged, explaining why this organism has served as55

an important model species in early cell biological research. Interestingly, it was found that isolated

caps would survive for several weeks without a nucleus, yet rhythmic photosynthesis would continue

[6]. When an out-of-phase nucleus was reintroduced into such a plant, it was the rhythmic phase

of the cytoplasmic photosynthetic activity that entrained the nuclear clock, rather than the inverse

[7, 8]. Later work in this system established a distinct role of translation in rhythm generation [9]. A60

second, historically influential organism is Gonyaulax polyedra. This marine dinoflagellate produces

circadian oscillations in nocturnal bioluminescence through the activity of three proteins that are

regulated through rhythmic translation [10, 11] and that can be phase-shifted through translational

inhibitors [12]. Subsequent work identified a specific protein, termed CCTR for Circadian-Controlled
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Translational Regulator, that shows daily cycles in binding activity to an RNA element located in65

the 3′ untranslated region of the circadianly expressed luciferin binding protein, thereby repressing

its translation during the day [13]. The two examples, Acetabularia and Gonyaulax, thus show that

in certain extreme cases nature appears to have placed regulated translation even at the center of

the cellular core clock mechanism.

2. Architecture of the mammalian circadian system70

The mammalian circadian system is hierarchically organised, with peripheral clocks in virtually

every cell of the organism that are synchronised through a master pacemaker located in the brain’s

suprachiasmatic nuclei (SCN). The SCN receives photic signals from the environment via the retino-

hypothalamic tract connecting to the photosensitive retinal ganglion cells, thereby entraining internal

timing to geophysical time (reviewed in [14]). The main molecular components of the mammalian75

cellular clockwork are transcriptional activators and repressors interlocked in negative feedback loops.

In the main loop transcription factor heterdimers formed by CLOCK (or its brain paralogue NPAS2)

and BMAL1 (also known as ARNTL) activate the transcription of target genes, including their

own repressors, encoded by Period (Per1, Per2, Per3 ) and Cryptochrome (Cry1, Cry2 ) genes.

PER:CRY complexes translocate to the nucleus and repress CLOCK:BMAL1 activity until their80

degradation allows a new activation cycle to start (Figure 1). In a secondary, interconnecting loop,

CLOCK:BMAL1 drive the expression of Rev-erb (Rev-erbα, Rev-erbβ) and Ror (Rorα, Rorγ) genes

that, in turn, repress and activate Bmal1 transcription, respectively. Additionally, a multitude of

post-translational modifications acting on the above clock components play important roles in various

steps of the mechanism as well [15]. The rhythmic transcriptional activities that constitute the core85

clock mechanism are also responsible for the transcription of many other genes transcriptome-wide.

These are termed clock output or clock-controlled genes (CCGs). Depending on cell type, CCGs can

represent a sizeable proportion of the transcriptome. CCG repertoires are shaped in a highly tissue-

specific fashion due to the co-regulation of genes by circadian and tissue-specific transcription factors,

as well as the influence of systemic cues such as temperature and feeding that can differentially affect90

organs as well.

3. Post-transcriptional mechanisms contribute to shaping gene expression rhythms

Transcriptomics studies have shown that in organs such as brain, heart or kidney, around 4 - 12%

of expressed genes show daily oscillations in mRNA abundance. In liver (arguably the best studied
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Figure 1: Simplified model of the transcriptional feedback loop of the mammalian circadian clock. This

figure shows the main players of the interlocked negative transcriptional feedback loops that make up the mammalian

clock. See text for details.

peripheral model organ in the circadian field) the proportion is even as high as 20% [16]. Most95

of these rhythms are thought to be driven transcriptionally. However, diurnal changes in mRNA

stability appear to contribute quite significantly to establishing circadian transcriptomes as well. A

few years ago, three complementary studies set out to determine which proportion of transcriptomal

oscillations in mouse liver relied on post-transcriptional rather than on transcriptional mechanisms

for their rhythmicity [17, 18, 19]. They led to the remarkable estimate that ∼25-70% of rhythmically100

accumulating mRNAs stemmed from genes that did not undergo oscillations in transcription. Of

note, for reasons related to the definition of non-rhythmicity that have been discussed elsewhere

[20, 21], there are grounds to believe that the extent of diurnally regulated transcript stability is

more likely reflected by the more conservative of the above estimates.

Discrepancies have also become apparent in comparative analyses of mRNA and protein rhythms.105

Evidently, the proteome is furthest downstream from the initial transcription event, thus integrating

the ensemble of regulation that impinges on mRNA stability, translation and protein stability. Early

on, a pioneering small-scale proteomics study (<100 proteins) had hinted at the notion that a con-

siderable proportion of protein rhythms were not simply a propagation of oscillations occurring at

the level of the encoding mRNAs [22]. More recently, deep proteomics analyses based on thousands110
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of polypeptides in mouse liver have estimated that ∼5% of detectable proteins show diurnal varia-

tions, of which 20% [23] to 50% [24] are translated from constantly abundant, rather than rhythmic

mRNAs. The rhythmicity that is observable at the proteomic level is expected to reflect significant

contributions from protein synthesis, protein degradation and protein secretion, all of which could

in principle have a time of day-dependent component. Diurnal patterns of post-translational protein115

modifications, such as phosphorylations [25, 26] and acetylations [27], play roles in the complex

interplay between the clock and the proteome as well.

