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RESUME 

La rigidité anormalement haute des artères à grande conductance est un marqueur de 
l'augmentation du risque cardiovasculaire et est typiquement retrouvée chez les patients 
diabétiques ou hypertendus. Ces vaisseaux deviennent plus rigides avec l'âge, expliquant 
la haute prévalence d'hypertension systolique chez les personnes âgées. Cette 
rigidification agit sur la pression sanguine de plusieurs façons. Notamment la fonction 
windkessel est gênée, menant à l'augmentation de la pression systolique et de la pression 
pulsée, la diminution de la pression diastolique, et ainsi à l'augmentation de la postcharge 
ventriculaire gauche associée à une probable diminution de la perfusion coronarienne. De 
plus, la propagation des ondes de pression le long de l'arbre vasculaire est accélérée, de 
sorte que les ondes réfléchies générées au site de décalage d'impédance atteignent 
l'aorte ascendante plus tôt par rapport au début de l'éjection ventriculaire, aboutissant à 
une augmentation de la pression systolique centrale, ce qui n'arriverait pas en présence 
de vaisseaux moins rigides. Dans ce cas, au contraire, les ondes de pression 
antérogrades et réfléchies voyages plus lentement, de sorte que les ondes de réflexion 
tendent à atteindre l'aorte centrale une fois l'éjection terminée, augmentant la pression 
diastolique et contribuant à la perfusion coronarienne. 

La tonométrie d'applanation est une méthode non invasive permettant l'évaluation de la 
forme de l'onde de pression au niveau l'aorte ascendante, basée sur l'enregistrement du 
pouls périphérique, au niveau radial dans notre étude. Nous pouvons dériver à partir de 
cette méthode un index d'augmentation systolique (sAIX) qui révèle quel pourcentage de 
la pression centrale est du aux ondes réfléchies. Plusieurs études ont montré que cet 
index est corrélé à d'autres mesures de la rigidité artérielle comme la vitesse de l'onde de 
pouls, qu'il augmente avec l'âge et avec les facteurs de risques cardiovasculaires, et qu'il 
est capable de préciser le pronostic cardiovasculaire. En revanche, peu d'attention a été 
portée à l'augmentation de la pression centrale diastolique due aux ondes réfléchies 
(dAIX). Nous proposons donc de mesurer cet index par un procédé d'analyse développé 
dans notre laboratoire, et ce dans la même unité que l'index systolique. Etant donné que 
les modifications de la paroi artérielle modulent d'une part la vitesse de l'onde de pouls 
(PWV) et d'autre part le temps de voyage aller-retour des ondes de pression réfléchies 
aux sites de réflexion, toute augmentation de la quantité d'énergie réfléchie atteignant 
l'aorte pendant la systole devrait être associée à une diminution de l'énergie arrivant au 
même point pendant la diastole. Notre étude propose de mesurer ces deux index, ainsi 
que d'étudier la relation de l'index d'augmentation diastolique (dAIX) avec la vitesse de 
propagation de l'onde de pouls (PWV) et avec le rythme cardiaque (HR), ce dernier étant 
connu pour influencer l'index d'augmentation systolique (sAIX) . L'influence de la position 
couchée et assise est aussi étudiée. Les mesures de la PWV et des sAIX et dAIX est 
réalisée chez 48 hommes et 45 femmes âgées de 18 à 70 ans, classés en 3 groupes 
d'âges. 

Les résultats montrent qu'en fonction de l'âge, le genre et la position du corps, il y a une 
relation inverse entre sAIX et dAIX. Lorsque PWV et HR sont ajoutés comme covariables 
à un modèle de prédiction comprenant l'âge, le genre et la position du corps comme 
facteurs principaux, sAIX est directement lié à PWV (p<0.0001) et inversement lié à HR 
(p<0.0001). Avec la même analyse, dAIX est inversement lié à PWV (p<0.0001) et 
indépendant du rythme cardiaque (p=0.52). 

En conclusion, l'index d'augmentation diastolique est lié à la rigidité vasculaire au même 
degré que l'index d'augmentation systolique, alors qu'il est affranchi de l'effet confondant 
du rythme cardiaque. La quantification de l'augmentation de la pression aortique 
diastolique due aux ondes réfléchies pourrait être une partie utile de l'analyse de l'onde de 
pouls. 
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Pulse wave analysis of aortic pressure: diastole should 
also be considered 

Abigael Heima, Lucas Liaudetb, Bernard Waebera, and François Feihla 

Background: The systolic augmentation index (sAix), 
calculated from the central aortic pulse wave 
(reconstructed from the noninvasive recording of the radial 
pulse with applanation tonometry), is widely used as a 
simple index of central arterial stiffness, but has the 
disadvantage of also being influenced by the timing of the 
reflected with respect to the forward pressure wave, as 
shown by its inverse dependence on heart rate (HR). 
During diastole, the central aortic pulse also contains 
reflected waves, but their relationship to arterial stiffness 
and HR has not been studied. 

Methods: ln 48 men and 45 women, ail healthy, with 
ages ranging from 19 to 70 years, we measured pulse 
wave velocity (PWV, patients supine), a standard evaluator 
of arterial stiffness, and carried out radial applanation 
tonometry (patients sitting and supine). The impact of 
reflected waves on the diastolic part of the aortic pressure 
waveform was quantified in the form of a diastolic 
augmentation index (dAix). 

Results: Across ages, sexes, and body position, there was 
an inverse relationship between the sAix and the dAix. 
When PWV and HR were added as covariates to a 
prediction mode! including age, sex and body position as 
main factors, the sAix was directly related to PWV 
(P<0.0001) and inversely to HR (P<0.0001). With the 
same analysis, the dAix was inversely related to PWV 
(P < 0.0001) and independent of HR (P= 0.52). 

Conclusion: The dAix has the same degree of linkage to 
arterial stiffness as the more conventional sAix, while being 
immune to the confounding effect of HR. The 
quantification of diastolic aortic pressure augmentation by 
reflected waves could be a useful adjunct to pulse wave 
analysis. 

