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ABSTRACT

Stochastic models used for pricing, reserving, or capital modelling in insurance compa-

nies are often very complex, which is why resulting distributions are typically approximated

by Monte Carlo simulations. Both the market and regulators exert increasing pressure not to

discard the resulting sample distributions, but rather to store them for future review, audit,

or validation, as well as to transfer them between actuarial systems. The present work in-

troduces a compression algorithm which approximates an empirical univariate distribution

function through a piecewise linear distribution. In contrast to keeping the full sample, such

an approximation facilitates the storage and data transfer of the results by drastically reduc-

ing memory requirements. The approximation algorithm preserves the mean and imposes a

uniformly bounded relative error over a space of coherent risk measures (TVaR). An efficient,

open source implementation is provided.
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1. INTRODUCTION

In the insurance industry, stochastic actuarial models can be found in areas such as pric-

ing, reserving, natural catastrophe modelling, or capital modelling. Many of these models

use distributions which possess non-trivial features such as heavy tails, jumps, or modifi-

cations arising from terms and conditions of (re)insurance contracts. Thereby, many of the

random variables of interest cannot be represented in a simple manner through a paramet-

ric distribution. In these cases, empirical distributions, obtained by means of a simulated

sample of realisations from a stochastic model, are often used as an approximation of the

random variable of interest. For the purpose of reasonably capturing extreme values of the
1
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risks, the size of the samples involved in this process is generally large - millions or even

more.

There is an increased tendency among insurance companies to store, transfer and reuse

simulated distributions mentioned above, due to several reasons such as the following. Firstly,

proliferating review requirements: inputs and outputs from actuarial models are more fre-

quently reviewed, from both technical and non-technical stakeholders, such as independent

validation or audit. Actuarial peer reviews can form important steps in the sign-off gover-

nance. Furthermore, in some jurisdictions, reinsurance contracts need to be documented

in a way that auditors can check risk transfer test requirements (see IASB (2004)). Secondly,

tightening regulatory standards: in Europe, the adoption of Solvency 2 requires various ac-

tuarial models which need to be evaluated and documented; not only for calculating the

SCR (Solvency Capital Requirement), but also to conduct ORSA (Own Risk and Solvency As-

sessment), and to write actuarial function holder reports. In addition, risk management and

internal control systems (Pillar 2 of Solvency 2) mandate a consistent, controlled, and trans-

parent use of these models and their results. As described in De Brauw Blackstone Westbroek

(2014), a great amount of information needs to be managed and recorded to ensure that min-

imum record retention periods are adhered to, i.e., that data can be traceable and accessible

for several years. Thirdly, increasingly interconnected models: information systems and

applications inside insurance companies have become complex and are increasingly con-

nected and dependent of each other. Interconnected systems imply that part of the data is

accessible to a large number of stakeholders, so that it must be consistent and understand-

able to all of them. The use test, which is mandatory for internal models under Solvency 2

and SST (see EP-CEU (2009) and FINMA (2008)), fosters the precise and coherent evaluation

of risks and consistent use of methods and parameters within insurance companies.

In this paper, we develop an algorithm to approximate a large univariate sample distri-

bution which needs to be stored on a long term basis, or transferred between actuarial sys-

tems. The approximation is performed through a piecewise linear (PWL) distribution, al-

lowing a massive reduction in memory and bandwidth requirements compared to storing

the full sample. The approximation algorithm preserves the mean and imposes a uniformly

bounded relative error over a space of coherent risk measures. At the same time, our ap-

proach preserves the shape of the distribution which is not possible when using another con-

ventional solution: storing only key statistics, such as mean and standard deviation. From a
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statistical point of view, the proposed method can also be interpreted as a non-parametric

estimator for univariate sample distributions.

There is a considerable amount of literature on approximations through piecewise linear

functions in areas such as engineering, computational fluid dynamics or computer graphics,

see e.g. Nguyen and Oommen (1997), Hakimi and Schmeichel (1991), or Qiu (2003). How-

ever, the authors are not aware of any publication on using PWL distributions as a means

to approximate sample distributions in an insurance or risk measure context. The present

work was partially inspired by a so called pruning algorithm invented and extensively used

in the reinsurance companies Converium and SCOR (see Hummel (2005)). The pruning and

our algorithm share the same purpose: approximating a sample distribution through a PWL

distribution. However, the probabilistic framework is entirely different, the pruning algo-

rithm uses the Kolmogorov-Smirnov statistic to infer the approximation error, whereas in

our approach we will use the space of spectral risk measures.

The paper is structured as follows. Section 2 introduces piecewise linear distributions

while Section 3 focuses on the TVaR risk measure. Section 4 defines the approximation error.

Section 5 specifies the approximation algorithm. In Section 6, we give an error bound for

spectral risk measures. Section 7 investigates the numerical complexity. In Section 8 and

Section 9, we give examples of results and implementation, respectively. We compare the

algorithm to alternatives in Section 10 and conclude in Section 11.

2. PIECEWISE LINEAR DISTRIBUTIONS

In this section, we introduce the notion of a piecewise linear (PWL) distribution. As usual,

for a cumulative distribution function (cdf) FX (x) =P[X ≤ x] of a random variable X :Ω 7→R

defined on some probability space (Ω,F ,P) we define the quantile function F←
X : (0,1] 7→ R

through the generalised inverse F←
X (t ) = inf{x ∈R : FX (x) ≥ t }.

Definition 2.1. Let x = (x1, x2, . . . , xK ) and y = (y1, y2, . . . , yK ) be a pair of vectors of equal length

K ∈N, such that

−∞< x1 ≤ x2 ≤ ·· · ≤ xK <∞,

0 = y1 ≤ y2 ≤ ·· · ≤ yK = 1.
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A random variable X :Ω→ R with cdf G(t ) = P[X ≤ t ] (t ∈ R) has a piecewise linear distribu-

tion G = PWL(x,y) if

G(t ) =



0, if t < x1,

yk + (yk+1 − yk ) t−xk
xk+1−xk

, if xk < t < xk+1,

max
{k=1,...,K |xk=t }

{yk }, if t = xk for some k,

1, if t > xK .

(2.1)

Hence, the cdf of a PWL distribution is given by the linear interpolation between the inter-

polation points {(x1, y1), (x2, y2), . . . , (xK , yK )}. The only special case occurs if there are several

interpolation points with the same x-coordinate. In this case, the distribution has an atom

and the cdf is defined such that it is right-continuous, thus its value will be the maximum

ordinate y of all interpolation points with the same x-coordinate of interest.

Example 2.2. Let K = 4, x = (1,4,4,9), y = (0,0.6,0.8,1), and G = PWL(x,y). Then,

G(t ) =



0, if t < 1,

0.2(t −1), if 1 ≤ t < 4,

0.8+0.04(t −4), if 4 ≤ t < 9,

1, if 9 ≤ t .

Note that G(1) = 0, G(9) = 1. There is an atom at 4 such that P[X = 4] = 0.8 − 0.6 = 0.2,

limt↑4 G(t ) = 0.6 and G(4) = max
{k=1,...,4 |xk=4}

{yk } = max{0.6,0.8} = 0.8 for X ∼ G. The distribu-

tion G(t ) is illustrated in Figure 1.
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FIGURE 1. An illustration of the cdf G(t ) for G = PWL((1,4,4,9), (0,0.6,0.8,1)).

Remark 2.3. We can distinguish the following cases with respect to continuity of a PWL dis-

tribution G = PWL(x,y):
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• Continuous case: In case the components of the vector (x1, x2, . . . , xK ) are strictly in-

creasing, i.e., if x1 < x2 < ·· · < xK , then the PWL distribution is absolutely continuous

and the density is piecewise constant with

d

d t
G(t ) = yk+1 − yk

xk+1 −xk
for xk ≤ t < xk+1.

• Discrete case: In case every line segment of the PWL distribution is either horizontal or

vertical (i.e., if (yk+1−yk )(xk+1−xk ) = 0 for every k = 1, . . . ,K −1), then the distribution

is discrete.

• General case: In case none of the two special cases above apply, then the distribution

has both discrete and absolutely continuous parts.

The following lemma shows that not only the cdf can easily be represented as a piecewise

linear function, but also the quantile function (inverse cdf) is piecewise linear.

Lemma 2.4. For a PWL distribution G = PWL(x,y) , the inverse G←(t ) for 0 < t ≤ 1 is given by

G←(t ) =


xk + xk+1−xk

yk+1−yk
(t − yk ), if yk < t < yk+1,

min
{k=1,...,K | yk=t }

{xk }, else.

Proof. For yk < t < yk+1, the inversion is immediate. If t = yk for some k, the result follows

from the definition G←(t ) = inf{x ∈R : G(x) ≥ t }. �

Example 2.5. Let G = PWL(x,y) as in Example 2.2. Then the inverse cdf is given by

G←(t ) =


1+5t , if 0 < t < 0.6,

4, if 0.6 ≤ t < 0.8,

4+25(t −0.8), if 0.8 ≤ t ≤ 1.

One of the desirable properties of the PWL distribution is that many functionals of interest

can be calculated analytically, such as the moments given in the following lemma.

Lemma 2.6. Let G = PWL(x,y) and m > 0. Then, the m-th moment E[X m] of a random vari-

able X ∼G is given by

E[X m] =
K−1∑
k=1

∫ yk+1

yk

G←(t )mdt ,

where ∫ yk+1

yk

G←(t )mdt =


xm+1

k+1 −xm+1
k

m+1
yk+1−yk
xk+1−xk

, if xk+1 > xk ,

xm
k (yk+1 − yk ), if xk+1 = xk .
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Proof. We have E[X m] = E[(G←(U ))m], where U is uniformly distributed on [0,1]. Hence,

E[X m] = E[G←(U )m] =
∫ 1

0
G←(t )mdt =

K−1∑
k=1

∫ yk+1

yk

G←(t )mdt ,

which leads to the desired result by using Lemma 2.4. �

Example 2.7. Let G = PWL(x,y) as in Example 2.2 and X ∼G. Then, the mean is given by

E[X ] = 42 −12

2

0.6−0

4−1
+4(0.8−0.6)+ 92 −42

2

1−0.8

9−4
= 3.6.

