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Abstract
Objective To simplify black-blood late gadolinium enhancement (BL-LGE) cardiac imaging in clinical practice using an 
image-based algorithm for automated inversion time (TI) selection.
Materials and methods The algorithm selects from BL-LGE TI scout images, the TI corresponding to the image with the 
highest number of sub-threshold pixels within a region of interest (ROI) encompassing the blood-pool and myocardium. 
The threshold value corresponds to the most recurrent pixel intensity of all scout images within the ROI. ROI dimensions 
were optimized in 40 patients’ scans. The algorithm was validated retrospectively (80 patients) versus two experts and tested 
prospectively (5 patients) on a 1.5 T clinical scanner.
Results Automated TI selection took ~ 40 ms per dataset (manual: ~ 17 s). Fleiss’ kappa coefficient for automated-manual, 
intra-observer and inter-observer agreements were �= 0.73, � = 0.70 and � = 0.63, respectively. The agreement between 
the algorithm and any expert was better than the agreement between the two experts or between two selections of one expert.
Discussion Thanks to its good performance and simplicity of implementation, the proposed algorithm is a good candidate 
for automated BL-LGE imaging in clinical practice.
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Introduction

Bright-Blood Late Gadolinium Enhancement (BR-LGE) 
cardiovascular magnetic resonance (CMR) imaging is the 
reference technique for the assessment of regional scar 
formation and myocardial fibrosis [1–3]. In BR-LGE imag-
ing, nulling of the viable myocardial signal using inversion 
recovery pulses enables scar visualization by providing a 
high contrast between healthy and injured myocardium 
after contrast injection. However, for myocardial scars 
adjacent to the blood chambers, the presence of high signal 
intensity from the blood pool often hinders their accurate 
visualization and delineation, particularly for subendocar-
dial scars [4]. To circumvent this problem, Black-Blood 
LGE (BL-LGE) imaging techniques have been proposed to 
null both healthy myocardium and blood pool signals and 
to provide high scar-to-blood and high scar-to-viable myo-
cardium contrast [4–8]. BL-LGE techniques are increas-
ingly being used in clinical practice thanks to their unique 
scar visualization capabilities [9, 10]. It has been recently 
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shown that BL-LGE imaging could ascertain or rule out 
a diagnosis otherwise inconclusive on BR-LGE imaging 
in a significant number of patients [11]. Optimal contrast, 
however, depends on the selection of optimal sequence 
timing parameters that need to be tailored patient-wise 
before the acquisition. This step is of utmost importance as 
it directly impacts the scar visualization and delineation.

In clinical routine, timing parameter selection is per-
formed by MR operators by selecting the optimal times 
from a series of 2D short-axis images acquired with dif-
ferent timing parameters. This manual process increases 
the complexity of the BL-LGE acquisition while adding 
to the workload of the MR operator. Moreover, like with 
any manual process, it can be prone to both inter- and 
intra-observer variability. Automation of timing parameter 
selection could therefore be beneficial to accelerate and 
standardize the LGE workflow, increase the exam repro-
ducibility, while reducing the MR operator workload. To 
the best of our knowledge, no algorithms have been pro-
posed for automated BL-LGE parameters selection.

Automation of contrast selection is a small, yet neces-
sary, incremental improvement toward a more accurate, 
effortless, and time efficient procedure for myocardial scar 
characterization. We propose an image-based algorithm 
for automated contrast selection in magnetization-prepared 
BL-LGE [11]. This BL-LGE sequence has the advantage 
of having only one parameter to scout: the Inversion Time 
(TI), which is the delay between the preparation pulse and 
the data acquisition. We purposefully develop an auto-
mated algorithm based on simple image-processing tech-
niques to facilitate its integration to MRI scanners and thus 
promote rapid clinical integration. The performance of the 
proposed algorithm was first assessed retrospectively in 
120 patients and its integration in clinical routine was then 
tested prospectively in 5 patients with known or suspected 
structural heart disease.

