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Abstract

This paper lays down a model where dispersed information generates
booms and busts in economic activity. Boom-and-bust dynamics start when
firms are initially over-optimistic about demand due to an aggregate noise
shock in their signals. Consequently, they over-produce, which generates
a boom. This however also depresses their mark-ups, which, to firms,
signals low demand and overturns their expectations, generating a bust.
This emphasizes a novel role for imperfect common knowledge: dispersed
information makes firms ignorant about their competitors’ actions, which
makes them confuse high noise-driven supply with low fundamental demand.
Boom-and-bust episodes are more dramatic when the aggregate noise shocks
are more unlikely and when congestion effects are stronger.
Keywords: Imperfect Common Knowledge, Expectations, Recessions.
JEL Classification Numbers: E32, D83, D52.

1 Introduction

Boom-and-bust episodes are a recurring feature in economic history. Boom
periods where new projects attract large resources are followed by downturns where
few resources are invested. Famous recent episodes include the 2001 dotcom bubble
or the recent housing boom and the subsequent subprime crisis. Before that, the
Dutch Tulip Mania in the 17th century and the boom in railroad construction that
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preceded the recession of 1873 in the US are well-known historical examples. The
fact that economic activity can turn from heedless optimism to dire pessimism is
also a cornerstone in economic theory. Keynes (2006) argued that “animal spirits”
play a fundamental role in the economy, while Pigou (1927) advanced the idea that
business cycles may be the consequence of “waves of optimism and pessimism”.

The objective of the paper is to show how such successions of optimism and
pessimism waves may arise as the result of imperfect common knowledge. We
emphasize a novel role for dispersed information. Because it makes agents ignorant
about the others’ actions, they are unable to distinguish demand shocks from
supply shocks when analyzing their individual economic outcomes. This has the
potential to overturn their initial assessment of the state of the economy, generating
boom-and-bust dynamics.

In our model, busts originate in the preceding booms as the result of an initial
over-optimistic signal about demand. The model focuses on the difficulties faced
by firms to correctly forecast the state of demand when deciding on their supply
level. First, information is dispersed, which makes firms ignorant not only about
the fundamental state of the economy but also about their competitors’ actions.
Second, signals are endogenous, which means that firms try to infer the state of
demand from their economic outcomes. When a positive aggregate noise shock
occurs, i.e. when firms are on average excessively optimistic about the state of
demand, they over-produce, which generates a boom. This however also depresses
their profits and mark-ups, which, to firms, signals low demand. This makes
their new expectations excessively pessimistic, generating a bust. Importantly,
expectations do not simply reverse to the true value of demand but undershoot it.
Boom-and-bust cycles arise because firms rationally confuse high supply due to a
spurious aggregate signal with low fundamental demand.

Importantly, firms get endogenous information, but this endogenous informa-
tion is incomplete, because it comes from their market interactions.1 In that case,
market incompleteness is crucial because it shapes the information set of firms.
Here we assume that the labor market opens before the goods market and that
transactions take place in nominal terms. Firms then only observe the nominal
wage when deciding their labor hiring (and hence their production), and observe
their nominal price (and hence their mark-up) only at the end of period. As a
result, quantities are contingent on firms’ limited information, while mark-ups are
contingent on both information and the realized state. As a consequence, firms use
their mark-ups to update their information at the end of period. However, mark-
ups do not reveal the true fundamental because they are also driven by the other

1Here, precisely, we mean by endogenous information market-generated information, in the
spirit of Hellwig (2006), Hellwig and Venkateswaran (2009) and Graham and Wright (2010).
Information is not endogenous in the sense of Sims (2003), where agents choose their amount of
attention.
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agents’ actions, which firms do not observe as a result of dispersed information.
This approach provides several insights. First, the extent of macroeconomic

congestion effects determines the severity of busts following booms, as congestion
worsens the signals that result from over-production. This result is consistent with
the industry evidence in Hoberg and Phillips (2010). They show that boom and
bust dynamics are more likely to arise in competitive industries. Competition,
satiation, fixed inputs are some realistic sources of congestion. Second, the less
frequent noise shocks are, the more severe are the boom-bust cycles. This is be-
cause firms believe more easily that negative signals arise from actual low demand
when noise shock are less likely. Third, we show that temporary aggregate demand
shocks which firms mistakenly interpret as a permanent shock can play the role of
the initial aggregate noise shock. In that case, the dynamics start with an increase
in credit, which is consistent with several boom-and-bust episodes.

The model focuses on the role of firms’ performances in shaping their expec-
tations and generating downturns. This approach is supported by Figure 1 which
represents firms’ unit profits and mark-ups in the US, around the NBER reces-
sions.2The Figure also features the peaks in profits and mark-ups. It clearly ap-
pears that profits and mark-ups peaked several quarters before the onset of many
recessions. In particular, the 2001 and 2008 recessions are both preceded by a grad-
ual decrease in profits and mark-ups. Our setup is consistent with these facts as
firms form their expectations based on their profits (equivalently, their markups),
which contributes to turn a boom into a bust. The recession of 1990 shows the
same features. The picture is less clear for the recessions of the 1970’s and the
1980’s, which were induced either by the oil price or by monetary policy. The re-
cessions of 1953, 1958 and 1960 are also preceded by a gradual decrease in profits
and mark-ups. Several of these episodes were characterized by excessive optimism
about demand.3 Figure 2 represents for robustness purposes the peaks in profits
with the peaks in GDP. In the cases where a peak in profits preceded a recession,
it also preceded the corresponding peak in GDP. The fact that it preceded the
peak in expected GDP indicates that expectations are indeed a consistent channel

2We use a measure of the mark-up based on average costs proposed by Ramey and Nekarda
(2010) because this is consistent with our model.

3Between 2000 and 2006, the number of vacant houses all year round rose by 20% while
construction spending increased by 45%, feeding the real estate bubble that lead to the subprime
crisis. During the dotcom bubble, many companies such as Pets.com, Webvan and Boo.com went
bankrupt because they failed to build a customer base. Similarly, the 1960 recession coincided
with a drop in domestic car demand, which shifted to foreign cars; the recession of 1958 can
also be explained by the reduction in foreign demand, due to a world-wide recession. A last
supporting example is the recession of 1953. According to the Council of Economic Advisors
(1954): “Production and sales gradually fell out of balance in the early months of 1953. [...] The
reason was partly that, while demand was high, business firms had apparently expected it to be
higher still.”
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through which reversals in profits lead to reversals in economic activity.
Close to our approach, the “news” shocks literature relates optimism and pes-

simism waves to aggregate signals about future productivity.4 Depressions nev-
ertheless do not breed into past exuberance. Waves of optimism fade out pro-
gressively as agents learn about the true state. They do not generate pessimism.
Indeed, this literature usually focuses on the boom, not on the bust. In particular,
the main challenge has been to explain how positive news about the future could
generate a boom. Notable exceptions are Beaudry and Portier (2004), Christiano
et al. (2008) and Lambertini et al. (2011), where busts arise when a positive news
is revealed to be false, that is when agents learn the true fundamental. In our
setup, on the opposite, busts arise because agents are confused by the negative
signals they get. This is consistent with the idea that recessions are characterized
by high uncertainty (Bloom et al., 2012).

Another difference with the news shocks literature is that our fundamental
shock is a demand shock, not a productivity shock. This choice has several mo-
tivations. First, it seems that the failure of firms to properly assess demand has
played a key role in some significant boom-and-bust episodes, as argued above.
Second, it seems more realistic to assume that firms have troubles assessing de-
mand rather than their own productivity. Lack of common knowledge has therefore
deep foundations in the absence of communication between firms and households.
Third, if managers were imperfectly able to assess their firm’s productivity, boom-
and-bust cycles would not appear. Indeed, after an over-optimistic productivity
signal, firms would still over-produce and observe lower prices than expected, but
this would confirm their optimistic expectations, as low prices also signal high pro-
ductivity. In that case, there is no confusion between demand and supply, because
both the fundamental and the noise shock affect the supply side.

This paper relates also to imperfect information models with dispersed in-
formation, which date back to Lucas (1972) and Frydman and Phelps (1984).5

Unlike us, these models do not explain boom-and-bust cycles. This is because
in the standard approach the decision variables of firms are prices, not quanti-
ties. Indeed, if firms compete on prices (Bertrand competition), firms’ decisions
are strategic complements, whereas if they compete on quantities (Cournot com-
petetion), firms’ decisions are strategic substitutes, as in our framework.6 This
strategic substitutability is key to overturn the firms’ expectations after an opti-
mism wave, as the negative signals firms get come from congestion effects. Our
approach, where firms compete on quantities, is justified by the fact that capacity

4See, among others: Beaudry and Portier (2006), Jaimovich and Rebelo (2009), Blanchard
et al. (2009) and Lorenzoni (2009).

5See also Woodford (2001), Sims (2003), Lorenzoni (2009), Amador and Weill (2012) and
Angeletos and La’O (2009). This literature is surveyed in Hellwig (2006) and Lorenzoni (2009).

6See Angeletos and Pavan (2007).
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decisions are medium-term decisions, which is the horizon at which boom-and-bust
episodes arise.