Analogously, the second moment is equal to

E[X 2] = 43 −13

3

0.6−0

4−1
+42(0.8−0.6)+ 93 −43

3

1−0.8

9−4
= 16.2667,

which also leads to V ar (X ) = E[X 2]−E[X ]2 = 3.3067.

In order to simplify the notation in the following sections, we define the basis of a PWL

distribution.

Definition 2.8. For a PWL distribution G = PWL(x,y), the vector basis(G) = z = (z1, z2, . . . , zS)

is defined such that 0 = z1 < z2 < ·· · < zS = 1 and for every zs there is a k with zs = yk . Further-

more, for basis(G) = (z1, z2, . . . , zS), the semi-closed intervals (zs , zs+1] between two consecutive

points zs and zs+1 in the basis are called segments of G.

Hence, the basis of G = PWL(x,y) can be obtained by removing all duplicate values of y.

Example 2.9. Let G = PWL(x,y) as in Example 2.2. Then, basis(G) = z = (0,0.6,0.8,1). We

have basis(G) = y since there are no duplicate values in y. The three segments of G are given by

(0,0.6], (0.6,0.8], and (0.8,1].

The family of PWL distributions has been chosen for approximation purposes because

of its simplicity, flexibility and further desirable characteristics. Section 10 gives additional

justification for this selection, details on PWL distributions, and comparisons.

Note that in the area of application of this paper, we are mainly interested in quantities

which can be written as functionals of the cdf (such as means, VaR’s, TVaR’s). The density, if

it exists, is of lesser interest. Furthermore, PWL distributions in this paper have a PWL cdf,

and not a PWL density, as it is sometimes used in other publications (see also Remark 2.3).
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3. THE TAIL VALUE-AT-RISK (TVaR) AND TVaR EQUIVALENCE

In this section, we introduce the risk measure tail value-at-risk (TVaR) and its deviation

measure TVaR∆. These will later be used to define PWL distributions which are admissible

approximations of the sample distribution. The approximation employs TVaR, since it is the

most frequently used coherent risk measure.

In an abuse of notation, we write E[F ] and TVaR∆(F ) instead of E[X ] and TVaR∆(X ) for

X ∼ F whenever the meaning is clear, which is justified for law invariant functionals.

Definition 3.1. For a distribution F with E[F ] < ∞ and a level 0 < α ≤ 1, the risk measure

TVaRα(F ) and its deviation TVaR∆α(F ) (see Rockafellar et al. (2006)) are given as

TVaRα(F ) =− 1

α

∫ α

0
F←(t )dt ,

TVaR∆α(F ) = TVaRα(F −E[F ]) = E[F ]− 1

α

∫ α

0
F←(t )dt .

Different names such as expected shortfall (ES) or conditional tail expectation (CTE) are

used by other authors to refer to the former defined TVaR or slightly modified risk measures.

All those quantities coincide in the case that the distribution F is continuous.

Note that the sign convention in Definition 3.1 is chosen such that TVaR∆α(F ) ≥ 0 for any

α and distribution F . We have TVaR∆α(F ) = 0 for α < 1 if and only if F represents a constant

distribution. Therefore, TVaR∆ can be seen as a volatility measure, which measures how

strongly the lower tail expectation of the distribution deviates from the mean E[F ].

In other literature, the upper tail notation
(

1
α

∫ 1
1−αF←(t )dt

)
is sometimes used. We will

later see that this is algorithmically equivalent. The algorithm is easier to derive with the

current notation. The following example illustrates TVaR and TVaR∆.

Example 3.2. Let G = PWL((1,4,4,9), (0,0.6,0.8,1)) as in Example 2.2. As shown in Exam-

ple 2.7, we have E[G] = 3.6. For a level α = 0.2, we get VaR0.2(G) = G←(0.2) = 2, TVaR0.2(G) =
−1.5, and TVaR∆0.2(G) = 3.6−1.5 = 2.1, which is illustrated in Figure 2.

In order to avoid confusion and to create a consistent notation throughout the rest of the

paper, we will make the following notational convention.

Notation 3.3. Throughout the remainder of the paper:

• G denotes a PWL distribution;

• F denotes an empirical distribution F (x) = 1
n

∑n
i=1 1{Xi ≤ x} of a sample {X1, X2, . . . , Xn}

with sample size n ∈N, where 1{ · } denotes the indicator function.
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FIGURE 2. An illustration of E[G], TVaR0.2(G), and TVaR∆0.2(G). The shaded

area illustrates TVaR0.2(G) = −1.5, which is given by the negative average of

G← for quantiles between 0 and 0.2.

Note that in this paper, we are not concerned with the sampling algorithm leading to

{X1, X2, . . . , Xn}, but only discuss the approximation step from F to G . Of course, the sam-

pling itself may also present very challenging technical and mathematical aspects. We also

do not make any assumption on the distribution from which {X1, X2, . . . , Xn} was sampled.

As F is discrete, it is easy to calculate the quantile function F←(·):

F←(t ) = X(i ) for
i −1

n
< t ≤ i

n
, (3.1)

where X(i ) is the i -th order statistic such that X(1) ≤ X(2) ≤ ·· · ≤ X(n−1) ≤ X(n).

The following two lemmas provide analytical formulae for the TVaR for PWL and sample

distributions. Of course, the corresponding formulae for TVaR∆ are then trivial to deduce.

Lemma 3.4. Suppose G = PWL(x,y) and ym <α≤ ym+1 for some m ∈ {1,2, . . . ,K −1}. Then,

TVaRα(X ) =− 1

α

(
m−1∑
k=1

xk +xk+1

2
(yk+1 − yk )+ (α− ym)xm + (α− ym)2

2

xm+1 −xm

ym+1 − ym

)
.

Proof. Analogous to the proof of Lemma 2.6. �

For α= ym , Lemma 3.4 simplifies to TVaRym (X ) =−1/ym
∑m−1

k=1 (xk +xk+1)(yk+1 − yk )/2.

Example 3.5. Let G = PWL(x,y) as in Example 2.2. Then, we have

TVaR0.8(X ) =− 1

0.8

(
1+4

2
(0.6−0)+ 4+4

2
(0.8−0.6)

)
=−2.875

and TVaR∆0.8(X ) = 3.6−2.875 = 0.725.

Lemma 3.6. For the empirical sample distribution F , we have E[F ] = 1/n
∑n

i=1 Xi . Further-

more, for α ∈ {1/n,2/n, . . . ,n/n} we have

TVaRα(X ) =− 1

αn

αn∑
i=1

X(i ).
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Proof. Immediate consequence of (3.1). �

Example 3.7. Suppose we have the following sample of size 10:

{X1, X2, . . . , X10} = {1, 1.6, 4.3, 4.6, 6, 7.1, 13, 13.4, 16, 18.8}.

This leads to F (x) = 1/10
∑10

i=1 1{Xi ≤ x}. Then,

E[F ] = 1

10

10∑
i=1

Xi = 8.58, TVaR0.6(F ) =−1

6

6∑
i=1

X(i ) =−4.1, TVaR∆0.6(F ) = 4.48.

In the following, we will define the notion of TVaR equivalence. This concept will allow to

deduce an efficient divide-and-conquer algorithm.

Definition 3.8. A PWL distribution G = PWL(x,y) and a sample distribution F are called TVaR

equivalent if E[G] = E[F ] and

TVaR∆yk
(G) = TVaR∆yk

(F ) for k = 2,3, . . . ,K .

Definition 3.8 implies that, apart from having the same mean, G and F have the same

TVaR∆α for all levels α= y2, y3, . . . , yK . The level y1 = 0 is omitted, since TVaR∆0 is not defined.

Due to E[G] = E[F ], TVaR equivalence also implies TVaRyk (G) = TVaRyk (F ) for k = 2,3, . . . ,K .

Note that TVaR equivalence imposes no constraints for TVaR∆α(G) with α 6= y1, . . . , yK .

Example 3.9. Given the sample distribution F as defined in Example 3.7. Furthermore, let G =
PWL((0.8,7.4,12.9,17.7), (0,0.6,0.6,1)). Note that basis(G) = (0,0.6,1). Figure 3 illustrates F

and G.

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

FIGURE 3. An illustration of F (dashed, empirical cdf as in Example 3.7) and

G (solid line, PWL distribution) where G and F are TVaR equivalent.

By using Lemma 3.4 and Lemma 3.6, we see that G and F are TVaR equivalent since

E[G] = E[F ] = 8.58, TVaR∆0.6(G) = TVaR∆0.6(F ) = 4.48, TVaR∆1 (G) = TVaR∆1 (F ) = 0.

Note that for α 6= 0.6,1, the equality TVaR∆α(F ) = TVaR∆α(G) does generally not hold.
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The following lemma shows that if G = PWL(x,y) and F are TVaR equivalent, then the

average over every segment (yk , yk+1] is equal as well.

Lemma 3.10. Suppose G = PWL(x,y) and F are TVaR equivalent. Then, we have∫ yk+1

yk

G←(t )dt =
∫ yk+1

yk

F←(t )dt

for every k = 1, . . . ,K −1.

Proof. Due to TVaR equivalence, we have yk TVaR∆yk
(G)− yk TVaR∆yk

(F ) = 0. Hence,

0 =
(

yk+1 TVaR∆yk+1
(G)− yk TVaR∆yk

(G)
)
−

(
yk+1 TVaR∆yk+1

(F )− yk TVaR∆yk
(F )

)
=

∫ yk+1

yk

F←(t )dt −
∫ yk+1

yk

G←(t )dt . �

The following theorem shows that for TVaR equivalent distributions andα ∈ (yk , yk+1], the

difference TVaR∆α(F )−TVaR∆α(G) can be written as an expression which depends only on F←

and G← evaluated on (yk , yk+1].

Theorem 3.11. Suppose G = PWL(x,y) and F are TVaR equivalent. Let α ∈ (yk , yk+1] for some

k. Then,

TVaR∆α(F )−TVaR∆α(G) = 1

α

(∫ α

yk

G←(t )dt −
∫ α

yk

F←(t )dt

)
.