Materials and methods

Optimal TI selection was performed by detecting the scout 
image with the highest number of low-intensity pixels within 
a ROI located inside the heart and containing parts of the 
ventricular blood pool and myocardium. The algorithm was 
implemented in C+ + without external libraries to enable its 
seamless incorporation to any MRI scanner. A retrospective 
study was conducted in 120 patients and a prospective study 
was conducted in 5 patients. All patients underwent CMR 
for known or suspected structural heart disease. The study 
was approved by the Biomedical Research Ethics Com-
mittee and all participants provided informed consent for 
participation.

Data acquisition

Acquisitions were performed on a 1.5 T clinical scanner 
(MAGNETOM Aera, Siemens Healthcare, Erlangen, Ger-
many), using an 18-element body coil and a 32-element 
spine coil. A prototype electrocardiogram-triggered 2D 
single-shot, balanced steady-state free-precession BL-
LGE scout was performed prior to a fast free-breathing 
motion-compensated T1ρ-prepared BL-LGE sequence 
[11]. A schematic overview of the sequence is depicted in 
Figure Online Resource 1 and acquisition parameters are 
listed in Table 1. The BL-LGE sequence was performed 
at the end of the CMR exam, about 12–15 min after injec-
tion of 0.2 mmol/kg gadoteric acid. The TI scout sequence 
was run before BL-LGE imaging and consisted in 11 mid-
ventricular single-shot short-axis 2D images acquired dur-
ing free-breathing with TIs ranging from 60 to 160 ms 
with a 10 ms increment. The preparation duration (27 ms) 
was optimized beforehand with an extended phase graph 
simulation [11] so that the TI range provides at least one 
image of the scout with black blood and black healthy 
myocardium at about 12–15 min post injection.

Automated image‑based TI algorithm

For the sake of simplicity and explainability, the proposed 
algorithm purposefully mimics the manual selection pro-
cess which consists of selecting, from the series of scout 
images, the image with the highest scar-blood and scar-
viable myocardium contrast. In practice, this image has 
the lowest signal intensity within the ventricular blood 
pool and the healthy myocardium. To do so, the auto-
mated algorithm operates on the TI scout images in two 
distinct steps. Step 1: Extraction of a region of interest 
(ROI), containing relevant information about the ven-
tricular blood pool and myocardium. Step 2: Selection of 
the image with the highest number of low intensity pixels 
within this ROI. The corresponding TI is then used for the 
subsequent whole-heart BL-LGE acquisition. The overall 
process is depicted in Fig. 1 while the different steps are 
detailed below.

Step 1: ROI extraction

Accurate localization of the myocardium and ventricular 
blood pools would lead to optimal ROI selection. How-
ever, because our T1-rho pulse has been thoroughly opti-
mized using extended phase graph simulation to cancel out 
blood and healthy myocardium signals at the same TI, the 
optimization can be performed equally well on a unique 
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ROI rather than on two individual ones. Therefore, this 
problem can be greatly simplified by selecting a coarse 
ROI that includes pixels from the blood pools only or from 
both the blood pools and the myocardium.

ROI extraction is performed in two steps: (A) Coarse 
detection of the heart within the image and (B) Selection 
of a ROI within the heart. Acquisition of 2D CMR scout 
images requires the positioning of a rectangular shim box 
centered on the heart. This information can be exploited 
to easily obtain the coarse detection of the heart within the 
image (Online Resource 2).

Optimization of the shape and dimension of the ROI 
within the heart is detailed in the offline retrospective study 
section.

Step 2: optimal TI selection

The selection is performed by detecting the image with the 
highest number of low-intensity pixels within the extracted 
ROI. To do so, for each scout image, intensity histograms 
of bin size 1 are calculated on the pixels within the ROI. 
Histogram peaks are detected and the intensity value corre-
sponding to the global maximum over all images is selected 
as a common threshold value 

(

Sthr
)

 . The global maximum 
can be used as threshold because well-attenuated signals 
exhibit a narrower range of pixel intensities compared to less 
well-attenuated signals. The image with the highest number 
of pixels under this threshold is defined as the image with 
the best signal nulling and its associated TI is selected as 

Table 1  Acquisition parameters and patient demographics for the offline retrospective and inline prospective automated BL-LGE studies

bSSFP balanced steady-state free-precession, RR time between two R waves, GRAPPA generalized autocalibrating partially parallel acquisitions