Finally, we provide a simple model where imperfectly informed firms learn the
state of demand from equilibrium prices. This channel, from equilibrium outcomes
to information, has been less studied in the literature than the reverse channel,
from information to equilibrium outcomes, due to technical difficulties.7 Closest to
our approach, Hellwig and Venkateswaran (2009) and Graham and Wright (2010)
present business cycle models where agents learn from their market interactions.
However, in Hellwig and Venkateswaran (2009), the focus is on the price-setting
behavior of firms and, contrary to our paper, firms compete on prices, not on
quantities. Graham and Wright (2010) focus on the role of market incompleteness
in generating heterogeneous information. While in their model, market incom-
pleteness lies in a segmented labor market, in our model, it is due to the fact that
transactions take place exclusively in monetary terms. Finally, Gaballo (2013)
shows, in a model similar to ours, that dispersed-information equilibria can be
sustained even in the absence of idiosyncratic disturbances.

Section 2 presents the set up, a standard Dixit-Stiglitz model with imperfect
competition, and Section 3 defines the equilibrium. To convey the intuition of the
mechanism, we first present a version of the model in Section 4 where transactions
take place in labor terms. As a result, the wage, which is normalized to one,
does not convey any information at all. The model is then simpler to solve but
the fundamental mechanism is present. Section 5 then presents the full monetary
version, where the nominal wage gives additional but partial information about
the fundamental. In this section, we also examine the link between boom and bust
events and credit. Section 6 concludes.

2 Set up

We consider a two-period general equilibrium model with imperfect competi-
tion à la Dixit-Stiglitz. There is one representative household who consumes a
continuum of differentiated goods indexed by i ∈ [0, 1] and supplies labor on a
competitive market. Each good is produced by a monopolistic firm using labor.
Aggregate demand is affected by a preference shock.

7Townsend (1983) and Sargent (1991) are early attempts. More recently, Rondina and Walker
(2012) and Nimark (2011) provide new techniques to study equilibria in which agents with
heterogeneous information solve signal extraction problems and in which prices and quantities
endogenously reveal information. Other contributions, such as Angeletos et al. (2010), examine
the interactions between real variables and asset prices in a dispersed information context.
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2.1 Preferences and technology

There is a representative household with the following utility function:

U = U1 + βU2 (1)

where 0 < β < 1 is the discount factor and Ut is period-t utility:

Ut = Ψ
Q1−γ
t

1− γ
− L1+η

t

(1 + η)
(2)

Q =
(∫ 1

0
(Qi)

1−ρdi
) 1

1−ρ
is the consumption basket composed of the differentiated

goods Qi, i ∈ [0, 1], and L is labor. ρ ∈ (0, 1) is the inverse of the elasticity of
substitution between goods. γ > 0 is the inverse of the elasticity of intertemporal
substitution. η > 0 is the inverse of the Frisch elasticity of labor supply. Ψ
determines the preference of the household for consumption relative to leisure.

Money is the numéraire. The consumer maximizes his utility under the follow-
ing budget constraint, expressed in nominal terms:∫ 1

0

PitQitdi+Mt +Bt = WtLt +

∫ 1

0

Πitdi+Mt−1 + rt−1Bt−1 + Tt (3)

where Pit is the nominal price of good i, Tt are the nominal transfers from the
government, Mt are money holdings, Bt are bond holdings, rt−1 is the return on
bond holdings, WtLt is the nominal labor income and Πit are the nominal profits
distributed to the household by firm i.

Money is created by the government and supplied to households through trans-
fers T , following Mt −Mt−1 = Tt. Bonds are in zero supply, so Bt = 0 in equi-
librium. The only role played by bonds in this economy is to make money a
dominated asset.

Finally, the household faces a cash-in-advance constraint,
∫ 1

0
PitQitdi ≤Mt−1+

Tt. Because money yields no interest, this constraint holds with equality. Solving
for the price index and combining with the government budget constraint, we
obtain:

PtQt = Mt

where P =
(∫ 1

0
(Pi)

−(1−ρ)
ρ di

) −ρ
1−ρ

is the general price index.

There is a [0, 1] continuum of firms who produce differentiated goods. The
production function of each firm i ∈ [0, 1] involves labor with a constant return to
scale technology:

Qit = Lit (4)
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Firm i’s profits are therefore:

Πit = PitQit −WtQit (5)

Firm i’s unit profit is therefore Pit −Wt and its mark-up is Pit/Wt.

2.2 Shocks, timing and information

At the beginning of period 1, the economy is hit by a shock on the prefer-
ence parameter Ψ. This represents a permanent “demand shock” for intermediate
goods.8 We assume that ψ = log(Ψ) follows a normal distribution with mean
zero and standard error σψ. We assume that ψ is directly observed by households,
but not by firms. This assumption simply means that households do not directly
communicate their preferences to firms. The dynamics of the model is determined
by the inability of firms to correctly forecast ψ.

The money supply is set by the government to Mt = M̄ exp(mt), where mt is
a monetary shock. mt follows a normal distribution with mean zero and standard
error σm. Because the household is involved in the market for money, she observes
mt directly but the firm does not. Monetary shocks do not play a fundamental
role in the model. They merely contribute to make nominal variables imperfect
signals of the fundamental shock ψ.9

At this stage, we can define Ωit, the set of information available to firm i
when making its time-t production decision. At the beginning of period 1, firm i
receives an exogenous signal about ψ that incorporates both an aggregate and an
idiosyncratic error:

ψi = ψ + θ + λi (6)

where θ and λi are both normal with mean zero and respective standard errors
σθ and σλ. θ is an aggregate noise shock, while λi is an idiosyncratic noise shock
that cancel out at the aggregate level:

∫ 1

0
λidi = 0. In section 5, we lay down

an extension of the model where this initial signal is endogenous and θ and λi
are temporary demand shocks. We assume that, besides ψ and mt, the household
observes θ and λi.

10

The other signals observed by firms when making their production decisions

8It can also be modelled as a productivity shock in the final good production. Variations in
the demand for intermediate goods can then arise both from a preference shock or a technology
shock.

9We do not introduce shocks on productivity in the model, as productivity is observed by
firms in any case, and our focus is on firms’ imperfect information, not households’. In this
context, the problem of firms is to infer the shocks that they cannot observe.

10This is without loss of generality given that the household observes all quantities and prices
in all markets, and therefore can infer θ and λi using her information on ψ and mt.
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depend on the market assumptions. We consider an environment where prices
are fully flexible, but where markets are incomplete. First, each period, the labor
market opens before the goods market. Second, transactions are made in terms
of money and wages are not contingent. As a result, labor hirings and nominal
wages are determined first, before firms can observe nominal prices. This has two
important consequences. On the one hand, it makes quantities predetermined
with regards to nominal prices. In other words, quantities are contingent on the
exogenous signal ψi and on the nominal wage Wt, but not on the relevant variable
for their output decisions, which is the mark-up Pit/Wt. On the other hand,
nominal prices incorporate new information that the firms can use when setting
their next period supply.

Therefore, the information set of firm i at the beginning of period 1 is Ωi1 =
{ψi,W1}. At the beginning of period 2, firms have observed the price of their good
during period 1, so Ωi2 = {ψi, Pi1,W1,W2}.

Importantly, we assume that the aggregate supply is not part of their infor-
mation set. The idea behind this restrictive information structure is that firms
pay attention to their local interactions and limited attention to public releases of
aggregate information. Firms do collect public information (the nominal wage for
example), but only if they are confronted to this information during their economic
interactions. Aggregate supply is not part of their information set because they
trade an individual good.11

In order to save notations, we denote by Eit(y) the expected value of variable
y conditional on Ωi

t.

3 Equilibrium

An equilibrium is a sequence of nominal prices, nominal wages, money hold-
ings, production levels, labor supplies such that, in each period t = 1, 2: (i) the
household maximizes his utility (1) subject to his budget constraint (3) and the
cash-in-advance constraint, given full information about the shocks hitting the
economy and given the nominal prices and wages; (ii) each firm i sets its supply
Qit monopolistically to maximize its profits given its information set Ωit; (iii) the
money market, labor market and the intermediate good markets clear.

11We could add noisy aggregate quantities to the information sets to represent imperfect
attention to aggregate supply, but we prefer to represent imperfect information in a parsimonious
way by assuming that agents simply do not observe aggregate quantities.
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3.1 Household’s decisions

The consumer’s maximization program yields the following demand for each
variety:

Qit = Qt

(
Pit
Pt

)−1
ρ

This equation simply states that the demand for good i is increasing in total
demand and decreasing in the relative price of good i.

In logarithmic terms, this equation writes:

pi − p = ρ [q − qi] (7)

where lower-case letters denote the log value of the variable and where time sub-
scripts are dropped. Everything else equal, aggregate income increases the demand
for good i, which increases pi, and the more so as the elasticity of substitution be-
tween goods 1/ρ is low (ρ is large).

The consumer’s maximization program yields the following demand for goods:

QγLη =
ΨW

P

This equation represents the trade-off between leisure and consumption. When
the demand shock ψ is high, agents prefer consumption over leisure and therefore
they work and consume more. Similarly, when the real wage W/P is high, leisure
is relatively less costly, which stimulates aggregate demand Q.

In logs, and after using Q = L, this yields:

w − p = σq − ψ (8)

where σ = γ + η. 1/σ is the macro elasticity of labor supply to the real wage.
When σ is high, this elasticity is low and the wage reacts strongly to changes in
supply q. σ can then be seen as the parameter that governs of real rigidities in the
economy, or aggregate congestion, since aggregate supply increases costs through
that channel.

The money market clears, so PtQt = M̄ exp(mt). In logs, this gives:

p+ q = m (9)

The constant term is neglected for simplicity.
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3.2 Optimal supply by firms

Optimal supply by firm i must be such that prices satisfy:

Ei

(
Pit
Wt

)
=

1

(1− ρ)

This simply means that the mark-up Pit/Wt must be equal to 1/(1− ρ) in expec-
tations. Since shocks are log-normal, this equation can be written in logs:

Ei(pi)− w = 0

where the constant term has been discarded. It is useful to define the normalized
supply q̂i = σqi. By using the individual and aggregate demand equations (7) and
(8), the optimal - normalized - individual supply can be written as a function of
expected aggregate supply and the expected fundamental shock:

q̂i = σ̃Ei(ψ)− (σ̃ − 1)Ei(q̂) (10)

where σ̃ = σ/ρ. In order to decide its optimal supply q̂i, firm i has two variables
to infer: the fundamental shock ψ, but also the aggregate supply q̂. Indeed, firms
exert an externality on each other due to congestion and income effects. Aggregate
supply has two opposite effects on individual profits. First, it increases the real
wage w − p, and the more so as σ is large, that is as the macro elasticity of labor
supply is low (congestion effect). Second, it increases the real price pi − p of
good i, but the less so as the elasticity of substitution 1/ρ is large (income effect).
Therefore, profits are adversely affected by aggregate supply when both σ and 1/ρ
are large. For σ̃ < 1, the positive income effect counteracts the negative congestion
effect and quantity-setting features strategic substitutabilities. For σ̃ > 1, the
negative congestion effect counteracts the positive income effect and quantity-
setting features strategic complementarities.

In the remainder of the paper, we make the following assumption:

Assumption 1 (Congestion) σ̃ > 1.

This assumption states that the congestion effect dominates the income effect.
As we will see later, this assumption is strongly supported by the data.

3.3 Perfect information / perfect markets outcome

Before solving the model with imperfect information, consider the perfect in-
formation outcome. If firms were all able to observe ψ directly, then they would
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set:
q̂it = q̂t = ψ (11)

and the equilibrium mark-up would satisfy:

pit − wt = 0 (12)

Note that this perfect information outcome would also arise if markets were
complete, that is if firms were able to specify wages in terms of their individual
good. Indeed, the wage in terms of good i w − pi is equal to minus the mark-up
pi − w. Hence, for firm i it is equivalent to set the wage in terms of good i and
the mark-up. The firm can therefore satisfy its optimality condition pi − w = 0,
and therefore q̂i = ψ. In practice, firms adjust their labor demand until the real
wage corresponds to the desired mark-up. In the model, prices reveal the relevant
information to firms only partially because markets are incomplete, as wages are
specified in nominal terms.

4 Simple version

Before solving the full-fledged monetary model, we consider a simplified version
in order to grasp the intuition. In particular, the main mechanism comes from the
fact that the firm cannot observe the mark-up pi − w, which is the relevant price
for deciding its production level. It observes it partly through the nominal wage
w, but the nominal wage is itself affected by nominal shocks, so it is only a noisy
signal of the mark-up.

In this section, we consider a version of the model where transactions are
specified in terms of labor, not of money. The labor market thus does not convey
any information to firms, since the wage is equal to one. This has implications
on the information set of firms since firms do not even observe w, the wage in
terms of money. In this case, we have a simpler problem where the wage does
not convey any information but where quantities are still determined ahead of the
mark-up, which is at the core of the model’s mechanism. Now quantity setting
must satisfy Ei(pi − w) = 0 and Equation (10) is still valid. The only difference
with the full monetary model is that the information sets are now Ωi1 = {ψi} and
Ωi2 = {ψi, pi1 − w1}.

4.1 First period production

Here we show that in the first period, firms’ aggregate supply under-reacts to
the fundamental demand shock and over-reacts to the aggregate noise shock. As a
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result, firm’s mark-up, which is observed by firms at the end of period, is positively
affected by the fundamental shock and negatively by the noise shock.

Indeed, as firms receive signal ψi = ψ+θ+λi at the beginning of period 1, they
extract information from this signal according to the following standard formula:

Lemma 1 (Period-1 forecasts) At the beginning of period 1, firm i’s forecast
of ψ is the following:

Ei1(ψ) = kψψi = kψ(ψ + θ + λi) (13)

where kψ is the standard bayesian weight kψ = σ2
ψ/(σ

2
ψ + σ2

θ + σ2
λ).

Signal ψi is imperfectly correlated with ψ. The best forecast for ψ is therefore
proportional to the signal, and the elasticity of the forecast to the signal depends
on the fraction of the signal volatility that is explained by the fundamental shock.

On the other hand, firm i’s supply follows the optimal supply (10). In order
to derive supply as a function of the shocks, we use the method of undetermined
coefficients. We establish the following Proposition (see proof in the Appendix):

Proposition 1 (Period-1 production) In period 1, the supply by firm i obeys
to:

q̂i1 = Kψψi (14)

where 0 < Kψ < 1, and, under Assumption 1, Kψ > kψ. At the aggregate level,
firms produce the following quantities:

q̂1 = Kψ(ψ + θ) (15)

Since Kψ < 1, the aggregate supply under imperfect information, as compared
with the equilibrium supply under perfect information (11), reacts less to the
fundamental shock ψ, because information is noisy. On the opposite, aggregate
supply over-reacts to the aggregate noise shock θ, because firms cannot distinguish
it from the fundamental.

Moreover, as there are congestion effects in the economy, we have Kψ > kψ,
which means that agents over-react to their private signal ψi. Each firm i expects
that the other firms combine their private signal with zero, the unconditional
expectation of ψ, which is public information, to set their individual supply. Since
there is strategic substitutability under Assumption 1, firms under-react to any
public information, because public information is common to all firms and thus
generates congestion. A contrario, firms over-react to any private information
because private information is exempt from congestion effects. A positive noise
shock θ therefore generates a boom that is due both to imperfect information per
se but also to the over-reaction to private signals. This feature is in line with the
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literature on imperfect common knowledge and is not specific to our paper (see
for example Angeletos and Pavan (2007)). Here, as we will show soon, imperfect
common knowledge plays an additional role, which is to produce confusion between
demand and supply. This effect plays through the new signal gathered by firms at
the end of period 1, their mark-up.

4.2 New signal

The new signal received by firms is their mark-up:

pi1 − w1 = ψ − σ̃ − 1

σ̃
q̂1 −

1

σ̃
q̂i1 (16)

This equation comes from the combination of individual demand (7) and aggregate
demand (8). The mark-up is affected directly by the fundamental shock ψ since
a demand shock lowers the real wage. It is also affected by the individual and
aggregate supply q̂i1 and q̂1. The individual supply decreases the mark-up because
it decreases the relative price of good i. Importantly, aggregate supply has a
negative effect on the mark-up under Assumption 1.

The firm can use pi1 − w1 to extract information on ψ by combining it with
its other signal ψi. The firm knows individual supply q̂i1 = Kψψi, but ignores q̂1
because of dispersed information. Therefore, it can “filter” the mark-up from the
influence of q̂i1 but not from the influence of q̂1. The “filtered” mark-up writes as
follows:

pi1 − w1 +
1

σ̃
q̂i1 = ψ − σ̃ − 1

σ̃
q1 =

(
1− σ̃ − 1

σ̃
Kψ

)
ψ − σ̃ − 1

σ̃
Kψθ

Note that the fundamental shock ψ has a positive effect on the filtered mark-
up. Indeed, as Kψ < 1, aggregate supply does not fully respond to the demand
shock, so aggregate demand is in excess of supply, which stimulates the mark-up.
On the opposite, the noise shock θ has a negative effect on the filtered mark-up
under Assumption 1. In this case, aggregate supply is in excess of demand, which
depresses the mark-up. Assumption 1 ensures that supply does not generate its
own demand through the income effect. Therefore, as a result of congestion effects,
a positive shock on θ makes the filtered mark-up a negative signal of ψ.

Dispersed information is also crucial. If firms received the same information,
then they would be able to infer q1 even without observing it directly, because they
would be able to infer what the others do. They could then clean their mark-up
from the influence of others’ supply and infer ψ. Formally, if information was
common (λi = 0), it would be straightforward to infer ψ by combining pi1 − w1

and q̂1 = Kψψi. Of course this result is trivial since there are as many shocks
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to identify (ψ and θ) as signals (pi1 − w1 and ψi). However, even if pi1 − w1 was
observed with noise, θ would not affect the filtered signal negatively.12 In short,
even if firms observed low mark-ups following a positive noise shock θ > 0, they
would be able to put these mark-ups in perspective with the high aggregate supply
q̂1. As a result, low mark-ups would not be perceived as a negative signal on ψ,
but simply as the result of high supply.

This yields the following corollary:

Corollary 1 The information available at the beginning of period 2 is summarized
by two independent signals of ψ, a public signal s and a private signal xi, defined
as follows:

s = ψ − ωθθ

xi = ψ + ωλλi

with ωθ = (σ̃ − 1)Kψ/[σ̃ − (σ̃ − 1)Kψ] and ωλ = ωθ/(1 + ωθ). Under Assumption
1, ωθ > 0. Besides, ωθ is increasing in σ̃.

Proof. s is obtained simply by normalizing the filtered mark-up. xi is obtained
by combining s with ψi. As xi and s are independent linear combinations of ψi
and p1i − w1, the information set {xi, s} is equivalent to {ψi, p1i − w1}.

As suggested, Assumption 1 implies that θ generates a negative signal on ψ, as
ωθ > 0. Since congestion makes the mark-up react more negatively to aggregate
supply, s reacts more negatively to θ when σ̃ is higher.

4.3 Second period

Here we show that, while the forecast Ei2(ψ) and the supply q̂i2 get closer to
the perfect information benchmark after a fundamental shock, they are reversed
after an aggregate noise shock.

As firms receive two independent signals of ψ, solving for Ei2(ψ) is straightfor-
ward (see proof in the Appendix):

Lemma 2 (Period-2 forecasts) At the beginning of period 2, firm i’s forecast
of ψ is the following:

Ei2(ψ) = fxxi + fss = (fx + fs)ψ − fsωθθ + fxωλλi (17)

with 0 < fx < 1, 0 < fs < 1 and kψ < fx + fs < 1. fs is decreasing in σ̃.

12For example, suppose that firms observe pi1−w1 + z, where z follows a normal distribution
with mean zero and standard error σz. Firms can still use q̂1 to clean the mark-up from θ:
pi1 − w1 + 1

σ̃ q̂1 + σ̃−1
σ̃ q̂1 = ψ + z.
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As fx + fs > kψ, following a fundamental shock ψ, the forecast of ψ becomes
closer to the fundamental in the second period as firms gather more information.
On the opposite, the effect of a noise shock θ on the forecast of ψ turns from
positive in the first period (kψ > 0) to negative in the second period (−fsωθ < 0).
In other words, following a positive θ shock, firms observe lower mark-ups than
expected, because of an excessive aggregate supply. They revise their forecasts of
ψ downwards, because low mark-ups can also signal a low ψ, that is low demand.
Lemma 2 implies that this updating overturns the initial positive forecast.

Whereas the effect of θ on the second-period forecast is clearly negative when
σ̃ > 1, the marginal impact of the congestion parameter σ̃ is not straightforward.
While σ̃ has a positive effect on the reaction of the filtered mark-up s to noise ωθ,
it has a negative impact on the weight firms put on this public signal fs. Indeed,
as the public signal becomes more reactive to θ, it becomes a poorer signal of ψ,
so firms rely less on it to infer ψ. However, in the limit case where σ2

θ goes to zero,
the first effect dominates, as suggested by the following corollary (see proof in the
Appendix):

Corollary 2 As σ2
θ goes to zero, −fsωθ goes to −(σ̃ − 1)σ2

ψ/(σ
2
ψ + σ2

λ).

This implies that, following a noise-driven boom, expectations can be arbitrarily
low as aggregate noise shocks are unlikely and congestion effects are strong (σ̃ is
large). Indeed, when the noise shock is unlikely, firms put a large weight fs on the
public signal s, so the effect of σ̃ on ωθ dominates.

In period 2, as in period 1, the supply by firm i follows Equation (10). In order
to determine the optimal supply by a firm, we use the method of undetermined
coefficients again and derive the following proposition (see proof in the Appendix):

Proposition 2 (Period-2 production) In period 2, optimal supply by firm i
obeys to:

q̂i2 = Fxxi + Fss (18)

with 0 < Fx < 1, 0 < Fs < 1 and Kψ < Fx + Fs < 1. Under Assumption 1, we
also have Fx > fx and Fs < fs. At the aggregate level, firms produce the following
quantities:

q̂2 = [Fx + Fs]ψ − Fsωθθ (19)

In period 2, as Fx + Fs > Kψ, following a fundamental shock ψ, output gets
closer to its first-best value. On the opposite, the effect of the aggregate noise shock
θ on aggregate supply becomes negative through the public signal s. A positive
noise shock generates a bust in period 2 precisely because it generates a boom in
period 1. Indeed, as explained above, excessive supply in period 1 depresses period
1 mark-ups, which firms rationally interpret as weak demand because they cannot
exclude the possibility that low mark-ups arise from a low ψ.
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As in period 1, firms over-react to their private signal (here xi) and under-react
to their public signal (here s), as the economy features congestion effects. Whereas
this property magnifies the initial boom, it mitigates the subsequent bust. This,
however, is not a crucial feature of our model. It hinges on the assumption that the
mark-up is not affected by any additional noise, due for example to a temporary
aggregate or idiosyncratic demand shock. In the case of idiosyncratic noise, the
bust could be magnified. This nevertheless does not change the main result of the
model, which is the succession of booms and busts.

As for the effect of congestion on the forecast, the effect of congestion on the dy-
namics is ambiguous. In the case where σ2

θ goes to zero, we can nevertheless derive
some results, summarized by the following corollary (see proof in the Appendix):

Corollary 3 As σ2
θ goes to zero, Fs goes to fs, so −Fsωθ goes to −(σ̃−1)σ2

ψ/(σ
2
ψ+

σ2
λ).

As σ2
θ goes to zero, the extent of imperfect information becomes smaller, and

the strategic component of optimal supply disappears, which implies that Fs goes
to fs. The optimal supply becomes closer to its certainty-equivalent counterpart
where the public noise is not under-weighted, that is q̂i2 = Ei2(ψ). Applying
Corollary 2, we obtain that the response of aggregate quantities to the aggregate
noise shock can become arbitrarily large as congestion effects σ̃ increase.

4.4 Numerical example

We implement a numerical example, where the parameters are set as described
in Table 1. The preference parameters γ, η and ρ, which determine whether
Assumption 1 is satisfied or not, are crucial. First, micro studies report values for
the elasticity of substitution between goods that are of the order of 6-7, so we set
1/ρ to 7.13 Second, γ, the inverse of the elasticity of intertemporal substitution,
is admitted to be around 1, so we set γ = 1.14 Finally, Mulligan (1999) suggests
that labor supply elasticities can easily be as large as 2, which suggests a value
of 1/2 for η. We set η to zero as a conservative benchmark. As a result, σ̃ = 7,
which strongly satisfies Assumption 1. We examine alternative parametrizations
in the full version of the model, in section 5. Qualitatively, the precise values of
the shocks’ standard errors do not matter, so we set them all to 0.1, except σθ,
which is set to 0.05 in the benchmark in order to generate significant boom and
bust dynamics.

The left panels in Figure 3 show the effect of a unitary shock on fundamental
demand ψ on the average forecast, supply and mark-up in period 1 and 2, for

13See Ruhl (2008) and Imbs and Mejean (2009).
14See Attanasio and Weber (1993) and Vissing-Jörgensen and Attanasio (2003).
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different values of σθ. In this example, the first-best response of both the forecast
and supply is 1, and the first-best response of the mark-up is 0. As stated in Lemma
1, this shock does not fully translate to E1(ψ) and q̂1, which respond positively
but remain below 1. As a result of excess demand, the mark-up increases in period
1. In period 2, the forecast and supply get closer to 1, as firms receive additional
information through their mark-up. As a result, the mark-up gets closer to 0. As
σθ decreases, information becomes more precise and the output and mark-up get
closer to their first-best response.

Consider now the right panels of the figure, which represent the effect of an
aggregate noise shock θ = 1. In the first period, θ = 1 is observationally equivalent
to ψ = 1, so it results in identical responses of E1(ψ) and q̂1. However, the response
of output is now above its first-best value, which is zero. Goods are then in excess
supply, which implies that the response of the mark-up is negative. Crucially, as
explained above, the fact that the mark-up reacts differently after a fundamental
and a noise shock explains why the forecasts can be reversed after a noise shock.
In the second period, the forecast and supply turn negative in the second period,
as expected. As σθ decreases, noise shocks generate more volatile booms and busts
as firms tend to believe that signals are more likely to be driven by ψ.

The left panels of figure 4 show the effect of a fundamental shock ψ = 1 on
the average forecast and output, depending on aggregate congestion effects σ̃. In
the first period, congestion does not affect the average forecast E1(ψ), but its
effect on output q̂1 is increasing because strategic substitutability makes firms
more sensitive to their private signal ψi. Notice that output is exactly equal to
its certainty equivalent - the value of the forecast - when σ̃ = 1, that is, when
there are no strategic effects. In the second period, the effect of congestion is
non-monotonic. When σ̃ = 1, the mark-up signal is not blurred by aggregate
supply so the inference of ψ is straightforward. When σ̃ gets larger or lower than
1, the period 2 forecast and output become lower than their first-best value. This
is because the mark-up now reacts (positively or negatively) to aggregate supply,
which makes the inference of ψ more difficult.

Similarly, the right panels of figure 4 show how the effect of a noise shock
θ = 1 on forecasts and outputs is affected by aggregate congestion effects σ̃. In
the first period, the response of output gets further away from its first-best value,
which is zero, as congestion σ̃ increases due to the strategic use of information.
In the second period, the effect of congestion σ̃ is also non-monotonous. For low
values of σ̃, stronger congestion exacerbates the negative effect of overproduction
on the mark-up, which is interpreted by firms as a negative signal on the state of
demand. But as congestion effects become stronger, it is more likely that a low
mark-up reflects overproduction, so firms tend not to believe that demand is low.
In the case where σ̃ < 1, the firm still revises its forecasts of ψ downwards, but
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not enough to undershoot the fundamental value, which is zero.

5 Full monetary version

In this section, we solve the full monetary version of the model, that is with
prices specified in nominal terms, which means that nominal wages are now part of
the firms’ information set. We show that the forecasts of ψ become more precise
when firms are able to observe the nominal wage, but they are still imperfect
because of monetary shocks. The dynamics still features boom-and-bust cycles.

5.1 Labor market and information structure

At the beginning of period, the household establishes competitively with firms
the amount of labor that she will provide against a pre-specified nominal wage
wt. Firms therefore observe wt at the same time as they decide how much they
produce. As a result of household’s optimization, the nominal wage partly reveals
the preference shock:

wt =
σ − 1

σ
q̂t − ψ +mt

This equation is obtained from combining Equations (8) and (9). The nominal
wage depends positively on the monetary shock mt, negatively on the preference
shock ψ and positively on aggregate production q̂t if the macro elasticity of labor
supply 1/σ is below one. Since the firm does not observe mt or q̂t directly, the
nominal wage will not perfectly reveal ψ.

Now that firms observe the nominal wage wt, the information structure of the
model is modified. At the beginning of period 1, firms still receive the exogenous
signal ψi, so Ωi1 = {ψi, w1}. In period 1, they observe their nominal price pi1, so
Ωi2 = {ψi, pi1, w1, w2}, which is equivalent to Ωi2 = {ψi, pi1 − w1, w1, w2}.

Notice that the case with a unitary elasticity of labor, that is with σ = 1, is
simpler since in that case wt does not depend on q̂t:

wt = −ψ +mt

We solve this special case analytically and show that the results of the simple
version of the model are not affected. We then solve the more general case numer-
ically.

5.2 Analytical results with σ = 1

In the first period, firms can use two signals: ψi = ψ + θ + λi and w1 =
−ψ + m1. The resulting forecasts and supply are affected as described by the
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following Proposition (see proof in the Appendix):

Proposition 3 (Period-1 production) In period 1, optimal supply by firm i
obeys to:

q̂i1 = K∗ψψi −K∗ww1 (20)

where 0 < K∗ψ < 1, 0 < K∗w < 1. Besides, we have K∗ψ < Kψ, and Kψ <
K∗ψ +K∗w < 1. At the aggregate level, firms produce the following quantities:

q̂1 = [K∗ψ +K∗w]ψ +K∗ψ(θ + λi)−K∗wm1 (21)

As in the simple version of the model, firms under-react to the fundamental
shock ψ and over-react to the noise shock θ, since K∗ψ +K∗w < 1 and K∗ψ > 0. But
because they receive an additional signal on ψ, they react more to ψ and less to
θ, as K∗ψ +K∗w > Kψ and K∗ψ < Kψ.

At the end of period 1, firms’ mark-ups constitute a new signal. As Equation
(16) is still valid, we can derive the following corollary:

Corollary 4 The information available at the beginning of period 2 is summarized
by four independent signals of ψ: two monetary signals −w1 = ψ−m1 and −w2 =
ψ −m2 and two real signal, a public signal s∗ and a private signal x∗i , defined as
follows:

s∗ = ψ − ω∗θθ

x∗i = ψ + ω∗λλi

with ω∗θ = (σ̃ − 1)K∗ψ/[σ̃ − (σ̃ − 1)K∗ψ] and ω∗λ = ω∗θ/(1 + ω∗θ). Under Assumption
1, ω∗θ > 0 and ω∗θ < ωθ, ω

∗
λ < ωλ. Besides, ω∗θ is increasing in σ̃.

Proof. Here again s∗ is obtained simply by normalizing the filtered mark-up and
x∗i is obtained by combining s∗ with ψi. ω∗θ < ωθ follows from K∗ψ < Kψ and
ω∗λ < ωλ follows from ω∗θ < ωθ.

Since ω∗θ < ωθ and ω∗λ < ωλ, x
∗
i and s∗ are more precise signals of ψ than

xi and s. Besides, firms can use two additional signals of ψ, the nominal signals
−w1 = ψ−m1 and−w2 = ψ−m2. In the monetary version of the model, firms have
more precise information on ψ. However, we still have that θ affects negatively
the public signal of ψ. Supply in period 2 is therefore only affected quantitatively,
as shown in the following Proposition (see proof in the Appendix):

Proposition 4 (Period-2 production) In period 2, optimal supply by firm i
obeys to:

q̂i2 = F ∗xx
∗
i + F ∗s s

∗ − F ∗w(w1 + w2) (22)

where 0 < F ∗w < 1, 0 < F ∗x < 1 and 0 < F ∗s < 1. Since s∗ and x∗i are more
precise signals of ψ than s and xi, but are used along with other signals, F ∗s and
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F ∗x can be either lower or higher than Fs and Fx. However, we have Fx + Fs <
F ∗x + F ∗s + 2F ∗w < 1. At the aggregate level, firms produce the following quantities:

q̂2 = [F ∗x + F ∗s + 2F ∗w]ψ − F ∗s ω∗θθ − F ∗w(m1 +m2) (23)

As in the simple model, the contribution of θ to the public signal s∗ is negative
when congestion effects are present, so the effect of θ on qi2 is still negative. Again,
the bust generated by θ can still be potentially large, as implied by the following
corollary (see proof in the Appendix):

Corollary 5 As σ2
θ goes to zero, −F ∗s ω∗θ goes to −(σ̃−1)σ2

ψ/(σ
2
ψ+σ2

λ+σ2
ψσ

2
λ/σ

2
m).

Therefore, following a noise-driven boom, the bust can be arbitrarily large as
aggregate noise shock are unlikely and congestion effects are strong.

5.3 Numerical results

Here we analyze numerical simulations to show the role of σm, σθ and σ. For the
cases where σ 6= 1, we simulate the model numerically. The numerical simulation
method is described in the Appendix.

Figure 5 shows the effect of unitary shocks on ψ and θ on the forecast, output
and mark-ups in period 1 and 2, for different values of σm and σθ. The baseline
calibration follows Table 1. In particular, we can compare the baseline monetary
model, with σm = 0.1, to the simple model, which is equivalent to the monetary
model with σm going to infinity. The results are qualitatively similar but are
quantitatively different. In the monetary model, the forecasts, quantities and
mark-ups are closer to their first-best values than in the simple model. This
is because the nominal wages provide additional information to firms about the
underlying shocks. As a result, the boom-and-bust dynamics arising from an
aggregate noise shock θ = 1 is milder. However, as stated in Corollary 5 and
illustrated in the figure in the case σθ = 0.01, boom-and-bust episodes are still
magnified when noise shocks are relatively unlikely.

The degree of real rigidities in the economy, which corresponds to 1/σ in our
model, depends in general on the structure of the economy.15 There is a lot of
disagreement in the literature on its precise value. Richer models find estimates
of the inverse of real rigidities (σ in our model) that vary between 0.3 to 3.16 Our

15Here we use the term “real rigidities” in the same way as the New Keynesian literature,
that is, as the elasticity of the marginal cost to the output gap. In our model, real rigidities are
therefore equal to the inverse of σ, the macro elasticity of labor supply to the real wage.

16For example, this value is equal to 0.33 in Dotsey and King (2006), to 0.34 in Smets and
Wouters (2007) to 2.25 in the baseline parametrization used by Chari et al. (2000) and to 3 in
Gaĺı (2009).
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baseline parametrization falls within this range. Although σ̃ is lower when σ is
equal to the lower bound 0.3, it is still above one with 1/ρ = 7.17 In Figure 6, we
simulate the baseline along with the two polar cases σ = 0.3 and σ = 3.

In the case where σ = 3, the forecast reacts less to the fundamental shock as the
response of the nominal wage to ψ is dampened. Indeed, a positive demand shock
ψ has a negative direct impact on the wage, but with a low macro elasticity of labor
(a high σ), there is a positive indirect impact, as the real wage has to increase more
as a response to higher labor demand. This mitigates the negative response of the
nominal wage to ψ. When σ is higher, firms are therefore less able to forecast
ψ, both in the first and second period. The opposite happens with σ = 0.3.
Regarding the noise shock, a higher σ makes the boom in expectations milder but
the bust stronger. Indeed, in the first period, the nominal wage reacts positively
to the increase in labor demand by firms, which can also signal a low fundamental
demand. As a result, there is a downward bias in the demand forecasts. This
effect is reversed with a lower σ.

5.4 Credit

We now introduce credit in order to account for the typical surge in credit that
characterizes booms and busts. To do so, we introduce a non-produced traded good
X, in fixed supply X̄ in the country but in infinite supply from the rest of the world.
Households can exchange good X with the rest of the world and save or borrow
vis-à-vis the rest of the world. Congestion effects and imperfect competition still
affect the nontradable sector where firms produce differentiated goods as described
in Section 2. In this extension, we also endogeneize noise shocks by introducing
an initial period 0, where temporary aggregate and idiosyncratic demand shocks
can appear. These temporary demand shocks generate noise because firms cannot
distinguish them from the permanent demand shock. Therefore, an aggregate
temporary demand shock will generate credit among households and in the same
time mislead firms about the true value of the permanent shock.

We introduce a demand for a traded good by amending the model of Section
2 in the following way. The specification of the utility (2) becomes for t = 1, 2:

Ut = Ψ log
(
Qµ
tX

1−µ
t

)
− Lt (24)

with 0 < µ < 1. µ is the share of nontradable goods in consumption. When µ = 1,

17As argued by Woodford (2003), the ability of labor to move freely from one sector to the
other is crucial to determine the degree of real rigidities. The degree of real rigidities should
therefore be high in the short-run, when labor is not mobile, and low in the long-run, when labor
is mobile. Since we consider the medium-run horizon, this should point to a relatively low degree
of real rigidities, hence to a high σ.
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the utility function boils down to (2) where γ = 1 and η = 0. Q now refers to the
consumption of non-traded goods. In the initial period t = 0, utility is now:

U0 = ΨΘ log
(
Qµ
tX

1−µ
t

)
− Lt (25)

with Q0 =
(∫ 1

0
ΛiQ

1−ρ
i di

) 1
1−ρ

. θ = log(Θ) is a temporary aggregate demand shock

and λi = log(Λi) is a temporary idiosyncratic demand shock, where θ and λi have
the same characteristics as described in Section 2. The household now maximizes
U = U0 + βU1 + β2U2 subject to the budget constraints:∫ 1

0

PitQitdi+Mt+P x
t Xt+rP x

t Dt−1 = WtLt+

∫ 1

0

Πitdi+Mt−1 +Tt+P x
t X̄+P x

t Dt

for t = 0, 1, 2. P x
t is the price of good X in nominal terms and Dt is international

borrowing in terms of tradable goods, which yields interest r = 1/β. Households
now can trade intertemporally with the rest of the world through D. We assume
that they start with no international debt so D−1 = 0.

The cash-in-advance constraint and the government budget constraint are the
same as before, which yields (9).

The aggregate and individual demands remain as described in Equations (7)
and (8) in periods 1 and 2, except that we have γ = 1 and η = 0. In period 0,
they are additionally affected by the aggregate and individual transitory shocks θ
and λi:

qi0 = q0 −
1

ρ
[pi0 − p0 − λi0]

w0 − p0 = q0 − ψ − θ

Ex ante, firms observe nominal wages w0 = m0 − ψ − θ, so they produce qi =
q = −hw0, where h = σ2

ψ/(σ
2
ψ + σ2

θ + σ2
m). As a result, in period 0, they observe

mark-ups:
pi0 − w0 = ψ + θ + λi + hw0

which, combined with w0 gives the initial signal ψi:

ψi = pi0 − w0 − hw0 = ψ + θ + λi

Period-0 mark-ups are therefore an imperfect signal of the permanent demand
shock ψ. This signal is perturbed by the aggregate and idiosyncratic demand
shocks θ and λi. This gives an economic significance to the initial signal ψi in the
baseline model. Regarding the dynamics of the non-traded good in period 1 and
2, the only difference with the baseline model with γ = 1 and η = 0 is that agents
start period 1 with an additional nominal signal w0.
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We derive the following Proposition (see proof in the Appendix):

Proposition 5 (Boom-busts and capital flows) A positive aggregate transi-
tory demand shock θ > 0 generates capital inflows in period 0, a boom in period
1 and, under Assumption 1, a bust in period 2. A positive aggregate permanent
shock ψ > 0 generates no capital flows and a sustained boom in period 1 and 2.

A temporary demand shock θ generates a demand boom in period 0 which
makes households increase their borrowing. This same temporary demand boom
makes firms mistakenly interpret it as a permanent boom, making them over-
optimistic, which triggers a boom-and-bust dynamics in the non-tradable sector.
A permanent increase in demand does not generate a boom-and-bust dynamics
since firms are confirmed in their beliefs. At the same time, households do not
borrow as the shock is permanent.

6 Conclusion

This paper has shown that, in a model where agents have imperfect common
knowledge and learn from prices, fundamental shocks lead to standard learning dy-
namics while noise shocks lead to boom-and-bust dynamics. These dynamics are
rooted in the lack of communication between agents and the fact that, due to mar-
ket timing and to the monetary nature of transactions, prices do not communicate
enough information.

While the focus of the literature is on the channel from information to equi-
librium variables, this paper shows in a simple model that studying the way
equilibrium variables affect information generates new insights. In more general
frameworks, this approach is subject to technical difficulties, that are now reduced
thanks to the contributions of Nimark (2011) and Rondina and Walker (2012).
We believe that these recent methodological advances open an avenue for future
research in that direction.

In particular, it would be interesting to investigate whether the central bank
can improve allocations by using prices to communicate its own information to
agents. So far, the literature on imperfect common knowledge has highlighted
the role of policy in improving the private use of information by changing the
agents’ incentives through both fiscal and monetary policy.18 We believe that
the communication role of prices (and other market-generated information that is
affected by policy) has the potential to alter standard monetary doctrines. Indeed,
price stabilization might not be optimal if prices convey information. This is left
for future research.

18See Adam (2007), Angeletos and Pavan (2007), Angeletos and Pavan (2009), Lorenzoni
(2010), Amador and Weill (2010), Paciello and Wiederholt (2011) and Angeletos and La’o (2012).
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A Proofs

Denote by ξi a gaussian vector of shocks of size N , where the n first elements
are aggregate shocks and the N − n last elements are idiosyncratic shocks, and Si
a vector of signals of size K such that there exists a (N,K) matrix H such that:

Si = H ′ξi (26)

We denote by H̃ the (N,K) matrix such that all the n first lines are equal to the
n first lines of H and the N − n last lines are equal to zero. Let P be a (N,K)
matrix such that:

E(ξi|Si) = PSi (27)

The following lemma will be useful in proving several propositions:

Lemma 3 Consider the following equation:

q̂i = [σ̃X ′E(ξi|Si)− (σ̃ − 1)E(q̂|Si)] (28)

where X is a vector of size N . Then, if I + (σ̃ − 1)H̃ ′P is invertible, we have:

q̂i = ASi

where A is a size-K row vector such that:

A = σ̃X ′P [I + (σ̃ − 1)H̃ ′P ]−1 (29)

Proof of Lemma 3.
We use the method of undetermined coefficients to solve for A. We first form

the educated guess that there exist a size-K row vector A such that

q̂i = ASi (30)
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then, using Equation (26), we obtain

q̂i = AH ′ξi

Hence, aggregating across firms, taking expectations and using Equation (27):

E(q̂|Si) = AH̃ ′E(ξi|Si) = AH̃ ′PSi

Replacing in Equation (28):

q̂i = [σ̃X ′PSi − (σ̃ − 1)AH̃ ′PSi] = [σ̃X ′P − (σ̃ − 1)AH̃ ′P ]Si

Using the guess, we can write:

A = σ̃X ′P − (σ̃ − 1)AH̃ ′P

If I + (σ̃ − 1)H̃ ′P is invertible, we can solve for A and obtain (29).

Proof of Proposition 1.
According to Equation (10), q̂i1 follows (28) with Si = ψi, ξi =

(
ψ θ λi

)′
and

X =
(
1 0 0

)′
. Besides, Si follows (26) with H =

(
1 1 1

)′
and H̃ =

(
1 1 0

)′
;

and E(ξi|Si) follows (27) with P =
(
kψ k̄ψ 1− kψ − k̄ψ

)′
with kψ defined as in

Lemma 1 and k̄ψ = σ2
θ/(σ

2
ψ + σ2

θ + σ2
λ). Therefore, applying Lemma 3, we obtain:

Kψ = A =
σ̃kψ

1 + (σ̃ − 1)(kψ + k̄ψ)
= kψ

(
1 +

(σ̃ − 1)(1− kψ − k̄ψ)

1 + (σ̃ − 1)(kψ + k̄ψ)

)
We have: Kψ = σ̃kψ/[σ̃kψ + σ̃k̄ψ + (1 − kψ − k̄ψ)], which implier 0 < Kψ < 1 as
kψ + k̄ψ < 1. Besides, we have kψ + k̄ψ < 1 and under Assumption 1 σ̃ > 1, so
Kψ > kψ.

Proof of Lemma 2.
The standard signal extraction formula gives us that Ei2(ψ) = fxxi + fss with

fx =
(ωλσλ)

−2

(σψ)−2 + (ωθσθ)
−2 + (ωλσλ)−2

=
(1 + ωθ)

2σ2
ψσ

2
θ

(1 + ωθ)2σ2
ψσ

2
θ + σ2

ψσ
2
λ + ω2

θσ
2
θσ

2
λ

fs =
(ωθσθ)

−2

(σψ)−2 + (ωθσθ)
−2 + (ωλσλ)−2

=
σ2
ψσ

2
λ

(1 + ωθ)2σ2
ψσ

2
θ + σ2

ψσ
2
λ + ω2

θσ
2
θσ

2
λ

where we used ωλ = ωθ/(1+ωθ). Obviously, 0 < fx < 1, 0 < fs < 1 and fx+fs < 1.
Besides, we can show that fx + fs > kψ. Indeed, using the definitions of fx, fs and
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kψ, we can show that this is equivalent to: ω2
θσ

2
θσ

2
λ < (σ2

θ + σ2
λ)((1 + ωθ)

2σ2
θ + σ2

λ).
A sufficient condition for this to be true is ωθ < 1, which is always the case since
Kψ < 1 and σ̃ > 0. Finally, we can show that fs is decreasing in Kψ as ωθ < 1.
Since ωθ is increasing in σ̃, then fs is decreasing in σ̃.

Proof of Corollary 2.
First, we examine the behavior of the coefficient ωθ as σθ goes to zero. From

the definition of Kψ given in Proposition 1, we have:

Kψ = kψ

(
1 +

(σ̃ − 1)(1− kψ − k̄ψ)

1 + (σ̃ − 1)(kψ + k̄ψ)

)
with kψ = σ2

ψ/(σ
2
ψ + σ2

θ + σ2
λ) and k̄ψ = σ2

θ/(σ
2
ψ + σ2

θ + σ2
λ).

When σθ goes to zero, kψ goes to kψ = σ2
ψ/(σ

2
ψ + σ2

λ) and k̄ψ goes to zero. As
a result, Kψ goes to σ̃σ2

ψ/(σ̃σ
2
ψ + σ2

λ). Hence, using the definition of ωθ given in
Corollary 1, we can show that ωθ goes to (σ̃ − 1)σ2

ψ/(σ
2
ψ + σ2

λ).
Using the definition of fs given in the proof of Lemma 2, it is straightforward

to see that fs goes to 1 as σθ goes to zero. As a consequence, −fsωθ goes to
−(σ̃ − 1)σ2

ψ/(σ
2
ψ + σ2

λ).

Proof of Proposition 2.
According to Equation (10), q̂i2 follows (28) with Si =

(
s xi

)′
,

ξi =

 ψ
−ωθθ
ωλλi


and X =

(
1 0 0

)′
. Besides, Si follows (26) with

H =

1 1
1 0
0 1


and

H̃ =

1 1
1 0
0 0
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and E(ξi|Si) follows (27) with

P =

 fs fx
1− fs −fx
−fs 1− fx


with fs and fx defined as in Lemma 2. Therefore, applying Lemma 3, we obtain:

(
Fs
Fx

)
= A′ =

(
fs

1+(σ̃−1)fx
σ̃fx

1+(σ̃−1)fx

)
=

 fs

(
1− (σ̃−1)fx

1+(σ̃−1)fx

)
fx

(
1 + (σ̃−1)(1−fx)

1+(σ̃−1)fx

)
We have 0 < fx < 1 and according to Assumption 1, we have σ̃ > 1, so Fx >
fx and Fs < fs. Besides, one can show that Fx + Fs > Kψ. Indeed, using
the definitions of Fx, Fs, Kψ and ωλ, we can show that this is equivalent to:
σ̃ω2

θσ
2
θσ

2
λ < (σ̃σ2

θ + σ2
λ)(σ̃(1 + ωθ)

2σ2
θ + σ2

λ). A sufficient condition for this to be
true is ωθ < 1, which is always the case since Kψ < 1 and σ̃ > 0. Finally, we have
Fx + Fs = (fs + σ̃fx)/(1− fx + σ̃fx). Since fx + fs < 1, then Fx + Fs < 1.

Proof of Corollary 3.
Using the definition of fs given in the proof of Lemma 2, it is straightforward

to see that fs goes to 1 and fx goes to zero as σθ goes to zero. As a result, following
the definition of Fs given in the proof of Proposition 2, we show that Fs goes to
fs as σθ goes to zero.

Hence, as σθ goes to zero, −Fsωθ goes to −fsωθ which, according to Corollary
2, goes to −(σ̃ − 1)σ2

ψ/(σ
2
ψ + σ2

λ).

Proof of Proposition 3.
According to Equation (10), q̂i1 follows (28) with Si =

(
−w1 ψi

)′
,

ξi =


ψ
−m1

θ
λi


and X =

(
1 0 0 0

)′
. Besides, Si follows (26) with

H =


1 1
1 0
0 1
0 1
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and

H̃ =


1 1
1 0
0 1
0 0


and E(ξi|Si) follows (27) with

P =


k∗w k∗ψ

1− k∗w −k∗ψ
−κk∗w κ(1− k∗ψ)

−(1− κ)k∗w (1− κ)(1− k∗ψ)


with k∗w and k∗ψ defined as follows:

k∗ψ =
(σ2

θ + σ2
λ)
−1

(σψ)−2 + (σ2
θ + σ2

λ)
−1 + (σm)−2

=
σ2
ψ

σ2
ψ + σ2

θ + σ2
λ + σ2

ψ(σ2
θ + σ2

λ)/σ
2
m

k∗w =
(σm)−2

(σψ)−2 + (σ2
θ + σ2

λ)
−1 + (σm)−2

=
σ2
ψ(σ2

θ + σ2
λ)/σ

2
m

σ2
ψ + σ2

θ + σ2
λ + σ2

ψ(σ2
θ + σ2

λ)/σ
2
m

and κ = σ2
θ/(σ

2
θ + σ2

λ). Therefore, applying Lemma 3, we obtain:

(
K∗w
K∗ψ

)
= A′ =

 [1+κ(σ̃−1)]k∗w
1+(σ̃−1)[k∗ψ+κ(1−k

∗
ψ)]

σ̃k∗ψ
1+(σ̃−1)[k∗ψ+κ(1−k

∗
ψ)]


We can write K∗ψ =

Kψ
1+δ/σ2

m
and K∗w = δ/σ2

m

1+δ/σ2
m

with δ = [1 + κ(σ̃ − 1)]σ2
ψ(σ2

θ +

σ2
λ)/[σ̃(σ2

ψ + σ2
θ) + σ2

λ] > 0. This implies 0 < K∗w < 1 and 0 < K∗ψ < Kψ < 1.
Besides, Kψ < K∗ψ +K∗w, since Kψ < 1.

Proof of Proposition 4.
According to Equation (10), q̂i2 follows (28) with Si =

(
s∗ −w1 −w2 x∗i

)′
,

ξi =


ψ
−m1

−m2

−ω∗θθ
ω∗λλi
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and X =
(
1 0 0 0 0

)′
. Besides, Si follows (26) with

H =


1 1 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


and

H̃ =


1 1 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


and E(ξi|Si) follows (27) with

P =


f ∗s f ∗w f ∗w f ∗x

1− f ∗s −f ∗w −f ∗w −f ∗x
−f ∗s 1− f ∗w −f ∗w −f ∗x
−f ∗s −f ∗w 1− f ∗w −f ∗x
−f ∗s −f ∗w −f ∗w 1− f ∗x


with f ∗w, f ∗s and f ∗x defined as follows:

f ∗x =
(ω∗λσλ)

−2

(σψ)−2+(ω∗θσθ)
−2

+(ω∗λσλ)
−2+2(σm)−2

=
(1+ω∗θ )

2σ2
ψσ

2
θ

(1+ω∗θ )
2σ2
ψσ

2
θ+σ

2
ψσ

2
λ+(ω∗θ )

2σ2
θσ

2
λ+2(ω∗θ )

2σ2
ψσ

2
θσ

2
λ/σ

2
m

f ∗s =
(ω∗θσθ)

−2

(σψ)−2+(ω∗θσθ)
−2

+(ω∗λσλ)
−2+2(σm)−2

=
σ2
ψσ

2
λ

(1+ω∗θ )
2σ2
ψσ

2
θ+σ

2
ψσ

2
λ+(ω∗θ )

2σ2
θσ

2
λ+2(ω∗θ )

2σ2
ψσ

2
θσ

2
λ/σ

2
m

f ∗w = (σm)−2

(σψ)−2+(ω∗θσθ)
−2

+(ω∗λσλ)
−2+2(σm)−2

=
(ω∗θ )

2σ2
ψσ

2
θσ

2
λ/σ

2
m

(1+ω∗θ )
2σ2
ψσ

2
θ+σ

2
ψσ

2
λ+(ω∗θ )

2σ2
θσ

2
λ+2(ω∗θ )

2σ2
ψσ

2
θσ

2
λ/σ

2
m

where we used the definition of ω∗λ.
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Therefore, applying Lemma 3, we obtain:


F ∗s
F ∗w
F ∗w
F ∗x

 = A′ =


f∗s

1+(σ̃−1)f∗x
f∗w

1+(σ̃−1)f∗x
f∗w

1+(σ̃−1)f∗x
σ̃f∗x

1+(σ̃−1)f∗x


We have 0 < F ∗s < 1, 0 < F ∗w < 1 and 0 < F ∗x < 1. Besides, F ∗x + F ∗s + 2F ∗w >

Fx + Fs as shown here:

F ∗x + F ∗s + 2F ∗w > Fx + Fs

⇔ σ̃(ω∗λσλ)
−2+(ω∗θσθ)

−2
+2(σm)−2

(σψ)−2+σ̃(ω∗λσλ)
−2+(ω∗θσθ)

−2
+2(σm)−2

> σ̃(ωλσλ)
−2+(ωθσθ)

−2

(σψ)−2+σ̃(ωλσλ)−2+(ωθσθ)
−2

⇔ σ̃(ω∗λσλ)
−2 + (ω∗θσθ)

−2 + 2(σm)−2 > σ̃(ωλσλ)
−2 + (ωθσθ)

−2

This is always satisfied since ωθ > ω∗θ and ωλ > ω∗λ according to Corollary 4.
However, since s∗ and x∗i are more precise signals of ψ than s and xi, as ωθ > ω∗θ
and ωλ > ω∗λ, but are used along with other signals, we cannot determine whether
F ∗s and F ∗x are lower or higher than Fs and Fx.

Proof of Corollary 5.
First, we examine the behavior of the coefficient ω∗θ as σθ goes to zero. From

the definition of K∗ψ given in the proof of Proposition 3, we have:

K∗ψ =
σ̃k∗ψ

1 + (σ̃ − 1)[k∗ψ + κ(1− k∗ψ)]

Using the definitions of k∗ψ and κ given in the proof of Proposition 3, we obtain
that K∗ψ goes to σ̃σ2

ψ/(σ
2
ψ +σ2

λ+σ2
ψσ

2
λ/σ

2
m). Hence, using the definition of ω∗θ given

in Corollary 4, we can show that ω∗θ goes to (σ̃ − 1)σ2
ψ/(σ

2
ψ + σ2

λ + σ2
ψσ

2
λ/σ

2
m).

Using the definition of F ∗s given in the proof of Proposition 4, it is straightfor-
ward to see that F ∗s goes to 1 as σθ goes to zero. As a consequence, −F ∗s ω∗θ goes
to −(σ̃ − 1)σ2

ψ/(σ
2
ψ + σ2

λ + σ2
ψσ

2
λ/σ

2
m).

Proof of Proposition 5.

Capital flows The household maximizes U = U0 +βU1 +β2U2, where U0, U1 and
U2 are defined as in Section 5, subject to the following intertemporal budget
constraint, expressed in terms of traded goods, with the terminal condition
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D2 = 0 and the initial condition D−1 = 0:

P0

P ∗0
Q0+

P1

rP ∗1
Q1+

P2

r2P ∗2
Q2+X0+

X1

r
+
X2

r2
=

Π0 +W0L0

P ∗0
+

Π1 +W1L1

rP ∗1
+

Π2 +W2L2

r2P ∗2

+

(
1 +

1

r
+

1

r2

)
X̄

As r = 1/β, the Euler equations for X yield:

(1− µ)eθX−10 = (1− µ)X−11

= (1− µ)X−12

After rearranging, we obtain:

1

eθ
X0 = X1 = X2 (31)

On the other hand, using the definition of profits in the non-traded sector
Πt = PtQt−WtLt and r = 1/β, we obtain the consolidated budget constraint
for traded goods:

X0 + βX1 + β2X2 = (1 + β + β2)X̄

Replacing X1 and X2 using (31), we get the consumptions of traded goods:

X0 =
(1 + β + β2)X̄eθ

β + β2 + eθ
, X1 = X2 =

(1 + β + β2)X̄

β + β2 + eθ

It is then straightforward to derive the evolution of debt:

D0 = X0−X̄ =
(β + β2)(eθ − 1)

β + β2 + eθ
X̄, D1 = rD0+X1−X̄ = β

eθ − 1

β + β2 + eθ
X̄

A positive aggregate transitory shock θ > 0 therefore generates a capital
inflow in period 0 as D0 > 0. In period 1 there is a capital outflow and the
debt level diminishes 0 < D1 < D0. In period 2 the household reimburses
the remaining debt (D2 = 0).

Period-1 and period-2 production We proceed exactly as for Propositions 1,
2, 3 and 4. See the Technical Appendix for details.
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B Numerical simulations

B.1 Monetary model with σ 6= 1

B.1.1 First period

We denote by ξi =
(
ψ θ m1 m2 λi

)′
our gaussian vector of shocks, and

by Si1 =
(
ψi w1

)′
our vector of signals. We then define Ŝi1 =

(
ψi ŵ1

)′
, where

ŵ1 = −ψ +m1, so that w1 = ŵ1 + σ−1
σ
q̂1 and

Si1 = Ŝi1 +
σ − 1

σ
q̂1

(
0
1

)
We have Ŝi1 = H ′1ξi with:

H1 =


1 −1
1 0
0 1
0 0
1 0


We also define:

H̃1 =


1 −1
1 0
0 1
0 0
0 0


We make the following guess:

q̂i1 = A1Si1 = A1

[
Ŝi1 +

σ − 1

σ
q̂1

(
0
1

)]
= A1

[
H ′1ξi +

σ − 1

σ
q̂1

(
0
1

)]
where A1 is a row vector of size 2. As a consequence:

q̂1 = A1

[
H̃ ′1ξi +

σ − 1

σ
q̂1

(
0
1

)]
After rearranging, we obtain:

q̂1 =
A1H̃

′
1ξi

1− σ−1
σ
A1

(
0
1

)
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Replacing in q̂i1, we obtain:

q̂i1 = A1M1(A1)
′ξi

where M1(A1)
′ is a (2,4) matrix such that:

M1(A1)
′ = H ′1 +

σ−1
σ

(
0
1

)
A1H̃

′
1

1− σ−1
σ
A1

(
0
1

)
We also define

M̃1(A1)
′ = H̃ ′1 +

σ−1
σ

(
0
1

)
A1H̃

′
1

1− σ−1
σ
A1

(
0
1

)
Identifying, we have: Si1 = M1(A1)

′ξi. Besides, we have: E(ξi|Si1) = P1Si1 with

P1(A1) = ΣM1(A1)[M1(A1)
′ΣM1(A1)]

−1

where Σ = diag(σ2
ψ, σ

2
θ , σ

2
m, σ

2
m, σ

2
λ).

We can therefore apply Lemma 3, and we obtain:

A1 = σ̃X ′P1(A1)[I + (σ̃ − 1)M̃1(A1)
′P1(A1)]

−1

When σ 6= 1, this is a nonlinear implicit equation of A1, as M̃1 and P1 both depend
on A1.

To compute A1, we implement the following algorithm:

At+1
1 = σ̃X ′P1(A

t
1)[I + (σ̃ − 1)M̃1(A

t
1)
′P1(A

t
1)]
−1

and we initialize with A0
1 = σ̃X ′P 0

1 (I + (σ̃ − 1)M̃0′
1 P

0
1 )−1 where M̃0

1 = H̃1 and
P 0
1 = ΣH1(H

′
1ΣH1)

−1.

B.1.2 Second period

We proceed in the same way. We make the following guess:

q̂i2 = A2Si2
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where Si2 = (ψi w1 pi1 − w1 w2)
′ our vector of signals. We then define Ŝi2 =

(ψi w1 pi1 − w1 ŵ2)
′ , where ŵ2 = −ψ +m2, so that w2 = ŵ2 + σ−1

σ
q̂2 and

Si2 = Ŝi2 +
σ − 1

σ
q̂2


0
0
0
1


We have Ŝi2 = H ′2ξi with:

H2 =




1
1
0
0
1

 ;
[(

0 1
)
H ′1 + σ−1

σ A1M̃
′
1

]′
; (X ′ −A1[M̃ ′1 + (M ′1 − M̃ ′1)/σ̃])′;


−1
0
0
1
0




We also define:

H2 =




1
1
0
0
1

 ;
[(

0 1
)
H̃ ′1 + σ−1

σ A1M̃
′
1

]′
; (X ′ −A1M̃

′
1)′;


−1
0
0
1
0




We then obtain:

A2 = σ̃X ′P2(A2)[I + (σ̃ − 1)M̃2(A2)
′P2(A2)]

−1

with
P2(A2) = ΣM2(A2)[M2(A2)

′ΣM2(A2)]
−1

where

M2(A2)
′ = H ′2 +

σ−1
σ


0
0
0
1

A2H̃
′
2

1− σ−1
σ
A2


0
0
0
1
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and

M̃2(A2)
′ = H̃ ′2 +

σ−1
σ


0
0
0
1

A2H̃
′
2

1− σ−1
σ
A2


0
0
0
1


To compute A2, we implement the following algorithm:

At+1
2 = σ̃X ′P2(A

t
2)[I + (σ̃ − 1)M̃2(A

t
2)
′P2(A

t
2)]
−1

and we initialize with A0
2 = σ̃X ′P 0

2 (I + (σ̃ − 1)M̃0′
2 P

0
2 )−1 where M̃0

2 = H̃2 and
P 0
2 = ΣH2(H

′
2ΣH2)

−1.
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Table 1: Baseline calibration for the numerical analysis

Parameter Value
γ 1
η 0
1/ρ 7
σψ 0.1
σθ 0.05
σλ 0.1
σm 0.1
σε 0.1
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Figure 1: Stylized facts - Profits, mark-ups and recessions
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Source: NBER, Federal Reserve Bank of Saint-Louis, author’s calculations. Profits are real unit
profits. The mark-up is defined as labor compensation/national income. The series are detrended
using the Baxter-King bypass filter. The peaks are defined the dates for which the detrended
series are at a maximum over a window of +12/-12 quarters.40



Figure 2: Stylized facts - Profits, expectations and GDP downturns
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Professional Forecasters), author’s calculations. The GDP and expectations series are in real
terms, in logs and detrended using the Baxter-King bypass filter. The peaks are defined the
dates for which the detrended series are at a maximum over a window of +12/-12 quarters.
Profits are real unit profits.
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Figure 3: Impulse response functions - Simple model
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Figure 5: Impulse response functions - Monetary model
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Figure 6: Impulse response functions - Monetary model - Cont’d
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