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Abstract 

This article relates natural frequency representations of cue-criterion relationships to 

fast-and-frugal heuristics for inferences based on multiple cues. In the conceptual part of this 

work, three approaches to classification are compared to one another: The first uses a natural 

Bayesian classification scheme, based on profile memorization and natural frequencies. The 

second is based on Naïve Bayes, a heuristic that assumes conditional independence between 

cues (given the criterion). The third approach is to construct fast-and-frugal classification 

trees, which can be conceived as pruned versions of diagnostic natural frequency trees. Fast-

and-frugal trees can be described as lexicographic classifiers but can also be related to another 

fundamental class of models, namely linear models. Linear classifiers with fixed thresholds 

and noncompensatory weights coincide with fast-and-frugal trees—not as processes but in 

their output. Various heuristic principles for tree construction are proposed. In the second, 

empirical part of this article, the classification performance of the three approaches when 

making inferences under uncertainty (i.e., out of sample) is evaluated in 11 medical data sets 

in terms of Receiver Operating Characteristics (ROC) diagrams and predictive accuracy. 

Results show that the two heuristic approaches, Naïve Bayes and fast-and-frugal trees, 

generally outperformed the model that is normative when fitting known data, namely 

classification based on natural frequencies (or, equivalently, profile memorization). The 

success of fast-and-frugal trees is grounded in their ecological rationality: their construction 

principles can exploit the structure of information in the data sets. Finally, implications, 

applications, limitations, and possible extensions of this work are discussed.  

Keywords: Fast-and-frugal trees, decision trees, heuristics, classification, 

categorization, Bayesian inferences, computer simulation, lexicographic strategies, probability 
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1. Introduction 

Probability theory emerged during the Enlightenment as a framework for making reasonable 

inferences under uncertainty (Daston, 1995). According to Pierre-Simon Laplace (1749‒

1827), probability formalized the intuitions of l’homme eclairé, the enlightened man: “… the 

theory of probabilities is at bottom only common sense reduced to calculus; it makes us 

appreciate with exactitude that which exact minds feel by a sort of instinct without being able 

ofttimes to give a reason for it” (Laplace, 1814/1951, p. 196). Laplace began assembling the 

pieces of a puzzle, namely the many instruments and concepts introduced by multiple 

mathematicians in the century and a half since the correspondence between Blaise Pascal and 

Pierre de Fermat in 1654, who are considered to be the founders of probability theory (Ore, 

1960). These instruments and concepts included the principles of what was later called 

Bayesian inference for inverting conditional probabilities or inverse probability. Indeed, 

Bayes’ formula was among the principles of probability that he listed.  

Yet Laplace’s approach to probabilities has been criticized as circular: for 

“equipossible” outcomes, the probability of an event was defined as the number of successful 

outcomes divided by the number of possible outcomes. The circularity consisted in the 

“equipossible” requirement, which was explained in terms of the physical conditions of the 

random generator (e.g., an unloaded die) used in the experiment. Another century had to pass 

before the theory of probability with all its instruments could be embedded in the edifice of 

formal mathematics. This happened when Kolmogorov (1933) published the Foundations of 

the Theory of Probability, thereby laying the modern axiomatic foundations of probability 

theory. The price of this celebrated achievement, with its foundational rigor, was a certain loss 

of natural probabilistic intuition. From that moment on, as Leo Breiman (1968) later 

commented, probability theory was condemned to having a right and a left hand—the right 

hand being the measure-theoretical approach that guarantees mathematical rigor, and the left 

hand meaning ‘intuitive probabilistic thinking.’ The integration of these two aspects is not 

easy and sometimes makes modern probability theory both elusive and cumbersome. When 

probability is treated as a mathematical enterprise based on countably additive measures on 

sigma-algebras of sets, the intuitive and natural understanding of it is lost.  

To illustrate, consider a physician who wants to infer the presence of a particular 

disease given a set of observations. The Kolmogorov approach to this task uses probabilities: 

The physician starts with a prior probability )(DP  that disease D  is present. She then 

https://en.wikipedia.org/wiki/Probability_axioms
https://en.wikipedia.org/wiki/Probability_axioms
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observes evidence E  in the form of a set of cues (observations, symptoms, tests) and assesses 

the probability )|( DEP that the evidence will occur if the disease is present and the 

probability )|( DEP  that the evidence will occur if the disease is not present. Based on these 

probabilities, the physician then uses Bayes theorem to find the probability )|( EDP , also 

called the posterior probability of the disease, given the evidence: 

 
)()|()()|(

)()|(
)|(

DPDEPDPDEP

DPDEP
EDP


  (1) 

There is a flurry of literature demonstrating how difficult it is to use Bayesian 

reasoning in this framework—even for experts and in the simple case of a single symptom or 

test (see, e.g., Eddy, 1982; Hoffrage, Lindsey, Hertwig, & Gigerenzer, 2000, probability 

condition). The difficulty appears to reside in the format of information representation in (1).  

Simply changing the information format to natural frequencies has been shown to 

facilitate physicians’ information processing (Gigerenzer & Hoffrage, 1995). Now the doctor 

thinks of an absolute (and possibly fictitious) number of people with and without the disease, 

and then subdivides this population into subclasses (having or not having the disease), which 

are again subdivided according to the test results (positive and negative). Here, the 

proportions of these subclasses correspond to the original probabilities involved. The 

computation to be made at the end is simple arithmetic: the number of true positives divided 

by the sum of the number of true positives and the number of false positives. As using natural 

frequencies instead of probabilities facilitates the computation, it is not surprising that 

representing statistical information in terms of natural frequencies rather than Kolmogorov 

probabilities improves performance in Bayesian inference tasks (Gigerenzer & Hoffrage, 

1995). This beneficial effect of natural frequencies has been demonstrated in a variety of 

applied domains, such as medicine, law, and education (Gigerenzer, 2002; Hoffrage & 

Gigerenzer, 1998; Hoffrage et al., 2000).  

Most importantly for the present investigation, Hoffrage, Krauss, Martignon, and 

Gigerenzer (2015) have shown empirically that the beneficial effects of natural frequencies 

extend to more complex situations than those involving just one cue (symptom, test, or 

feature). Participants who were given the prior probability of a disease and statistical 

information about two independent tests (specifically, their sensitivities and false-alarm rates) 

in terms of probabilities struggled to infer the probability of the disease being present if both 
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tests were positive. In contrast, when they received the same (i.e., mathematically equivalent) 

information in terms of natural frequencies, about three quarters of the participants derived 

the correct (i.e., Bayesian) solution. The authors concluded that natural frequencies also 

facilitate Bayesian performance in tasks involving two or three cues—but they acknowledged 

that there are obvious limits to the number of cues people can deal with by means of natural 

frequencies.  

Two questions arise when Bayesian reasoning with a single cue is extended to 

multiple cues. The first is descriptive and empirical: What is the maximum number of cues 

the human mind can handle with natural frequency representations? As the number of cues 

grows, the size of the natural frequency tree explodes. At some point, Bayesian performance 

can be expected to reach its limits. The limits depend on various factors, such as whether the 

decisions need to be made based on experience or based on description (Hertwig, Barron, 

Weber, & Erev, 2004). The second question is prescriptive: How can and should one make 

inferences under uncertainty when the number of cues exceeds what people can handle with 

natural frequency representations? Note that this question is relevant not only because of 

memory constraints (for inferences based on experience) or because handling huge numbers 

of cue‒value combinations is unfeasible (for inferences based on description). There is 

another reason one may not want to use natural frequency representations for tasks involving 

multiple cues, namely the eventual “brittleness”—as opposed to robustness—of the resulting 

tree: As the tree grows, the number of end nodes becomes ever larger, while the number of 

cases per end node becomes ever smaller. A decision maker may not even have encountered 

some of the cue‒value combinations, or, for some specific combinations of cue values, she 

may have encountered so few cases that she finds it questionable to generalize to new cases.  

One way to tackle the problems associated with large numbers of cues—limited 

memory, unfeasibility, and lack of robustness—is to adopt heuristic procedures. As it turns 

out, various heuristics can be used to classify objects based on multiple cues and to estimate 

the probabilities of those classifications being correct. The traditional Bayesian paradigm has 

its “own” heuristic: Naïve Bayes. Naïve Bayes simplifies reality—which is why it is 

considered a heuristic—by assuming conditional independence of cues given the category in 

question. Among the Bayesian networks that make use of all cues, Naïve Bayes is the 

simplest. Nevertheless, it requires much computational effort: prior distributions are updated 



6 

 

by means of Bayes’ formula which, if the number of cues is large, involves a large number of 

multiplications.  

A much simpler alternative is offered by fast-and-frugal heuristics (Gigerenzer, Todd, 

& the ABC Research Group, 1999), specifically, fast-and-frugal trees (Martignon, 

Katsikopoulos, & Woike, 2008, 2012; Martignon, Vitouch, Takezawa, & Forster, 2003). The 

fast-and-frugal trees we analyze in this article can be conceptualized as pruned and simplified 

natural frequency trees. Like other heuristics proposed and studied in the context of the simple 

heuristics program (Gigerenzer, Hertwig, & Pachur, 2011), fast-and-frugal trees truncate 

information search and typically make a classification based on just a few of the available 

cues. They thus reduce memory load and can be set up and executed by the unaided mind, 

requiring, at most, paper and pencil.  

What are the costs of using heuristics, be they Naïve Bayes or fast-and-frugal trees? 

Precisely this is one of the questions addressed by this article. On the one hand, we aim to 

illustrate how the two heuristics can be integrated within a naturally Bayesian approach based 

on natural frequencies; on the other hand, we compare, using computer simulations in settings 

with multiple cues, the classification performance of three strategies: (1) the natural Bayesian 

relying on profile memorization, (2) Naïve Bayes, and (3) various fast-and-frugal trees.  

The article is structured as follows: We first stress the importance of sampling, both in 

order to illustrate natural frequencies and to justify our approach of testing the strategies’ 

performance out of sample. We then extend Bayesian inferences with natural frequency 

representations from situations with one cue to situations with multiple cues. Subsequently, 

we show how the strategies listed above can be constructed and how they function in the 

context of classifications with multiple cues, focusing on how they can be integrated into a 

common framework. In the Methods section, we explain how we set up the simulations: 

which data sets were used, how the strategies were implemented, and how their performance 

was measured. We then report the results and, finally, we discuss applications, limitations, 

and avenues for further research.  

2. Natural Sampling and Natural Frequencies: Three Cases 

Before we consider classifications with multiple cues, let us examine the relationship 

between probabilities and natural frequencies more thoroughly than has been done in the past. 

These two concepts can be related to the difference between population and sample, which is 
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crucial when it comes to evaluating the performance of strategies, as shown below. We 

distinguish three possible cases in this context. The first does not involve sampling (simply 

because the entire population is at hand), the second involves a fictitious sample from an 

infinite population that reflects the probabilities of the population, and the third involves 

natural sampling from a population—and hence sampling error. Let us look at these cases in 

more detail. 

In Case 1, inferences are made within a given, finite sample that may also be labelled 

the reference population. The natural frequencies are the tallies that result when measuring the 

state of the criterion (here, disease) and of the cue for each object (here, each patient) in the 

population. These frequencies can be arranged in a tree that first splits the number of patients 

into those with disease and those without disease. In a second layer, each of these two 

numbers can be split into the number of patients who test positive and the number who test 

negative. Because the test result is causally affected by the state of the criterion, this tree is 

often referred to as a causal tree (Martignon et al., 2003; Waldmann & Martignon, 1998). 

Note that not only the four joint frequencies at the lowest layer are natural frequencies, but 

also the margins for disease and no disease are natural frequencies, simply because they can 

be observed in this population. To infer the state of the criterion for a patient for whom only 

the test result is available, this tree needs to be inverted, that is, the number of patients must 

first be split into the numbers of patients who test positive and those who test negative. Each 

of these two nodes is then split into those who have the disease and those who do not. Again, 

all numbers in this tree are natural frequencies. A tree with numbers arranged in this way is 

called a diagnostic tree (Martignon et al., 2003). Note that making inferences with this 

diagnostic tree amounts to making inferences for known patients. If, for a given patient drawn 

randomly from this reference population, only the cue information is provided and the 

criterion needs to be inferred, the normative approach would be to ask “Which is the best 

inference that can be made for all patients that share exactly this cue information?” The 

answer can be read off from a diagnostic natural frequency tree. It is the same answer that can 

be obtained from applying Bayes’ theorem after the natural frequencies have been translated 

into probabilities.  

Case 2 does not describe the relationship between variables in a finite sample, but in 

an infinite population of random results, such as the population of tosses of a pair of dice 

(e.g., a red and a blue die, with the criterion being the sum of both dice and the cue being the 
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number of the red die). Whereas, in Case 1, probabilities are Laplace probabilities that 

correspond to observed frequencies, in Case 2, they are derived from assumptions (e.g., about 

the physical propensities of objects, such as symmetry or equal distribution of mass within the 

dice). These probabilities can then be translated into a frequency tree that has the same 

structure as a natural frequency tree. In this case, however, the top node is no longer a fixed 

and finite population for which all natural frequencies below this node have been observed 

empirically. Rather, it is a fictitious number that forms the starting point used to express the 

expected relationships between all numbers in the tree. In other words, the frequencies in this 

tree are not natural in the sense that they have been observed empirically; they are basically 

“expected frequencies” (Spiegelhalter & Gage, 2014), that is, the frequencies one expects in 

the long run. Predictions made for new chance events would not be predictions out of 

sample—simply because the new chance events can be seen as being sampled from the same, 

infinite, population. Hence, they would not be predictions under uncertainty, with unknown 

probabilities, but predictions based on known probabilities (or, equivalently, known expected 

frequencies). The normative solution could therefore be obtained from applying Bayes’ 

theorem (or, equivalently, using the tree with fictitious frequencies). Note that when 

Gigerenzer and Hoffrage (1995) originally explained the concept of natural frequencies 

(which, in that publication, were still called frequency formats), they asked readers to imagine 

“an old, experienced physician in an illiterate society” (p. 686) who observed a fictitious 

number of women. Running this example with 100 women allowed the authors to translate the 

probabilities into expected frequencies that were whole numbers. With a fictitious sample of 

101 women this would not have been possible. This shows that not only the 100 women in 

Gigerenzer and Hoffrage’s (1995) tree were fictitious, but all other frequencies in this tree 

were also fictitious, in the sense that they reflected expected frequencies and not observed 

frequencies. In fact, their example was the present Case 2.  

Drawing a random sample from a fixed population, also called natural sampling, 

constitutes Case 3. Such sampling leads to natural frequencies. Repeating this process leads to 

multiple samples, multiple trees (one for each sample), and hence to variance across samples. 

When a real sample is drawn from a population, it is extremely unlikely that the proportions 

in the sample are identical to those in the population—but note that this identity is enforced in 

Case 2. In Case 3, inferences for new, as-yet-unseen objects are inferences under 

uncertainty—simply because the probabilities in the populations are not known. The 

probabilities derived from the natural frequencies observed so far may be good estimates for 
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the population probabilities, but estimates should not be confused with known probabilities. 

As a consequence, Bayes’ theorem (or the corresponding inference based on the natural 

frequencies) may not necessarily provide the best response for new objects. Note that this 

third case, in which inferences need to be made under uncertainty, is the most relevant one for 

daily decision making—and it is precisely here that heuristics can potentially outperform 

Bayes’ theorem (which is, as we have seen, best and normative for Case 1 and 2). 

3. Inferences with Multiple Cues: Approaches to Classification  

Classification—or, synonymously, categorization—is fundamental for cognition: 

Humans combine features or cues into concepts and decompose concepts into features or 

cues. Furthermore, classification is essential for decision making. Most decisions depend on 

how people categorize objects, situations, or events. Let us consider the case of a physician 

who makes decisions on how to treat patients. These decisions hinge on the categorization of 

those patients as having or not having specified diseases. For each patient, the physician is 

presented with a set of cues (e.g., direct observations, reported symptoms, or test results) on 

which to base her diagnosis. First, we assume the physician wants to infer the answer to a 

simple yes/no question: Does a given patient have the disease under consideration? Second, 

we assume that the input to make this inference is a set of binary cues. A binary cue is either 

in its “high” state (cue value is 1, coded such that it indicates the disease being present) or in 

its “low” state (cue value is 0). The combination of all cue values for a given object (here, 

patient) will henceforth be referred to as a cue profile. Finally, we assume that the physician 

has to report her inference not as a probability but as a simple “disease present” (denoted as 1) 

or “disease absent” (denoted as 0), with no opportunity to hedge the result. The relevant 

question is whether the physician’s inference is correct or incorrect. In what follows, we 

describe different approaches to this classification task, from strictly normative to heuristic.  

3.1 Bayes Theorem and Profile Memorization 

How does Bayes’ theorem stated for probabilities and for situations with one cue 

extend to situations in which the evidence consists of several pieces of information? As we 

have mentioned, natural frequencies are also applicable to tasks with two or three cues 

(Hoffrage et al., 2015). Figure 1A illustrates a causal natural frequency tree that displays, for a 

finite population of 10,000 women and depending on whether or not they have breast cancer, 

the numbers of women for each possible combination of results when two tests are conducted, 

namely a mammogram (M) and an ultrasound (U). Although the round number 10,000 would 
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seem to be fictitious (and hence Case 2 discussed above), we will describe this tree as if all 

numbers were not expected frequencies, but observed frequencies. Figure 1B displays the 

same information in an inverted (i.e., diagnostic) tree, in which the set of 10,000 women is 

first split according to the mammography result, then according to the ultrasound result, and 

in which the third layer displays, for each of the eight cue profiles, how many of the patients 

with the same profile have the disease and how many not. For instance, to infer whether a 

woman with a positive mammogram and a negative ultrasound has breast cancer, the natural 

Bayesian would look up, in internal or external memory, how many women share this profile 

(n = 916, Figure 1B) and would find that four have breast cancer. This procedure is based on 

the full information contained in the natural frequency tree and is termed profile 

memorization. Of course, the resulting proportion (4/916), or, equivalently, the posterior 

probability that results from Equation 1, is not yet a classification. However, by comparing it 

to a critical threshold, it can easily be turned into one. When fitting known data, no other 

procedure is able to outperform the profile memorization method of the natural Bayesian. 

Figure 1C shows another diagnostic tree—one in which the ultrasound is displayed 

above the mammography. Panels B and C thus differ with respect to the order of the cues. 

Note that for n cues, there are n! possible diagnostic trees, each containing n + 1 layers 

(excluding the top node but including the final end nodes with the criterion), and a total of 2n 

distinct cue profiles. For 10 cues, for instance, there would be 3,628,800 different diagnostic 

trees, each with 1,024 distinct cue profiles. As these numbers show, natural frequency 

representations at some point reach their limits. First, frequencies become hard to memorize. 

As Massaro (1998) put it, “a frequency algorithm will not work” because “it might not be 

reasonable to assume that people can maintain exemplars of all possible symptom 

configurations” (p. 178). Second, even if memory is not a problem because tables or visual 

displays are at hand, these representations will be complex. Most importantly, however, many 

of the numbers in natural frequency trees (both causal and diagnostic) will be zero. This is not 

a problem when inferences are made within a set of known patients (Case 1, as discussed 

above), because here such objects do not exist. Likewise, it does not constitute a problem 

when the reference class is infinite (Case 2), because even the smallest probabilities (which 

are assumed to be known) can easily be represented in a frequency tree that starts from an 

arbitrarily chosen and huge, fictitious reference population. It is, however, an issue when 

inferences are made about new patients based on empirical samples (Case 3). What should be 
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inferred for a new patient if none of the patients observed so far have had the same cue 

profile?  

<<<<<< Figure 1 >>>>> 

3.2 Naïve Bayes 

A full natural frequency tree with n cues is powerful enough to display all 

interdependencies among cues but it requires the physician to memorize how often the 

criterion is present in 2n sets of patients with distinct cue profiles. A commonly applied 

simplification to the general problem used by Bayesian statisticians and Bayesian modelers is 

to assume that the evidence items (e.g., cues, tests, or symptoms) are independent conditional 

on presence or absence of the disease. This assumption marks the transition from the 

sophisticated, natural Bayesian (who uses profile memorization) to the naïve Bayesian (who 

seeks to simplify). The naïve Bayesian assesses, for each symptom 𝐸𝑘 , only two 

probabilities: 𝑃(𝐸𝑘
𝐻|𝐷), the probability that the evidence is in its “high” state (𝐸𝑘

𝐻) given that 

the disease is present, and 𝑃(𝐸𝑘
𝐻|𝐷), the probability that the evidence is in its “high” state 

(𝐸𝑘
𝐻) given that the disease is absent. By the laws of probability, the evidence is in its “low” 

state (𝐸𝑘
𝐿) with probability 𝑃(𝐸𝑘

𝐿|𝐷) = 1 − 𝑃(𝐸𝑘
𝐻|𝐷) if the disease is present and 𝑃(𝐸𝑘

𝐿|𝐷) =

1 − 𝑃(𝐸𝑘
𝐻|𝐷)=if the disease is absent. For multiple symptoms the evidence consists of the 

vector of symptom states (𝐸1
𝑗1 , . . . , 𝐸𝑛

𝑗𝑛). With the conditional independence assumption, 

Equation (1) becomes: 

 𝑃(𝐷|𝐸1
𝑗1 , . . . , 𝐸𝑛

𝑗𝑛) =
𝑃(𝐷) ∏ 𝑃(𝐸𝑘

𝑗𝑘
|𝐷)𝑘

𝑃(𝐷) ∏ 𝑃(𝐸𝑘
𝑗𝑘

|𝐷)𝑘 +𝑃(𝐷) ∏ 𝑃(𝐸𝑘
𝑗𝑘

|�̅�)𝑘

, (2) 

where jk denotes either the “high” or “low” state of 𝐸𝑘 . The required probabilities may be 

assessed intuitively by an expert or estimated from data. As stated above, their multiplication 

according to (2) implements the assumption that the pieces of evidence are conditionally 

independent. As in the case of profile memorization, the posterior probability obtained by (2) 

is not yet a classification, but comparing it to a threshold leads to one. 

The Naïve Bayes model drastically reduces the number of probability assessments 

from 2𝑛 (for the 2𝑛 distinct cue profiles in the full tree) to 2𝑛 + 1 (two likelihoods for each 

cue plus the base rate of the disease); for 10 cues, this represents a reduction from 1,024 to 21. 

Still, calculating Equation 2 is beyond the reach of intuitive judgment. It is, however, 
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manageable with paper and pencil—especially if natural (i.e., expected) frequencies are used 

rather than probabilities. Using the numbers in Figure 1 (Panels A, D, and E), for instance, the 

probability that a woman with a positive mammogram and a positive ultrasound has breast 

cancer is  

100

10000
×

80

100
×

95

100
100

10000
×

80

100
×

95

100
+

9900

10000
×

950

9900
×

396

9900

=
2

3
.  

Posterior probabilities calculated with Equation 2 have been shown to be quite robust 

to generalization (Domingos & Pazzani, 1997). Naïve Bayes is often used as a Bayesian 

benchmark among simple models when analyzing small data sets (Martignon & Laskey, 

1999). 

3.3 Fast-and-Frugal Trees 

Fast-and-frugal trees go one step further in terms of simplicity. Like Naïve Bayes, they 

take independence between cues (conditional on the criterion) for granted and they are 

constructed without checking whether this assumption is, in fact, justified. Unlike Naïve 

Bayes, however, they do not necessarily use and integrate all information. As shown in 

Equation 2, Naïve Bayes uses every cue. Fast-and-frugal trees, in contrast, typically consult 

only a subset of the available cues.  

Fast-and-frugal trees were introduced and defined by Martignon et al. (2003; similar 

models had been previously used by Dhami and Ayton, 2001, Dhami and Harries, 2001, and 

Fischer, Steiner, Zucol, Berger, Martignon, et al., 2002). Fast-and-frugal trees can be 

described in terms of their building blocks. First, they have a search rule: They inspect cues in 

a specific order. Second, they have a stopping rule: Each cue has one value that leads to an 

exit node and hence to a classification, and another value that leads to consulting the next cue 

in the cue hierarchy (the exception being the last cue in the hierarchy, which has two exit 

nodes). Finally, they have a classification rule. They always classify the patient as having the 

disease if the value of the consulted cue is in its high state (henceforth also referred to as 

positive) and as not having the disease if this value is in its low state (henceforth also referred 

to as negative). Trees that classify patients as having the disease if the proportion of patients 

with the disease in the exit nodes exceeds a threshold are not fast-and-frugal trees and they are 

not considered here. 
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We now illustrate how fast-and-frugal trees relate to full natural frequency trees. 

Subsequently, we discuss the link between fast-and-frugal trees, lexicographic strategies, and 

linear strategies. At the end of this section, we explain how fast-and-frugal trees can be 

constructed. 

Figure 2A displays the data of Green and Mehr (1997) in terms of natural frequencies, 

arranged in a diagnostic tree that starts with the cues and finishes with the criterion 

(occurrence of myocardial infarction) in the last layer. The tree has been constructed based on 

information about 89 patients, and its classification performance is determined for exactly 

those 89 patients (hence, Case 1 discussed above). Figure 2B also displays a diagnostic tree. 

The cues are arranged in the same order as in 2A, but some branches are cut—in fact, tree 2B 

is a pruned version of tree 2A. The tree in 2B has at least one exit at each level and therefore 

fulfills Martignon, Katsikopoulos, and Woike’s (2012), definition of a fast-and-frugal 

(classification) tree. Specifically, in the first step, all 89 patients’ electrocardiograms are 

checked for an elevated ST segment. The 33 for whom the answer is positive (ST+) are 

classified as high risk, without considering any further information. The remaining 56 patients 

are checked for chest pain as the main symptom. Among those 56, the 29 for whom chest pain 

is not the main symptom (CP–) are classified as low risk—again, without considering any 

further information. The remaining 27 patients are checked for the presence of any other 

symptom of myocardial infarction. Among those 27, the 17 for whom at least one other 

symptom is present (OS+) are classified as high risk, and the 10 remaining patients (OS–) are 

classified as low risk. Green and Mehr reported that diagnosis according to this fast-and-

frugal tree was more accurate than either physicians’ clinical judgments or logistic regression. 

<<<<<< Figure 2 >>>>> 

3.3.1 Comparing Profile Memorization with Green and Mehr’s (1997) Tree 

How does classification of new patients based on the full (diagnostic) natural 

frequency tree in Figure 2A differ from that with the fast-and-frugal classification tree in 

Figure 2B? A Bayesian physician would first check each cue and determine the patient’s cue 

profile. She would then assess the probability of an infarction for that cue profile based on the 

information in the fifth level of the natural frequency tree—this is, using what we term profile 

memorization. For example, the probability of infarction among the 17 patients with a cue 

profile [0, 1, 1], that is [ST–, CP+, OS+], is 2/17. This probability is then considered as the best 

estimate of the posterior probability for a new patient with the same cue profile. Finally, a 
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threshold could be used to decide if the probability of infarction is high enough to classify the 

new patient as being at high risk. For example, if the threshold is 0.1, new patients with cue 

profiles [1, 1, 1], [1, 1, 0], [1, 0, 1], or [0, 1, 1] would be classified as high risk, and those with 

any other cue profile would be classified as low risk. 

The fast-and-frugal tree displayed in Figure 2B distinguishes between only four, rather 

than eight, cue profiles. These are [1, *, *], [0, 1, 1], [0, 1, 0], and [0, 0, *]. The “*” denotes 

that this particular cue is not consulted. For instance, the cue profile [1, *, *] denotes that all 

33 patients with ST+ are pooled together, without any further differentiation. As a 

consequence, they all have the same posterior probability, namely 13/33. Note that the fast-

and-frugal tree handles the cue profile [1, 0, 0] differently from the full natural frequency tree. 

In the full tree, a patient with this profile would be classified as a low risk patient (the only 

two patients with this profile had no infarction). In the fast-and-frugal tree, in contrast, 

information search stops if the first cue (ST) is positive, and—if the threshold was again .1—

all 33 patients for whom this holds (including the two with [1, 0, 0]) would be classified as 

high risk (because 13/33 > .1). 

What are the advantages of natural frequency trees over fast-and-frugal trees? One 

advantage is that the classification of a new patient is tailored to the patient’s cue profile. The 

downside is that this procedure needs a lot of data—all questions on cue values have to be 

asked for each patient. However, as the number of questions increases, the number of distinct 

cue profiles increases (exponentially). As a consequence, the average number of patients per 

cue profile decreases and for some profiles the classification may be based on a tiny number 

of observed patients. For example, the classification for the profile [1, 0, 0] in Figure 2A is 

based on only two patients. A procedure that bases many classifications on small samples may 

be quite brittle.  

In contrast to full natural frequency trees, fast-and-frugal trees are not complete; they 

truncate some of the possible paths. In fact, a large number of patients are assigned to a 

category after only one cue value has been checked. This feature makes this strategy much 

more frugal. Furthermore, in contrast to the Bayesian approach, some classifications are made 

jointly for patients with different cue profiles. For example, the classification for the profile 

[1, 0, 0] is made jointly with the profiles [1, 1, 1], [1, 1, 0], and [1, 0, 1]. This practice may 

contribute to robustness—that is, good generalizations to new patients. Given that the fast-

and-frugal tree has fewer nodes than the full tree, the average number of patients per exit node 

is larger, which on average moves the estimates of the ratios in a given sample closer to that 
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of the underlying population. Finally, because the fast-and-frugal tree is transparent and easy 

to apply, it suits the hospital environment and may be more appropriate for guiding behavior 

in emergencies. 

3.3.2 Fast-and-Frugal Trees as Lexicographic Strategies 

The fast-and-frugal tree in Figure 2B contains a bold vertical bar that splits the cue 

profiles in two parts: those to the left and those to the right of it. The cue profiles to the left 

correspond to patients classified as being at high risk of a myocardial infarction. Transposing 

this vertical bar to the corresponding position in Figure 2A shows that new patients with cue 

profiles [1, 1, 1], [1, 1, 0], [1, 0, 1], [1, 0, 0], or [0, 1, 1] are classified as high risk by the fast-

and-frugal tree, and those with profiles [0, 1, 0], [0, 0, 1], or [0, 0, 0] as low risk. Inspecting 

this arrangement of profiles and the cutoff leads to the insight that fast-and-frugal trees can be 

characterized as models that classify objects lexicographically. To show this some 

mathematical rigor is required. We assume n binary cues and two classes or categories, 𝐶1 and 

𝐶0 (corresponding to the presence and absence of disease, respectively). Without loss of 

generality, we also assume that cues are inspected in the order 𝑐1, 𝑐2, . . . , 𝑐𝑛 and that for 𝑖 =

 1, 2, . . . , 𝑛, cues are coded so that if an object 𝑥 exits the tree at the ith level, it is assigned to 

category 𝐶1 if 𝑥𝑖 = 1 and to 𝐶0 if 𝑥𝑖 = 0.  

Definition: A cue profile 𝑥 is lexicographically larger than a cue profile 𝑦 (𝑥 >𝑙 𝑦) if 

and only if there exists 1 ≤ 𝑖 ≤ 𝑛 such that 𝑥𝑖 = 1 and 𝑦𝑖 = 0 and 𝑥𝑗 = 𝑦𝑗 for all 

𝑗 < 𝑖. If neither 𝑥 >𝑙 𝑦 nor y>𝑙 𝑥, then 𝑥 and 𝑦 coincide (𝑥 = 𝑦). 

The following result establishes a characterization of fast-and-frugal trees as lexicographic 

classifiers based on splitting profiles (Martignon et al., 2003; Martignon et al., 2008). 

Result 1: For every fast-and-frugal tree 𝑓 there exists a unique cue profile 𝑆(𝑓)—

called the tree’s splitting profile—such that 𝑓 assigns 𝑥 to 𝐶1 if and only if 

𝑥 >𝑙 𝑆(𝑓). For every cue profile 𝑆 there exists a unique fast-and-frugal tree 𝑓, such 

that 𝑆(𝑓) = 𝑆. 

In Figure 2B, let 𝑥1 = 1 if and only if the ST segment is elevated, 𝑥2 = 1 if and only 

if chest pain is the main symptom, and 𝑥3 = 1 if and only if any other symptom is present. 

Also let 𝐶1 represent high risk and 𝐶0 low risk. The splitting profile of this tree is [0, 1, 0]. 

The bold vertical bar marks the position of the splitting profile. All cue profiles to the left of 

the bar are lexicographically larger than the splitting profile. As Result 1 states, these cue 
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profiles are assigned to the high risk category 𝐶1. Note that the full natural frequency tree that 

follows the same convention of placing positive (negative) cue branches to the left (right) 

does not have a splitting profile: If a threshold of .1 is adopted, against which the posterior 

probability is compared, then the classifications for the eight distinct cue profiles are, from 

left to right, 𝐶1, 𝐶1, 𝐶1, 𝐶0, 𝐶1, 𝐶0, 𝐶0, and 𝐶0. For the fast-and-frugal tree, in contrast, the 

classifications for the four distinct cue profiles are, from left to right, 𝐶1, 𝐶1, 𝐶0, and 𝐶0. This 

sequence can be split in the middle.  

3.3.3 Fast-and-Frugal Trees as Linear Classifiers with Noncompensatory Weights 

Due to their extremely simple structure, fast-and-frugal trees can even be integrated 

within the class of linear classifiers, specifically, as linear classifiers with noncompensatory 

weights. In linear models for classification, each cue 𝑐𝑖 has a weight 𝑤𝑖 > 0 and the score 

𝑅(𝑥) = ∑ 𝑥𝑖𝑤𝑖𝑖  is computed for each cue profile 𝑥 =  [𝑥1, 𝑥2, . . . , 𝑥𝑛]. A scalar threshold ℎ >

0 defines the categories, so that an item x is assigned to 𝐶1 if and only if 𝑅(𝑥) > ℎ. A linear 

classifier in which all weights are 1 is called tallying. The following result relates linear and 

lexicographic inferences for classifications (Martignon et al., 2008): 

Result 2: For every fast-and-frugal tree f there exist ℎ > 0 and 𝑤𝑖 >  0, where 𝑤𝑖 >

∑ 𝑤𝑘𝑘>𝑖  for 𝑖 =  1, 2, … , 𝑛 −  1, such that 𝑓 makes identical classifications to a 

linear model with weights 𝑤𝑖 and threshold h. For every linear model with weights 

 𝑤𝑖 >  0, such that 𝑤𝑖 > ∑ 𝑤𝑘𝑘>𝑖  for 𝑖 = 1, 2, … , 𝑛 −  1 and a threshold ℎ > 0, there 

exists a fast-and-frugal tree f that makes identical categorizations. 

For example, the Green and Mehr (1997) tree in Figure 2B makes identical classifications as a 

linear model with 𝑅(𝑥) = 4𝑥1 + 2𝑥2 + 𝑥3 and ℎ =  2 (both assign [0, 0, 0], [0, 0, 1] and [0, 

1, 0] to 𝐶0 and all other cue profiles to 𝐶1). 

Linear models with 𝑤𝑖 > ∑ 𝑤𝑘𝑘>𝑖  are called noncompensatory (Martignon & 

Hoffrage, 2002). Result 2 states that fast-and-frugal trees are equivalent to noncompensatory 

linear models in the sense that the two make the same classifications. Note, however, that 

Result 2 does not imply that it is impossible to distinguish empirically between fast-and-frugal 

trees and noncompensatory linear models. The process predictions of fast-and-frugal trees, 

including ordered and limited information search, are distinct from those of linear models, 

which use all the available information in no specified order (for a study in which the 

outcome and process predictions of trees were pitted against those of compensatory models, 

see Hertwig, Fischbacher, & Bruhin, 2013). 
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3.3.4 Heuristic Principles for Tree Construction 

We now explain how a fast-and-frugal tree such as that displayed in Figure 2b can be 

constructed. The two key features of a fast-and-frugal tree are its ordering of cues and its exit 

structure. Given that n cues can be arranged in n! different orders, the task of selecting an 

order is not trivial. Implementing different orders and seeking to identify that with the best 

performance would be cumbersome and not in the spirit of the simple heuristics program 

(Gigerenzer et al., 1999). In the remainder of this section, we propose heuristic principles for 

the construction of trees. Note the plural: trees. Because trees can be evaluated with respect to 

a range of measures, and because different domains and applications call for different 

measures, having a toolbox of trees at one’s disposal (instead of just one or two) is in the 

spirit of ecological rationality.  

The ordering of cues is determined by their relationship with the criterion. As stated 

above, fast-and-frugal trees assume cues to be independent of one another, conditioned on the 

criterion. They are constructed without checking whether this assumption is justified: each 

cue’s relationship with the criterion is measured without considering the other cues. This is 

exactly what take-the-best, a simple heuristic for paired comparison, also does: it orders cues 

according to their validity (Gigerenzer & Goldstein, 1996). Cue validity is defined as the 

proportion of correct inferences divided by the number of total inferences that a cue allows in 

a particular set of comparisons (Gigerenzer, Hoffrage, & Kleinbölting, 1991)—and this 

measure is determined for each cue separately, thereby ignoring any cue intercorrelations or 

dependencies. Whereas in a paired comparison it makes no difference whether one alternative 

or the other is chosen incorrectly, in the context of medical diagnoses it is important to 

distinguish these two possible errors: misses and false alarms. In fact, a cue for medical 

diagnosis can be characterized by two measures: the positive predictive value (PPV) of a cue, 

that is, the proportion of patients with the disease among all patients for whom the cue is 

positive (or in its high state, i.e., 𝑃(𝐷|𝐸)), and the negative predictive value (NPV), that is, 

the proportion of patients without the disease among all patients for whom the cue is negative 

(or in its low state, i.e., 𝑃(�̅�|�̅�)). In other words, PPV and NPV indicate how diagnostic a cue 

is given that it has a positive or negative value, respectively. 

For illustration, the PPV for mammography in Figure 1D is 80/1030; the NPV for 

ultrasound in Figure 1E is 9504/9509. A measure that captures the relationship between cue 

and criterion, merging the two possible classification errors, is the accuracy A (or validity) of 
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a cue, 𝑃(𝐷 ∧ 𝐸) + 𝑃(𝐷 ∧ 𝐸); for the ultrasound in Figure 1E, the accuracy (A) is 
95+9504

10000
=

0.9599.  

As stated above, a fast-and-frugal tree entails a classification at each level—for each 

cue, one of the two possible values will lead to an exit node (i.e., a classification) and the 

other to consulting more cues (with the exception of the lowest ranked cue, which has two 

exit nodes). The ordering of cues and the structure of exit nodes are related to each other as 

follows: If PPV (NPV) has been used to identify which cue comes next in the hierarchy, then 

the exit node of this cue is placed on the left (right). This means that if the cue is positive 

(negative), the patient will be classified as having (not having) the disease, and if the cue is 

negative (positive), information search will continue. Obviously, classifying a patient as 

having the disease can lead to a false alarm, but it can never be a miss. This means that 

ordering cues according to their PPVs and constructing the tree such that all exit nodes are on 

the left will probably produce only a few misses—but it may produce many false alarms (note 

that misses can occur, but only if a patient is classified as not having the disease after all cues 

have turned out to be negative). Conversely, ordering cues according to their NPV and 

placing all exit nodes on the right will probably produce only a few false alarms—but it may 

produce many misses.  

Rakes (R). Following Martignon et al. (2003) and Martignon et al. (2012), we refer to 

a tree with all exits on the same side as a rake. A tree that orders cues by PPV and thus has all 

exit nodes on the left is denoted by R+; a tree that uses NPV and has all exit nodes on the 

right, by R‒. Note that for each of these trees, the ordering of cues does not make a difference 

to classifications. For instance, R+ will classify a patient as high risk if (and only if) any of the 

cues has a positive value (no matter where in the rake this cue is positioned). Obviously, both 

R+ and R‒ are quite single sided, in the literal sense.  

Zigzag trees (Z). A more balanced tree structure is what Martignon et al. (2003) and 

Martignon et al. (2012) referred to as zigzag tree. We define Z+ as starting with the cue with 

the highest PPV and placing it at the top of the diagnostic tree, with the exit node on the left. 

Subsequently, Z+ identifies the cue with the highest NPV among all remaining cues and places 

it second, with the exit node on the right. For the third position, it identifies the remaining cue 

with the highest PPV (and puts its exit node on the left), and so on. Z‒ follows the same logic 

but it starts with the cue with the highest NPV, continues with the cue with the highest PPV, 

and so on. While Z+ and Z‒ determine a priori whether the first exit node is on the left or right, 
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a new tree we call Z0 is adaptive in the sense that it lets the data set determine whether Z+ or 

Z‒ will be chosen. If the highest predictive value is a PPV, the zigzag tree starts with an exit to 

the left (i.e., Z0 = Z+); if it is an NPV, then Z0 = Z‒.  

Base-rate respect (B). We now introduce trees that combine subtrees of the rake and of 

the zigzag type. These trees are more ecological, because the data set has an even larger 

impact on their shape. Each of the tree construction principles described above ignores the 

base rate of positive criterion values. Each would thus lead to one and the same tree for the 

same set of PPVs and NPVs, irrespective of whether the prevalence of the disease is 50% or, 

say, as small as 0.01%. It is easy to see how zigzag trees suffer under this base-rate neglect. 

Similarly, if the disease is rare, it may not be a good idea to construct a rake tree with exit 

nodes rigidly pointing to the left for every cue in the hierarchy. Such a procedure will 

typically lead to many false alarms. We therefore propose two trees that combine features of 

rakes and zigzag trees. In the standard variant, denoted B, for a base rate of 𝑏 < 0.5, the first 

𝑘 = ⌊|log2(𝑏)|⌋ cues have exit nodes on the right, thereby classifying patients into the 

majority category. These k cues, and their ordering, are determined by the maximum NPV. 

The formula for k implies that base rates of a disease between .25 and .5 would result in trees 

starting with one exit node on the right; base rates between .125 and .25, in trees starting with 

two such nodes; base rates between .0625 and .125, in trees with three nodes, and so on. 

Correspondingly, for 𝑏 > 0.5, the tree starts with 𝑘 = ⌊|log2(1 − 𝑏)|⌋ cues, determined by 

the PPV, that have exit nodes on the left. After these k cues with fixed exit directions, the tree 

continues with a zigzag structure that starts with a classification into the minority class. The 

remaining cues are ordered by alternating between picking one with maximum PPV and one 

with maximum NPV. This hybrid is biased against early classifications into the minority 

class. In fact, the bias results from exploiting the base rate of the disease in a smart way. The 

B1 tree is even more biased: It does not start with 𝑘, but with 𝑘 + 1 cues that classify objects 

into the majority category. 

Maximum predictive value (M). Our next tree is also quite sensitive to the 

environment. As for all trees, the position of the exit is determined by whether the cue at this 

position has been picked by its PPV or its NPV. The tree we refer to as M chooses the 

maximum predictive value among all remaining cues. But unlike Z0, which does this only for 

the first cue position, M does it for each position.  
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Accuracy (A). The final tree construction principle we want to introduce here differs 

from the others in that it uses the cues’ accuracy to establish their ordering; hence the 

abbreviation A. The PPV and the NPV are still considered, however—not to determine the 

position in the cue ordering, but the direction of the exit node. If for a given cue PPV > NPV, 

the exit is to the left; otherwise, it is to the right. For each of the tree construction principles 

proposed above, ties in the process are broken randomly.  

For the sake of completeness, we note that Woike (2008) also tested trees for which 

the ordering of cues was established not by PPV and NPV (measures that can be read off from 

diagnostic trees; see, e.g., Figures 1D and 1E), but by sensitivity, 𝑃(𝐸|𝐷), and specificity, 

𝑃(𝐸|𝐷) that is, measures that stem from causal trees (e.g., Figure 1A). As their performance 

was generally weaker than that of those we listed above, they are not reported in this article 

(for more information, see Martignon et al., 2003, and Woike, 2008). 

3.4 Complex Classification Methods 

Other classification methods include CART, logistic regression, Bayesian networks, 

neural networks, support vector machines, and exemplar models. Although some of them are 

simple in execution, their construction often requires complex computations. We therefore 

decided to not include them in the present work that focusses on linking and comparing the 

natural Bayesian with simple heuristics, specifically, with Naïve Bayes and fast-and-frugal 

trees. Note that each model tested in this article can be set up with paper and pencil alone, 

without the need for complex computations. We will, however, return to some of these 

complex classification methods in the General Discussion below. 

4. Method 

We now describe how we set up the simulations and implemented the strategies 

described in the previous section. 

4.1 Data Sets 

Most of the data sets used were taken from the UCI Machine Learning Repository 

(Lichman, 2013). Table 1 displays these 11 data sets. In each data set, a number of objects 

(ranging from 62 to 768) are described by the state of a dichotomous criterion variable (e.g., 

disease) and by a number of cues (ranging from 5 to 22).  

<<<<<< Table 1 >>>>> 
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Many of the cues were dichotomous; others were continuous. The latter were 

dichotomized by assigning values larger than the median to the “high” category and values 

less than or equal to the median to the “low” category. Which cue value (e.g., male/female) 

was coded as a high state cue value was determined within each training sample, such that the 

predictive accuracy of a cue always exceeded .5.  

4.2 Procedure 

People have to make most real-life decisions in novel situations, and they make those 

decisions based on past experience. We therefore set up our simulations so that parameters 

need to be estimated from small samples, and classifications need to be made for new cases. 

Technically, this means that a classifier was estimated for each method in each data set by (1) 

sampling a random subset of the data as a training sample, (2) dichotomizing continuous 

variables (if any) based on the information contained in the training sample, (3) fitting the 

classifier to the training sample, and then (4) classifying each of the remaining objects (i.e., 

those that were not included in the training sample; henceforth, the test sample). This 

procedure was repeated 2,500 times for each classifier. The whole process was carried out for 

training samples of 15%, 50%, and 85% of the data set. Classifying a different set of 

observations from those used to train the classifiers is standard practice in classification 

research; this approach tests the method’s ability to generalize to new data. Testing strategies 

according to this procedure is clearly an instantiation of Case 3 discussed above. 

4.3 Implementation of Strategies 

We now describe how we implemented the three approaches introduced above.  

4.3.1 Profile Memorization Based on Natural Frequencies 

Classification based on diagnostic frequency trees such as the one displayed in Figure 

1B was achieved by determining, separately for each cue profile in the training sample, the 

proportion of patients with the disease, and then classifying a new patient with this profile as 

having the disease if this proportion was greater than a critical threshold. This critical 

threshold is typically determined based on cost–benefit considerations of the cells in the 2*2 

table (classifications × criterion values). In our simulations, we realized all possible 

thresholds, that is, we varied the threshold from 0 to 1 in small increments. For new patients 

whose profile had not been observed in the training sample, the classification was made by 

comparing the proportion of patients with the disease across all profiles in the training sample 

with the threshold that maximized accuracy within the training sample. 



22 

 

4.3.2 Naïve Bayes 

The Naïve Bayesian method is regarded by Bayesian statisticians as a heuristic 

approach, because it assumes statistical independence of cues for a given criterion value. We 

used the Matlab implementation of Naïve Bayes, more specifically the “fitcnb” function in 

Matlab 2016Rb with standard parameters and all variables entered as categorical predictors. 

This function was given the same cue values that entered the tree construction algorithms, 

with the same cue directions and the same split of continuous cues. Predictions for objects 

from the test sample were generated by the “predict” function with the fitted model passed as 

parameter. These predictions are individual values between 0 and 1; these values were used to 

compute the Receiver Operating Characteristics (ROC) curves for Naïve Bayes. We varied 

the classification threshold from 0 to 1 in small increments, as we did for the profile 

memorization method. 

4.3.3 Fast-and-Frugal Trees 

We determined the performance for each of the trees introduced above. Ties in the 

process were broken randomly. When a PPV or an NPV was undetermined, because its 

computation would have required zero to be divided by zero, this predictive value was placed 

at the very end of the hierarchy. In contrast to profile memorization and Naïve Bayes, the 

classification of fast-and-frugal trees hinges on the exit structure of the tree and not on the 

comparison of posterior probabilities with a threshold. 

4.4 Dependent Variables  

The performance of the strategies was evaluated in two ways. The first is based on 

ROC diagrams. These diagrams include the ROC curves of profile memorization and of 

Naïve Bayes. The ROC curves plot the sensitivity (percentage of correct identifications 

among patients with the disease) against the false-alarm rate (percentage of incorrect 

identifications among patients without the disease; the complement of specificity) as the 

classification threshold glides from 0 to 1. As fast-and-frugal trees do not use such thresholds, 

their classification performance cannot be represented as a curve, but by one point per 

construction principle. To illustrate, the tree in Figure 2B would be plotted at 𝑥 = 35/50 (1 – 

specificity = false-alarm rate: among all 20 + 15 + 10 + 29 patients who had no infarction, 

20 + 15 were classified as high risk) and 𝑦 = 1 (sensitivity: all 15 who had an infarction 

were classified as high risk). There is one difference, though, to the entries in the ROC 

diagrams shown below: The points in these diagrams do not represent the classification 
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performance of trees, but that of tree construction principles. In 2,500 trials, each construction 

principle generated a total of 2,500 trees and most likely not all of them were the same.  

Although all objects in the test sample are included when computing sensitivities and 

false-alarm rates, the data points in the ROC diagrams do not convey the base rates of patients 

with and without disease. Imagine a strategy that performs well with respect to one of the two 

possible classification errors (i.e., this proportion is quite low) but poorly with respect to the 

other error (i.e., this proportion is quite high). Each data point in the ROC diagram reveals 

these two proportions, but it is mute about the underlying absolute frequencies. The same data 

point can signal high or a low accuracy depending on which of the two errors occurs how 

often. In other words, ROC curves display what Hoffrage, Gigerenzer, Krauss, & Martignon 

(2002) called normalized frequencies, rather than natural frequencies.  

Our second measure, the percentage of correct classifications, is not fooled by such 

differences with respect to base rates. On the contrary, this measure is sensitive to base rates: 

It computes one single measure across all cases, thereby weighing each correct classification 

equally, no matter whether a patient with or without the disease has been classified correctly. 

However, this measure does not consider the different types of errors, namely misses 

(classifying a diseased patient as healthy) and false alarms (classifying a healthy patient as 

diseased). While each tree allowed each object in the test sample to be classified without any 

further specification, profile maximization and Naïve Bayes required a classification 

threshold. Each threshold included in our simulations led to a point in the ROC curve and to a 

percentage of correct classifications. The percentages reported below are those that result 

from a threshold that was arbitrarily set at .5. 

In sum, the advantage of one dependent variable is the disadvantage of the other, and 

vice versa, and it is hard to establish which of the two variables is superior. This observation 

is important because, as we will see below, the two methods of measuring performance arrive 

at different conclusions when evaluating our strategies. 

5. Results 

In this section, we compare the performance of the three classification approaches 

introduced above on the 11 data sets presented in Table 1.  

5.1 ROC Diagrams 
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Figure 3 displays the ROC curves (and data points) for our strategies, separately for 

the 11 data sets, when the training sample consists of 50% of the objects (Panels A–K), and 

the ROC curve (or points) resulting from averaging those data points across the data sets 

(Panel L). The major findings from Figure 3 are the following. 

<<<<<< Figure 3 >>>>> 

First, in two data sets (Figures 3H and 3K), both the curves of profile memorization 

and Naïve Bayes, and the points of the fast-and-frugal trees were close to the diagonal, the 

areas under the curves of the former were close to .5, and consequently, a strategy’s d’ (a 

measure capturing how well the strategy can differentiate between the two categories, disease 

present versus absent) should be close to zero. In other words, in these two data sets, 

performance of all strategies is at chance level. Nevertheless, it is interesting to see that all of 

them were equally affected by the nondiagnosticity of the cues. In the other nine data sets, the 

cues were diagnostic and the strategies performed above chance. 

Second, the ROC curve of Naïve Bayes by and large dominated that of profile 

memorization. Although profile memorization, an instantiation of Bayes’ rule, provides 

optimal classifications when fitting known data (Case 1), for which it is considered to be 

normative, it is outperformed by its heuristic sibling, Naïve Bayes, when classification 

performance is evaluated for new patients (Case 3). This can be seen with the naked eye; there 

is no need to compute the area under the curve. Naïve Bayes hence lives up to its reputation as 

a simple and robust benchmark for classifications under uncertainty—that is, classifications of 

new objects and when the probabilities in the population are not known but are estimated 

from samples.  

Third, the fast-and-frugal trees competed well with Naïve Bayes. In 9 of 11 data sets, 

the trees’ performance was by and large on the ROC curve of Naïve Bayes; for the other two 

data sets, the trees’ performance was clearly less good (with the exception of R+, R‒ and A, 

which were always on the Naïve Bayes’ ROC curve).  

Fourth, the fast-and-frugal trees generally outperformed the profile memorization 

method: Of the 99 points representing the performance of the nine tree construction principles 

across the 11 data sets, 74 were above the ROC curve for profile memorization, 19 were on it, 

and only six below. 
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Fifth, comparing the fast-and-frugal trees among each other revealed that, as expected, 

R+ and R‒ (which minimize different classification errors) were located in the upper right and 

lower left corner, respectively. Z+ and Z‒ (which strike a balance between the two 

classification errors by alternating the exit nodes) moved away from the corners and were 

located more in the middle. In each data set, Z0 was identical to either Z+ or Z–. This was 

necessarily the case for each of the 2,500 trials in a given data set, and reflects how Z0 is 

designed. The observation that this was also true, on average, across 2,500 trials within a 

given data set, suggests that there is little variance, within a data set, with respect to the 

direction of the first exit node. Across data sets, however, Z0 was “between” Z+ and Z–; this 

was again as expected because the points in Panel L result from averaging the points in Panels 

A–K. B and B1 (which are ecologically rational in the sense that they take the base rate of the 

disease into account) lie, with the exceptions of Panels F and J, on the ROC curve of Naïve 

Bayes.  

Sixth, for data sets with a base rate of the disease below .4 (Figure 3A–E), A and M 

were located in the lower left corner; for base rates above .6 (Panels H–K), they were in the 

upper right corner; and for base rates between .4 and .6 (Panels F and G), no clear picture 

emerged. For the other tree construction principles, no such dependency of location on the 

base rate of the disease was observed.  

Seventh, it is interesting to observe that all trees in Panel L, which displays the 

strategy-specific midpoints across data sets, were close to the Naïve Bayes’ ROC curve—with 

the exception of M and A. Hence, at least at first glance, ordering cues according to their 

maximum predictive value (whether this is PPV or NPV) or the cues’ predictive accuracy 

does not appear to perform as well as the other ordering principles. However, this conclusion 

would be misleading. Note that the points representing the performance of M and A are 

located either in the lower left corner or in the upper right corner. The midpoint of these 11 

points will therefore be somewhere in the middle of the diagram, close to the diagonal, and 

hence well below the Naïve Bayes’ ROC curve. This was not the case for the other trees, 

whose points were not as dispersed as those of M and A. Therefore, computing averages 

across data points might lead to wrong conclusions and is thus problematic. To illustrate, note 

that the performance of tree A lies on the Naïve Bayes’ ROC curve for each of the 11 data 

sets—but when averaged across data sets, it is well below this curve (see Figure 3L).  

<<<<<< Figure 4 >>>>> 
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Bearing this problem in mind, let us now turn to Figure 4 which displays, across the 11 

data sets, the strategies’ performance for different sizes of training sample (note that Figures 

3L and 4B are identical). As shown, performance is quite robust across sizes of training 

sample. The strategy most affected by this dimension is classification based on profile 

memorization: As the size of the training sample increases, in particular from 15% to 50%, 

the ROC curve moves away from the diagonal. We have already mentioned the brittleness of 

profile memorization’s estimates when these are based on low numbers for a given cue 

profile. In contrast, the heuristics—both Naïve Bayes and the fast-and-frugal trees—did not 

seem greatly affected.  

5.2 Percentage of Correct Classifications 

Figure 5 displays the performance with respect to our second dependent variable: 

percentage of correct classifications, irrespective of how the incorrect classifications were 

distributed across the two possible errors. For each size of training sample, the clear winner 

here is Naïve Bayes. The difference between Naïve Bayes and profile memorization was 

about five percentage points. Of the fast-and-frugal trees, the two ecological variants, B and 

B1, performed best. None of the rakes, R+ and R‒, or zigzag trees, Z+, Z‒, and Z0, outperformed 

classification via profile memorization. In contrast, M did so, and A matched its performance, 

at least when the training sample encompassed 15% of the population. Note that these were 

exactly the strategies that seemed to perform worse in the averaged ROC diagram (Figure 

3L), at least at first glance. In each of the 11 strategies, increasing the training sample from 

15% to 50% led to higher accuracy gains than did increasing it from 50% to 85%. 

<<<<<< Figure 5 >>>>> 

5.3 Discussion: Comparing ROC Diagrams with Percentage of Correct Classifications 

Comparing averaged performance in the ROC diagram (Figure 3L) with predictive 

accuracy (Figure 5) yielded some seemingly paradoxical observations. To take the most 

extreme example, in the ROC diagram, Z0 showed higher specificity and sensitivity than the 

construction principles M and A, but lower overall predictive accuracy. Note that it is 

logically impossible that one algorithm, in any given trial, achieves higher accuracy across all 

patients than another if this other algorithm achieves higher accuracy than the former for both 

patients with and patients without the disease (as these comprise the total number of patients 

in the data set). So why do the zigzag trees dominate M and A in the ROC diagrams when 
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averaged across data sets (Figure 3L), if, conversely, M and A outperform Z+ and Z‒ with 

respect to predictive accuracy (Figure 5)?  

As we have mentioned, the dispersion of the performance measures of a given 

construction principle across the data sets (Figure 3A–K) must be considered when 

interpreting the averages in Figure 3L. But there is more to it than this. The relevant question 

is why some tree construction principles are more dispersed than others. Observe that, when 

moving from the lower left to the upper right corner of the Naïve Bayes’ ROC curve, the 

following tree construction principles always appear in this order: R‒, Z‒, Z0, Z+, and R+. In 

contrast, B and B1 seem to “dance” along this strict ordering, sometimes appearing before Z‒ 

and sometimes after Z+. The same can be said for M and A, but the range these principles span 

is even wider. Moreover, the positioning of B, B1, M, and A within the strict ordering of R‒, Z‒

, Z0, Z+, and R+ seems to be related to the base rate of the disease. As we shall see, this pattern 

is related to the paradox mentioned above (e.g., any Z is better than M in Figure 3L, but worse 

in Figure 5). 

One important piece of the puzzle is what we said when introducing the dependent 

variables in the Methods section: Any point in an ROC diagram plots the two classification 

errors but it does not contain the base rates of the disease. Predictive accuracy, in contrast, 

ignores which type of classification error occurs how often and reports only the complement, 

namely correct classifications. Thereby it takes the base rate of the disease into account, albeit 

only implicitly: When the percentage of correct classifications is computed, the objects in the 

majority class (e.g., patients with disease) contribute more to the score than do those in the 

minority class. In other words, an ROC diagram contains normalized frequencies, whereas 

predictive accuracy reports the sum of natural frequencies. The other important piece of the 

puzzle is that data sets differ with respect to base rates of the disease (see Table 1). Let us 

now put the pieces together.  

Sensitivity and specificity contribute equally to the overall accuracy if (and only if) the 

prevalence of the two classes, that is, patients with disease and without disease, is equal. 

When the base rate of the disease is above .5 (as in Figure 3G–K, see Table 1), sensitivity is 

more important than specificity for achieving high accuracy; when the base rate is below .5, 

specificity is more important than sensitivity. 
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Now imagine that we add a line with a slope of 45º (i.e., a parallel to the identity line) 

to a given ROC curve (say, for Naïve Bayes), with the line touching the ROC curve at one 

point. In Figure 3L, this point would be close to B, B1, and Z0. Moving this point along the 

ROC curve would involve an uneven tradeoff: An increase in specificity (achieved when 

moving toward the lower left corner) is coupled with a comparatively greater decrease in 

sensitivity. Conversely, and formulated differently, the price to be paid for one additional 

percentage point in correctly classifying patients with disease (i.e., moving toward the upper 

right corner) is a decrease of more than one percentage point in correctly classifying patients 

without disease. The loss in specificity can still be advantageous in the sense that it can boost 

overall accuracy: A loss in specificity implies a gain in sensitivity, and if there are more 

patients with the disease, then such a tradeoff will, overall, lead to more correct 

classifications.1  

However, one can overdo it: R+ is designed to maximize sensitivity and R‒ to 

maximize specificity. As a consequence, they end up in the corners (upper right and lower 

left, respectively) of the ROC diagrams. But being located close to one of these corners will 

translate into high total accuracy only if the disease base rate, and hence the slope of the iso-

accuracy curve, is extreme. This was not the case in any of our 11 data sets. Hence, R+ and R‒ 

not only sacrifice specificity and sensitivity, respectively, but also total predictive accuracy, as 

Figure 5 confirms. Conversely, B and B1, the two construction principles that exploit the base 

rate of the disease (by the design of their exit structures), are the winners among all trees with 

respect to predictive accuracy (Figure 5). This observation is consistent with the fact that 

these principles, together with Z0, are closest to the 45º tangent point in the averaged ROC 

diagram. This should not be taken to imply that R+ and R‒ always build inferior trees. For a 

problem, in which it is much more important  to avoid classifying patients as negative, when 

                                                           

1 Note that the iso-accuracy line has a slope of 45º if and only if the base rate of the disease is 

.5. For base rates higher (lower) than .5, the iso-accuracy line is flatter (steeper). If, for 

example, 90% of the patients have the disease, then increasing sensitivity by one percentage 

point (and hence moving toward the upper right corner) will be enough to compensate for a 

loss of nine percentage points in specificity. Therefore, the tangents of those construction 

principles that are sensitive to the base rate of the disease are generally flatter (steeper) and 

hence closer to the upper right (lower left) in those data sets in which the base rate is above 

(below) .5. 
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they are in fact positive than it is to avoid making the reverse error, R+ might offer a viable 

and desirable solution. 

Remember that B and B1 are designed to exploit extreme base rates. The higher the 

base rate of the disease, the more nodes with exits to the left the tree will initially have. Exits 

to the left lead to classifications of the disease as being present. If patients with disease form 

the majority category, then a tree that is biased towards classifying patients as having the 

disease will still produce misses, but these errors will become relevant for only a minority. 

This is why and how the ecological rationality of the B tree (here, in the sense of base-rate 

respect) is rewarded in terms of overall accuracy. Now we can also understand why the B 

trees for data sets with high disease base rates are close to R+ (see Figures 3K, 3J, 3I, 3H, …) 

and those for data sets with low base rates are close to R‒ (3A, 3B, 3C, 3D, …). Not 

surprisingly, the B1 tree, which pushes the enforced rake structure at the beginning of the tree 

one step further, is always closer to the corner than the B tree. Ironically, moving closer to the 

corners (and using base rates to determine towards which to move) not only has a positive 

impact on overall accuracy (note that it has a higher accuracy than B, see Figure 5) but also 

increases the dispersion of the B1 trees, relative to the B trees, which, in turn, moves the B1 

average below the Naïve Bayes’ ROC curve (we explained why this happens when discussing 

how averaging across data sets affects the placements of M and A).  

The results for M and A also offer some interesting insights. Their performance is also 

affected by the base rate of the disease, yet for a different reason and in a more extreme way 

than for B and B1. Remember that the values for continuous cues were dichotomized at the 

median, yielding (roughly) as many positive as negative cue values. This has implications for 

the PPVs and NPVs: If, for instance, the base rate of the disease is above .5, then the number 

of patients without the disease (which will be less than half) will necessarily be lower than the 

number of patients with a negative cue value (after median-split, hence about half of the 

patients). This mismatch makes it likely that a cue’s PPV will be higher than its NPV. Why? 

As there are more diseased patients than positive cue values, it is possible to achieve a PPV of 

1; with fewer healthy patients than negative cue values, however, it is impossible to achieve 

an NPV of 1. If PPVs tend to be larger than NPVs, this will create a bias towards exit nodes 

pointing to the left and hence to classifying patients as having the disease. The stronger this 

bias, the higher the sensitivity. Indeed, note that for all data sets with a base rate of disease 

above .5, the positioning of the M and A trees is very close to the upper right corner of the 
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ROC diagrams where sensitivity is high (Figure 3G–3K); for the other data sets, these trees 

are typically found in the lower left corner.  

The corners are also the “home” of R+ or R‒. But there is an important difference: 

Whereas R+ is always upper right and R‒ is always lower left without any base-rate sensitivity, 

the classification performance of M and A is base-rate sensitive. Whereas the rigidity of R+ or 

R‒ is penalized in terms of predictive accuracy, M’s and A’s adaptive bias toward the majority 

class is rewarded and they by far outperform the rake trees (Figure 5). At the same time, their 

bias is more extreme than that of B and B1, and their accuracy suffers in comparison.  

To conclude this discussion, the positioning of the tree construction principles in the 

11 ROC diagrams and, in particular, in the averaged ROC diagram can be properly interpreted 

only when base rates of the disease are taken into account, when the tree construction 

principles are well understood, and when the danger of averaging is recognized. Our two 

dependent variables—ROC diagrams (which distinguish the two classification errors) and 

overall accuracy (which is base-rate sensitive)—are complementary. One has what the other 

lacks. The ROC diagrams alone would not allow us to infer the rank ordering of the strategies 

with respect to predictive accuracy; the accuracy results would not give us any idea of what 

the ROC diagrams might look like. The full picture emerges only if both are seen jointly. We 

chose to present the results for percentage correct, because it is an intuitive measure and stays 

within the framework of natural frequencies. For any concrete problem with known base rate 

and error costs, the ROC diagram might offer a better basis for deciding between construction 

algorithms, as the percentage of correct classifications does not differentiate between error 

types and those can differ in severity or importance (see Verde, Macmillan & Rotello, 2006, 

for a discussion of alternative unidimensional measures combining hit rates and false-alarm 

rates motivated by signal detection theory). 

6. General Discussion 

This article has integrated two lines of research that had previously developed largely 

separately, namely research on the advantages of using natural frequency representations 

rather than probabilities to communicate risk (Gigerenzer & Hoffrage, 1995) and research on 

heuristics (Gigerenzer et al., 1999; Hertwig, Hoffrage, & the ABC Research Group, 2013; 

Todd, Gigerenzer, & the ABC Research Group, 2012). We have shown that Bayesian 

inference tasks with more than one cue can be solved by means of natural frequency 
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representations. We have also argued that such representations have limits. These limits can 

be addressed by two heuristic approaches. First, Naïve Bayes simplifies the task by assuming 

independence between cues—but still integrates across all cues. When combined with a 

classification threshold, Naïve Bayes’ computation of posterior probabilities can lead to 

classifications based on multiple cues. Second, fast-and-frugal trees also assume 

independence between cues, but they go one step further and truncate information search. The 

trees we proposed do not require a classification threshold, and they do not compute posterior 

probabilities. Our article integrates these three approaches to classification—natural 

frequencies, Naïve Bayes, and fast-and-frugal trees—into a common framework that makes it 

possible to conceive (1) Naïve Bayes as a tree that enforces independence between cues and 

(2) fast-and-frugal trees as pruned versions of such trees, as lexicographic strategies, and as 

linear classifiers with noncompensatory weights.  

Previous research for other tasks, such as paired comparison (Czerlinski, Gigerenzer, 

& Goldstein, 1999; Martignon & Hoffrage, 2002) or estimation (Hertwig, Hoffrage, & Sparr, 

2012; Woike, Hoffrage, & Hertwig, 2012), has shown that simple heuristics, when making 

inferences out of sample, can outperform models that are optimal when it comes to making 

inferences within the same sample for which the strategies fitted their parameters. We found 

the same pattern in our simulations: When making classifications out of sample with multiple 

cues, the two heuristic approaches, Naïve Bayes and some of the fast-and-frugal trees, 

outperformed the model that was normative for the case of fitting known data, namely 

classification based on natural frequencies (or, equivalently, profile memorization). 

What are the advantages of fast-and-frugal trees? First, they are easy to set up. Their 

parameters can be estimated with paper and pencil (remember, PPV and NPV can be obtained 

by counting and forming simple ratios; see the frequency trees in Figures 1D and 1E). Note 

that fourth graders can already understand the concept of cue validity through enactive 

education approaches—manipulating towers of colored tinker cubes to represent the 

relationship between cues and outcomes—and can answer elementary questions on the 

validity of cues (Martignon & Monti, 2010; Till, 2014). Once cue validities have been 

estimated, tree construction involves only a few simple rules. Second, fast-and-frugal trees are 

transparent and therefore easy to use and communicate. Their graphical representation allows 

for straightforward application in practical settings (Fokkema, Smits, Kelderman, & Penninx, 

2015). Their execution does not require any complex computation. Naïve Bayes uses the same 
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input needed for tree construction, then uses all information, and finally requires some 

computation on the execution level—albeit only multiplication that a teenager should be able 

to perform with paper and pencil alone. Third, fast-and-frugal trees are, unlike Naïve Bayes, 

frugal. They generally use only a fraction of the potentially available information because 

each of these trees has an exit on every level. Fourth, these trees allow for fast classifications. 

In emergencies, in particular, it is often essential to make a diagnosis quickly, with whatever 

information is at hand, and without the possibility to conduct any further tests. Fifth, the trees 

are robust. In our analyses, fast-and-frugal trees (just as Naïve Bayes) outperformed profile 

memorization when tested under uncertainty, that is, when we predicted the class membership 

of new cases. Walsh, Einstein, and Gluck (2013) have stressed the importance of robustness 

in various areas, including decision making, and proposed a method for quantifying it (see 

also Gigerenzer & Brighton, 2009).  

Given these advantages, it is not surprising that fast-and-frugal trees have been 

garnering much attention among researchers and practitioners alike. In the remainder of this 

Discussion, we first give an overview of selected contributions from research and practice 

that, in many instances, go hand in hand. We then address limitations of the present 

investigation and discuss avenues for further research.  

6.1 Previous Research and Applications 

The predictive accuracy of some of the heuristics studied here surpasses that of profile 

memorization, the model that is normative when evaluated within its training sample. But 

how do these heuristics compare with other benchmarks when it comes to predicting new 

cases? Laskey and Martignon (2014) compared the predictive accuracy of classification 

methods using the same 11 data sets used here. The heuristics they considered were Naïve 

Bayes and a tree they called ZigZag-val (a variant of our B tree); as benchmarks, they used 

Classification and Regression Trees (CART; Breiman, Friedman, Olshen, & Stone, 1984), 

which are simple in execution but whose construction often requires complex computations, 

and logistic regression, adapted to classification by introducing a classification threshold 

against which probability estimates were compared. For each of three sizes of the training 

sample (15%, 50%, and 90%), Naïve Bayes outperformed both logistic regression and CART. 

Even more surprisingly, when trained on small sets (15%), the ZigZag-val tree also 

outperformed logistic regression and CART. These simulations thus showed that, in an 

uncertain world, fast-and-frugal trees can reduce estimation error and have a competitive 
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advantage not only over profile memorization (as shown here) but also over other 

benchmarks.  

In another study in which the predictive accuracy of heuristics was benchmarked, 

Woike, Hoffrage, and Petty (2015) included another important aspect in their simulations, 

namely environmental properties. Instead of using real-world data sets, these authors 

artificially generated data sets and could hence control features such as the number of cues 

and the skewness of the cues’ validities. Simulated venture capitalists had to decide whether 

or not to invest money in a business plan that was described on a set of cues. The four 

strategies—which continuously updated their parameters based on feedback they received on 

the outcome of previously seen plans—were a linear model with equal weights and fast-and-

frugal trees as heuristics, and logistic regression and CART as complex benchmarks. It turned 

out that strategies were differentially affected by environmental properties: The simple equal-

weighting strategy was able to compete with the two complex benchmark strategies across 

most types of environments, and it even outperformed them when all cues were equally valid. 

In precisely this condition, the performance of the fast-and-frugal tree was miserable; 

however, the tree excelled, even outperforming all other strategies, when cue validities were 

quite skewed (more specifically, followed a geometric distribution). This set of simulations 

makes a strong case for ecological rationality: simple heuristics—here, equal weighting and 

fast-and-frugal trees—can perform very well, especially if their architecture mirrors the 

structure of information in their decision making environment (see also Todd et al., 2012). 

An exciting area within the emerging field of research on fast-and-frugal trees 

addresses how trees can be constructed. The calculations of PPV and NPV necessary for the 

constructions we proposed here could all be performed on the back of a napkin. Instead of 

counting cases, as reflected in PPV and NPV, one could count the number of reasons why a 

positive or negative cue value may be misleading and use these numbers as alternative criteria 

for the ranking of cues (Cummins, 1995; Stenning, Martignon, & Varga, 2017). More 

complex but pertinent construction methods, notably methods based on signal detection 

theory, have been proposed by Luan, Schooler, and Gigerenzer (2011). These authors focused 

on trees with a relatively small number of cues and compared tree architectures in terms of 

performance across a range of simulated environments. They proposed that the d’ measure, 

which takes both sensitivity and specificity of cues into account, be used to order cues. One 

may ask whether cues should be ordered based on a measure that takes all cases into account 
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if they are used within the tree to make classifications for only one type of case: Why should 

the classification of patients with positive cue values be influenced by properties of those with 

negative cue values, and vice versa? (We hasten to add that the same concern could be raised 

for our A tree.) Yet this critique can also serve as an argument for using d’ (and A): These 

measures capture the quality of cues based on the total training sample, whereas the 

measurement of PPV and NPV is based only on the subset of cases with positive and negative 

cue values, respectively. Luan et al. (2011) compared the performance of tree algorithms 

against majority-of-cue models and models that are normative for fitting tasks. They found 

that fast-and-frugal trees reached performance levels close to that of majority-of-cue models 

and outperformed complex models for small sample sizes. In related work, Hozo, 

Djulbegovic, Luan, Tsalatsanis, and Gigerenzer (2016) have discussed principles for cue 

ordering along a decision criterion; this approach links to what we said above about the 

splitting profile and allows for comparison with classification models that include a threshold.  

Providing an overview of the work on fast-and-frugal trees is beyond the scope of this 

article. To give an impression of the popularity they have acquired in recent years, however, 

we would like to mention a few, selected studies. Fast-and-frugal trees have been tested, 

notably, as predictors of depression (Jenny, Pachur, Williams, Becker, & Margraf, 2013). 

They have been praised as an ideal data structure for information technology implementation, 

particularly in pharmacogenomics, where complex data need to be used at point of care (Van 

Rooij et al., 2015). They have been proposed as suitable for social workers seeking to 

stabilize critical situations until fuller services are available (Taylor, 2016; see also Kirkman 

& Melrose, 2014). They allow swift decisions to be made in potentially dangerous situations 

where time is of the essence—their performance on past data indicates that their use might 

reduce the number of civilian casualties at military checkpoints (Keller & Katsikopoulos, 

2016). They have been discussed as smartly designed strategies and as tools to boost decision 

makers’ performance and autonomy (Grüne-Yanoff & Hertwig, 2016). They have been used 

by the Bank of England to assess bank vulnerability (Aikman et al., 2014; see also Haldane, 

2015).  

While fast-and-frugal trees can convey one or more of the advantages listed above to 

many practitioners in various domains, some of these practitioners may experience 

noteworthy tradeoffs. For instance, Wegwarth, Gaissmaier, and Gigerenzer (2009) observed 

an interesting dilemma faced by some doctors, who felt pressured to hide the simple way they 



35 

 

make decisions. Anticipating that their patients would not trust the fast-and-frugal approach, 

they preferred to pretend that their decisions stemmed from relatively complex and 

sophisticated strategies. We hope that analyses such as those reported in this article can help 

to legitimize the use of fast-and-frugal trees and other simple heuristics. 

6.2 Limitations and Avenues for Further Research 

Our results derived from analyses with 11 medical data sets. The sole focus on the 

medical domain is clearly a limitation; future studies should run similar tests with other data 

sets, from medicine but also beyond. Such analyses will not only test the reliability of our 

findings, but they will also provide a broader basis for studying the ecological rationality of 

classification strategies. Additional data sets and analyses will shed more light on how 

features that describe the data affect strategy performance. Data characteristics that could be 

considered include the number of cues, number of objects, distribution of the predictive 

values of the cues (overall level and skewness), measurement level and distribution of cue 

values, costs of obtaining cue value information, base rate of criterion values, costs of 

different classification errors, reversibility of decisions based on the classifications, and 

timing and quality of feedback on the criterion. Future research could study the ecological 

rationality of the strategies either analytically, with empirical data sets, or with artificially 

created data sets. A major advantage of real-world data sets is that they come with naturally 

existing information structures and that the results may be of interest to practitioners. The 

major advantage of artificial data sets is that they allow for perfect control over environmental 

properties and, in turn, for making causal claims about how such properties affect a strategy’s 

performance. The work of Hertwig, Fanselow, and Hoffrage (2003), Luan et al. (2011), 

Martignon and Hoffrage (2002), and Woike et al. (2015), illustrates the value of studying 

purposely created environments (see also the discussion of representative sampling and 

formal sampling in Dhami, Hertwig, & Hoffrage, 2004). 

As mentioned, it can be advantageous to have a toolbox of trees (rather than just one 

or two) at one’s disposal. First, trees can be evaluated with respect to a range of measures, and 

different domains and applications may call for different measures. Second, the performance 

of trees depends on the environment, and different environments may favor different trees. 

The ecological rationality of fast-and-frugal trees is reflected in the observation that some of 

them are sensitive to environmental properties (note the different locations of M, A, and the B 

trees in Figure 3A–K) while others are not (e.g., the rake trees are always located in the same 

corner). Knowing how the classification performance of trees hinges on environmental 
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properties (such as the base rate of a disease) and knowing the properties of the data set at 

hand thus allows the practitioner to pick the best tree for a particular data set. Note that our 

Figure 5 does not reflect how the construction principles differ across environments with 

respect to accuracy. As is apparent from Figure 3, however, a tree should not be selected from 

the adaptive toolbox based on averages such as those reported in Figures 4 and 5; rather, it 

should be selected for a given data set. 

In a similar vein, when selecting a tree from the toolbox, practitioners may consider 

not only the structure of information in the environment, but also which feature is most 

important to them (and clearly, the latter may depend on the former). If predictive accuracy is 

their main concern, then M and A should be in the consideration set; if it is sensitivity, then R+ 

seems best; if it is specificity, then R‒. But which of these measures should they adopt? 

Predictive accuracy ignores the types of errors, ROC diagrams ignore the absolute frequencies 

of errors, and both ignore the costs of errors. Thus far, we have also disregarded the costs of 

errors. In fact, different errors have different costs, particularly in medical applications, but 

probably in most other domains as well (e.g., on psychological or economic dimensions). 

Practitioners may want to take these costs into account when selecting “their” strategy for 

“their” domain from the adaptive toolbox. Researchers could potentially assist practitioners 

by integrating costs of errors into tree construction principles, or by investigating how such 

costs affect classification thresholds (e.g., of profile memorization or Naïve Bayes; for a 

descriptive account, see Johnson, Blumstein, Fowler, & Haselton, 2013). 

Another potential limitation is that fast-and-frugal trees are built only with 

dichotomous cues (Fokkema et al., 2015). Yet this limitation can also be seen as a research 

opportunity: How should one deal with non-binary cues? One possibility is to dichotomize 

them. This can be achieved in multiple ways. In our simulation, we have opted for median-

splits, whereas Hozo et al. (2016) have discussed the possibility of using ROC curves to 

determine the cutting point. Another possibility is to construct trees that can handle non-

binary cues as input. This path has been taken by Berretty, Todd, and Martignon (1999) and 

Blythe, Todd, and Miller (1999). Note that the algorithm proposed by these authors, 

Categorization-by-Elimination, can assign objects to one of several categories on the output 

side. For related work that constructs fast-and-frugal trees with more than two output 

categories, see Keller, Czienskowski, and Feufel (2014). 
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Finally, we would like to mention a project that has a great potential to aid researchers 

and practitioners aiming to tackle such open issues: Phillips, Neth, Woike and Gaissmaier 

(2017) are in the process of developing a software package for fast-and-frugal trees in R.  

A new and exciting field is currently developing within the emerging science of 

heuristics (Gigerenzer et al., 2011): research on fast-and-frugal trees. We classify this domain 

as low risk and high potential for academic careers, and we look forward to its future 

developments. 
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Tables 

Table 1: The 11 data sets used to compare the performance of the three approaches to 

classification (profile memorization, Naïve Bayes, and various fast-and-frugal trees). Data 

sets are ordered according to the base rate of positive criterion values. 

Panel in 

Figure 3 

Name Criterion Base rate 

of positive 

criterion 

Objects Cues 

A Alcohol >2.5 pints per 

day 

consumption 

0.255 

 

345 5 

B Echocardiogram Survival 

after heart 

infarction 

0.290 

 

62 7 

C Diabetes Diabetes 0.349 

 

768 6 

D Breast Cancer Malignant 

tumors 

0.350 

 

683 9 

E Heart Disease 

Hungarian 

Heart 

disease 

0.374 

 

262 10 

F Heart Disease 

Cleveland 

Heart 

disease 

0.461 

 

297 13 

G Horse Colic Treated with 

surgery (yes/no) 

0.587 

 

218 6 

H Post-Operative Decision to keep 

patient in 

hospital 

0.721 

 

86 8 

I Hepatitis Survival of 

hepatitis patients 

0.791 

 

153 7 

J SPECT Heart 

disease 

0.794 

 

267 22 

K Cardiac* Heart 

disease 

0.841 

 

558 8 

Note: All data sets are from the UCI Machine Learning Repository (Lichman, 2013), with the 

exception of Cardiac, which is taken from UCLA Department of Statistics 

(http://www.stat.ucla.edu/datasets). Original sources: (A) BUPA Medical Research Ltd., (B) 

Salzberg (1988), (C) National Institute of Diabetes and Digestive and Kidney Diseases, (D) 

Mangasarian & Wolberg (1990), (E & F) Detrano et. al. (1989), (G) see Lichman (2013), (H) 

Woolery, Grzymala-Busse, Summers, & Budihardjo (1990), (I) Cestnik, Konenenko, & 

Bratko (1987), (J) Kurgan, Cios, Tadeusiewicz, Ogiela, & Goodenday (2001), (K) 

Krivokapich, Child, Walter, & Garfinkel (1999).  
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Figures 

Figure 1: Natural frequency trees in a task with one disease (breast cancer, B) and two 

conditionally independent tests: mammography (M) and ultrasound (U). “+” and “−” denote 

positive and negative test results, respectively. Panel A displays a causal tree; Panels B and C 

display the two diagnostic trees with all cues involved; Panels D and E each display a 

diagnostic tree for one of the cues, ignoring the other cue. Panels A‒C are adapted from 

Martignon, Vitouch, Takezawa, and Forster (2003). 
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Figure 2, Panel A: Full natural frequency tree for the Green and Mehr (1997) data on 89 

patients with severe chest pain. The goal is to determine whether these patients are at high or 

low risk for myocardial infarction. ST denotes a particular pattern in the electro cardiogram, 

CP denotes chest pain, OS denotes “at least one other symptom,” “+” denotes present, and “–” 

denotes absent. Numbers in circles denote numbers of patients. Panel B: Fast-and-frugal 

classification tree obtained by pruning the natural frequency tree. Questions in rectangles 

specify which cues are consulted for each patient in the corresponding circle in Panel A. 

Depending on whether this cue value is positive or negative, either a new question is asked or 

the tree is exited and a classification decision is made (oval). The accuracy of these 

classification decisions is shown by the patient numbers below these oval exit nodes: The 

number who actually had a heart attack is displayed in a gray circle; the number of those who 

did, in a white circle. All patients to the left of the vertical bar in Figure 1B are classified as 

high risk: all patients to the right, as low risk (Figure adapted from Hoffrage et al., 2015). 
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Figure 3: ROC curves for profile memorization classification (Natural Bayesian classification 

based on natural frequencies) and Naïve Bayes, and the corresponding data points for various 

fast-and-frugal trees, separately for the 11 data sets (Panels A–K) and averaged across all data 

sets (Panel L), with a training sample of 50% of the objects and performance tested on the 

remaining 50%. The points on the ROC curves for profile memorization and Naïve Bayes 

mark .1 increments on the classification threshold. The construction principles of the fast-and-

frugal trees are denoted as Z+, Z‒, and Z0 (zigzag trees), R+, R‒ (rakes), B and B1 (base-rate 

sensitive trees), M (maximum predictive value), and A (accuracy-based ranking). 
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Figure 4: ROC curves for profile memorization classification, Naïve Bayes, and the 

corresponding data points for various fast-and-frugal trees across all 11 data sets, with size of 

training sample of 15%, 50%, and 85%, in Panels A, B, and C, respectively. The performance 

of the classifier was evaluated in the remaining 85%, 50%, and 15% of cases, respectively. 
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Figure 5: Predictive accuracy for profile memorization classification, Naïve Bayes, and 

various fast-and-frugal trees across all data sets, with size of training sample of 15%, 50%, 

and 85%. The performance of the classifier was evaluated in the remaining 85%, 50%, and 

15% of cases, respectively. 

 

 

 

 

 