4. Translational regulation of rhythmic gene expression

4.1. General principles of translational control

Translation, i.e. the biosynthesis of proteins from mRNA templates, is a highly regulated pro-120

cess that is frequently considered to account for a large proportion of total cellular energy needs.

Translation has the ability to integrate metabolic, stress-related and other cellular cues, allowing

cells and organisms to respond quickly and reversibly to internal and environmental fluctuations and

adapt their proteome accordingly [28]. Moreover, protein levels have been found to correlate better

with the translational activity of mRNAs that with their abundances [29, 30, 31], highlighting the125

functional importance of translational control. In the following, we will first give an overview of

the basic steps of eukaryotic translation and its regulation, before we discuss interactions with daily

rhythms later in this review.

Four steps can be distinguished in translation: (1) ribosome scanning and initiation, (2) elonga-

tion, (3) termination and peptide release, and (4) ribosome dissociation and recycling. Translation130

initiation is considered to be the rate-limiting and most regulated step in the process (see [32] for

an excellent review). Briefly, initiation requires the formation of the 43S pre-initiation complex

(PIC) at the start codon. The PIC is composed of a 40S small ribosomal subunit loaded with a

methionine-charged initiator tRNA and eIF2*GTP, as well as a distinct set of additional initia-

tion factors. In the classical, ”cap-dependent” pathway, this protein complex is initially recruited135

to mRNAs by recognition of their 5′ m7G cap through initiation factor eIF4E. eIF4E is a sub-

unit of eIF4F, which also contains the scaffold protein eIF4G and eIF4A, a helicase that unwinds

base-paired nucleotides within 5′ leader sequences. Of note, it is the recognition of the cap that is

stringently controlled. To this end, eIF4E can be sequestered by eIF4E binding proteins (4E-BPs),

making it unavailable for PIC recruitment and scanning and hence causing translational repression.140

The activity of 4E-BPs is regulated through phosphorylation; when hyperphosphorylated, they do
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not bind eIF4E and translation can ensue. A main player in 4E-BP phosphorylation is mTORC1,

one of the two cellular complexes containing the mTOR kinase that is central to cell growth and

proliferation and that responds to nutrient levels and mitogens. When mTORC1 is inactivated, the

rapid dephosphorylation of 4E-BPs allows them to sequester eIF4E from eIF4F and inhibit cap-145

dependent translation. This model suggests a global decrease in (cap-dependent) translation that

affects all cellular mRNA; however, we now know from several studies that the picture is much more

fine-grained, as not all protein biosynthesis is affected equally [33, 34]. In particular, these studies

have found that there are specific “mTOR-sensitive” mRNAs (for example the so-called 5′ TOP

mRNAs that will be discussed in detail later), but also additional non-TOP transcripts that can150

be grouped into different classes according to mRNA sequence motifs. The precise mechanisms of

how these transcripts are regulated by mTOR remains poorly understood. Of note, an important

general principle that is emerging from these and other studies is that many translation factors (in

this case: eIF4E) that were previously considered to be part of a common, canonical translation

machinery and required for most cellular translation, have turned out to be quite specific, or at least155

show strong dose dependence, for the translation of distinct mRNA subsets. The molecular basis

and functional consequences of these differential requirements for initiation factors is still poorly

understood, as is the role of the different translation factor paralogues that are found in mammals

(e.g. two eIF4Gs, three eIF4Es, three 4E-BPs). Finally, while the above describes the situation

for cap-dependent translation, it is emerging that many cellular mRNAs can recruit the translation160

apparatus cap-independently via internal ribosome entry sites (IRES) or through mechanisms that

involve RNA modifications such as N6-methyladenosine (m6A) (reviewed in [35]).

Once the 43S PIC is loaded on the mRNA, it scans for an appropriate initiation codon. In the

canonical case this is an AUG whose initiation strength is determined by the local sequence context

(in particular the well-known ”Kozak sequence” [36]). Nevertheless, it is still challenging to precisely165

predict initiation sites only from mRNA sequence, because structures and elements in the 5′ leader

sequence and the larger environment of the initiation codon influence start codon selection. One

such class of sequences that will be discussed later in the context of circadan gene expression are the

upstream open reading frames (uORFs), which are short, translated sequences within the 5′ UTR

that compete with the main ORF for initiating ribosomes and thus generally have a repressive effect170

on CDS translation. An example for a 5′-borne RNA structure that will be discussed later, is the

iron response element (IRE), which is found in mRNAs encoding proteins involved in iron, oxygen

and energy metabolism.
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With regard to protein rhythmicity, it is conceivable that diurnal oscillations of translation

efficiency could represent an important mechanism to establish circadian clock outputs, and this175

mechanism may explain (together with protein degradation that can also be regulated diurnally)

how rhythmic protein accumulation is achieved in the absence of rhythmic mRNA abundance [37].