Keywords: adult, aging, aorta, blood pressure, diastole, 
sex, pulse 

Abbreviations: dAix, diastolic augmentation index; dMTI, 
mean transit time of diastolic reflection wave; dî1 r, onset 
time of diastolic reflected wave; ED, ejection time; PWA, 
pulse wave analysis; PWW, pulse wave velocity; sAix, 
systolic augmentation index; sAix@75, sAix corrected for 
the influence of heart rate; sT1 r, onset time of systolic 
reflected wave 

INTRODUCTION 

A 
n abnormally high stiffness of large conductance 
arteries is a marker of increasecl carcliovascular 
risk and is typically faune! in patients with cliabetes 

or hypertension. These vessels also become stiffer with 
aclvancing age [1,2], explaining the high prevalence of 
systolic hypertension in the elclerly. The stiffening of large 
conductance arteries acts on bloocl pressure (BP) in several 
ways (reviewecl in [3]). The winclkessel fonction is ham
perecl, leacling to elevation of systolic and pulse pressure, 
lowering of cliastolic pressure, and thus increasecl left 
ventricular afterloacl possibly associatecl with reclucecl 
coronary perfusion pressure. In addition, the propagation 
of pressure waves along the arterial tree is acceleratecl, 
so that the reflections generatecl at sites of impeclance 
mismatch reach the ascencling aorta sooner relative to 
the onset of ventricular ejection, resulting in a greater 
augmentation of central (aortic) systolic pressure, than 
woulcl occur with more compliant vessels. In this latter 
case by contrast, forwarcl and reflectecl pressure waves 
travel more slowly, so that reflections tend to reach the 
central aorta after ejection termination, thereby augmenting 
aortic cliastolic pressure and thus contributing to coronary 
perfusion pressure. 

Applanation tonometry is an easily applicable non
invasive methocl for the assessment of the pressure wave
form in the ascending aorta [4,5], basecl on the recorcling of 
the peripheral pulse by means of a piezoelectric high
ficlelity pressure sensor appliecl on the skin overlaying a 
peripheral vesse!, usually the radial artery. From the raw 
radial pulse, a well validatecl algorithm [6,7] estimates the 
detailed shape of the pressure wave within the ascencling 
aorta, allowing to recognize if, and in which phase of the 
cardiac cycle (systole, diastole or both) aortic pressure is 
augmentecl by reflected waves. With this method, it is 
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possible to derive a systolic augmentation index (sAix), 
which expresses the percentage of central pulse pressure 
caused by reflections. A string of studies have shown that 
the sAix correlates with other measures of arterial stiffness 
such as pulse wave velocity (PWV) [8], increases as does the 
latter with age [9] and with cardiovascular risk factors, and 
bas an ability to predict cardiovascular outcome [10]. In 
contrast with this abundance of data centered on systolic 
events, the augmentation of diastolic central pressure by 
reflected waves has received ve1y little attention. 

We have recently developed an analysis of the diastolic 
part of central aortic pressure, as reconstructed from the 
radial pulse recorded with applanation tonometry [11-13]. 
In this analysis, the contribution of reflected waves to 
central diastolic pressure is quantified by a diastolic aug
mentation index (dAix), computed based on the deviation 
of the diastolic pressure profile from the monexponential 
decay that would be expected in absence of reflections. The 
dAix is expressed in the same units used for the sAix (i.e. 
percentage of central pulse pressure). We reasoned that, 
because changes in arterial stiffness modulate PWV and 
thus the travel times of pressure waves to the reflection sites 
and back to the central aorta, any increase in the amount of 
reflectecl energy reaching the aorta in systole should be 
associated with less reflected energy arriving at the same 
point in diastole. On the basis of this consideration, and if 
the sAix and c!Aix are true quantification of reflection 
phenomena, one would expect an inverse relationship 
between both indices. 

The purpose of the present study was to verify this 
prediction in a sample of healthy contrais of bath sexes, 
with a wide range of ages. Specifically, because the sAix is 
known to increase with age and to be larger in women than 
in men of the same age [9,14], we tested whetherdifferences 
in the opposite direction woulcl be observed for the dAix. In 
aclclition, the effects on bath indices of a change in body 
position was also examined, because the sAix has been 
shown to be larger when evaluatecl with the patient sitting 
rather than lying supine [14]. A further incentive for the 
present experimental design consisted in recent results 
from our laboratory, which showecl major effects of body 
position on the dAix in young women [13], prompting us to 
evaluate whether this specific finding could be extended to 
men and too other age groups. 

METHODS 

Participants 
Healthy men and women were enrolled by public adver
tisement. The recruitment was stratified by age (young: 18-
39 years, midclle-aged: 40-55 years, agecl: 56-70 years) and 
sex, thus defining six experimental groups. Exclusion 
criteria were current smoking, any history of chronic or 
cardiovascular disease, office BP more than 140/90 mmHg, 
BMI more than 30 kg/m2

, regular intake of any drug, and 
intake of any clrug in the week preceding the examination. 

The study was approvecl by the local Ethics Committee. 
Ali inclucled participants had signecl a consent form after 
receiving detailed explanations. 

The stucly size was chosen so as to obtain 80% power to 
cletect a two-folcl clifference in mean dAix between any pair 

Pulse wave analysis and diastole 

of experimental groups, keeping the overall rate of type I 
errors below 5%. Information on interindividual variance of 
the dAix was available from previous studies by our group 
[11,15], leading to a planned inclusion of 16 patients 
per group. 

Measurement of blood pressure 
BP was measurecl with an oscillometric device (Stabil-0-
graph; IEM Gmbh, Stolberg, Germany), in compliance 
with the recommendations of the European Society of 
Hypertension [16]. In each of the stuclied positions (seated 
and supine), three cleterminations were made, and the 
average of the last two was recorcled. 