Acquisition parameters

Sequence TI scout BL-LGE

Acquisition 2D T1ρ-prepared 2D T1ρ-prepared bSSFP
Magnetic field (Tesla) 1.5 1.5
Coverage Mid-ventricular Whole-heart
Repetition time (ms) 2.9 2.9
Echo time (ms) 1.2 1.2
Flip angle (degree) 60 60
Field of view (mm) 380 × 315 380 × 315
Acquired resolution (mm) 2.0 × 1.5 × 6.0 2.0 × 1.5 × 6.0
Reconstructed resolution (mm) 1.5 × 1.5 × 6.0 1.5 × 1.5 × 6.0
Number of slices (median [Q1–Q3]) 1 14 [14–16]
Phase oversampling (%) 0 0
Slice oversampling No No
Asymmetric echo Yes Yes
Acquisition window (ms) 160 160
T1ρ duration (ms) 27 27
T1ρ frequency (Hz) 500 500
Scan acceleration GRAPPA × 2 GRAPPA × 2
Trigger pulse (RR interval) 2 2
Bandwidth (Hz/pixels) 849 849
Free-breathing Yes Yes
Motion compensation No Yes
Inversion time range (ms) 60–160 n/a
Inversion time increment (ms) 10 n/a
Images per scout 11 n/a

Patients’ characteristics

Offline study Inline study

Number of patients 120 5
Gender (F/M) 15/85 2/3
Age [range] (years) [17–83] [39–74]
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optimal TI. The overall process is mathematically expressed 
in Eq. 1 where N corresponds to the number of TI scout 
images, hn(i) is the number of occurrences of gray level i 
of a given image n, max PI is the maximum pixel intensity, 
g(n) is the number of sub-threshold pixels of a given image 
n, and α is the index of the image with the highest histo-
gram’s peak:

Offline retrospective study

The proposed algorithm was first implemented offline 
and tested on TI scouts retrospectively collected on 120 

(1)TIauto = argmax
n=1,…,N

g(n)

(2)g(n) =

max PI
∑

i=0

(

hn(i) < Sthr
)

(3)Sthr = argmax
i=0,…,max PI

(

h
�
(i)
)

(4)� = argmax
n=1,…,N

(

max
i=0,…,max PI

hn(i)

)

patients (Table 1). It was compared with manual anno-
tations performed by an experienced and a junior CMR 
operator (13 and 3 years’ experience in CMR). 40 scout 
datasets were used for parameters optimization and 80 
for validation. Manual annotations were performed on a 
dedicated Graphical User Interface providing the same 
functionalities (scrolling, zooming, contrast and magnifi-
cation adjustments) as the PACS system. The shim boxes 
were positioned manually by the MR operators. To ensure 
a reproducible positioning across different patients and 
exams, the simple guideline of placing the shim box out-
lines in direct contact with the border of the myocardium 
was given. Annotations were performed twice by each 
expert, with one week delay interval, to assess inter- and 
intra-observer variability.

Optimization

The shape and dimensions of the ROI were optimized 
offline on 40 patients. Rectangular and circular shapes 
were considered with 31 dimensions ranging from the size 
of the shim box ( FOVshim

1
) to one-fourth of its size ( FOVshim

4
) 

with a decrement factor of 0.1. The best parameters were 
used for the subsequent validation study.

Fig. 1  Automated TI selection process through one patient’s exam-
ple. (1) ROI extraction: First row: coarse detection of the heart on 
the original scout images using the 2D shim box information (green 
rectangle). Second row: extraction of a Region of Interest (ROI) con-
taining information from the myocardium and the blood pool (blue 
rectangle). (2) Pixel Intensity based selection: one dimensional his-

tograms are computed for the pixels within the ROI. Maximums of 
the histograms are detected (orange circles) and the intensity value 
(dashed orange line) corresponding to the global maximum over all 
images (red arrow) is selected for thresholding. Sub-threshold pixels 
are displayed in red and the TI corresponding to the image with the 
highest number of sub-threshold pixels is selected (blue circle)
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Validation

Inter-observer, intra-observer and automated-manual agree-
ments in optimal TI selection were assessed on 80 patients 
using Fleiss’ kappa coefficient. Because kappa analysis only 
provides a measure of complete agreement and does not con-
sider the extent of differences, partial agreements were also 
investigated by computing the mean absolute differences and 
the percentage of matched optimal TIs between selections. 
Acquisitions with differences higher than one image (TI 
difference > 10 ms) were visually inspected for qualitative 
assessment. The time for manual TI selection was recorded 
for one expert.