Translational regulation that is dependent on time of day could control protein levels globally, or it

could act in a transcript-specific manner. As will be discussed in the following sections, the latter can

be achieved through cis-elements that are present on a specific group of transcripts, while the former180

would affect the transcriptome as a whole by acting on general mechanisms of translational control.

Translational regulation could also impact on rhythmic protein output by amplifying or reducing

differences in the rhythmic transcriptomes across cell types and tissues, by adding robustness to the

circadian system, or by introducing phase delays between mRNA and protein accumulation.

In the following sections, we will summarise our current knowledge of translational control of185

mammalian rhythmic expression, with a focus on which transcripts undergo diurnal translational

control, on the underlying principles and mechanisms of regulation, and on the important interplay

between the circadian and the feeding/fasting cycles in driving and sustaining these oscillations.

4.2. Early and indirect evidence for time of day-dependent translational control

In mouse tissues, translational regulation of rhythmic gene expression was initially estimated190

from the parallel measurement of protein and mRNA levels [22, 38]. Two-dimensional difference

gel electrophoresis (2D-DIGE) from liver reported 60-135 rhythmic spots, corresponding to 10-

20% of all detected ones. Of these, 39 protein were further identified by mass spectrometry (MS)

and it was found that about half of them were encoded by arrhythmic mRNAs [22]. Two recent

studies relying on advanced quantitative MS techniques (shotgun proteomics and in vivo SILAC,195

Stable Isotope Labeling by Amino acids in Cell culture) significantly improved detection and fidelity

[23, 24], though it should be kept in mind that both still failed to reliably detect many lowly

abundant proteins including the majority core clock components. Robles et al. [23] detected 3000

proteins, of which 6% showed robust daily oscillations with a broad distribution of phases. Parallel

microarray-based analysis of the transcriptome revealed that one fifth of oscillating proteins did200

not show the corresponding oscillations at the transcript levels, indicative of widespread rhythmic

post-transcriptional and post-translational regulation. Similarly, Mauvoisin et al. [24] identified

around 5000 proteins, of which 195 (4%) oscillated in abundance and, of those, about half did

not show diurnal regulation of their corresponding mRNAs. Beyond liver, the circadian proteome

has recently been interrogated in mouse SCN, where a little less than 2.5% of the 2000 detected205
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proteins showed robust 24-hour oscillations, most of them without evidence for rhythmic mRNA

[39]. In all three studies, the circadian proteomic landscape was enriched for specific biological

processes, such as xenobiotic detoxification [23] and protein secretion [24] in liver, and mitochondrial

oxidative phosphorylation in the SCN [39], indicating tissue specificity of post-transcriptional control.

Moreover, the studies reported a phase delay from transcript to protein accumulation that was in210

the range of 5 to more than 8 hours [23, 24, 39]. In order for such relatively large differences in

mRNA and protein peak times to occur, it is plausible that the mechanisms that regulate protein

clearance – i.e. degradation and secretion – are also subject to diurnal control.

Circadian clock-control of protein expression that is independent from mRNA levels has also

been inferred through the study of poly(A) tail dynamics as a proxy of message translatability. In215

mouse liver, >200 transcripts exhibited 24-hour oscillations of poly(A) tail length [40], and although

the majority was likely a consequence of rhythmic transcription, the study identified 42 transcripts

(18% of all poly(A)-rhythmic mRNAs) whose daily changes in poly(A) tail length were not explained

transcriptionally nor by steady-state mRNA level oscillations. It was thus concluded that they

were under the control of diurnal cytoplasmic polyadenylation. Consistently, maximal tail length220

was correlated with the phase of highest expression of polyadenylation element binding proteins

(CPEBs), as well as with peak accumulation of the encoded proteins [40].

While the ensemble of these studies is highly suggestive of widespread translational contributions

to the establishment of protein rhythms, they did not interrogate the role of translation and daily

changes in translational efficiency directly. It has been known since the 1960s that many ribosomes225

progress along one mRNA molecule simultaneously (‘polysomes’) [41] and until 10 years ago, the

analysis of translation efficiencies still relied on traditional methodologies based on the ultracentrifu-

gation of polysome-containing extracts on sucrose gradients, which separates mRNAs according to

how many ribosomes they carry, followed by rather cumbersome fractionation and analysis. It is

only with the development of ribosome profiling in 2009 that the analysis of translation rates has230

become truly high-throughput compatible [42]. In this technique, the polysome-containing extracts

are directly treated with nuclease under conditions that degrade the majority of cellular RNAs but

keep individual ribosomes (‘monosomes’) and a short fragment of protected mRNA, known as the

footprint, intact. The footprints, whose ∼30 nt sequences are diagnostic of transcript identity and

position of the translated codon, are then purified, converted into sequenceable libraries and analysed235

by high-throughput sequencing.
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4.3. Translational regulation of ribosome biogenesis