Proof. Lemma 3.10 provides the identity 1/yk
∫ yk

0 G←(t )dt = 1/yk
∫ yk

0 F←(t )dt . Subtracting

these and E[F ]−E[G] = 0 from TVaR∆α(F )−TVaR∆α(G) leads to the desired result. �

We will see that Theorem 3.11 constitutes a critical component of the approximation algo-

rithm, since it will allow to decompose the approximation problem into independent prob-

lems, one for each quantile segment.

4. ERROR BOUNDS AND ADMISSIBILITY

In this section we provide a mathematical framework which defines a set of PWL distribu-

tions which are admissible approximations to the sample distribution. The approximation

is done by limiting the relative error over a set of risk measures TVaR∆α, with different levels α

and a certain accuracy of choice.

Definition 4.1. For a sample distribution F with sample size n, a PWL distribution G is called

an admissible approximation of F with accuracy ε> 0 if E[F ] = E[G] and

max
α∈{ 1

n , 2
n ,..., n−1

n

}
∣∣TVaR∆α(G)−TVaR∆α(F )

∣∣
TVaR∆α(F )

≤ ε. (4.1)
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Definition 4.1 implies that, apart from having the same mean, the TVaR∆α relative error of

the approximation G does not exceed ε for levels implied through the sample points, i.e.,∣∣TVaR∆α(G)−TVaR∆α(F )
∣∣ ≤ εTVaR∆α(F ) for all α ∈ {1/n,2/n, . . . , (n −1)/n}. For now, we restrict

ourselves to α ∈ {1/n,2/n, . . . , (n −1)/n} since this allows to derive a very efficient algorithm.

The extension to the entire interval α ∈ (0,1) will be done in Section 6.

We will later provide some guidance on selecting the ε parameter for practical purposes.

Example 4.2. Let F be defined in Example 3.7 with sample size n = 10. Then, a PWL distribu-

tion G is an admissible approximation of F with accuracy ε if E[G] = E[F ] = 8.58 and∣∣TVaR∆0.1(G)−TVaR∆0.1(F )
∣∣≤ εTVaR∆0.1(F ),∣∣TVaR∆0.2(G)−TVaR∆0.2(F )
∣∣≤ εTVaR∆0.2(F ),

...∣∣TVaR∆0.9(G)−TVaR∆0.9(F )
∣∣≤ εTVaR∆0.9(F ).

We will provide a further definition as well as a lemma that decomposes the set of inequal-

ities (4.1) into a set of numerically tractable problems.

Definition 4.3. A PWL distribution G = PWL(x,y) is called sample compatible with respect

to an empirical distribution F with sample size n if yk ∈ {0/n,1/n,2/n, . . . ,n/n} for all k =
1,2, . . . ,K .

An example illustrating Definition 4.3 will be provided in the following section. Using sam-

ple compatibility, the following lemma decomposes the TVaR equivalence condition (4.1)

into a set of independent inequalities, one for each segment.

Theorem 4.4. Suppose G = PWL(x,y) and F are TVaR equivalent and sample compatible.

Let (z1, z2, . . . , zS) = basis(G). Then, G is an admissible approximation of F if and only if the

following inequality is satisfied for every s = 1,2, . . . ,S −1:

max
α∈{

zs+ 1
n ,zs+ 2

n ,...,zs+1− 1
n

} 1

α ·TVaR∆α(F )

∣∣∣∣∫ α

zs

G←(t )dt −
∫ α

zs

F←(t )dt

∣∣∣∣≤ ε. (4.2)

Proof. Immediate consequence of Theorem 3.11 and (4.1). �

Note that for a fixed s, (4.2) evaluates G←(t ) only for t ∈ (zs , zs+1]. Thereby, under the

assumption of TVaR equivalence and sample compatibility, the calculations necessary for

the different segments can be done independently. We will later show how this leads to a

significant simplification of the numerical complexity in the algorithm.
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In the remainder of this section, we show that the algorithm is symmetric.

The other common way to define TVaR is by taking the average over the upper quantiles,

i.e., TVaRup
α (F ) = 1

1−α
∫ 1
α F←(t )dt and TVaR∆,up

α (F ) = TVaRup
α (F )−E[F ] for 0 <α< 1.

Lemma 4.5. For 0 <α< 1, we have αTVaR∆α(F ) = (1−α)TVaR∆,up
α (F )

Proof. Plugging in the definition yields

αTVaR∆α(F )− (1−α)TVaR∆,up
α (F ) =αE[F ]−

∫ α

0
F←(t )dt −

∫ 1

α
F←(t )dt + (1−α)E[F ] = 0 �

By replacing the result of Lemma 4.5 into the admissibility condition (4.1), we see that any

PWL distribution satisfying the admissibility condition also satisfies the analogous inequal-

ity for TVaR∆,up
α (F ). Hence, the algorithm is symmetric with respect to sign changes.

5. ALGORITHM

The basic idea on how to implement an algorithm to find an admissible PWL approxima-

tion of F is very simple: Start with z = (0,1) and iteratively insert values into z until there

exists an admissible PWL distribution G with basis(G) = z. However, for a concrete imple-

mentation, several mathematical and numerical problems related to this basic idea need to

be clarified. This will be done in the following sections. Readers who are mainly interested

in applications and examples may proceed directly to Section 8.

5.1. Reparametrisation of the PWL distribution.

In the following, we define an alternative parametrisation G = PWL(z,µ,δ) of PWL distri-

butions. The parametrisation G = PWL(z,µ,δ) is graphically less intuitive than the previ-

ously used G = PWL(x,y), but it is more suitable to represent the numerical intricacies of the

algorithm. Describing the algorithm with the G = PWL(x,y) parametrisation would be too

cumbersome.

Definition 5.1. Let S ∈N, z ∈ [0,1]S , µ ∈RS−1, and δ ∈ [0,∞)S−1 such that

0 = z1 < z2 < ·· · < zS = 1, and

µs +δs ≤µs+1 −δs+1 for s = 1,2, . . . ,S −2. (5.1)

Then, G = PWL(z,µ,δ) if simultaneously G = PWL(x,y) with x ∈ R2S−2 and y ∈ [0,1]2S−2, such

that x2s−1 =µs −δs , x2s =µs +δs , y2s−1 = zs , y2s = zs+1 for s = 1, . . . ,S −1. Hence,

x = (µ1 −δ1 ,µ1 +δ1 ,µ2 −δ2 ,µ2 +δ2 , . . . ,µS−1 −δS−1 ,µS−1 +δS−1),

y = ( z1 , z2 , z2 , z3 , . . . , zS−1 , zS ).
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Note that basis(G) = z for G = PWL(z,µ,δ). Some points (xk , yk ) may be duplicated - these

can be discarded. Furthermore, using Definition 5.1 G←(t ) can be rewritten for t ∈ (zs , zs+1]

through a simple formula:

G←(t ) =µs +δs

(
2

t − zs

zs+1 − zs
−1

)
for t ∈ (zs , zs+1]. (5.2)

There is a natural interpretation of the parameters: µs is the average of G← over the quantiles

in the segment (zs , zs+1] and δs represents a slope parameter. Note that for δs = 0, G← is

constant on (zs , zs+1]. We have that limt↓zs G←(t ) = µs −δs and G←(zs+1) = µs +δs , which is

illustrated in the following example.

Example 5.2. Let G = PWL(x,y) with x = (0.8,7.4,12.9,17.7) and y = (0,0.6,0.6,1), as in Ex-

ample 3.9. Equivalently, we can reparametrise G = PWL(z,µ,δ) with S = 3,

z = (z1, z2, z3) = (0,0.6,1), µ= (µ1,µ2) = (4.1,15.3), δ= (δ1,δ2) = (3.3,2.4).

Note that basis(G) = z 6= y. Equation (5.2) translates into

G←(t ) = 4.1+3.3(2(t −0.0)/(0.6−0)−1) for t ∈ (0,0.6],

G←(t ) = 15.3+2.4(2(t −0.6)/(1−0.6)−1) for t ∈ (0.6,1].

The former equation is illustrated in Figure 4. Note that

lim
t↓0

G←(t ) =µ1 −δ1 = 4.1−3.3 = 0.8 = x1, G←(0.6) =µ1 +δ1 = 4.1+3.3 = 7.4 = x2.

1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

δ1

µ1µ1−δ1 µ1 +δ1

FIGURE 4. An illustration of the parametrisation of G←(t ) (solid line) for t ∈
(0,0.6] through µ1 = 4.1 and δ1 = 3.3 as given in (5.2) and Example 5.2.

The following lemma shows that sample compatibility and TVaR equivalence allow to ob-

tain a simple analytical expression for µs .
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Lemma 5.3. Suppose G = PWL(z,µ,δ) and the empirical distribution F with sample size n,

are TVaR equivalent and sample compatible. Then, for s = 1,2, . . . ,S −1 we have that

µs = 1

n(zs+1 − zs)

nzs+1∑
i=nzs+1

X(i ).

Proof. From (5.2), we get 1
zs+1−zs

∫ zs+1
zs

G←(t )dt =µs . Combining the former with Lemma 3.10

and (3.1) yields the desired result. �

As Lemma 5.3 shows, TVaR equivalence uniquely determines µs . Namely, µs is equal to

the average of all order statistics corresponding to quantiles between zs and zs+1.

Example 5.4. Let G and F be defined as in Example 3.9. Then, G is sample compatible with

respect to F since {0,0.6,1} ⊆ {0/10,1/10,2/10, . . . ,9/10,10/10}, where 10 is the sample size un-

derlying the empirical cdf F . Consequently, Lemma 5.3 yields

µ1 = 1

6

6∑
i=1

X(i ) = 4.1, and µ2 = 1

4

10∑
i=7

X(i ) = 15.3.

Note that
∫ α

zs
G←(t )dt for α ∈ (zs , zs+1] and G = PWL(z,µ,δ) is a function of α, µs , and δs .

Since the parameter µ is given through Lemma 5.3 if we assume the PWL distribution to

be TVaR equivalent and sample compatible, the only remaining free parameter is δ. The

following theorem provides a link between the δ and the admissibility condition (4.2). In

fact, the theorem shows that a PWL(z,µ,δ) distribution satisfies the inequality (4.2) if and

only if δs lies in a certain interval, which is non-empty in case a solution to (4.2) exists. The

proof of Theorem 5.5 and formulae for δmi n
s and δmax

s are provided in Appendix A since they

are rather technical.