Inline prospective study

The automated BL-LGE sequence was integrated on a 1.5 T 
clinical scanner (Siemens MAGNETOM Aera, Erlangen, 
Germany) and was tested prospectively on 5 patients with 
known or suspected structural heart disease (Table 1). The 
updated sequence incorporates a specialized function for 
automated TI selection, positioned immediately after the 
TI scout and prior to the BL-LGE acquisition. This auto-
mated TI function takes in the TI scout images as input, con-
ducts the necessary calculations across all images, and then 
outputs the optimal TI value. The optimal TI is displayed 
alongside its corresponding scout images on the Siemens’s 
interface, and subsequently utilized for the entirety of the 
whole-heart BL-LGE acquisition process. Inline algorithm 
processing time was recorded. A head-to-head comparison 
between BL-LGE acquisition with manual and automated 
TI selection was not conducted due to the need for a double 
administration of the contrast agent with a sufficient delay to 
ensure complete washout of the initial injection.

Results

Offline retrospective study

Optimization

Figure Online Resource 3 shows the ROI parameters’ opti-
mization on 40 patients. Rectangular ROI of size FOVshim

2.5
 and 

circular ROI of size FOVshim

2.2
 led to the same minimum abso-

lute mean TI difference with manual expert (2.25 ± 4.18 ms). 
The variation in algorithm performance was less than 1.2 ms 
when using ROI around these minimums, with sizes ranging 
between  FOVshim/1.5 and  FOVshim/3.0. The algorithm, with 
a rectangular ROI of size FOVshim

2.5
 , selected the same TI than 

the expert in 31 out of 40 scouts (77.5%), and TI at plus or 
minus 10 ms (1 image) in 9 scouts (22.5%). 10 ms was the 
largest difference observed between the automated algorithm 

and the expert. Rectangular ROIs of size FOVshim

2.5
 were used 

for validation.

Validation

Table 2 and Table Online Resource 4 summarize the agree-
ment in optimal TI selection, between the observers and the 
algorithm. Manual TI selection took 17.5 s ± 8.5 s. The over-
all inter-observer Fleiss’ kappa agreement ( � = 0.63) and the 
two experts intra-observer Fleiss’ kappa agreement (κ = 0.70 
and 0.71) were good. The overall automated-manual Fleiss’ 
kappa agreement ( � = 0.73) was also good and similar when 
compared to the two experts (algorithm-expert 1, � = 0.74 
and algorithm-expert 2, � = 0.73). The mean absolute dif-
ference in TI selection for inter-observer, intra-observer 
and automated-manual variability were 3.44 ± 4.94 ms, 
2.69 ± 4.43 ms and 2.47 ± 4.38 ms, respectively (Fig. 2B 
Left). The difference between the proposed automated algo-
rithm and any expert was therefore lower than the difference 
between the two experts or between one expert performing 
the selection twice. The same TI was selected in 75.62% 
of the scouts when comparing the automated algorithm to 
an expert, in 73.13% of the scout between two selections 
of the same expert and in 66.56% of the case between the 
two experts (Fig. 2B Right). A good agreement was found 
between all the selections of optimal TIs, with the highest 
TI difference at ± 20 ms (two images) observed only for two 
scouts (Figure Online Resource 5). For the first case, no sin-
gle TI cancelled the signal from the healthy myocardium and 
blood pool while for the second case, intensity differences 
between the images acquired with TIs of 80, 90 and 100 ms 
were subtle, making human consensus difficult. BL-LGE 

Table 2  Fleiss kappa coefficient for optimal TI selection agreement

The agreements between all selection were good with the highest 
overall agreement obtained between the automated algorithm and 
the experts ( � = 0.73), followed by the overall intra-expert* agree-
ment ( � = 0.705) and finally by the overall inter-expert† agreement 
( � = 0.63). κ Strength: 0.0 ≤  κ  ≤ 0.2 Poor; 0.2 <  κ  ≤ 0.4 Fair; 0.4 <  
κ  ≤ 0.6 Moderate; 0.6 <  κ  ≤ 0.8 Good; 0.8 <  κ  ≤ 1.0 Excellent
*Intra-expert; †Inter-expert

Expert 1 Expert 2

Selection 1 Selection 2 Selection 1 Selection 2

Automated 
algorithm

0.68 0.79 0.78 0.67

Expert 1
 Selection 1 1 0.70* 0.62† 0.59†

 Selection 2 – 1 0.70† 0.63†

Expert 2
 Selection 1 – – 1 0.71*
 Selection 2 – – – 1
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images reconstructed with TIs corresponding to the optimal 
TI selected by the algorithm provided good scar visualiza-
tions (Fig. 3, top row). 

Inline prospective study

The algorithm took on average 40 ms on a clinical scanner 
to select the optimal TI from 11 images. It was 450 times 
faster than the manual selection process used in the previous 
retrospective study. The selected optimal TIs were ideal for 
the 5 patients and led to high quality automated BL-LGE 
acquisitions. The automated BL-LGE revealed the absence 
of scars in 3 patients and its presence in 2. Examples of sin-
gle slice images extracted from inline automated BL-LGE 
for 3 patients are visible in Fig. 3 (bottom row). A large myo-
cardial infarction was observed in a 75 yo female and a focal 
sub-epicardial scar was detected in a 39 yo male patient.

Discussion

Optimal parameter selection is a critical step in BL-LGE 
imaging because it determines the contrast between fibrotic 
tissue, healthy myocardium, and blood-pool, which impacts 
the detection and delineation of scars and ultimately affects 

the diagnostic and prognostic value of the exam. TI selection 
automation would accelerate and standardize the LGE work-
flow, increase the exam’s reproducibility, and reduce the MR 
operator workload and dependency. Automation should be 
accurate, fast, straightforward, and explainable to facilitate 
usage confidence and clinical acceptance.

Because simple image processing tools cannot be 
exploited to automatically find the TI of BR-LGE sequences, 
more advanced AI-based techniques have been proposed [12, 
13]. Bahrami et al. [12] proposed the use of a deep learning 
network using spatial and temporal imaging characteristics 
of TI scout images by providing series of four adjacent scout 
images as input to their network. Yoo et al. [13] proposed the 
use of a localization network followed by a style-transfer net-
work to obtain aligned BR-LGE scout images with a CINE-
like contrast, followed by a convolutional neural network 
for blood-pool and myocardium segmentation. They ulti-
mately performed automated TI selection by computing the 
mean signal intensities within the segmented region. While 
being fast and providing accurate results, the main drawback 
restricting the immediate and widespread adoption of deep-
learning techniques into clinical routine remains their inline 
implementation. Existing solutions, such as incorporation of 
trained models into open-source image processing frame-
works like Gadgetron [14], can be implemented. However, 

Fig. 2  Validation of the algorithm against inter- and intra-observer 
variability on 80 scouts using a rectangular ROI of size FOVshim

2.5
 . A 

Examples of inter-observer; intra-observer and auto-manual variabili-

ties. B Left: mean absolute differences in TI selection. Right: percent-
age of matched scouts
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their installation is not straightforward and remains mainly 
used for research purposes at dedicated sites. To our knowl-
edge, our algorithm was the first developed that enabled 
automated BL-LGE in clinical practice. The main findings 
of the study are listed below as follows:

1. Automated TI selection in BL-LGE can be quickly and 
accurately performed using a simple image-processing 
algorithm.

2. The proposed algorithm provides a highly reproducible 
TI selection with a variability with respect to manual 
selection lower than the inter- and intra-observer vari-
ability measured from two experts.

3. Automated TI selection can be easily implemented inline 
and used prior to a BL-LGE sequence to enable auto-
mated BL-LGE in clinical practice.

Summary of the experiments and interpretation 
of the results

The automated TI algorithm has been tested on 120 retro-
spectively collected TI scouts consisting of 11 images each 
with TIs ranging from 60 to 160 ms in 10 ms increments. 
This number of images was a good tradeoff between acquisi-
tion speed (< 20 s) and the assurance of finding the optimal 
TI. However, the proposed algorithm can be used with any 
range and number of TIs. The optimal ROI size was derived 
from 40 patient scans. Rectangular ROI of size FOVshim

2.5
 and 

circular ROI of size FOVshim

2.2
 led to the same minimum absolute 

mean TI difference with manual expert. Only small differ-
ences were observed between rectangular and circular ROIs 
with dimension close to this optimum meaning that the algo-
rithm can be robust to some variations in shim positioning 
around the provided guidelines. The main condition being 
that the ROI was entirely contained within the heart and 
encompassing both the myocardium and the blood-pool. On 

Fig. 3  Examples of black-blood LGE images for seven different 
patients. Top row: four patients from the retrospective study acquired 
with TIs corresponding to the TIs selected by the proposed auto-
mated algorithm. Bottom row: three patients of the prospective study 

acquired in line with the automated BL-LGE containing the auto-
mated TI selection algorithm. Bright-blood LGE (BR-LGE) images 
are shown for comparison. Yellow arrows indicate areas with LGE
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the 80 patients’ validation set, Fleiss kappa analysis revealed 
a good agreement between all TI selection methods. The 
automated-manual agreement was slightly higher than the 
intra-observer agreement and higher than the inter-observer 
agreement. The mean absolute difference and the percentage 
of matched optimal TIs confirmed this finding. The lowest 
mean absolute difference, respectively the highest percent-
age of matched TIs, was observed between the automated 
and manual selection, followed by the intra-observer and 
finally by the inter-observer selections. Moreover, under 
the exact same conditions, the automated algorithm, unlike 
manual selection, would enable perfect reproducibility in 
TI selection.

Technical consideration, limitations, and future 
directions

During TI selection, two main problems can arise that 
require an additional acquisition. (1) The selection of a 
sub-optimal TI range, with a minimum TI too high or a 
maximum TI too low for optimal nulling of both healthy 
myocardium and blood-pools signals that can occur for 
an acquisition timing outside the expected time frame of 
12–15 min post-gadolinium injection. (2) The presence of 
artifacts that could affect the TI selection process. Examples 
of TI scouts presenting these issues are visible in Figure 
Online Resource 6. Quality feedback is therefore needed to 
decide whether the whole-heart BL-LGE sequence can be 
performed with the selected TI or if a new scout acquisition 
is required. The problem of sub-optimal TI range can be eas-
ily addressed as it corresponds to the cases where either the 
first or the last image of the TI scout is selected. Acquiring 
new images using, respectively smaller or larger TIs until the 
selected TI is no longer the smallest or the largest value of 
the chosen range would address this issue. Examples of such 
cases and detection by the automated algorithm are visible 
in Figure Online Resource 7. The presence of artifacts in the 
ROI will result in a high number of hyperintense pixels and 
conversely in a smaller proportion of low intensity pixels. 
Artifact detection could be implemented by comparing the 
percentage of sub-thresholds pixels within the ROI of the 
selected image with the median percentage of sub-threshold 
values computed from a validation set. This quality control 
and re-acquisition remain to be implemented inline to enable 
robust automated BL-LGE.

The BL-LGE sequence employed in this study makes use 
of a T1ρ preparation module to generate a black-blood con-
trast, as recently validated by Sridi et al. [11] and Muscogi-
uri et al. [7]. The proposed TI selection technique could also 
be tested on different BL-LGE sequences such as T2-pre-
pared [5] or magnetization transfer-prepared [8] sequences.

Finally, while providing good results, the robustness of 
the technique and especially the sensitivity of the method 

to deviation in shim positioning also need to be further 
quantified.

Conclusion

We present a new algorithm for a reproducible and time effi-
cient myocardial scar characterization using automated BL-
LGE. Automated TI selection demonstrated to be fast and 
accurate with a performance slightly better than the manual 
variability observed between two experts. The algorithm’s 
simplicity enabled a straightforward on-site implementation 
while it’s explainability foster usage confidence and clini-
cal acceptance. Moreover, the straightforward, yet efficient, 
design of the proposed automated algorithm provides several 
opportunities for other BL-LGE techniques. Inline testing in 
larger group of patients is now warranted.
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