In a study that still relied on the traditional methodology – microarray quantification of tran-

scripts isolated from gradient-fractionated polysomes – Jouffe et al. analysed ribosome association

of messenger RNAs in mouse liver around-the-clock at 4 hour resolution [43]. 249 microarray probes,240

corresponding to 2% of the expressed genome, showed the expression pattern expected for rhythmic

translation from constantly abundant mRNAs. Among these translationally regulated transcripts,

by far the most prominent group were mRNAs encoding ribosomal proteins (RPs) and other compo-

nents of the translation machinery, which all showed a peak in ribosome association at the onset of

the dark phase. Consistent with their daily dynamics in translation, newly synthesised RPs showed245

rhythmic protein abundance.

The rhythmic translation of RP transcripts was confirmed in ribosome profiling studies from liver

[44, 45] (Figure 2). The study by Janich et al. [44] reported on ∼150 transcripts with oscillating

translation efficiencies, of which a large proportion was related to the translation machinery. These

included most RPs, which showed ∼2.5-fold peak-to-trough amplitudes in translation efficiency.250

Maximal translation occurred around the light-dark transition (Zeitgeber Time 10-12; Zeitgeber

Time (ZT) describes the time-of-day relative to a periodic entrainment signal, in this case the light-

dark (LD) cycle; under a 12 hours light : 12 hours dark schedule, ZT 0 is the time of ”lights on”,

and ZT 12 is the time of ”lights off”).

Atger et al. [45] reported similar findings, together suggesting that ribosome biogenesis is trans-255

lationally controlled in mouse liver. RP transcripts all carry a specific sequence feature in their 5′

UTRs, known as the 5′-terminal oligopyrimidine (5′-TOP) motif that is regulated by the nutrient-

sensitive mammalian target of rapamycin (mTOR) pathway [46, 33, 47], indicating that rhythmic

feeding may be instrumental in establishing the observed translational rhythmicity (see below). Of

note, the translational rhythm on RP transcripts appears to be highly organ-specific, as it was ab-260

sent, or at least severely blunted, in mouse kidney [48]. Also other aspects of rhythmic translation in

kidney appear to be distinct from liver; they were less prevalent (90 translationally cyclic mRNAs),

of lower amplitude, and showed a distinct, bimodal phase distribution with peaks clustered around

ZT 3-5 and ZT 15 [48], which was analogous to the divergence that had already been observed

between the transcriptomes [16].265

4.4. Other pathways and transcripts undergoing diurnal translation regulation

Transcripts encoding components of the translation machinery were by far the largest and most

striking group of translationally rhythmic mRNAs in liver, but the ribosome profiling data uncovered
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two other distinct classes as well. These were, first, Translation Initiation of Short 5′ UTR Motifs

(TISU) transcripts [45] and, second, iron-responsive element (IRE)-containing mRNAs [44] (Figure270

2).

TISU mRNAs are characterised by an AUG initiation codon that is preceded by an extremely

short 5′ UTR. This configuration at the mRNA 5′ end directs efficient, cap-dependent translation ini-

tiation and confers several characteristics, notably its relative independence of two factors implicated

in most other, cap-dependent initiation events, eIF4A (a helicase resolving secondary structures) and275

eIF1 (a key factor in determining translation initiation fidelity). It has thus been hypothesised that

TISU permits efficient cap-dependent translation initiation without scanning of the 5′ UTR for the

start codon, a mechanism that would be advantageous when intracellular levels of eIF1 and eIF4A

fluctuate [49]. Atger et al. provide evidence that this class of transcripts is rhythmically regulated

at the protein synthesis level in mouse liver, reaching maximal translation efficiency at ZT 10 – an280

effect that appears to be dependent on feeding rhythms [45].

IREs are RNA stem-loop structures found in transcripts encoding for proteins involved in iron,

oxygen and energy metabolism, and they constitute a well-known example of translational regulation

[50]. IRE-containing Fth1, Ftl1 and Alas2 mRNAs are constant in abundance, but they show

rhythmic translation with a peak and trough at around ZT 4 and ZT 12, respectively, that leads285

to protein oscillations, suggesting that iron metabolism is under diurnal control [44]. In all three

messages, the IRE is located in the 5′ UTR, which confers regulation by the IRE/IRP system at the

level of translation [50]. Briefly, in conditions of cellular iron deficiency (and also regulated through

oxygen levels and other cues), iron-regulatory proteins IRP1 (also known as ACO1) and IRP2 (or

IREB2) bind 5′ UTR IREs and repress translation initiation of iron storage (Fth1, Ftl1 ), heme290

biosynthesis (Alas2 ) and iron export (Slc40a1/Ferroportin) transcripts. IRP binding is precluded

when iron levels are high, and the mRNAs can subsequently be translated. This autoregulatory

mechanism plays a critical role in iron homeostasis. Mechanistically, it involves an Fe-S cluster that

is assembled on IRP1, which converts it to cytosolic Aconitase that cannot anymore interact with the