Theorem 5.5. Suppose G = PWL(z,µ,δ) and F are TVaR equivalent and sample compatible.

Then, for a fixed s = 1,2, . . . ,S −1, inequality (4.2) is satisfied if and only if δs ∈∆s , where

• ∆s =; (in case there is no solution), or

• ∆s = [δmi n
s ,δmax

s ] ⊂R (in case there is a solution).

Furthermore, ∆s can be calculated with numerical complexity O(n(zs+1 − zs)).

Proof. See Appendix A. �

In case there is a solution to (4.2), we obtain an interval [δmi n
s ,δmax

s ] such that (4.2) is sat-

isfied for every δs ∈ [δmi n
s ,δmax

s ], which is illustrated in the following example. In general, the

interval ∆s becomes larger when the required accuracy (ε) of the approximation increases,

or when the range covered by the segment (zs , zs +1] decreases.



RISK MEASURE PRESERVING PIECEWISE LINEAR APPROXIMATION OF EMPIRICAL DISTRIBUTIONS 15

Example 5.6. Given the sample distribution F as defined in Example 3.7, z = (0,0.6,1), and

ε = 0.25. Then, Theorem 5.5 yields that ∆1 6= ; with δmi n
1 = 1.470, δmax

1 = 5.994, and ∆1 =
[1.470,5.994], as it is illustrated in Figure 5. With the same F and z, but reduced ε = 0.1, the

interval ∆1 reduces to ∆1 = [3.108,4.630].

2 0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

  δmax1

  δmin1

µ1

FIGURE 5. An illustration of δmi n
1 = 1.470 and δmax

1 = 5.994 resulting out of

Theorem 5.5 using ε = 0.25. For δ1 = δmi n
1 , G represents an interpolation be-

tween the points (2.63,0) and (5.57,0.6) on the segment (0,0.6]. Similarly, for

δ1 = δmax
1 , G interpolates between (−1.894,0) and (10.094,0.6).

5.2. Default Slope Parameter.

In this section, we provide a default value for δs to be used in case ∆s 6= ;. We propose to

take the δs which minimises the L2 distance between F← and G← measured on the segment

(zs , zs+1]. This can be seen as a mean-square regression parameter.

Theorem 5.7. Suppose G = PWL(z,µ,δ) and F are TVaR equivalent and sample compatible.

For some fixed s, we denote with δ
r eg
s the δs parameter which minimises the L2 distance be-

tween G← and F← on (zs , zs+1] when varying δs :

δ
r eg
s = argmin

δs

∫ zs+1

zs

(
F←(t )−G←(t )

)2 dt

Then, δr eg
s is given by

δ
r eg
s =−3µs

zs+1 + zs

zs+1 − zs
+ 6

(zs+1 − zs)2

1

n2

nzs+1∑
i=nzs+1

X(i )(i −1/2).



16 P. ARBENZ AND W. GUEVARA-ALARCÓN

Proof. Let D(δs) = ∫ zs+1
zs

(F←(t )−G←(t ))2 dt . By plugging (5.2) into D(δs), we get

D(δs) =
∫ zs+1

zs

(
F←(t )−

(
µs +δs

(
2

t − zs

zs+1 − zs
−1

)))2

dt

=
∫ zs+1

zs

(
F←(t )−µs

)2 dt −δs2
∫ zs+1

zs

(
F←(t )−µs

)(
2

t − zs

zs+1 − zs
−1

)
dt

+δ2
s

∫ zs+1

zs

(
2

t − zs

zs+1 − zs
−1

)2

dt .

The last component can be calculated as
∫ zs+1

zs

(
2

t − zs

zs+1 − zs
−1

)2

dt = zs+1 − zs

3
. Furthermore,

due to
∫ zs+1

zs
(F←(t )−µs)dt = 0, we get∫ zs+1

zs

(
F←(t )−µs

)(
2

t − zs

zs+1 − zs
−1

)
dt = 2

zs+1 − zs

∫ zs+1

zs

(
F←(t )−µs

)
tdt

=
(

2

zs+1 − zs

∫ zs+1

zs

F←(t )tdt

)
−µs(zs+1 + zs).

Since we assumed G to be sample compatible, we can write∫ zs+1

zs

F←(t )tdt =
nzs+1∑

i=nzs+1

∫ i /n

(i−1)/n
F←(t )tdt =

nzs+1∑
i=nzs+1

∫ i /n

(i−1)/n
X(i )tdt = 1

n2

nzs+1∑
i=nzs+1

X(i )(i −1/2).

Using the previous calculations, we can deduce the derivative

d

dδs
D(δs) = −4

zs+1 − zs

1

n2

nzs+1∑
i=nzs+1

X(i )(i −1/2)+2µs(zs+1 + zs)+2δs
zs+1 − zs

3
.

We obtain δ
r eg
s by setting the above equation to zero. �

Example 5.8. Given the sample distribution F as defined in Example 3.7 and z = (0,0.6,1) as

in Example 5.6. Then, Theorem 5.7 yields δr eg
1 = 3.667 and δ

r eg
2 = 3.750.

Further illustrations of Theorem 5.7 and δ
r eg
s will be provided in Section 5.4.

5.3. Best Bisection Point for a Segment.

Using the results of Section 5.1, we can reformulate the basic idea of the algorithm: it

starts with z = (0,1) and inserts points into z until ∆s 6= ; for every segment (zs , zs+1]. In this

section, we describe where to bisect (zs , zs+1] in case ∆s =;.

Algorithm 5.9. In case ∆s =;, insert z̃ into z, where

z̃ = argmax
α∈{

zs+ 1
n ,zs+ 2

n ,...,zs+1− 1
n

}
∣∣∣∣∫ α

zs

G←(t )dt −
∫ α

zs

F←(t )dt

∣∣∣∣ ,

with µs and δs chosen according to Lemma 5.3 and Theorem 5.7, respectively, i.e., bisect the

segment (zs , zs+1] into two new segments (zs , z̃] and (z̃, zs+1].
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The value z̃ represents a bisection of the segment at the level where the difference of the

scaled TVaR∆ between F and the corresponding linear approximation is largest. The perfor-

mance of the given choice of z̃ is very good in terms of convergence and run time. Further

mathematical justification will be given in Section 7.

Example 5.10. Given the sample distribution F as defined in Example 3.7 and z = (0,1).

Applying Algorithm 5.9 on the segment (z1, z2] = (0,1] yields z̃ = 0.6 since the function α 7→∣∣∣∫ α
z1

G←(t )dt −∫ α
z1

F←(t )dt
∣∣∣ evaluates to (0.14,0.14,0.21,0.11,0.04,0.29,0.15,0.17,0.12) forα=

(0.1,0.2, . . . ,0.9).

5.4. Ensuring Segment Compatibility.

Recall that the approximation algorithm will start with finding a basis z such that ∆s 6= ;
for all segments. However, such a basis together with the choice δs = δ

r eg
s does not nec-

essarily imply a well defined PWL approximation. Namely, it needs to be ensured that the

resulting PWL distribution satisfies the compatibility condition (5.1). This section describes

how to ensure that a parameter triple (z,µ,δ) satisfies (5.1).

In Section 5.2, we propose to use a default value δs = δ
r eg
s . In most cases, this choice will

lead to compatible segments. Suppose now that

µs +δr eg
s >µs+1 −δr eg

s+1,

for some s ∈ {1,2, . . . ,S − 2}, i.e., (5.1) is not satisfied with δs = δ
r eg
s and δs+1 = δ

r eg
s+1. We

can now distinguish two cases: either the segments can be compatible using δs = δmi n
s and

δs+1 = δmi n
s+1

(
i.e., µs +δmi n

s ≤µs+1 −δmi n
s+1

)
, or the opposite is true

(
i.e., µs +δmi n

s >µs+1 −δmi n
s+1

)
.

Algorithm 5.11 describes a solution to the former problem and Algorithm 5.13 to the latter.

Algorithm 5.11. Suppose that for some fixed s, we have

µs +δr eg
s >µs+1 −δr eg

s+1, and µs +δmi n
s ≤µs+1 −δmi n

s+1 .

Consequently, the intervals
{
µs +δs : δs ∈∆s

} ⊂ R and
{
µs+1 −δs+1 : δs+1 ∈∆s+1

} ⊂ R overlap.

In this case, we propose to proceed by resetting δs and δs+1 such that µs +δs and µs+1 −δs+1

are equal to the midpoint of the interval[
µs +δmi n

s ,µs +δr eg
s

]
∩

[
µs+1 −δr eg

s+1,µs+1 −δmi n
s+1

]
. (5.3)

The following example illustrates Algorithm 5.11.
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Example 5.12. Suppose F is defined as in Example 3.7. Furthermore, let z = (0,0.3,1) and

ε= 0.25. We have

µ1 = 2.3, δmi n
1 = 0, δ

r eg
1 = 2.2, δmax

1 = 4.224,

µ2 = 11.271, δmi n
2 = 6.398, δ

r eg
2 = 8.437, δmax

2 = 11.01,

which leads to

4.500 =µ1 +δr eg
1 >µ2 −δr eg

2 = 2.835, and 2.300 =µ1 +δmi n
1 ≤µ2 −δmi n

2 = 4.873.

The interval (5.3) is given by [2.300,4.500] ∩ [2.835,4.873] = [2.835,4.500] with a midpoint

(2.835+4.500)/2 = 3.667. By using Algorithm 5.11, we set δ1 = 1.367 and δ2 = 7.604. After this

adjustment, the two segments connect at the midpoint. Figure 6 provides an illustration.

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
Using δ1 =δ reg1  and δ2 =δ reg2

0 5 10 15 20

After adjusting δ1  and δ2

FIGURE 6. Illustration of Algorithm 5.11. Dotted: δmi n
s and δmax

s . Left: With

δ1 = δ
r eg
1 and δ2 = δ

r eg
2 , the two segments (solid) are incompatible. Right:

Setting δ1 = 1.367 and δ2 = 7.604 yields compatible and connecting segments.

The following algorithm proposes an approach to resolve the situation where two seg-

ments are also incompatible when using δs = δmi n
s and δs+1 = δmi n

s+1 .

Algorithm 5.13. Suppose that for some fixed s, we have

µs +δmi n
s >µs+1 −δmi n

s+1 .