Pulse wave analysis 
Pulse wave analysis (PWA) was performed in both 
the supine and seated position, using applanation 
tonometty of the radial artery carriecl out with the 
SphygmoCor device (AtCor Medical; Sydney, Australia), 
as previously described [11-13,15]. In short, the central 
element in this system is a pen-shaped piezoelectric 
pressure transducer, with which the radial arte1y is flattened 
against the radial bone, thus allowing recorcling the radial 
pulse. Pulse waves obtained cluring 10 s are then processed 
in order to reconstruct a central waveform using a 
Generalized Transfer Function, as abundantly described 
elsewhere [4,7]. 

The SphygmoCor software, provided by the manu
facturer, implements a range of criteria to determine 
whether the quality of the recorded waveform is sufficient 
for subsequent analysis. These criteria inclucle a mean 
pulsatile amplitude of the raw tonometric signal higher 
than 80 mV and a beat-to-beat variability of pulse pressure 
and cliastolic pressure lower than 5% of average pulse 
pressure. We rejectecl any recording, which clic! not fulfill 
these criteria. Ali recordings were carried out in triplicate. 

Pulse wave velocity 
Carotid-femoral PWV was evaluated in the supine position 
using simultaneous noninvasive recorclings of the carotid 
and femoral pulse with the Complior clevice and version 
1.3.0 of the Complior SP software (Alam Medical, 94300 
Vincennes, France) [17]. Ali recordings were carriecl out in 
triplicate. The carotid to femoral distance was obtained with 
a compass, so as to a voici any influence body surface shape 
on the measurement. 

Proto col 
The study took place in the morning, in the fasting state, 
in a quiet room. The patients were weighecl, their height 
measured, and they were run through a short questionnaire 
to evaluate whether or not they had regular physical activity 
(18]. After that, examinations were sequentially carried out 
in the seated and in the supine position, in rando
mizecl orcler. In each position, 15 min were allowecl for 
stabilization. Then, brachial BP was measured, after which 
PWA was carried out. As carotid-femoral PWV is technically 
clifficult to obtain in seated patients, this measurement was 
restricted to the supine position, where it took place in 
randomized order with respect to PW A. 
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Data analysis 
To obtain a graphical overview of the influence of experi
mental conditions, the central arterial pulse waveforms 
were ensemble-averaged across patients and expressed 
in percentage of the corresponding pulse pressure, as 
previously described [11-13,15]. 

From the radial pressure waveform, the Sphygmocor 
software estimates ejection duration as the time from 
the foot of the pressure wave to the incisura. On the 
reconstructed central pressure waveforms, it then positions 
the systolic points Pl and P2 (Fig. 1). Pl is the inflection 
point marking the onset of the reflected systolic wave, the 
peak of which is indicated by P2, as shown in Figure 1. 
The time lag sTlr from the initial systolic upstroke to point 
Pl gives an estimate of twice the travel time of the systolic 
reflected wave. The relative importance of the forward and 
reflected pressure waves is expressed as a sAix according to 
the formula: 

. 100 X (P2 - Pl) 
sAix = ------

pulse pressure 

The sAix may be positive or negative, with a positive 
value indicating augmentation of peak systolic pressure 
by reflections. Because the sAix is dependent on HR, the 
software also corrects for this influence by estimating the 
value that would be observed with a beating frequency of 
75 per min (sAix@75). 

We complemented the above calculations by computing 
the amplitude of diastolic reflection waves (dAix), as pre
viously described [11-13,15]. Briefly, the dAix corresponds 
to the maximal distance between the upward convexity 

+------1> 

sT1r 

P2 

dT1r dTf 

FIGURE 1 Landmarks used to characterize systolic and diastolic reflected waves on 
the central pressure pulse. P1 pressure at onset of reflected wave in systole. sT1 r 
time elapsed from begin of systolic upstroke to P1. P2 peak of reflected wave in 
systole. dî1 r time to onset of reflected wave in diastole. P3 pressure at peak of 
reflected wave in diastole. dî1 f time at end of reflected wave in diastole. dî1 r 
and dîf defined by the contact points of a straight line tangent to the diastolic 
part of the waveform as shown. Pao(t) and Ptg(t) are two functions of time 
describing the actual pressure waveform and the aforementioned tangent, 
respectively. P4 approximates the pressure that would exist at the time of P3 in 
absence of reflection. Indices of wave reflection are calculated according to the 
formulas shown in the METHODS, where PP is pulse pressure. Mean transit time 
of diastolic reflected wave (dMTI) calculated as dMTI = 1::,t[Pao(t) - Ptg(t)]dt. 

seen on the diastolic part of the aortic or radial pressure 
waveform and a straight line passing through the onset of 
the incisura and tangent to the last diastolic part of the 
waveform (i.e. the vertical distance between points P3 and 
P4 on Figure 1). This distance is interpreted as an approxi
mate deviation from the monoexponential decay that 
would be expected if there were no reflected waves in 
diastole. As in the case of the sAix, the dAix is expressed in 
percentage of aortic pulse pressure, that is 

d 
. 100 X (P3 - P4) 

Aix = ----'----'
pulse pressure 

Finally, information regarding the timing of the diastolic 
reflected wave was capturecl by computing its mean transit 
time (dMTT), according to the formula shown in the legend 
to Figure 1, using the trapezoidal rule to carry out numerical 
integration. 

Statistical analysis 
As subjectecl to statistical analysis, indices derivecl from 
PW A were mean values calculated from recordings made 
in triplicate. We used analysis of variance for repeated 
measures, with a mode! including age group and sex as 
nonrepeated fixed factors, body position as a repeated 
fixed factor, and patient as a random factor nestecl under 
age group and sex. In the first step, al! two-way and three
way interactions between the fixed factors were inclucled. 
Only significant interactions were retainecl in the final 
mode!. Relationships of each PWA index with HR and 
PWV was evaluatecl by simultaneously adding bath vari
ables as covariates to the final mode!. When omnibus F-tests 
were significant, further pairwise comparisons were macle 
using Tukey's honestly significant difference (HSD, also 
designated as Tukey-a test), a conservative approach [19]. 
The alpha level of al! tests was set at 0.05, except for 
interaction terms (in their case, F-tests yielding a P value 
less than 0.1 were deemed to justify separate tests of each 
involvecl factor at each level of the other factor, such tests 
being then carried out with HSD and alpha= 0.05). Group 
summary statistics are means and SD. 