IRE; IRP2 is degraded by the proteasome in an oxygen- and iron-dependent fashion by a mechanism295

involving the protein FBXL5 [50]. Of note, at least one transcript, encoding transferrin receptor

1 (Tfrc), contains IREs in the 3′ UTR, which regulates the stability rather than the translation

of the message [51]. Interestingly, while the transcription of the Tfrc gene is not rhythmic, its

mRNA is, which suggests that the Tfrc transcript half-life undergoes daily changes [18] and that

the mechanism underlying rhythmic IRE activity is not confined to translational control. How the300
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Figure 2: Multiple interactions between circadian gene expression and translation. Summary and overview

of the main findings, pathways and mechanisms (if known) regarding the contribution of translation to diurnal protein

expression. Rhythmic translation affects individual transcripts (e.g. mRNAs encoding proteins involved in iron

metabolism; ribosomal protein mRNAs), but also seems to be a systemic property of liver gene expression that is

intrinsically connected to feeding rhythms.

circadian clock might be involved in rhythmic regulation at the IRE awaits further investigation, in

particular with respect to the involvement of IRPs (which are themselves constitutively expressed

[44]), the precise requirement for a local vs. central clock to drive the oscillations, or the contribution

of other, systemic cues (e.g. iron levels, food intake).

In summary, circadian translatome studies have shown that time of day-dependent control of305

protein synthesis acts on mRNAs that encode proteins with similar functions and that contain

specific 5′ UTR motifs. These confer coordinated regulation, for example in response to systemic

cues. Moreover, peaks in translational activity appear to have a preference for two predominant

circadian phases, dawn and dusk. While the above data describes the situation in mammalian

organs (mainly liver), it should be pointed out that similar features have been observed in studies310

of the diurnal translatomes of Drosophila neural clocks [52], of Arabidopsis thaliana [53], and in a

human cell line, U2OS cells [54].
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5. Interplay between circadian clocks and feeding/fasting cycles - transcript-specific

and global effects on translation

Rhythms in gene expression in peripheral organs, both at the transcriptional and at the post-315

transcriptional level, not only reflect the activity of the local circadian clock. They also incorporate

the inputs of other daily rhythmic cues, notably body temperature, feeding/fasting, hormonal signals,

or sleep. The individual contribution of a particular physiological cue can be hard to discern, as

they coalesce in the organism and feed back to each other. For example, body temperature is

systemically controlled by the hypothalamus, including through circadian signals from the SCN, and320

temperature can entrain cell-autonomous peripheral oscillators through temperature-sensitive gene

expression programs [55, 56, 57, 58, 59]. Similarly, feeding and fasting are intrinsically coordinated

with wake/resting cycles by means of the endogenous clock [60], and in turn, the nutrient status can

orchestrate circadian expression and function (reviewed in [61]; see also [62, 63] for recent studies).

Historically, the liver has been the favourite model to study such peripheral organ properties – a325

bias that can be explained by this organ’s large size, its easy dissectability, relatively homogeneous

cell composition, and obviously its widespread and high amplitude circadian oscillations, most of

which are related to metabolic functions. The temporal adjustment of metabolic (e.g. anabolic vs.

catabolic pathways) and detoxification processes by the liver is necessary for the organism to ensure

efficient use of available nutrients and disposal of xenobiotics. Therefore, liver is particularly suitable330

to study the relative contributions of feeding rhythms and circadian signals in coordinating diurnal

gene expression. Briefly, an array of studies involving time-restricted feeding in full-body or liver-

specific circadian clock-deficient mouse strains, has allowed the conclusion that feeding rhythms

are the dominant driver of a significant proportion of hepatic gene expression rhythms. Early

studies already showed that in mouse models lacking specifically the liver clock, approximately 90%335

of mRNA abundance rhythms were lost, yet the remaining 10% (which included the core clock

gene Per2 ) continued to cycle due to systemic cues [64, 65]. Moreover, feeding-fasting cycles were

recognised as the underlying driver of a large part of rhythmic gene expression in wild-type mice, and

time-restricted feeding restored a significant fraction of hepatic mRNA oscillations in Cry1/Cry2

double-knockout mice that are deficient for a functional circadian clock [66]. Two recent studies340

have reported on the inverse experiment, i.e. the application of an arrhythmic feeding protocol in

wild-type animals with an intact clock [67, 68]. Greenwell et al. [68] observed that about 70% of

mRNA rhythms were lost under these conditions, further underlining the exceptional importance of

feeding-fasting cycles for hepatic gene expression rhythms.
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The translational upsurge of transcripts encoding ribosomal proteins and other components of345

the translation machinery that can be observed in the livers of night- or ad libitum-fed animals