Consequently, the intervals
{
µs +δs : δs ∈∆s

}
and

{
µs+1 −δs+1 : δs+1 ∈∆s+1

}
are disjoint. In

this case, we propose to proceed by bisecting the bigger of the two segments using the bisection

point defined in Algorithm 5.9.

The following example illustrates Algorithm 5.13
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Example 5.14. Suppose F is defined as in Example 3.7. Furthermore, let z = (0,0.3,1) and

ε= 0.08. We get

µ1 = 2.3, δmi n
1 = 1.253, δ

r eg
1 = 2.2, δmax

1 = 2.860,

µ2 = 11.271, δmi n
2 = 8.146, δ

r eg
2 = 8.437, δmax

2 = 9.440,

which leads to

3.553 =µ1 +δmi n
1 >µ2 −δmi n

2 = 3.126.

We cannot resolve the incompatibility through resetting δ1 and δ2 for the purpose of fulfilling

condition (5.1). Therefore, applying Algorithm 5.13, we bisect the upper segment (0.3,1] into

the two segments (0.3,0.6] and (0.6,1] by using z̃ = 0.6. Figure 7 provides an illustration.

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
Incompatible segments

0 5 10 15 20

After bisection

FIGURE 7. For z = (0,0.3,1) and ε= 0.08, the parameters δ1 and δ2 cannot be

chosen such that the resulting PWL is admissible. The problem is resolved by

bisecting the upper segment at z̃ = 0.6.

Note that after this operation, the first and second segment are still not compatible, but they

can be connected through Algorithm 5.11. Note that F and z are equal in Example 5.12 and

Example 5.14. However, choosing a smaller ε (ε= 0.08 instead of ε= 0.2, respectively) leads to

narrower intervals ∆1 and ∆2.

5.5. Smoothing.

Suppose we have found an admissible solution, i.e., a parameter triple (z,µ,δ) which sat-

isfies (4.1) and (5.1). For certain applications of the PWL approximation algorithm, we may

know that the underlying distribution from which F was sampled is smooth. In this case, it

would be favourable if G← were continuous. However, in many cases G←, will have jumps,

i.e., µs +δs < µs+1 −δs+1 for some s. It is possible to reset δs and δs+1 to larger values in ∆s

and ∆s+1, respectively, such that G← becomes continuous.
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Algorithm 5.15. For s = {1, . . . ,S −2}:

(1) Check whether the following interval is nonempty:

[
µs +δr eg

s ,µs +δmax
s

]∩ [
µs+1 −δmax

s+1 ,µs+1 −δr eg
s+1

]
. (5.4)

(2) In case interval (5.4) is nonempty, and δs as well as δs+1 can be adjusted without vi-

olating (5.1), then reset δs and δs+1 such that µs +δs and µs+1 −δs+1 are equal to the

midpoint of (5.4).

The following example illustrates Algorithm 5.15.

Example 5.16. Suppose F is defined as in Example 3.7. Furthermore, let z = (0,0.6,1) and

ε= 0.25. We have

µ1 = 4.1, δmi n
1 = 1.47, δ

r eg
1 = 3.667, δmax

1 = 5.994,

µ2 = 15.3, δmi n
2 = 1.26, δ

r eg
2 = 3.75, δmax

2 = 8.073,

Choosing δ1 = δ
r eg
1 and δ2 = δ

r eg
2 leads to compatible segments since

7.767 =µ1 +δr eg
1 <µ2 −δr eg

2 = 11.55.

Note that the admissible ranges overlap, since 10.094 = µ1 +δmax
1 > µ2 −δmax

2 = 7.227. The

interval (5.4) is given by [7.767,10.094]. Therefore, Algorithm 5.15 suggests resetting δ1 = 4.830

and δ2 = 6.370 such that the two segments connect at the midpoint 8.930. Figure 8 provides

an illustration.

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
Using δ1 =δ reg1  and δ2 =δ reg2

0 5 10 15 20

After smoothing

FIGURE 8. Illustration of smoothing as described in Algorithm 5.15. After

smoothing, G←(t ) is continuous at t = z2 = 0.6.
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5.6. Full Algorithm.

Using the results of the previous sections, we now have all components to describe the full

approximation algorithm.

Algorithm 5.17. Fix ε > 0 and initialise z = (0,1). It is also possible to use a predefined set of

quantiles z = (0, z1, . . . , zR ,1), (with 0 < z1 < ·· · < zR < 1), if the user requires that the approxi-

mation preserves TVaRα(F ) = TVaRα(G) for α= z1, . . . , zR .

(1) Determine ∆s for every segment (zs , zs+1] in z through Theorem 5.5.

(2) If there are segments with ∆s = ;: Bisect all of them as described in Section 5.3 and

return to Point (1).

(3) Set δs = δ
r eg
s for all segments (see Section 5.2).

(4) In case there are segments which do not satisfy (5.1): If possible, use Algorithm 5.11.

Otherwise, use Algorithm 5.13 and go back to Point (3).

(5) Optional: Apply smoothing as described in Section 5.5.

Note that the algorithm is shift and scale invariant since the relative error in terms of

TVaR∆ also possesses these properties. Step (2) requires that the segments are bisected until

∆s 6= ; for all s, which implies that the resulting intervals are usually small.

The algorithm can be run with and without smoothing. Smoothing will make G have less

flat parts, which is desirable for underlying smooth distributions. Furthermore, since some

pairs of segments are connected at the same point when smoothing is applied, a smoothed

PWL approximation generally has less interpolation points and hence requires less memory

space. On the other hand, G may be further apart from the mean square regression
(
δ

r eg
s

)
than without smoothing. The numerical complexity added by the application of smoothing

is negligible as well as the additional run time. The effect of smoothing in the performance

of the algorithm is illustrated in Section 8. Overall, the authors generally recommend to use

smoothing.

In order to select the ε parameter, the user should assess the required accuracy as well

as the error of F in terms of TVaR∆ compared to the underlying distribution from which F

was sampled. In actuarial practice, the authors found ε parameters between 0.001 and 0.01

provide a good compromise between goodness-of-fit and number of interpolation points.
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6. STRICT ADMISSIBILITY AND SPECTRAL RISK MEASURES

In this section we will show that the error bounds used on TVaR∆ also extend to larger

spaces of risk measures. Additionally, we will strengthen the admissibility criterion leading

to a more general error bound for all spectral risk measures.

Definition 6.1. Let φ ∈ L1(0,1) be an admissible risk spectrum as defined in Acerbi (2002)(
i.e., φ : [0,1] 7→ [0,∞) is non-negative, decreasing, and satisfies

∫ 1
0 φ(t )dt = 1

)
. Then, the spec-

tral risk measure Mφ maps a distribution F to

Mφ(F ) =−
∫ 1

0
F←(t )φ(t )dt .

Analogous to the TVaR∆, we define the deviation M∆
φ (F ) = E[F ]−∫ 1

0 F←(t )φ(t )dt .

We refer to Gzyl and Mayoral (2006) for an overview on spectral risk measures.

Example 6.2. By setting φ(t ) = 1/α1{t ≤ α} for t ∈ [0,1], we see that TVaRα is a spectral risk

measure.

The following lemma shows that for a large set of spectral risk measures with piecewise

constant spectrum, an error bound analogous to the bound for TVaR∆ applies.

Lemma 6.3. Suppose G is an admissible approximation of F with accuracy ε. Furthermore, let

φ : [0,1] 7→ [0,∞) be a piecewise constant spectrum, such that φ(t ) = φ̃i for t ∈ ( (i −1)/n, i /n ],

where φ̃1, φ̃2, . . . , φ̃n ∈R is a non-negative decreasing sequence satisfying 1/n
∑n

i=1 φ̃i = 1. Then,∣∣∣M∆
φ (G)−M∆

φ (F )
∣∣∣≤ εM∆

φ (F ).

Proof. Letψ1,ψ2, . . . ,ψn be defined throughψn = φ̃n andψi = (φ̃i−φ̃i+1) i
n for i = 1,2, . . . ,n−

1. We have φ(t ) =∑n
i=1ψi

1
i /n 1{t ≤ i /n}, which leads to M∆

φ (F ) =∑n
i=1ψi TVaR∆i /n(F ) and

∣∣∣M∆
φ (G)−M∆

φ (F )
∣∣∣≤ ∣∣∣∣∣ n∑

i=1
ψi

(
TVaR∆i /n(G)−TVaR∆i /n(F )

)∣∣∣∣∣
≤

n∑
i=1

ψi
∣∣TVaR∆i /n(G)−TVaR∆i /n(F )

∣∣≤ n∑
i=1

ψiεTVaR∆i /n(F ) = εM∆
φ (F ). �

Example 6.4. Given F as in Example 3.7, i.e., n = 10. Let φ(t ) = 6 · 1{t ≤ 0.1}+ 1{0.1 < t ≤ 0.5}

be the risk spectrum. Then, Lemma 6.3 yields that for an admissible PWL approximation

G = PWL(x,y) with accuracy ε, we have |M∆
φ (G)−M∆

φ (F )| ≤ εM∆
φ (F ). Furthermore, note that

Mφ(F ) = 0.5TVaR0.1(F )+0.5TVaR0.5(F ).
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In the following definition, we will tighten the admissibility condition, which will then

allow to deduce an even stronger bound for the set of all spectral risk measures.

Definition 6.5. A PWL distribution G is called a strictly admissible approximation of F with

accuracy ε> 0 if E[F ] = E[G] and

sup
0<α<1

∣∣TVaR∆α(G)−TVaR∆α(F )
∣∣

TVaR∆α(F )
≤ ε. (6.1)

Definition 6.5 implies that, apart from having the same mean, the relative error of the

approximation G measured through the TVaR∆α does not exceed ε for any 0 <α< 1, i.e.,∣∣TVaR∆α(G)−TVaR∆α(F )
∣∣≤ εTVaR∆α(F ) (6.2)

for all 0 < α < 1. The difference between the definition of admissibility and strict admissi-

bility is that in Definition 4.1, (6.2) needs to be satisfied only for α ∈ {1/n,2/n, . . . , (n −1)/n},

whereas for full admissibility, (6.2) holds for every 0 < α < 1. Strict admissibility allows to

extend the result of Lemma 6.3 to the set of all spectral risk measures.