RESULTS 

Overall, 93 patients were recruited. Their demographic and 
hemodynamic characteristics are shown in Tables 1 and 2. 
To avoid cluttering with statistical symbols, the results 
of statistical analyses relevant to the data in Table 1 are 
displayed separately in Table 2. Within each age class, 
groups of women and men were well balanced for age, 
and only minor imbalances were noted between sexes, if at 
al!, regarding body size, heart rate (HR) and BP. However, 
there was an uneven distribution of sedentary versus 
physically active patients between experimental groups. 
The impact of changing body position from seated to 
supine was to lower HR by approximately 10% and BP 
(whether peripheral or central) by a few mmHg. 

PWV, which could only be measured in the supine 
position, was systematically higher in men than in women. 
The difference between age groups did not reach statistical 
significance (omnibus F: P= 0.07). However, with a mode! 
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Number of patients 
Age (years) 
Weight (kg) 
Height (cm) 
BMI (kg/m2) 

Number sedentary (%) 
Heart rate (b/min) 

Peripheral BP (mmHg) 
Systolic 

Diastolic 

Mean 

Central BP (mmHg) 
Systolic 

Diastolic 

Mean 

Pulse wave velocity (mis) 

seated 
supine 

seated 
supine 
seated 
su pi ne 
seated 
supine 

seated 

supine 
seated 
supine 
seated 
supine 

17 
25.4± 5.2 
57.1 ±5.6 
167±5 

20.4± 1.7 
6 (35) 
66±12 
61±11 

110±10 
108±4 
66±9 
64±8 
80±9 
77±7 

94±11 
92±7 
67±9 
64±8 
80±9 
77±7 

8.1 ±1.6 

16 
24.8±3.0 
74.8±6.1 
182±4 

22.6± 1.3 
10 (63) 
63±8 
58±7 

125±9 
120±9 
74±11 
67± 10 
89±10 
82±10 

106±8 
101 ±9 
75±10 
68±10 
89±10 
82±10 

9.4±1.6 

BP blood pressure. Summary of statistical analysis in Table 52. Data are means ± SD. 

16 
44.7±3.3 
61.9±9.6 
168±8 

22.0±2.9 
8 (50) 
68±13 
63±11 

110±11 
110±7 
73±9 
70±7 
87±10 
85±7 

102±12 
102±7 
74±9 
71 ±7 
87±10 
85±7 

9.0±1.1 

16 
45.2±3.5 
75.4±9.8 
177±7 

23.9± 2.7 
5 (31) 
63±7 
58±6 

123± 10 
121 ±9 
83±8 
76±8 
97±8 
92±9 

112±9 
110±11 
84±8 
77±8 
97±8 
92±9 

9.4± 1.2 

Pulse wave analysis and diastole 

15 
61.6±4.3 
60.4± 7.5 
167±8 

21.7±2.5 
5 (33) 
68±8 
62±7 

124± 10 
123±9 

81 ±8 
77±7 
97±8 
95±7 

117±9 
117±10 
82±8 
78±7 
97±8 
95±7 
9.3± 2.2 

13 
62.3 ±4.8 
76.8± 11.1 
176±4 

24.7±3.3 
4 (30) 

61 ±6 
58±7 

125±9 
123±9 
85±9 
81 ±10 
99±9 
96±10 

117±10 
115±9 
86±8 
82±10 
99±9 
96±10 

10.0±1.9 

including sex, age as a continuous variable, and their 
interaction, the association of PWV with age was highly 
significant (P= 0.006). 

The ensemble-averaged profiles of central aortic pres
sure, as recorded in the two body positions, are shown 
for the six stucly groups in Figure 2, allowing qualitative 

TABLE 2. Complete statistical comparisons for variables presented in Table 1 

Youn 

Women Men 

Number of subjects 
Age ns 

17 

Weight 
Height 
BMI 
Number sedentary 

Heart rate 

Peripheral BP 
Syslolic 

Diaslolic 

Mean 

Central BP 
Syslolic 

Diaslolic 

Mean 

ns ns 
ns ns 

0.018 0.011 
ns ns ns 

Seated 0.012 ns ns 
Supine 0.012 ns ns 

Seated 
Supine 

Seated 
Supine 

Seated 
Supine 

ns 
ns 

Seated 0.010 ns 
Supine 0.010 ns 

Seated 
Supine 

Seated 
Supine 

Pulse wave velocity 0.018 ns ns 

ns 

16 

ns ns 
ns ns 

0.018 0.011 
ns ns 

ns ns 
ns ns 

ns ns 
ns ns 0.020 

ns 0.003 -
0.024 ns 0.003 0.024 

ns ns 

ns 

ns 

Middle-aged 

Women 

16 

ns 
ns 
ns 
ns 

Men 

16 

ns 
ns 
ns 
ns 

0.012 ns ns 
ns 0.012 ns 

0.002 
0.002 

ns 
ns 

ns 
ns ns 0.020 

0.011 - 0.011 -
0.011 0.011 

0.002 0.002 
0.002 0.002 

0.013 
0.013 

0.002 
0.002 

ns 
0.024 ns 0.024 

0.013 
0.013 

0.002 -
0.002 

0.018 ns ns 

ns 

ns 

0.012 
0.012 

ns 
ns 

ns 

Aged 

15 13 

ns 0.020 

ns 0.024 0.024 

0.018 

ns 
ns 
ns 
ns 

ns 

Interactions 

ns ns 

0.007 0.072 ns 

ns ns ns 

ns ns ns 

0.027 ns ns 

ns ns ns 

ns ns ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

P values indicated numerically when greater than 0.001 and less than 0.05 (specific comparisons) or less than 0.1 (F test for interaction). ns: P > 0.05 (specific comparisons) or greater 
than 0.1 (interactions). *** P < 0.001. P values for interactions reported for the full model containing ail two-way and three-way interactions. P values for specific comparisons obtained 
with nonsignificant interactions removed (see Methods). BP blood pressure. 
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FIGURE 2 Ensemble-averaged central aortic pressure waveforms in the different age-groups. Waveforms reconstructed from the radial pulse recorded with the subject in 
either the sitting or the supine position. 

comparisons to be made between waveform morphologies. 
In that respect, there were no obvious differences between 
men and women. In both sexes, the waveforms of the 
middle-aged and aged had, in comparison of the young 
groups, a much more prominent late systolic followed by a 
much smaller diastolic augmentation by reflected waves. 
The effect of body position on the profiles was especially 
noticeable in young patients, and especially on diastolic 
augmentation, which seemed delayed and of larger ampli
tude when recorded in the supine, in comparison with the 
sitting condition. 

The changes noted in the amplitudes of sAix and dAix as 
a fonction of age, sex, and body position are shown in 
Figure 3 (with numerical counterpart in Table 3). So as not 
to clutter this figure with symbols, complete results of the 
relevant statistical comparisons are displayed in Table 4. 
In comparison with values in men of the same age, the sAix 
of women was larger, and their dAix smaller, although this 
latter difference did not reach statistical significance. With 
advancing age, the sAix increased and the dAix decreased, 
an effect especially marked in the transition from the young 
to the middle-aged groups. The impact of changing 
body position was age-dependent but not sex-dependent 
(age-position interaction: P< 0.0001; sex-position inter
action P> 0.3 for both the sAix and the dAix). In young 
patients, switching from sitting to supine markedly 
enhanced the dAix, with no statistically significant effect 
noted on the sAix. In the middle-aged groups, position had 
no statistically significant effect. In aged patients, taking on 

the supine position increased the sAix, but did not affect 
the dAix. 

These observations suggest the general pattern of an 
inverse relationship between the sAix and the dAix, which 
also becomes apparent when plotting these indices against 
each other, as clone in Figure 4a. In further corroboration 
of this pattern, there was a highly significant negative 

40 sAix1 women 40 sAix, men 

30 30 

20 20 

10 10 

~ 0 0 

~ -5 A B c -5 A B c 

" a. dAix, women 20 
" 

dAix, men 

"' 20 :; 
a. 

15 ,,.. 
15 

10 10 

A B c A B c 
FIGURE 3 Augmentation of central aortic pressure by reflected waves. Central 
aortic pressure reconstructed from the radial pressure pulse recorded in two 
body positions, in healthy volunteers of three age groups. (a) 18-39 years, 
(b) 40-55 years, and (c) 56-70 years. sAix, systolic augmentation index; dAix, 
diastolic augmentation index. For statistical comparisons and number of patients 
in each subcategory, see Table 4. Data are means and SD. 
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Pulse wave analysis and diastole 

Number of subjects 17 (17) 16 (16) 16 (9) 16 (14) 15 (12) 13 (10) 
Systole 

sAix (%PP) Seated 5.0±10.7 -0.4±7.3 22.5±6.6 14.7±8.1 30.2±8.8 25.0±7.3 
Supine 1.8±11.1 -1.3±7.1 23.9 ± 7.6 17.7±8.1 35.2 ±8.6 29.5 ± 7.4 

sAix@75 (%PP) Seated 0.9±9.8 -6.1 ±7.6 19.2±9.0 9.0 ± 7.2 26.8±6.8 18.2±7.4 
Su pi ne -5.4± 11.8 -9.5±8.2 18.4±9.9 9.4±8.0 28.8± 7.6 21.4±7.7 

sîlr (ms) Seated 157± 10 171 ±13 147±13 157±7 141 ±6 150±7 
Supine 161 ±22 181 ±18 149±10 163±11 140±8 145± 13 

Diastole 
dAix (%PP} Seated 9.7±5.2 10.5±3.7 2.9±2.5 5.5±2.9 2.2±1.3 3.5±2.2 

Supine 13.1 ±6.5 13.4±5.0 2.8±3.3 4.7±3.4 1.6±1.3 2.9±3.2 
dMTT (ms} Seated 435±41 446±23 399±41 413±30 377±21 387±20 

Supine 497 ±39 528±32 476±58 496±40 419±24 426±30 

sAix, systolic augmentation index; sAix adjusted, systolic augmentation index adjusted for heart rate with covariance analysis; sT1 r, time to begin of systolic reflected wave; dAix, 
diastolic augmentation index; dMTT, mean transit time of diastolic reflected wave; dSD, dispersion of diastolic wave. Summary of statistical analysis in Table 54. Data are means±SD. 
On the right of figures indicating the size of each subgroup, data shown in parentheses are counts of patients in whom two independent observers agreed on the presence of a 
diastolic wave on at least two recordings in each position. 

correlation between the respective changes induced in the 
dAix and in the sAix by changes in body position (Fig. 4b). 

Timing of reflected waves 
Detailed data on the timing of reflected waves appear in 
Table 3, with statistical analysis in Table 4. In short, the 
transit times of reflected waves reaching the aorta in both 
systole and diastole were larger in men than in women, 
decreased with age, and lengthened upon shifting from the 
sitting to the supine position. 

Relationships to heart rate and pulse wave 
velocity 
Standard analysis of covariance was used to evaluate the 
independent relationship of the sAix and the dAix with 
HR and PWV, after adjustment for age, sex, and position. 
Table 5 shows the regression coefficients thus obtained (!3), 

which represent estimated changes of the corresponding 
index (expressecl in% of pulse pressure) for each increase 
of 10 b/min for HR, or 1 m/s for PWV. 

As expected, the sAix increased with PWV (positive 13). 
In contrast, a higher PWV was associa tee! with a lower dAix 
(negative !3). Although both indices were related to PWV, 
and thus to arterial stiffness, only the dAix was clearly 
independent of HR. Analyses carried out separately on 
each age group gave entirely similar results, indicating that 
the lack of relationship between c!Aix and HR was not 
driven by the clustering of low c!Aix values in aged volun
teers (Table Sl in Supplemental Digital Content 1, http:// 
links.lww.com/HJH/A208). 

Further-adjusted analyses 
Severa! differences noted between women and men regard
ing systolic and diastolic indices (Table 3) were statistically 

TABLE 4. Complete statistical comparisons for indices of wave reflexion 

Young 
Women Men 

Number of subjects 

Systole 
sAix Seated 

Supine 

sA ix@75 Seated 
Supine 

sT1r Seated 

Supine 

Diastole 

dAix Seated ns 
Supine ns 

0.006 

dMTT Seated 0.024 0.002 

Supine 0.024 0.044 

17 (17) 16 (16) 

ns 

0.006 

0.040 

0.002 

0.004 0.044 

ns 

0.040 

ns 
ns 

Middle-aged 
Women Men 

16 (9) 16 (14) 

0.001 0.001 

ns ns 

0.004 - 0.004 -
ns ns 

ns ns 

0.002 ns 0.002 ns 

ns ns 
ns ns ns ns 

0.024 ns 
0.004 0.024 ns 

ns 
ns 

ns 
ns 

0.024 

0.024 

Aged 
Women Men 
15 (12) 13 (10) 

ns ns 

ns ns 

ns ns 

Interactions 

2-way 3-way 

ns ns ns 

ns ns ns 

ns ns 0.016 ns 

ns ns ns 

ns ns 0.045 ns 

P values indicated numerically when more than 0.001 and less than 0.05 (specific comparisons) or less than 0.1 (F test for interaction). ns: P> 0.05 (specific comparisons) or more than 
0.1 (interactions). •••P < 0.001. P values for interactions reported for the full model containing ail two-way and three-way interactions. P values for specific comparisons obtained with 
nonsignificant interactions removed (see Methods). sAix systolic augmentation index; sAix adjusted, systolic augmentation index adjusted for a heart rate of 75 b/min; sT1 r, time to begin 
of systolic reflected wave; dAix diastolic augmentation index; dMTT, mean transit time of diastolic reflected wave. Sizes of subgroups indicated as in Table 3. 
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FIGURE 4 Reciprocal relationship between the systolic and diastolic augmentation 
of the central aortic pressure pulse. dAix, diastolic augmentation index; PP, pulse 
pressure; sAix, systolic augmentation index. Data from central aortic pressure 
waveform reconstructed from the radial pulse recorded in the sitting position. 
A very similar plot was obtained with values corresponding to the supine position 
(not shown). 

significant (Table 4). Therefore, the analysis of covariance 
mentioned in the previous paragraph was repeatecl 
with additional adjustment for the main covariates, 
which differed between sexes, namely height, weight, 
HR, mean central BP and PWV (Table S2 in Supplemental 
Digital Content 1, http://links.lww.com/HJH/ A208). In 
these adjusted analyses, sex remained a significant predic
tor of sAix, sAix@75, sTlr, and dAix, although not of 
dMTT. This apparent independent effect of sex on the 
central pulse waveform might be explained by unmeasured 
factors possibly differing between men and women, such as 
spatial distribution of reflexion sites or regional PWV, for 
example in arteries of the lower limbs. 

TABLE 5. Relationship of augmentation indices with heart rate 
and pulse wave velocit 

HR [3 % PP beat-1.min -0.34 -0.02 
SE 0.07 0.03 
p <0.0001 0.52 

PWV [3 % PP.m·- 1 .s 2.00 -1.05 
SE 0.51 0.23 
p <0.0001 0.0009 

sAix, systolic augmentation index; dAix, diastolic augmentation index; HR, heart rate; 
PWV, carotid-femoral pulse-wave velocity; 13, regression coefficient with units as indicated 
and explained in the text; PP, pulse pressure; SE, standard error of the estimate of 13. 

DISCUSSION 

Reconstruction of the central aortic pressure wave from the 
tonometric recording of the radial pulse is a widely used 
noninvasive tool for the evaluation of arterial stiffness, 
the main relevant information having been so far extracted 
from systolic augmentation of pressure by reflected 
waves, via computation of the sAix or an analogous index. 
The present study supports that, at least in healthy adults, 
a similar information can be retrieved by analyzing the 
diastolic part of the reconstructed waveform (done here by 
calculating the dAix). This statement is based on two lin es 
of evidence: the reciprocal relationship found between the 
systolic and the diastolic indices, both at the interindividual 
(i.e. age and sex impacting on the dAix in a direction 
opposite to that observed for the sAix) and intraindividual 
level (impact in opposite directions of changes in body 
position); the statistically strongly significant relationship of 
both indices with PWV, a standard measure of arterial 
stiffness made independently from radial tonometry. 
In contrast to the sAix, the dAix seems immune to the 
confounding influence of HR, suggesting that it might 
have some advantage over the former for the evaluation 
of arterial stiffness. 

Effects of age and sex on standard indices of 
aortic stiffness 
The variation of PWV and sAix with age and sex were as 
expected (see Supplemental Digital Content 1, http://links. 
lww.com/HJH/ A208). 

Reciprocal relationship of diastolic and systolic 
augmentation 
The overall shape of the aortic pressure pulse depends on 
many factors, including the pattern of ventricular ejection, 
the elastic behaviour of the great vessels [20], hydrodynamic 
phenomena related to flow deceleration [21], waveform 
dispersion [22] and wave reflections. The present study has 
no ambition to discriminate between these. Nevertheless, 
it remains a prevalent concept that wave reflections play a 
fondamental role [23], and that, depending on their time 
of arrivai, the reflected pressure waves may augment 
aortic pressure predominantly in systole, predominantly 
in diastole, or in both phases of the cardiac cycle [24-
27]. The present study extends the available knowledge in 
two ways. First, the simple calculation of the dAix allows the 
relationship between systolic and diastolic augmentation to 
be expressed quantitatively. Second, at least in this healthy 
population, the reciprocal relationship between the sAix 
and the dAix appears quite general, both at the interindi
vidual, (impact of advancing age and sex, Figure 4a, 
Figure 3, Tables 3 and 4), and intraindividiual levels (impact 
of changing the body position, Figure 4b, Figure 3, Tables 3 
and 4). With respect to the effects of age, it is particularly 
noteworthy that the largest changes in the dAix occurred in 
the transition from the young to the middle-aged groups, in 
a mirror image of those observed for the sAix in this study as 
in previous ones cited above [1,14]. The impact of body 
position was age-dependent. Indeed, in young patients, 
shifting from sitting to supine had the effects of increasing 
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the dAix without affecting the sAix, while changes opposite 
to these were noted in the aged, and none reached 
statistical significance in the middle-aged groups 
(Figure 3, Tables 3 and 4). This result agrees with findings 
of our recent study in young women [13]; it extends them to 
young men and shows how the picture becomes modified 
with advancing age in bath sexes. This picture is consistent 
with data reported by McEniery et al. in elderly normo
tensive patients [14]. 

Timing of reflected waves 
The values found in the present study for the transit time of 
systolic reflected waves (Table 3, sTlr) are in agreement 
with those in the literature [1,8,14,28-30l. Regarding the 
transit time of diastolic reflected waves, the data presented 
here are entirely new. The overall vety similar behavior of 
dMTT and sTlr with respect to changes in age, sex, and 
body position suggests that the same factors affect the 
timing of bath systolic and diastolic reflected waves. 
A simplified view would hold that these factors comprise 
travelling velocity and distance between proximal aorta and 
sites of reflection. The lower transit times in women 
compared with men could thus be seen as the resultant 
of lower velocity (as suggested by the measurement of 
aortic-femoral PWV, Tables 1 and 2) - and shorter travelling 
distance, as documented for systolic reflected waves by 
Mitchell et al. [1]. The association of advancing age with 
reduced transit times is likely to be driven by increases in 
travelling velocity due to arterial stiffening, keeping in mind 
that this effect might be mitigated by the distal migration of 
reflection sites in older people [1]. 

One might be surprised by the value of dMTT (about 
350 ms), which together with the measured values of PWV 
(8-10 m/s, Table 1) would suggest a distance of reflection 
sites hardly compatible with body size. However, as dis
cussed by Westerhof et al. [31], reflection sites in the arterial 
tree are not closed ends, but loci of impedance mismatch, 
introducing a phase delay between the Fourier components 
of the reflected and the incident waves. This state of affairs 
translates into bidirectional transit times larger than would 
be expected on the mere basis of PWV and vessel length. 

Regardless of sex, the transition from the sitting to the 
supine position resulted in a striking increase of dMTT in 
the young and middle-aged groups. We have already 
observed this striking effect of posture in young women, 
and refer the reader to our previous publication for a 
discussion of its possible mechanisms [13]. 

Of interest, whenever diastolic reflections reach the aorta 
sooner, as indicated by a shorter dMTT (i.e. old vs. young 
age, female versus male sex, sitting vs. supine position), 
the sAix tends to increase and the dAix to decrease. 
This observation suggests that the reciprocal relationship 
between systolic and diastolic augmentation (Fig. 4) is 
largely driven by shifts in the timing of reflected waves, 
with shorter transit times resulting in more of the reflected 
energy reaching the aorta in systole. 

Perspectives 
The inverse relationship between sAix and dAix points to a 
common dependence on fondamental characteristics of 

Pulse wave analysis and diastole 

arterial hemodynamics. Nevertheless, the interpretation 
of the former may be confounded by the influence of 
HR, which is not the case for the latter. Another potential 
difference between these indices, the calculated sAix is very 
sensitive to the location of the inflection point, which is 
not always well recognizable. In contrast, the dAix can be 
determined unambiguously whenever the diastolic aug
mentation is evident, and otherwise may be assumed to 
be zero. For these reasons, the quantification of diastolic 
aortic pressure augmentation by reflected waves could be a 
useful adjunct to PW A. 

ACKNOWLEDGEMENTS 

The authors wish to thank the staff at the Division de 
Pharmacologie clinique for housing the study. 

Source of funding: Departmental funds. 

Conflicts of interest 
None of the authors has any conflict of interest in relation to 
the present work. 

REFERENCES 
1. Mitchell GF, Parise H, Benjamin EJ, Larson MG, Keyes MJ, VitaJA, et al. 

Changes in arterial stiffness and wave reflection with advancing age in 
healthy men and women: the Framingham Heart Study. Hypertension 
2004; 43:1239-1245. 

2. Mitchell GF. Effects of central arterial aging on the structure and 
fonction of the peripheral vasculature: implications for end-organ 
damage. J Appt Physio/ 2008; 105:1652-1660. 

3. Feihl F, Liauclet L, Waeber B. The macrocirculation and micro
circulation of hypertension. Cuir Hypertens Rep 2009; 11:182-189. 

4. O'Rourke MF, Pauca A, Jiang XJ. Pulse wave analysis. Br J Clin 
Pharmacol 2001; 51:507-522. 

5. Nelson MR, Stepanek J, Cevette M, Covalciuc M, Hurst RT, Tajik AJ. 
Noninvasive measurement of central vascular pressures with arterial 
tonometry: clinical revival of the pulse pressure waveform? Maya Clin 
Proc 2010; 85:460-472. 

6. O'Rourke MF, Pauca A, Kon N, Tong W, Yung \Y/, Qaasem A, Avo!io A. 
Calibrated ascending aortic pressure wave can be clerived from the 
radial pulse using a generalized transfer function. Am] Hypertens 1999; 
12:166A. 

7. Gallagher D, Adji A, O'Rourke MF. Validation of the transfer function 
technique for generating central from peripheral upper limb pressure 
waveform. Am] Hypertens 2004; 17:1059-1067. 

8. Jatoi NA, Mahmud A, Bennett K, Feely ]. Assessment of arterial 
stiffness in hypertension: comparison of oscillometric (Arteriograph), 
piezoelectronic (Complior) and tonometric (SphygmoCor) techniques. 
J Hypertens 2009; 27:2186-2191. 

9. Segers P, Rietschel ER, De Buyzere ML, Vermeersch SJ, De Bacquer D, 
Van Bortel LM, et al. Noninvasive (input) impedance, pulse wave 
velocity, and wave reflection in healthy middle-aged men and women. 
Hypertension 2007; 49:1248-1255. 

10. London GM, Blacher J, Pannier B, Guerin AP, Marchais SJ, Safar ME. 
Arterîal wave reflections and survival in end-stage renal failure. 
Hypertension 2001; 38:434-438. 

11. Delachaux A, Waeber B, Liaudet L, Hohlfeld P, Feihl F. Profound 
impact of uncomplicated pregnancy on diastolic, but not systolic pulse 
contour of aortic pressure. J Hyperlens 2006; 24:1641-1648. 

12. Dischl B, Engelberger RP, Gojanovic B, Liaudet L, Gremion G, Waeber 
B, Feihl F. Enhanced diastolic reflections on arterial pressure pulse 
cluring exercise recovery. ScandJ Med Sei Sports 2011; 2l:e325-e333. 

13. Jaccoud L, Rotaru C, Heim A, Liauclet L, Waeber B, Hohlfelcl P, Feihl F. 
Major impact of body position on arterial stiffness indices clerivecl from 
radial applanation tonometry in pregnant and non pregnant women. 
J Hypertens 2012; 30:1161-1168. 

14. McEniery CM, Yasmin, Hall IR, Qasem A, Wilkinson IB, CockcroftJR. 
Normal vascular aging: differential effects on wave reflection and aortic 

Journal of Hypertension www.jhypertension.com 101 

Copyright© Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. 



Heim et al. 

pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT).j Am 
Coll Cardiol 2005; 46:1753-1760. 

15. Gojanovic B, Waeber B, Gremion G, Liaudet L, Feihl F. Bilateral 
symmetry of radial pulse in high-level tennis players: implications 
for the validity of central aortic pulse wave analysis. j Hypertens 
2009; 27:1617-1623. 

16. O'Brien E, Asmar R, Beilin L, !mai Y, Mancia G, Mengden T, et al. 
Practice guidelines of the European Society of Hypertension for clinic, 
ambulatmy and self blood pressure measurement. j Hypertens 2005; 
23:697-701. 

17. Laurent S, Cockcroft j, Van Bortel L, Boutouyrie P, Giannattasio C, 
Hayoz D, et al. Expert consensus document on arterial stiffness: 
methodological issues and clinical applications. Eur Heart] 2006; 
27:2588-2605. 

18. Macler U, Martin BW, Schutz Y, Marti B. Validity of four short physical 
activity questionnaires in middle-aged persans. Med Sei Sports Exerc 
2006; 38: 1255-1266. 

19. Winer Bj. StC1tistical principles in experimental design, 3rd ed. New 
York: McGraw-Hill; 1971. 

20. DaviesjE, Baksij, Francis DP, Hadjiloizou N, Whinnett ZI, Manisty CH, 
et al. The arterial reservoir pressure increases with aging and is the 
major determinant of the aortic augmentation index. Am] Physiol 2010; 
298:H580-H586. 

21. Wang Jj, Parker KH. Wave propagation in a mode! of the arterial 
circulation. j Biomech 2004; 37:457-470. 

22. Hope SA, Tay DB, Meredith IT, CameronjD. Waveform dispersion, not 
reflection, may be the major determinant of aortic pressure wave 
morphology. Am j Physiol 2005; 289:H2497-2502. 

23. Chowienczyk P. Pulse wave analysis: what do the numbers mean? 
Hypertension 2011; 57:1051-1052. 

24. Murgo JP, Westerhof N, Giolma JP, Altobelli SA. Manipulation 
of ascending aortic pressure and flow wave reflections with the 
Valsalva maneuver: relationship to input impedance. Circulation 
1981; 63:122-132. 

25. Kelly R, Hayward C, Avolio A, O'Rourke M. Noninvasive determination 
of age-related changes in the human arterial pulse. Circulation 1989; 
80:1652-1659. 

26. Nichais WW, O'Rourke MF, Vlachopoulos C. Chap. 10: Contours of 
pressure and flow waves in arteries. ln: Nichols WW, O'Rourke MF, 
Vlachopoulos C, editors. McDonald's blood flow in arteries. London: 
Hodder Arnold; 2011. pp. 225-253. 

27. Nichols \Xl\V, O'Rourke MF, Vlachopoulos C. McDonald's bloodflow in 
arteries, 6th ed. London: Hodder Arnold; 2011. 

28. Mahmud A, Feely j. Effects of passive smoking on blood pressure and 
aortic pressure waveform in healthy young adults-influence of gender. 
Br] Clin Pharmacol 2004; 57:37-43. 

29. Casey DP, Nichais WW, Braith RW. Impact of aging on central pressure 
wave reflection characteristics during exercise. Am j Hype11ens 2008; 
21:419-424. 

30. Weber T, O'Rourke MF, Lassnig E, Porodko M, Ammer M, Rammer M, 
Eber B. Pulse waveform characteristics predict cardiovascular events 
and mortality in patients undergoing coronary angiography. j Hyper
tens 2010; 28:797-805. 

31. Westerhof BE, van den Wijngaard JP, Murgo JP, Westerhof N. 
Location of a reflection site is elusive: consequences for the calculation 
of aortic pulse wave velocity. Hypertension 2008; 52:478-483. 

102 www.jhypertension.com Volume 31 • Number 1 • January 2013 

Copyright© Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. 