[43, 44, 45] (see above) occurs at the light-to-dark transition, which also corresponds to the end

of resting/fasting and the beginning of activity/feeding phases. The feeding/fasting cycle is indeed

crucial for this regulation. As mentioned above, the affected mRNAs contain 5′ TOP motifs that

mediate regulation by the nutrient-sensitive mTORC1 pathway [46]. Of note, 5′ TOP mRNAs retain350

translational oscillations in the livers of clock-deficient mice subjected to night-restricted feeding

[45], uncovering feeding (or fasting) as the main driver of 5′ TOP rhythms in liver. It is noteworthy

that in mice fed ad libitum RP mRNA translation peaked already at ZT 10, i.e. 1-2 hours before

animals typically begin food intake under theses conditions [69]. One may thus speculate that the

translational upregulation is more than a simple acute response to food intake. The complexity in355

the interactions between feeding and circadian signals thus likely also extends to the translational

level. For example, TORC1 expression itself is clock-controlled in liver [43], conceivably resulting in

circadian gating of the feeding response.

The above examples describe daily changes in translation efficiency that affect small groups of

transcripts and that are relative to the bulk of the transcriptome whose translation rate is assumed360

to be constant across time points. It is important to note that it cannot be easily determined from

ribosome profiling data whether this assumption of constant global translational activity is true.

The reason is that in these datasets, global changes in translation rate are indistinguishable from

differences in sequencing depth; they are normalised out by the conventional analytical methods.

Nevertheless, there are many hints, including from ribosome profiling studies, that point towards such365

global effects. First, it is known that under conditions where mTOR regulates 5′ TOP transcripts,

global translation responds as well, an effect that is mediated through control of the eIF4G-eIF4E

interaction [47]. Second, diurnal control of translation at a global scale may be expected as a

consequence of the increased translation of ribosomal components that is indicative of ribosome

biogenesis during the dark phase [43, 44, 45] (Figure 2).370

Indeed, there are reports of daily changes in liver polysome profiles that go back to the 1960’s,

showing that in rats the polysome-to-total ribosome ratio increases by ∼25% during the night [70],

compatible with recent observations from mouse liver [43, 71]. Consistent with translation rates that

globally fluctuate along the day, Sinturel et al. recently reported that the size of the individual hepa-

tocyte cells and the mass and macromolecular content of the whole mouse liver undergo strong daily375

oscillations in a feeding-dependent manner [71]. These observations are in line with earlier evidence
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of size fluctuations in subcellular structures [72], and with reports of daily liver mass changes in birds

[73]. Sinturel et al. further showed that hepatic protein content rhythms were accompanied with

ribosome assembly cycles that were driven precisely through the rhythmic production of ribosomal

proteins, which then associate with rRNA that is synthesised continuously and in excess. Organ size380

oscillations appear to be specific to liver and were not observed in other, less metabolically active

organs such as kidney [71], consistent with the lack of RP translation rhythms in this tissue [48].

Taken together, these studies show that in liver ribosome availability is rate limiting for protein

synthesis, and that translational capacity undergoes global, daily changes. The activities of the

circadian clock and feeding cycles allow for an alignment of high demand for protein synthesis to the385

time of nutrient abundance. We know that the misalignment between feeding/fasting and circadian

cycles – that can occur in humans due to ”social jet lag” or shift work – is associated with inadequate

energy expenditure, increased risk for metabolic diseases [74], weight gain [75, 76], and mortality in

rodents [77], explaining the considerable current interest in the benefits of time-restricted feeding

diets [74, 78, 79]. It is quite plausible that the above mechanisms acting at the translational level390

play a critical role in this complex network of interactions.

6. Growing complexity of interactions between the clock and the mTOR pathway

In addition to the examples and experiments described above, a sizeable number of studies has

demonstrated that the mTOR pathway and the core clock mechanism interact at many other levels

as well. These interactions occur bidirectionally, i.e. from mTOR to the clock, and from the clock395

to mTOR. A specific role lies in the SCN, where mTOR signaling is involved in photic entrainment

of the central oscillator. This pathway has been molecularly quite well characterised, and we shall

describe it in the next section. Here, we will first present other examples and intriguing observations

that all point to important functions of mTOR in rhythmic regulation and vice versa. Nevertheless,

it is probably fair to say that we still understand too little to be able to place all findings in a single400

coherent model.

Lipton et al. [80] uncovered an intriguing specific mechanism how the clock machinery could

directly feed into the translation apparatus via mTOR. The study suggests that the core clock

transcription factor BMAL1 leads a second life in the cytosol, where it physically associates with the

translation machinery and with the 5′ cap structure of mRNAs to increase protein biosynthesis. The405

mechanism involves rhythmic phosphorylation of BMAL1 through one of the main mTOR effector

kinases, ribosomal S6 protein kinase 1 (S6K1). Metabolic labelling and co-immunoprecipitation
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experiments suggest that BMAL1 is most potent at activating translation towards the end of the

active (night) phase. It is intriguing that this mechanism appears to be not only active in the animal

(notably in liver). It is also detectable in cultured cells, despite the absence of rhythmic feeding cues410

that could entrain mTOR in this system, thus indicating a genuine cellular circadian activity. It

will be exciting to study whether this mechanism truly affects global translation, or whether it has

a preference for specific transcripts.