Theorem 6.6. Suppose G = PWL(x,y) is a strictly admissible approximation of F with accu-

racy ε. Furthermore, let M∆
φ be a spectral risk measure. Then,∣∣∣M∆

φ (G)−M∆
φ (F )

∣∣∣≤ εM∆
φ (F ). (6.3)

Proof. It is possible to express Mφ(F ) = ∫ 1
0 TVaRα(F )dΨ(α) where the measure dΨ(α) is

such that dΨ(α) = −αdφ(α) and
∫ 1

0 dΨ(α) = 1 (see Acerbi (2002)). Plugging the above into

M∆
φ (G)−M∆

φ (F ) yields∣∣∣M∆
φ (G)−M∆

φ (F )
∣∣∣= ∣∣∣∣∫ 1

0
(TVaRα(G)−TVaRα(F ))dΨ(α)

∣∣∣∣
≤

∫ 1

0
|TVaRα(G)−TVaRα(F )|dΨ(α) ≤

∫ 1

0
εTVaR∆α(F )dΨ(α) = εM∆

φ (F ). �

The following theorem provides a result on the numerical complexity of checking whether

a certain PWL distribution is strictly admissible. Due to the technicality, the proof is given in

Appendix B.

Theorem 6.7. Suppose G = PWL(x,y) is an admissible and sample compatible approxima-

tion of F with accuracy ε. Then, the segments where G violates the strict admissibility condi-

tion (6.1) can be found with numerical complexity O(n).

Proof. See Appendix B. �

The following algorithm describes how to obtain a strictly admissible PWL approximation.
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Algorithm 6.8. Set ε> 0.

(1) Execute Algorithm 5.17 in order to obtain an admissible approximation.

(2) Test through Theorem 6.7 whether the resulting PWL distribution is strictly admissible.

If not, bisect all segments which violate the strict admissibility condition and go back

to Point (2) in Algorithm 5.17.

Executing Algorithm 5.17 without testing for strict admissibility may potentially result in a

PWL approximation which does not satisfy the condition |TVaR∆α(G)−TVaR∆α(F )| ≤ εTVaR∆α(F )

for some α ∉ {1/n,2/n, ...,n/n}. In practice, this is not a problem. On the one hand, admis-

sible PWL approximations are often also strictly admissible due to continuity of α 7→ TVaRα.

On the other hand, for a large sample size n for which the algorithm is intended, the grid

{1/n,2/n, ...,n/n} is so dense that thresholds between the grid points are not of practical rel-

evance. Strict admissibility is mainly interesting from a mathematical point of view, since

Theorem 6.6 shows that it is numerically feasible to find a PWL approximation which satis-

fies (6.3) for any spectral risk measure. The effect of strict admissibility in the performance of

the algorithm is analysed in Section 8. Overall, the authors do recommend to enforce strict

admissibility only if n is very small or if spectral risk measures, different of TVaR, are applied

to the PWL approximation.

7. CONVERGENCE RATE AND NUMERICAL COMPLEXITY

In this section, we show abstract and empirical results allowing us to conclude that the

algorithm is numerically efficient. To do so, we will first define a distance measure between a

general distribution and its linear approximation over a segment. It will later allow to deduce

an error reduction rate.

Definition 7.1. For a distribution F , the distance D(F, (zs , zs+1],α) on the segment (zs , zs+1]

for α ∈ (zs , zs+1] is defined as:

D(F, (zs , zs+1],α) =
∣∣∣∣∫ α

zs

L←
(zs ,zs+1](t )dt −

∫ α

zs

F←(t )dt

∣∣∣∣ ,

where L←
(zs ,zs+1](t ) is a least-squares linear approximation given through (5.2) with parameters

µs and δs analogous to Lemma 5.3 and Theorem 5.7.
(
i.e., µs = 1/(zs+1 − zs)

∫ zs+1
zs

F←(t )dt as

well as δ
r eg
s = argminδs

∫ zs+1
zs

(F←(t )−L←
(zs ,zs+1](t ))2dt

)
. The overall distance D(F, [zs , zs+1]) is

defined as

D(F, (zs , zs+1]) = max
zs<α≤zs+1

D(F, (zs , zs+1],α).
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We see that Definition 7.1 provides a distance measure between a distribution F and its

linear (mean square regression) approximation, over the segment (zs , zs+1]. The distance is

measured through the maximum difference between the integrals over F and its linear ap-

proximation. The foregoing is analogous to the maximum (4.2), when dropping the normal-

isation termαTVaR∆α, which provides a reasonable approximation, since for small segments,

this factor will not vary much over the segment.

Theorem 7.2. Let Fpol be a distribution such that F←
pol (t ) = a+bt+ct 2 for t ∈ (zs , zs+1]. Analo-

gous to Algorithm 5.9, define z̃ = argmaxα{D(Fpol , [zs , zs+1],α)}. Then, bisection at the optimal

point z̃ multiplicatively reduces the approximation error:

max
{
D(Fpol , [zs , z̃]),D(Fpol , [z̃, zs+1])

}= (
max{z̃ − zs , zs+1 − z̃}

zs+1 − zs

)3

D(Fpol , [zs , zs+1]).

Proof. See Appendix C. �

Theorem 7.2 establishes that for a distribution with quadratic inverse, bisection of a seg-

ment multiplicatively reduces the distance measured analogous to (4.2). The result of The-

orem 7.2 cannot directly be applied to empirical sample distributions, which are discontin-

uous by definition. However, if we assume that F is sampled from a smooth distribution,

the sample size is large, and the segment is sufficiently small (i.e., 1/n ¿ zs+1 − zs ¿ 1) then

F← on (zs , zs+1] can be well approximated through a quadratic function. Therefore, we be-

lieve that also for empirical sample distributions an error reduction behaviour as shown in

Theorem 7.2 holds. We propose to investigate a proof of this conjecture in future research.

The following example corroborates that the multiplicative error reduction behaviour is

also observed in the PWL approximation algorithm.

Example 7.3. We consider an empirical distribution F sampled from a lognormal random

variable with mean 10, standard deviation 1, and sample size n = 106. We start with z(0) =
(0,1) and iteratively define z(k+1) by bisecting every segment in z(k) using Algorithm 5.9. The

error of the k-th iteration is then defined as

E (k) = max
(zs ,zs+1]∈z(k)

D(F, (zs , zs+1]).

Figure 9 shows how the approximation error E (k) decreases exponentially in the number of

bisections applied.

Theorem 7.2 and Example 7.3 indicate that the approximation error reduces exponen-

tially with the number of bisections. Due to Theorem 5.5, calculating ∆s for a segment re-

quires O(n(zs+1 − zs)) operations. In combination, we obtain that applying Algorithm 5.17
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FIGURE 9. Errors E (k) for iterations k = 0, . . . ,14.

on an ordered sample requires O(n log(1/ε)) operations. Sorting a sample of size n requires

O(n log(n)) operations with usual sorting algorithms. Therefore, the combined numerical

complexity of the PWL approximation algorithm is O(n log(n/ε)). With the same argument,

we can also conclude that the number of interpolation points is of order O(log(1/ε)). Both

statements will be empirically confirmed in Section 8.

8. ILLUSTRATIONS OF FULL ALGORITHM

In this section, we provide some examples illustrating results and performance of the ap-

proximation algorithm.

In Figure 10, we provide an empirical distribution F sampled from a loss distribution of an

excess-of-loss reinsurance treaty. In order to make visible the discrete nature of the sample

distribution, we use a small sample size n = 1000. The treaty is assumed to have a limit

of 10, a deductible of 12, and an aggregate limit of 30. Furthermore, we assume the loss

frequency to be Poisson(λ= 2) distributed and single losses to have a Pareto(x0 = 10,α= 2.5)

distribution. An admissible and smoothed PWL approximation with accuracy ε = 0.001 is

given by the dashed distribution. We see that the sample distribution has both discrete parts

with atoms at 0, 10, 20, and 30, as well as continuous parts between the atoms.

As a further illustration, we execute the approximation algorithm with smoothing, for dif-

ferent sample sizes and accuracies. Namely, we use n = 104,105,106 and ε= 0.1,0.01,0.001,0.0001,

which represent situations that would be encountered in practice. Table 1 shows the run

time in milliseconds, as well as the number of interpolation points, both averaged over 100 rep-

etitions on an ordinary computer (Intel Core i7, 2.93 GHz, 8 GB RAM).

We see that for a sample size of 1 million, the run time remains well below a second. The

resulting number of interpolation points of the PWL distribution remains below 100, which
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FIGURE 10. Sample distribution F (solid line) with n = 1000 and an admissi-

ble PWL approximation thereof (dashed, circles at grid points) with accuracy

ε= 0.001. The lower right sub-plot provides a zoom.

Run time in milliseconds Number of points (K )

n = 104 n = 105 n = 106 n = 104 n = 105 n = 106

ε= 0.1 2 14 155 11 11 11

ε= 0.01 4 19 171 19 17 17

ε= 0.001 5 25 192 31 27 28

ε= 0.0001 7 35 219 62 48 45

TABLE 1. Average run time (in milliseconds) and number of interpolation

points of the algorithm (over 100 repetitions) for an admissible and smoothed

approximation

for n = 106 implies a compression ratio above 10000. Due to the fact that the sample dis-

tribution gets smoother with increasing sample points, the number of interpolation points

decreases from n = 104 to n = 106. However, the opposite behaviour is usually observed

when the sample is drawn from an unbounded distribution.

In order to show the effect of applying smoothing and enforcing strict admissibility on the

algorithm, we analyse its performance when n = 106 and ε= 0.001 for the excess-of-loss and

a lognormal distribution with mean 10 and standard deviation 1. Table 2 shows the results

over 100 repetitions. The additional time required to smooth the approximation is negligible,

while the number of interpolation points of a smoothed approximation is lower than without

smoothing. When also enforcing strict admissibility, the run time of the algorithm almost

doubles for the excess-of-loss and more than triples for the lognormal distribution. The extra

points obtained to ensure strict admissibility are very few for large sample sizes. Therefore,



28 P. ARBENZ AND W. GUEVARA-ALARCÓN

enforcing strict admissibility does not seem to be worthwile given the required additional

computational effort.

Admissible Admissible Strictly admissible

non smoothed smoothed smoothed

Run time Points (K ) Run time Points (K ) Run time Points (K )

Excess-of-loss 190 30 191 28 340 28

Lognormal 311 83 311 69 1112 70

TABLE 2. Effect of non-smoothing and strict admissibility on the average run

time (in milliseconds) and number of interpolation points of the algorithm

(over 100 repetitions with n = 106 and ε= 0.001).

Overall, the authors recommend to generally use smoothing; and to enforce strict admis-

sibility only if n is very small or if spectral risk measures, different of TVaR, are applied to the

PWL approximation.

9. IMPLEMENTATION

We provide implementations of the algorithm in three programming languages: Python,

C++ and R. The code is provided under the permissive and free MIT license; it can be obtained

through the authors or at the following internet address:

https://sites.google.com/site/philipparbenz/home/pwl-approximation

Example 9.1. The Python implementation of the PWL approximation algorithm takes two

arguments: the sample (as a list or numpyarray) as well as an accuracy parameter.

LISTING 1. Minimal code example in Python

from compressor import PWLcompressor

Sample = [1, 1.6, 4.3, 4.6, 6, 7.1, 13, 13.4, 16, 18.8]

PWLapprox = PWLcompressor(Sample , Accuracy =0.01)

The C++ code provides a statically typed and very fast implementation. Dependencies are

limited to the C++ standard template library (STL).

Example 9.2. The C++ implementation of the PWL approximation algorithm takes two argu-

ments: the sample (as a vector of doubles) as well as an accuracy parameter.
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LISTING 2. Minimal code example in C++

#include <vector >

#include "compressor.h"

int main (){

std::vector <double > Sample = {1 ,1.6 ,4.3 ,4.6 ,6 ,7.1 ,13 ,13.4 ,16 ,18.8};

PWLCompressor Comp = PWLCompressor(Sample , 0.01); }

The R code is implemented in the form of a simple to use package.

Example 9.3. The R implementation of the PWL approximation algorithm takes two argu-

ments: the sample (as a vector) as well as an accuracy parameter.

LISTING 3. Minimal code example in R

library (PWLCompressor)

Sample <- c(1, 1.6, 4.3, 4.6, 6, 7.1, 13, 13.4, 16, 18.8)

PWLapprox <- PWLCompressor (Sample , 0.01)

All three implementations have optional parameters allowing to enforce smoothing and

strict admissibility.

10. COMPARISON TO ALTERNATIVE APPROACHES

In this section, we justify the selection of the class of PWL distributions as approximat-

ing distributions. Furthermore, we compare the PWL approximation algorithm to other ap-

proaches commonly applied when information on univariate sample distributions should

be preserved or transferred between actuarial systems.

The family of PWL distributions possesses several desirable properties:

• PWL distributions allow to efficiently calculate quantities such as cdf, quantiles (in-

verse cdf), moments (e.g., expectation) and risk measures (e.g., tail value-at-risk).

• PWL distributions can approximate all kind of sample distribution shapes and char-

acteristics, such as continuous and discrete distributions. Heavy tailed distributions

can be approximated with arbitrary precision.

• PWL distributions are straightforward to visualise, simple to export to spreadsheet

applications, and are easily explained to non-technical stakeholders.

• PWL distributions are parsimonious, in the sense that the number of parameters (i.e.,

the size of the parameter vectors x and y) scales with the complexity of the shape of

the sample distribution. Generally, the number of PWL parameters is massively lower
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than the size of the sample to be approximated. For a degenerate constant sample,

only two interpolation points are needed. Hence, PWL distributions are efficient with

respect to memory and network bandwidth resources.

Other often used methods for non-parametric approximations also employ piecewise de-

fined functions, based on higher degree polynomials. We restrict ourselves to linear seg-

ments since polynomials would make calculations of statistics much more difficult, provide

only minor additional accuracy, and would render the algorithm significantly less efficient.

We now compare the PWL approximation algorithm with other approaches. This compar-

ison is made with respect to the following desirable qualitative characteristics:

• A method is shape preserving if it allows to preserve important quantitative informa-

tion on the empirical distribution shape, e.g., on smoothness (continuous vs discrete

vs mixed), or tail decay (heavy tail or exponential decay).

• A method is IT system independent if it is not tied to a certain state of the IT system,

such as the version of the operating system, software or hardware.

• A method is memory and bandwidth efficient if storing and transmitting the retained

information on the sample distribution is efficient.

• A method is mean and risk preserving if the approximation has the same mean as the

sample and an explicit error bound can be given for a set of risk measures.

As an illustration for the importance of the shape preserving property, consider that a nor-

mal, binomial, and Pareto distribution may have the same mean and standard deviation, but

represent distributions with entirely different characteristics. With the introduction of the

Solvency II, SST, and Basel 3 regimes, it has become crucial that risks are not only under-

stood in terms of key statistics, but also in terms of the entire distribution.

The easiest and historically most frequently used solution is to store only key statistics,

such as mean and standard deviation of the sample, and discard the sample itself. This ap-

proach loses most information about the shape of the distribution, but it is of course mem-

ory efficient and IT system independent. Any information on risk measures not explicitly

stored is lost.

Storing the full sample allows to retain full information on the sample distribution. How-

ever, this approach is not memory and bandwidth efficient at all. The computing power of

ordinary computers is already so large that for many stochastic models, millions of simula-

tions can be generated in few seconds. Storing a sample of size 10 million requires around
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640 Megabytes of memory. Hence, repeatedly storing all simulation results quickly exhausts

memory and bandwidth resources, even in modern computing environments.

A third alternative is to store software and random number generator (RNG) underlying

the simulation. However, even if this is simple in the short term, it is hardly practical in

the long term: software or IT systems might be changed, upgraded or switched off; random

number generators might be replaced; licenses for commercial closed-source software may

expire or become unavailable. Furthermore, it leads to the necessity to run and maintain

multiple versions of old systems and code in parallel.

Another alternative approach is to store a predetermined set of quantiles. It is possible

to preserve the shape of the empirical distribution under this approach but unlike the algo-

rithm presented, the mean will only be close, but not exactly the same. The magnitude of the

difference between the empirical distribution and the approximation in terms of some risk

measure of interest will be unknown for the quantiles that are not predetermined. Addition-

ally, if this approach is implemented in a production environment dealing with thousands

of distributions coming from different underlying models, the amount of stored data will be

the same in all cases. On the contrary, the PWL approximations have a number of interpo-

lation points which is adapted to the complexity of the shape of the empirical distribution.

PWL approximation stores more points for the parts where the empirical distribution is con-

vex/concave and only few points in the parts where the distribution is constant or linear.

Table 3 provides a comparative overview on the qualitative properties of the different pre-

sented approaches. Only PWL approximation possesses all four desirable properties.

Shape IT system Memory and Mean and risk

preserving independent bandwidth efficient preserving

Store key statistics No Yes Yes No

Store full sample Yes Yes No Yes

Store RNG seed Yes No No Yes

Store fixed quantiles Yes Yes (Yes) No

PWL approximation Yes Yes Yes Yes

TABLE 3. Qualitative properties of the different presented approaches which

can be used to retain information on a univariate sample distribution.
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11. CONCLUSION

This paper introduces an algorithm that computes a piecewise linear approximation for a

given empirical univariate sample distribution. The algorithm is designed in such a way that

the empirical distribution and its approximation have the same mean, and that the relative

error for a set of spectral risk measures is uniformly bounded. The algorithm can be applied

to distributions with any kind of shape: continuous, discrete or mixed. It compresses the

information included in samples of size of millions to piecewise linear distributions con-

sisting of only a couple of hundred interpolation points. Therefore, this compression allows

to significantly reduce the amount of memory required to store large empirical sample dis-

tributions, which may have to be kept for several years. An efficient, free and open source

software implementation including a full set of test cases is provided.

In future research, we propose to investigate whether the error bound imposed on TVaR∆

also implies error bounds for cdf, moments, quantile function, or other risk measures. It

could be interesting to extend the algorithm to another distance measure that is not insur-

ance inspired, for instance to one of the distance measures described in Gibbs and Su (2002).
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APPENDIX A. PARAMETERS FOR ADMISSIBLE APPROXIMATIONS

Theorem A.1. Suppose G = PWL(z,µ,δ) and F are TVaR equivalent and sample compatible.

Then, for some fixed s,

max
α∈{

zs+ 1
n ,zs+ 2

n ,...,zs+1
}
∣∣TVaR∆α(G)−TVaR∆α(F )

∣∣
TVaR∆α(F )

≤ ε

is satisfied if and only if ak ≤ δsbk ≤ ck , for k = nzs +1,nzs +2, . . . ,nzs+1; where:

ak =−ε
(

kµ−
k∑

i=1
X(i )

)
+

(
k∑

i=nzs+1
X(i )

)
− (k −nzs)µs ,

bk = (k −nzs)(k −nzs+1)

n(zs+1 − zs)
,

ck =+ε
(

kµ−
k∑

i=1
X(i )

)
+

(
k∑

i=nzs+1
X(i )

)
− (k −nzs)µs .
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Proof. By using Theorem 3.11 and multiplying with nα, we get∣∣TVaR∆α(G)−TVaR∆α(F )
∣∣

TVaR∆α(F )
≤ ε ⇐⇒ n

∣∣∣∣∫ α

zs

G←(t )dt −
∫ α

zs

F←(t )dt

∣∣∣∣≤ nαεTVaR∆α(F ).

Using (5.2) and (3.1), we can calculate for α ∈ {zs +1/n, zs +2/n, . . . , zs+1} that∫ α

zs

G←(t )dt = (α− zs)µs +δs
(α− zs)(α− zs+1)

zs+1 − zs
,

∫ α

zs

F←(t )dt = 1

n

αn∑
i=nzs+1

X(i ).

Combining the above, using that |A| ≤ B is equivalent to −B ≤ A ≤ B , and reshuffling, we get

−nαεTVaR∆α(F )+n
∫ α

zs

F←(t )dt −n(α− zs)µs

≤ δsn
(α− zs)(α− zs+1)

zs+1 − zs
≤ (A.1)

+nαεTVaR∆α(F )+n
∫ α

zs

F←(t )dt −n(α− zs)µs .