The recent study by Wu et al. places a specific clock protein, PER2, upstream of/within the

mTOR mechanism [81]. PER2 is thus identified as a scaffold protein that tethers mTOR together415

with partner proteins Tsc1 and Raptor into a complex, in which mTOR is in a repressed state.

Because Per2 expression is downstream of glucagon signaling that is active during fasting, the

authors propose that PER2 acts as a connection between fasting and mTOR that impacts protein

synthesis, autophagy and cell proliferation.

Finally, mTOR signaling feeds into the clock not only in the SCN (next section), but in a420

number of clock model systems and cell types. A comprehensive study by Ramanathan et al.

used a variety of pharmacological and genetic mTOR gain- and loss-of-function models, as well as

different cell and tissue types, to demonstrate that activation of mTOR shortens period and augments

amplitude [82]. Through which specific clock protein(s) and mechanisms these effects are mediated

is, however, still an outstanding question. Initially identified candidates are CRY1, CLOCK and425

BMAL1, whose abundances all increase when mTOR is constitutively activated [82, 83]. Recent

findings that place mTORC1-mediated translational regulation of Period mRNAs downstream of

feeding-mediated insulin signaling make the mechanism even more complex [84].

7. Specific roles of the mTOR pathway in the SCN

Light is the main cue regulating the SCN clock. It is perceived by the retina and projected430

through the retinohypothalamic tract to neurons on the ventral side of the SCN, where it acti-

vates intracellular signaling pathways that control clock gene expression and lead to clock resetting.

mTOR is one of the pathways implicated in the mechanism. Light exposure during the subjective

night (but not during the subjective day) thus triggers the dephosphorylation of mTOR effectors,

including 4E-BP1 [85], and the in vivo infusion of the mTOR inhibitor rapamycin modifies the435

phase-shifting effects of light on behavioural rhythms and attenuates the light-induced expression

of PER1 and PER2 [86]. Classical mTOR targets (i.e. 5′ TOP mRNAs) also showed light-induced

expression, thus indicating that the mTOR pathway functions to mediate light-evoked protein trans-
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lation and clock entrainment in the SCN. Cao and colleagues further dissected the specific role of

rhythmic mTOR activity in the SCN, starting with the observation that 4E-BP1 shows rhythmic440

phosphorylation even in the absence of light [87]. Rhythmic 4E-BP1 activity leads to translational

activation/repression cycles on the mRNA encoding for vasocative intestinal peptide (VIP), which

has an important signaling role between ventral and dorsal SCN cells. Indeed, animals deficient for

4E-BP1 exhibit higher VIP levels and circadian behavioural phenotypes, as they re-entrain faster

to a shifted light/dark cycle and are more resistant to the rhythm-disruptive effects of constant445

light. Moreover, the genetic inactivation of mTOR specifically in Vip-expressing neurons resulted in

weakened synchronization between SCN cells and weakened circadian behavioural rhythmicity under

various photic conditions (e.g. in constant light), further corroborating the specific and important

role of mTOR signaling in this population of master clock neurons [88].

8. Core clock regulation through upstream open reading frames (uORFs)450

Beyond the above examples where rhythmic protein biosynthesis is engendered through time

of day-dependent changes in translation rates, translational regulation is emerging as relevant for

the circadian clock also via other mechanisms. In this respect, the codon resolution that ribosome

profiling data provides with regard to the translated portion of the transcriptome, has been instru-

mental in uncovering the activity of a class of regulatory 5′ UTR elements known as upstream open455

reading frames (uORFs). uORFs are short translated sequences that are either fully embedded in

the 5′ UTR of mRNAs or partly overlap the main protein coding sequence (CDS) [89]. They initiate

from canonical AUG start codons, but frequently also from non-canonical near-AUG codons [90].

It has been estimated that ∼50% of mammalian transcripts contain at least one uORF [89] and

many transcripts contain several, attesting to the high regulatory potential of this class of elements.460

uORFs can act on CDS protein production via various mechanisms. In the vast majority of cases,

this does not appear to implicate the uORF micropeptide that is produced, but rather a regula-

tory role of uORF translation [91]. As described earlier in the review, most eukaryotic translation

involves scanning the mRNA from the 5′ cap in 3′ direction until it identifies a suitable initiation

codon. In general, the presence of a uORF will thus hinder ribosomes from scanning through to the465

CDS. Ribosomes may thus restart translation, or skip the uORF altogether, which are two inefficient

processes known as translation reinitiation and leaky scanning, respectively [91]. Consequently, the

translation of uORFs is generally associated with lower protein synthesis [89, 91, 92].

There is precedence that uORFs plays a role in the clock from Neurospora crassa, where uORF
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translation mediates temperature-dependent regulation of biosynthesis of the core clock component470

FRQ [93], and the evidence for functional roles in the mammalian clock is accumulating, too. In

liver, several core clock transcripts (Bmal1, Clock, Cry1, Rev-erbα, Rev-erbβ) displayed extensive

ribosome footprint coverage in the 5′ UTR indicative of active uORF translation, and in some

cases (a prominent example is Rev-erbα) the translation rate of the uORF was even higher than

that of the CDS [44]. The liver data [44] and complementary observations in U2OS cells [54] both475

suggest that the translation of these uORFs occurs constitutively and does not introduce additional

rhythmic regulation on the oscillating mRNA. Conceivably, however, the constant blunting of clock

protein biosynthesis across the cycle would impact the kinetics of clock protein accumulation and

the stoichiometry between the different clock components, for example of negative vs. positive

regulators. Moreover, one may speculate that differential uORF usage across cell and tissue types,480

or in response to physiological cues, could provide a means of modulating clock parameters without

changes in clock gene transcription. A systematic investigation of the functions of each individual

uORF is still missing. Nonetheless, for one case, in the gene Nr1d1/Rev-erbα, uORF deletion

increased protein expression and the magnitude of NR1D1 reporter oscillations, though the uORF

was not critical for NR1D1 rhythmicity per se [44]. Moreover, the loss-of-function of DENR, a485

protein involved in translation reinitiation after uORF usage [94], led to the robust shortening

of circadian period by 1-1.5 hours in NIH3t3 fibroblasts [44]. While it is unclear, which specific

reinitiation event(s) underlie(s) the phenotype, the recent genome-wide identification of DENR-

sensitive transcripts has identified Clock itself as one of the candidates [95]. The study uncovered a

complicated translational landscape within the Clock 5′ UTR. Two highly translated uORFs thus490

reduce CLOCK protein production almost by factor 2. The downstream uORF overlaps by several

codons (but in a different frame) with the annotated CLOCK CDS, and it is capable of triggering

reinitiation from a downstream AUG start codon, giving rise to a CLOCK variant that is 9 amino

acids shorter than the annotated CLOCK sequence predicts. In the absence of DENR, CLOCK

protein output is markedly reduced by ∼30%. While the in vivo implications of these regulatory495

events have not yet been studied, one may speculate that they allow for a regulated adjustment of

protein synthesis under particular physiological conditions. One hypothesis is based on the original

finding that DENR expression increases in cells at high density (hence its original name, Density

Regulated Protein [96]). One may thus hypothesise that some of the reported effects of cell density

on circadian rhythmicity [97, 98] operate through this mechanism (Figure 3).500
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Figure 3: Regulation of core clock protein biosynthesis and circadian function through uORFs. Ribosome

profiling allows the annotation of translated uORFs and determining how they affect the regulation of CDS translation

efficiency. Several core clock transcripts contain one or several uORFs. Changes in reinitiation efficiency (for example

due to the levels of reinitiation factors such as DENR) and/or tissue-specific uORF usage could regulate the levels of

core clock proteins and thus complex stoichiometry, altering clock parameters in a way that is dependent on organ,

physiological condition, or other cues. Moreover, since DENR expression increases in cells at high density, uORF

usage and reinitiation efficiency could represent a link between circadian rhythmicity and cell density.

9. Final considerations

For a long time, translation was considered a necessary, yet almost default and largely uninter-

esting step on the way from gene to protein. Through ribosome profiling we now have the possibility

to query specifically, directly and quantitatively the translational landscape of cells and organs. Our

understanding of the various contributions that regulated translation makes to rhythmic gene ex-505

pression has since exploded, yet we have clearly only begun to understand some of the interactions

between clocks and the translation apparatus. As a mechanism, translation lies at a privileged po-

sition right where the protein is made, the main actor of most cellular functions. Translation would

thus be optimally suited as a step where the gene expression programs that are ’hard-wired’ through

transcription can be rapidly integrated with other, acute information. The finding that a substantial510

fraction of rhythmic translation events is connected to time-of-feeding validates this idea.

Regulated translation impinges in other ways on the clock. One such example are uORFs, which

were for a long time considered a rather exotic gene regulatory phenomenon of not more than

anecdotal importance. We now know that thousands of transcripts, including many rhythmically

expressed ones, contain regulatory uORFs. Nevertheless, their functions and the mechanisms by515
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which they act are only starting to become visible. In the future, this understudied class of regulatory

elements may therefore lead to the discovery of some surprising biology.

Finally, there are other interactions between translation and clocks that are fascinating yet still

poorly explored in molecular terms. One example that this review did not cover, is the finding that

it matters to circadian clock proteins from which codons they are translated. This phenomenon has520

been described in cyanobacteria [99], Neurospora crassa [100] and more recently also in flies [101]).

In all cases, changing the codons within the CDS of clock components to different, synonymous

codons that would be predicted to improve translation, led to defects in clock function. It would

thus seem that on top of the conventional 3-letter codon table that specifies amino acids, there is

an additional, more complex code interpreted by the ribosome. Very likely, this code plays a role in525

the coordination of the speed of protein biosynthesis with the folding of the nascent polypeptides

[102].
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