We obtain the desired result by plugging in α= k/n, where α ∈ {
zs + 1

n , zs + 2
n , . . . , zs+1

}
. �

Theorem A.2. Given three sequences ai ,bi ,ci ∈R for i ∈ I , where I is a finite subset of N. Sup-

pose at least one of the bi is non-zero. Then there exists values δ ∈R such that the inequalities

ai ≤ δbi ≤ ci , i ∈ I , (A.2)

are all satisfied if and only if the following conditions are met:

min
i :bi=0

ai ≤ 0, max
i :bi=0

ci ≥ 0, δmi n ≤ δmax ,

where

δmi n = max

{
max
i :bi>0

ai

bi
, max

i :bi<0

ci

bi
,

}
, δmax = min

{
min

i :bi>0

ci

bi
, min

i :bi<0

ai

bi

}
.

In case these conditions hold, the admissible set of δ for (A.2) is given by the interval δ ∈
[δmi n ,δmax] ⊂R.

Proof. For i with bi = 0, the inequality (A.2) is equivalent to ai ≤ 0 ≤ ci . For bi > 0, (A.2) is

equivalent to ai /bi ≤ δ≤ ci /bi . For bi < 0, (A.2) is equivalent to ci /bi ≤ δ≤ ai /bi . Combining

and taking the maximum (minimum, respectively) yields the desired result. �

Proof of Theorem 5.5: Theorem A.1 shows that (4.2) is equivalent to a set of inequalities

in the form of (A.2). Using the result of Theorem A.2, we set ∆s = ; if δmi n > δmax and

∆s = [δmi n ,δmax] if δmi n ≤ δmax . �
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APPENDIX B. TESTING STRICT ADMISSIBILITY

In order to obtain a proof of Theorem 6.7, we first rewrite the inequality (6.1) as a set of n

functional inequalities Lk (x) ≤ Mk (x) ≤ Rk (x) such that Lk , Mk , and Rk are simple functions

which are numerically tractable. Namely, Lk and Rk are linear functions whereas Mk is qua-

dratic and convex. Note that the deduction of (A.1) from (6.1) did not make any assumption

on α. Hence, (6.1) holds if the inequality (A.1) holds for all α ∈ (0,1).

Theorem B.1. Suppose G = PWL(z,µ,δ) and F are TVaR equivalent and sample compatible.

Then, G is a strictly admissible approximation of F if and only if

|X(1) −x1| ≤ ε
(
E(F )−X(1)

)
, (B.1)

|X(n) −xK | ≤ ε
(
E(F )−X(n)

)
, (B.2)

Lk (x) ≤ Mk (x) ≤ Rk (x), (B.3)

for all k = 1, . . . ,n and x ∈ [0,1]. The values X(1) and X(n) are the minimum and maximum of

the sample from which F is derived. The functions Lk , Mk ,Rk : [0,1] 7→R are given by

Lk (x) = L0
k +x

(
L1

k −L0
k

)
,

Mk (x) = M 0
k +x

(
M 1

k −M 0
k

)+M 2
k x(x −1),

Rk (x) = R0
k +x

(
R1

k −R0
k

)
,

with L0
k = ak−1, L1

k = ak , M 0
k = δsbk−1, M 1

k = δsbk , M 2
k = δs/(nzs+1 −nzs), R0

k = ck−1, R1
k = ck ,

where ak , bk , and ck are defined as in Theorem A.1.

Proof. The conditions (B.1) and (B.2) appear from the following limit cases:

lim
α→0

∣∣TVaR∆α(G)−TVaR∆α(F )
∣∣

TVaR∆α(F )
= |X(1) −x1|
E(F )−X(1)

≤ ε

lim
α→1

∣∣∣TVaR∆up
α (G)−TVaR∆up

α (F )
∣∣∣

TVaR∆up
α (F )

= |X(n) −xK |
E(F )−X(n)

≤ ε

The proof of (B.3) is based on the deduction of (A.1) from (6.1). With the analogous argu-

ments, we can see that (A.1) for some fixed α is equivalent to L̃(α) ≤ M̃(α) ≤ R̃(α), where

L̃(α) =−nαεTVaR∆α(F )+n
∫ α

zs

F←(t )dt −n
∫ α

zs

µsdt ,

M̃(α) = n
∫ α

zs

G←(t )−µsdt ,

R̃(α) =+nαεTVaR∆α(F )+n
∫ α

zs

F←(t )dt −n
∫ α

zs

µsdt ,
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with s chosen such that zs ≤α≤ zs+1. Note that
∫ α

zs
µsdt and

∫ α
zs

(G←(t )−µs)dt can be calcu-

lated analytically, see (A.1). Finally, we define

Lk (x) = L̃ ((k −1+x)/n) , Mk (x) = M̃ ((k −1+x)/n) , Rk (x) = R̃ ((k −1+x)/n) ,

for k = 1, . . . ,n and x ∈ [0,1]. Recall that F is piecewise constant and G←(t ) is linear on

(zs , zs+1]. Therefore, Lk (x) and Rk (x) are linear, whereas Mk (x) is quadratic. A close inspec-

tion of the integrals reveals that the boundary points Lk (0), Mk (0), Rk (0) and Lk (1), Mk (1),

Rk (1) can easily be represented through the ak , bk , and ck as defined Theorem A.1. �

The set of inequalities in (B.3) can efficiently be solved through the following Theorem.

Theorem B.2. Given three functions L, M ,R : [0,1] →R

L(x) = L0 +x
(
L1 −L0) ,

M(x) = M 0 +x
(
M 1 −M 0)+M 2x(x −1),

R(x) = R0 +x
(
R1 −R0) ,

where L0,L1, M 0, M 1, M 2,R0,R1 ∈R. Suppose the parameters satisfy the following inequalities:

L0 ≤ M 0 ≤ R0, L1 ≤ M 1 ≤ R1, and M 2 ≥ 0. Then there exists x ∈ [0,1] such that the inequality

L(x) ≤ M(x) ≤ R(x) is not satisfied if and only if the following three conditions are all satisfied:

min{M 0 −L0, M 1 −L1} < 1

4
M 2, (B.4)∣∣(M 1 −M 0)− (

L1 −L0)∣∣< M 2, (B.5)

M(x∗)−L(x∗) < 0,

where x∗ = 1/2− (
(M 1 −M 0)− (L1 −L0)

)
/(2M 2).

Proof. The inequality M(x) ≤ R(x) holds since we assumed M 2 ≥ 0 (implying that M(x) is

convex) and M 0 ≤ R0 as well as M 1 ≤ R1.

Proving the second part of the inequality, L(x) ≤ M(x), is less straight forward. Define

f : [0,1] →R as f (x) = M(x)−L(x). The inequality (B.4) is easy to deduce: We have

min
0≤x≤1

f (x) ≥ min
0≤x≤1

(
M 0 −L0 +x

(
M 1 −M 0 −L1 +L0))+ min

0≤x≤1
M 2x(x −1)

= min
{

M 0 −L0, M 1 −L1}−1/4M 2.

Note that f is a convex quadratic function with f (0) = M 0−L0, f (1) = M 1−L1, and d 2/d x2 f (x) =
2M 2. This implies that the minimum of f is located at 0 or 1 if x∗ ∉ [0,1]. In case x∗ ∈ [0,1],

which is equivalent to (B.5), the minimum of f is at x∗, and f (x∗) = M(x∗)−L(x∗). �
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Proof of Theorem 6.7: Theorem B.1 and Theorem B.2 allow to check whether an admissi-

ble and sample compatible approximation is also strictly admissible. Doing so requires O(n)

operations, since there are n functions Lk , Mk and Rk . Checking one triple of these functions

through Theorem B.2 requires O(1) operations, which leads to a total complexity of O(n). �

APPENDIX C. PROOF OF ERROR REDUCTION RATE

Lemma C.1. Let Fpol be a distribution such that F←
pol (t ) = a +bt + ct 2 for t ∈ (zs , zs+1]. Then,

D(Fpol , [zs , zs+1],α) = |c|
6

∣∣−2α3 +3α2(zs+1 + zs)−α((zs+1 + zs)2 +2zs zs+1)+ zs zs+1(zs+1 + zs)
∣∣

Proof. In this case µs is given by

µs = 1

zs+1 − zs

∫ zs+1

zs

F←
pol (t )dt = 1

zs+1 − zs

(
a(zs+1 − zs)+ b(z2

s+1 − z2
s )

2
+ c(z3

s+1 − z3
s )

3

)
.

Analogous to Theorem 5.7, we obtain

d

dδs
D(δs) =−2

(
2

zs+1 − zs

∫ zs+1

zs

F←
pol (t )tdt −µs(zs+1 + zs)

)
+2δs

(zs+1 − zs

3

)
.

Setting the above to zero yields

δ
r eg
s = 6

(zs+1 − zs)2

(
(a −µs)(z2

s+1 − z2
s )

2
+ b(z3

s+1 − z3
s )

3
+ c(z4

s+1 − z4
s )

4

)
.

Plugging the above equations for µs and δ
r eg
s into

D(Fpol , [zs , zs+1],α) =
∣∣∣∣∫ α

zs

(
µs +δs

(
2

t − zs

zs+1 − zs
−1

))
dt −

∫ α

zs

(
a +bt + ct 2)dt

∣∣∣∣
leads to the desired result. �

Lemma C.2. Let Fpol be a distribution such that F←
pol (t ) = a +bt + ct 2 for t ∈ (zs , zs+1]. Then,

D(Fpol , [zs , zs+1]) = |c|p3(zs+1 − zs)3

108

Proof. Using the result of Lemma C.1, we can deduce the derivative

6

|c|
d

dα
D(Fpol , [zs , zs+1],α) =−6α2 +6α(zs+1 + zs)− (

(zs+1 + zs)2 +2zs zs+1
)

.

Setting the above expression to zero yields

α∗ = zs+1 + zs

2
±
p

3(zs+1 − zs)

6
.

We obtain the desired result by plugging in D(Fpol , [zs , zs+1]) =D(Fpol , [zs , zs+1],α∗). �

Proof of Theorem 7.2: Immediate consequence of Lemma C.2. �


