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Résumé 

Le Pakistan a un des taux de maladies génétiques Mendéliennes le plus élevé du monde, 

corrélé avec un taux exceptionnellement élevé de mariages consanguins (~65%). Dans cette 

thèse, nous cherchons à comprendre la cause génétique de différentes maladies génétiques, 

principalement liées à l’appareil oculaire et à la peau, dans une cohorte de familles 

pakistanaises, en exploitant la consanguinité comme moyen de faciliter l’identification de 

mutations récessives. 

En tout, nous avons identifié des variantes causales pour de telles conditions dans 98 des 116 

familles analysées (taux de réussite de ~84%). Indépendamment des catégories de maladies, 

nos analyses ont aussi démontré un haut degré d’autozygotie et des mutations fondatrices 

prévalentes dans la population pakistanaise. Plus de 90% des familles analysées dans ce 

travail étaient liées à des variantes pathogènes homozygotes dans des gènes connus pour 

causer des maladies Mendéliennes et plus de 40% d’entre elles avaient des mutations 

fondatrices. 

Collectivement, 61 variantes génétiques distinctes ont été identifiées dans 41 gènes sur un 

total de 86 familles avec des maladies héréditaires de l’œil. Pareillement, 12 variantes 

distinctes ont été identifiées dans 5 gènes pour 12 familles avec des conditions héréditaires 

affectant la peau. En tout, plus de la moitié des variantes génétiques présentées dans cette 

thèse n’avait pas été publiée auparavant. ABCA4 était le gène le plus fréquemment muté dans 

les familles souffrant de maladies oculaires (13 sur 86), tandis que HR était le plus 

communément muté dans les familles avec des troubles de la chute des cheveux. Donc, nos 

découvertes reflètent raisonnablement la pratique traditionnelle de l’endogamie et la 

présence de stratifications extensives dans la population pakistanaise. En plus d’étendre le 
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paysage génétique des maladies héréditaires de l’œil et de la peau, nos découvertes aideront 

de futurs chercheurs et cliniciens à faire un screening rapide de leurs patients pour des 

mutations fondatrices, avant de s’embarquer dans un séquençage complet de l’exome ou du 

génome, facilitant ainsi le conseil génétique au Pakistan. Finalement, nous prédisons que ces 

découvertes au sujet des troubles affectant la vision ou la peau pourront s’appliquer à 

d’autres maladies rares présentes chez des individus de cette région, comme la surdité, la 

déficience intellectuelle ou des défauts de développement. 
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Abstract 

Pakistan has one of the world’s highest rates of inherited genetic diseases, likely correlating 

with the exceptionally high rate of consanguineous marriages (~65%). In this work, we sought 

to understand the genetic etiology of different monogenetic diseases, principally related to 

eyes and skin, in a cohort of Pakistani families, in fact by exploiting consanguinity as a means 

to facilitate identification of recessive mutations. 

Overall, we identified causative variants for such conditions in 98 out of the 116 families 

analyzed (84% success rate). Independently from individual disease categories, our data 

demonstrate a very high degree of autozygosity and prevalent founder mutations in the 

Pakistani population. Thus, more than 90% of the pedigrees analyzed in this thesis were linked 

to homozygous pathogenic variants in known Mendelian disease genes, and over 40% of them 

had founder mutations.  

Collectively, 61 distinct genetic variants were identified in 41 genes in a total of 86 families 

with inherited eye diseases (IEDs). Likewise, 12 distinct variants were identified in five genes 

among 12 families with inherited skin conditions. As a whole, more than half of the genetic 

variants presented in this thesis were not previously published. ABCA4 was the most 

frequently mutated gene in families with inherited eye diseases (13 out of 86), while HR was 

commonly mutated in families with hair loss disorders (8 out of 11). Thus, our findings 

reasonably reflect on the traditional practice of endogamy and the presence of extensive 

stratification within the Pakistani population. In addition to expanding the current genetic 

landscape of inherited eye/skin diseases, our findings will help future researchers and 

clinicians to rapidly screen their patients for known founder mutations before embarking on 

whole exome or genome sequencing and facilitate genetic counselling in Pakistan. Finally, we 
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predict that these insights on eye and skin disorders might apply to other rare conditions that 

affect individuals from this region, such as deafness, intellectual disabilities, and 

developmental defects. 
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1. Introduction 

1.1 Main context 

An unprecedented progress has been made in the field of genomics since completion of the 

Human Genome Project (HGP) in 2003, which opened new windows for understanding the 

genome in a broader context of human health and disease [1-4]. The discovery that human 

genome consists of ~19,000 predicted protein-coding genes [5, 6], and that pathological 

changes in either of them could likely lead to phenotypic consequences in humans has 

considerably contributed to the advancement of knowledge in the field of Medical Genetics. 

As a result, numerous novel phenotypes as well as their underlying genetic components, have 

been identified over the last few years, and this trend continues even today. In addition to 

increasing our understanding of the human molecular genetics, these investigations would 

help in the future to develop novel therapeutics, as well as diagnostic, preventive, or 

prognostic measures for an ever-increasing number of both rare and common human 

diseases [7]. According to an estimate by Bittles (2019), there are approximately 7,000 rare 

diseases, the majority of which appear to be the consequence of founder mutations, 

especially in societies where community endogamy and close-kin marriages are common [8]. 

Monogenic or single-gene disorders represent a category of inherited human conditions that 

arise due to mutation(s) in a single gene. Such conditions are often called Mendelian 

disorders, due to the fact that they follow a classical Mendelian inheritance pattern 

(autosomal dominant, recessive or X-linked). Though considered rare as a whole, monogenic 

diseases affect millions of people worldwide with a global prevalence of approximately 10 in 

1,000 persons (WHO; accessed March 17, 2020). As an example, over 25 million people in the 
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United States alone are affected by various forms of monogenic disorders, resulting in a large 

morbidity and mortality, which in turn poses a significant burden to the economy [9, 10].  

As of April 2020, the Online Mendelian Inheritance in Man (OMIM), an online catalog of 

human genes and genetic disorders, has reported 3,873 genes that are linked with as many 

as 5,572 human monogenic disorders and traits (https://omim.org). However, these numbers 

never remain static and continue to rise as new phenotypes and genotypes are discovered 

[7]. According to the WHO, the estimated number of human monogenic diseases should 

exceed 10,000 [11]. This is not surprising, because the physiological function of most human 

genes is still unknown [12]. In other words, nearly 70% of the human predicted protein coding 

genes are yet to be associated with any human phenotype [13, 14].  

The current diagnostic rate for all monogenic disorders is still rather low (generally around 

50%) [7], despite the substantial technological advancements in DNA sequencing [15]. The 

reasons for this low diagnostic yield are manifold. First, the diagnostic rates vary greatly 

across different disease classes, and that such rates are negatively correlated with the genetic 

complexity in a monogenic disorder [7, 16, 17]. For example, a recent study suggests a 

diagnostic rate of only 17% for renal diseases, 42% for intellectual disability, 56% for IRDs and 

non-syndromic deafness, while 76% in case of ciliary dyskinesia [17]. Second, the 

identification of new phenotypes, discovery of novel genes associated with known human 

diseases, and the detection of unknown pathogenic variants further preclude the diagnostic 

process. Third, with the existing annotation tools, the current annotation of human genome 

is sub-optimal. There are incomplete gene models, and the precise structure and number of 

several human genes is still unknown. Fourth, robust analytical and computational 



 3 

approaches would be required to keep pace with the rapidly changing and highly demanding 

variant and/or gene prioritization strategies [6, 12, 16, 18, 19].  

Much remains to be understood. Our current knowledge of the human genome is largely 

based on its coding part (exome) which collectively represent only a small fraction of it (~1-

2%), although the physiological function of many genes is still unknown [12]. In addition, the 

functional consequences of the non-coding part of the genome are far from being clear [7, 

16]. Thus, the understanding of the non-coding part of the human genome (nick-named “grey 

matter”) needs equal attention, due to the fact that ~80% of the non-coding genome may 

have a distinct biological function [20]. 

1.2 Impact of consanguinity on monogenic diseases 

Globally, around one billion people live in populations where consanguinity is common, and 

the majority of them belong to countries in South and West Asia, the Middle East, and the 

North and sub-Saharan Africa [21, 22]. Nevertheless, high rates of consanguinity have also 

been reported in countries from South America, such as Northwestern Venezuela and 

Southeast Brazil [23]. In Pakistan specifically, the rate of consanguinity generally exceeds 50%, 

since marriages among first cousins are highly favored (Figure 1) [24]. As children of 

consanguineous couples are generally more likely than children of non-consanguineous 

couples to be affected by recessively inherited genetic anomalies, the incidence of rare 

autosomal recessive Mendelian diseases is relatively higher in countries like Pakistan [22, 25]. 

For instance, in children of first cousin parents, which share 12.5% of their genome, there is 

a higher likelihood of ancestral chromosomal segments carrying recent pathogenic mutations 

to reunite. Thus, consanguinity unmasks the adverse health effects of recessive mutations 

through bi-parental inheritance of the same mutation in a homozygous state (Figure 2). 
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Further, the rarer the mutation, the more likely it is to be detected through the analysis of 

consanguineous pedigrees [26].  

 

 

 

Figure 1. Global prevalence of consanguinity with Pakistan shown in the zoom-in. 

Consanguinity in different parts of Pakistan are shown in percent, whereas the grey-color 
coding in Pakistan represent major administrative sub-units in the country. FATA = Federally 

Administered Tribal Areas. Adapted from published papers [22, 27]. 
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1.3 Monogenic diseases of the eye 

The development of the human eye is a complex and highly coordinated morphogenetic 

process, completed under an extensive network of genetic signaling, and ensured by a precise 

spatial and temporal gene regulation [28, 29]. Any perturbations (genetic or environmental) 

during this process may lead to irreversible malformations or dysfunctions of the eye [30]. 

Further, depending upon the underlying causes, these defects may be structural (for example: 

anophthalmia, microphthalmia, ocular coloboma, cataracts, corneal dystrophies, and 

glaucoma) or more functional in nature (for instance, inherited retinal dystrophies or IRDs) 

[31, 32]. A comprehensive list of genes implicated in various compartments of the eye could 

be obtained from “PanelApp”, a publicly available tool developed by Genomics England [33]. 

This tool is regularly updated and curated manually. As of April 17, 2020, eight gene panels 

corresponding to “ophthalmological disorders” are listed in PanelApp. These panels include 

anophthalmia or microphthalmia (34 genes), cataracts (99 genes), corneal abnormalities (32 

genes), developmental glaucoma (10 genes), infantile nystagmus (10 genes), ocular coloboma 

(29 genes), optic neuropathy (21 genes), and retinal disorders (201 genes) [33]. The latter 

constitute a genetically heterogeneous group of rare genetic conditions that are mainly 

characterized by the progressive loss of rods and cone photoreceptors, resulting in complete 

or nearly complete blindness at the end [34]. Globally, IRDs affect approximately one million 

people, with a frequency of 1 in 3,000 births. Clinically, IRDs may range from mild and usually 

non-progressive night blindness with or without difficulty in color vision to a more severe and 

degenerative phenotypes, such as retinitis pigmentosa or cone and cone-rod dystrophies 

[35]. According to Retinal Information Network (RetNet), mutations in over 270 genes have 

been so far implicated in various forms of IRDs (https://sph.uth.edu/retnet/; accessed on 

April 20, 2020)[36], and by sequencing the coding part of these genes it is possible to explain 
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the genetic basis of the disease in approximately 60% of the patients. IRDs are inherited as an 

autosomal recessive, autosomal dominant, or X-linked trait, with autosomal recessive being 

the most prominent one [37]. Recent technological advancements have significantly 

increased gene discovery rates [38], and have led to the development of gene replacement 

therapy for patients with biallelic mutations in the RPE65 gene. 

Although the prevalence of IRDs is not well-documented in Pakistan, a hospital-based study 

in Karachi, a metropolitan city, revealed that 1 in 800 patients that visited the ophthalmic 

outpatient department had retinal dystrophies, with retinitis pigmentosa (RP) being the most 

frequent type (64%) followed by Stargardt disease (14.7%), and cone dystrophies (6.7%). 

Unsurprisingly, more than half of these patients were born to consanguineous couples [39]. 

Interestingly, in IRD families of Pakistani origin, 90% of the mutations in non-syndromic cases 

have not been observed in other populations, and mutations in 35 different genes have been 

found to cause non-syndromic IRDs specifically in families of Pakistani origin [40]. Keeping in 

mind the high rates of consanguinity and the unique socio-cultural structure of the society, 

the occurrence of rare autosomal recessive Mendelian diseases in Pakistan is easily explained. 

1.4 Monogenic diseases of the skin 

The skin is the largest organ in the human body, and isolates and protects us from a wide 

range of external insults, be them of physical, chemical or microbial nature. Keratinocytes, 

which represent a continuously renewing cellular compartment of the human skin [41], 

perform most of these functions through a highly coordinated and dynamic balance between 

its differentiation, proliferation, and regeneration processes [42]. The list of inherited skin 

diseases is extensive, due to the cellular and structural complexity associated with derma-

epidermal architecture [42]. However, consistent with the scope of my thesis, I will briefly 
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describe two major dermatological conditions that are attributable to genetic alterations. 

These include congenital hair loss disorders and inherited skin fragility. 

Hereditary hair loss disorders or hypotrichosis are a group of conditions clinically 

characterized by sparse to complete loss of hairs on the scalp and the whole body. Both 

syndromic and non-syndromic forms of hypotrichosis exist, with the syndromic forms mostly 

accompanied by symptoms such as retinal degeneration, intellectual disability, and hearing 

impairment. Non-syndromic forms may be inherited in an autosomal dominant or recessive 

fashion, with mutations known in almost an equal number of genes for each category [43]. 

Mutation in genes such as APCDD1, CDSN, KRT74, U2HR, EPS8L3, SNRPE, and RPL21 results in 

autosomal dominant hypotrichosis, while mutations in HR, DSG4, LIPH, LPAR6/P2RY5, DSP, 

and DSC3 genes are known to cause autosomal recessive hair loss. Most interestingly, 

screening only four of these genes (HR, DSG4, LIPH, LPAR6) has been able to explain the 

genetic etiology of the disease in 87% cases of Pakistani origin [43]. Despite the fact that the 

majority of hypotrichosis cases are well-explained by one of these genes, there are still 

examples of genetically unresolved cases. The best examples include hypotrichosis type 9 and 

type 10, with associated loci known on chromosome 10 (10q11.23-q22.3) and chromosome 

7 (7p22.3-p21.3), respectively. Nevertheless, no definitive gene has been yet associated with 

these disorders [43].  

One type of inherited skin fragility, epidermolysis bullosa (EB), is characterized by the inability 

of the skin and mucous membranes to withstand external mechanical stress [42]. Thus, 

trauma-induced skin eruptions, blistering and painful wounds constitute the major clinical 

landmarks of this disorder, although the involvement of other tissues such as teeth, nails, 

hairs, and mucosal membranes further expands its clinical spectrum [42]. Affecting ~1 in 
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120,000 people worldwide [44], EB possess extensive clinical and genetic heterogeneity. For 

instance, there are over 30 known clinical variants of EB, with attributable sequence variants 

known in 18 distinct genes [45]. The majority of these genes encode structural proteins that 

play a significant role in keeping the dermal-epidermal junctions intact [42]. Consistent with 

the complexity of skin adhesion structures and cellular types, the number of skin fragility 

disorders continues to rise, in parallel with our knowledge about these structures [42]. 

1.5 Autozygosity mapping 

Mapping all the autozygous intervals in an individual’s genome is called autozygosity or 

homozygosity mapping [46]. Traditionally, it has been performed using minisatellites or 

microsatellite markers. With the advent of next-generation sequencing (NGS) technologies 

such as high-density SNPs, whole exome- and genome sequencing, tracking such intervals is 

now much faster and more reliable than previous methods [46]. If the disorder shows a 

recessive inheritance pattern, once the autozygous intervals are identified, screening of 

relevant candidate genes inside the region(s) is the next step. Since frequencies, length and 

genomic distribution of autozygous intervals vary considerably among individuals, it is crucial 

to scrutinize the list of intervals based on mutual sharing between patients but not healthy 

individuals within the same pedigree. Generally, the likelihood of finding a pathogenic 

mutation increases if two or more affected members of a family share the same autozygous 

interval. Similarly, the more closely related the parents are, the more likely for a homozygous 

pathogenic mutation to be found within one of the largest intervals and vice versa [46-48]. 

For example, Wakeling and colleagues [48], while assessing the predictive power of 

homozygosity mapping in recessive Mendelian diseases, have demonstrated that size and 

rank of the homozygous interval harboring the pathogenic variant provides an additional 

evidence for its causality. 
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Figure 2. Schematic representation of autozygosity mapping. 

Red box indicates an autozygous interval harboring a homozygous mutation (shown as star) 
inherited bi-parentally through consanguinity. Adapted from [26]. 
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2. Results 

2.1 An overview of the workflow 

A total of 116 consanguineous families suffering from monogenic diseases were ascertained, 

mainly from the North-Western and central regions of Pakistan. These families were classified 

into two major clinical categories i.e. inherited eye diseases (IEDs) (100 families), and skin 

disorders (16 families). A combination of methods such as direct Sanger sequencing of known 

disease-associated gene or known founder variants, SNP-based autozygosity mapping 

followed by Sanger sequencing of candidate genes inside the autozygous intervals, and/or 

whole exome sequencing on one proband per family were applied for detection of the 

underlying genetic causes (Figure 3). For example, initial Sanger sequencing of candidate 

genes within autozygous intervals detected by SNP-based approaches in fourteen IEDs 

families resulted in the identification of causative variants in six families. Furthermore, Sanger 

sequencing-based screening of nineteen IEDs families for a known founder variant 

(p.Gly72Arg) in the ABCA4 gene revealed the underlying genetic causes in eight families. 

Finally, whole exome sequencing (WES) was performed in 86 IEDs probands, thus enabling us 

to genetically characterize 72 additional families (83% diagnostic rate for WES) (Figure 3). 

Altogether, our approach led to the discovery of the genetic etiology in 86 families with IEDs. 

Similarly, Sanger sequencing of all exons and exon-intron boundaries of HR and LIPH genes 

revealed the underlying genetic causes in nine of the total fourteen families with either 

alopecia universalis congenita or wooly hairs/hypotrichosis analyzed. Likewise, the genetic 

components in three skin families were identified through whole exome sequencing. 

Consequently, 12 of the total 16 skin families (75%) were genetically characterized (Figure 3). 
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Figure 3. An overview of the workflow adopted in this study. 

Numbers indicate the number of families. 
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2.2 Genetic findings in inherited eye disorders 

2.2.1 An overview of the genetic and allelic heterogeneity associated with eye disorders 

Among the 86 genetically characterized IEDs families, a total of 61 distinct genetic variants 

were identified in 41 different IED-associated genes (Table S1). Of the 41 genes carrying 

pathological changes, 32 were previously associated with inherited retinal diseases (IRDs), 

while 9 genes were already known to cause other forms of ocular diseases such as glaucoma, 

congenital cataract, microphthalmia/anophthalmia, and corneal dystrophy (Figure 4). These 

variants comprised 28 missenses (46%), 17 nonsense variants (28%), 10 small insertions or 

deletions (Indels) (16%), 5 splice site changes (8%), and one structural variant (2%) (Figure 

5A). Of note, the structural variant was a large homozygous deletion (~11 Kb in size) 

encompassing the RP1 gene and was identified in two unrelated consanguineous families 

from Northern Pakistan. Although we confirmed the presence of this deletion in both families 

with the help of PCR, the exact boundaries of this deletion are yet to be defined. As a whole, 

more than half (51%) of the disease-causing variants identified in our IEDs cohort were 

previously unpublished, and nearly half (49%) of the total variants were not reported in the 

public databases such as gnomAD database. In addition, those that were present in gnomAD 

were all very rare, with no occurrence of homozygous individuals. The variants were 

predominantly detected in a homozygous state (80 out of 86 families or 93%), although 

compound heterozygous (three families, 4%), heterozygous (two families, 2%), and 

hemizygous conditions (one family, 1%) were also observed (Figure 5B). Except for two alleles, 

all homozygous variants were found in genes that were located inside a large runs of 

homozygosity (ROH), typically more than 2 Mega bases (Mb) in size. An average homozygosity 

of 273 Mb (Range: 707.17 to 57.56 Mb) was recorded in our total cohort (Figure 6). 



 

 

Figure 4. Pie chart showing genes harboring disease-causing variants in ocular cases. 

Number indicates number of families associated with a specific gene. “Others” include cases 
of families with non-retinal disorders such as glaucoma, congenital cataract, 

microphthalmia/anophthalmia, and corneal dystrophy. 

 

 

 

Figure 5. Classification of pathogenic variants based on their functional impact and zygosity. 

(Indels = small insertions or deletions, SV = structural variants). 

B 
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Figure 6. Box plots showing total autozygosity and runs of homozygosity (ROH).  

ROH refers to the autozygous intervals harboring disease-causing variants. 

 

2.2.2 Founder variants in IRD associated genes account for 44% of IEDs 

Among the total 61 disease-causing variants, ten variants spanning nine different IRD 

associated genes appeared in two or more independent families (Figure 7). Initially, we 

noticed that families harboring same genetic variants were all geographically clustered, thus 

pointing towards founder effect. Therefore, reanalysis of the WES data, through visualization 

of bam files on Integrative Genomics Viewer (IGV) tool, we have found common haplotypes 

surrounding the putative founder variants among the probands of the respective families. 

However, the exact length of the common haplotypes surrounding the founder variants could 

not be calculated. Our findings thus confirmed that these variants were inherited from a 

common ancestor, and thus truly represent founder alleles. Collectively, these variants 

appeared in 38 independent families, thus accounting for 44% of all IEDs cases. Genes carrying 

founder variants comprised ABCA4, CRB1, LRIT3, RPE65, NMNAT1, PDE6A, CERKL, RP1, and 

MYO7A (Figure 7). Of these ten founder alleles, a missense variant (p.Gly72Arg) in the ABCA4 

gene alone was present in 11 distinct families all originating from same geographic locality in 

North-Western Pakistan, and thus emerged as the most common variant in our study 

(responsible for 12% of IEDs cases). 
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Figure 7. Putative founder variants found in IEDs.  

Figures inside each bar represent number of families associated with a particular variant. 
(SV: structural variant). 

 

2.2.3 SLC6A6-related taurine transporter deficiency disorder in a consanguineous family 

We identified a consanguineous Pakistani family, of Pashtuns ethnicity, with an ultra-rare 

genetic condition known as taurine transporter (TauT) deficiency disorder. The family 

comprised of nine siblings (four affected, five clinically unaffected) who were born to a 

clinically healthy, consanguineous couple (Figure 10). Thus, inheritance of the disease was 

consistent with an autosomal recessive Mendelian pattern. According to the ophthalmologist 

report, best corrected visual acuity (BCVA) in both eyes of the index patient was hand 

movement (Good perception and projection of light in all quadrants). He was having 

nystagmus and was having hyperopia (3D) in both eyes. Anterior segment examination in 

both eyes was unremarkable. Fundus examination showed bilateral optic disc margin’s 

blurring (somewhat lumpy margins suggesting disc drusen), retinal pigment epithelium (RPE) 
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changes in peripheral retina with few retinal pigment clumps. His macula was showing 

features of pucker/epi-retinal membrane in both eyes. Proband’s electroretinography (ERG) 

examination showed severely reduced cones and rods response, suggesting severe retinal 

degeneration (Figure 8 and 9). In addition, the index patient showed dilated cardiomyopathy 

on electrocardiogram (ECG) examination. WES in the index patient revealed a novel 

homozygous missense variant (NM_001134367.3:c.1049C>T:p.Thr350Ile) in the SLC6A6 gene. 

The variant (p.Thr350Ile) was unreported in any public databases, and predicted to substitute 

a nucleophilic residue in the highly conserved 5th transmembrane domain of the TauT. 

Furthermore, the variant was predicted to be pathogenic on majority of the online in-silico 

methods. Finally, a strict genotype-phenotype co-segregation within the family confirmed 

causality of p.Thr350Ile variant in the family (Figure 10).Though well studied in model animals, 

human TauT deficiency disorder constitute an extremely rare human genetic condition. Only 

few studies describing human TauT deficiency disorder are currently available in the literature 

and much remains to understand about this ultra-rare human genetic condition [49-51]. The 

SLC6A6-related early-onset retinal degeneration and cardiomyopathy seen in our patients not 

only well-matched with the recently published reports [49-51] (Table 1), but also supports the 

multisystemic phenotypes seen in the TauT knock-out mice [50].  
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Figure 8.  SLC6A6 deficiency: Proband’s ERG showing reduced cones response
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Figure 9. SLC6A6 deficiency: Proband’s ERG showing reduced rods response. 
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Figure 10. A consanguineous pedigree showing genotype-phenotype co-segregation for 
SLC6A6 variant.  

(M = NM_001134367.3:c.1049C>T:p.Thr350Ile). Arrow indicate proband. 

 

 

Table 1. Literature survey about SLC6A6-related human TauT deficiency disorder 

Phenotypes* cDNA Protein Zygosity Ethnicity Reference 

DCM c.229+1delT p.(?) Homozygous Pakistan Shakeel et al. 
2018 

EORD c.233C>A p.(Ala78Glu) Homozygous Turkey Preising et al. 
2019 

EORD+DCM c.1196G>T p.(Gly399Val) Homozygous Pakistan Ansar et al. 
2020 

EORD+DCM c.746C>T p.(Thr249Ile) Homozygous Pakistan This study 

DCM = dilated cardiomyopathy; EORD = early-onset retinal degeneration. 

 

 

Publications 

These results have been either published in an article in “Genes” (Section 7.2.1) or are part of 

a submitted manuscript that is currently under review in “Human Mutation” (Section 7.3.2) 
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2.3 Genetic findings in skin cases  

2.3.1 A hotspot mutation in the COL7A1 gene causes dystrophic epidermolysis bullosa 

This section focuses on the genetic findings in a consanguineous Pakistani family with 

epidermolysis bullosa (EB). The family was ascertained from North-Western Pakistan and 

includes a total of four affected children with recessive dystrophic EB, the most severe form 

of the disease. The patients, aged between 3 and 12 years, were all born to healthy parents 

who were mutually double-first cousins. Clinically, the proband presented with severe skin 

fragility and multiple skin injuries since birth. Although blistering of the body was generalized, 

the condition was more pronounced on her hands, feet, elbows, knees, and flexural areas. 

Additional symptoms included milia, atrophic scarring, anonychia, tissue granulation, 

blistering of oral cavity and the mucosa, anemia, and growth retardation. Pseudo-syndactyly 

of toes along with progressive contractures resulted in ‘mitten-feet’. The spectrum of clinical 

manifestations was variable across the patients. For instance, the proband’s brothers and one 

cousin were lacking symptoms like milia, atrophic scarring, chronic wounds, anonychia, tissue 

granulations, growth retardation, and pseudo-syndactylism of toes and fingers. Moreover, 

the percentage of damaged skin in these patients was significantly lower than in the proband 

on average (10% vs. 40%, respectively). 

We performed whole exome sequencing (WES) in the proband, which revealed a homozygous 

missense mutation (c.8038C>T:p.Gly2680Ser) in exon 108 of the COL7A1 gene. Homozygosity 

mapping confirmed that COL7A1 lied inside a large autozygous genomic interval of 43.19 Mb, 

on chromosome 3. Residue Gly2680 is located within the triple helical domain of collagen VII 

and was found to be highly conserved across many vertebrate species, both at nucleotide and 

amino acid levels. Furthermore, Gly2680Ser is an extremely rare allele (allele frequency: 



 21 

1.657e-05, in gnomAD) with no homozygotes reported so far. Finally, strict genotype-

phenotype co-segregation of this mutation in the family confirmed its causality. Although 

glycine substitutions at this specific codon of collagen VII were previously reported in a 

heterozygous, as well as in a compound heterozygous state [52-55], to the best of our 

knowledge, it was never identified in a homozygous state. Interestingly, heterozygous 

individuals in our family did not show any clinical sign. Thus, we suggest that this mutation 

can be pathogenic per se, and possibly associated with generalized intermediate RDEB. Since 

glycine substitution at codon 2680 of collagen VII were previously reported in patients from 

diverse ethnic backgrounds such as China, UK, Poland, and Iran, we speculate that this 

mutation most likely constitutes a recurrent mutational hotspot in the COL7A1 gene. 

 

Publication 

This project has been published in “Clinical Dysmorphology” as first author article. Section 

7.2.2. 
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2.3.2 Clinical findings in families with hair loss disorders 

A total of 16 consanguineous families with hereditary hair loss disorders were ascertained 

from Punjab province of Pakistan with the help of our collaborator in Islamabad. The clinical 

spectrum of the disorder in these families ranged from complete absence of hairs on the 

whole body (alopecia universalis congenita, OMIM # 203655) to congenital absence of scalp 

hairs with sparse eyebrows and eyelashes (hypotrichosis with/without woolly hairs, OMIM 

# 604379) (Figure 11). Nevertheless, secondary symptoms such as dermatitic lesions, 

excessive sweating, sensitivity to sun, itching, dry skin, delayed bleeding upon 

injuries/wound, rapid nails growth, and crowded teeth were also evident in some families 

(Table 2). 

 

Figure 11. Clinical presentation of probands showing hair loss disorders 



 

Table 2. Major clinical features observed in families with hereditary hair loss disorders 

(+) presence, or (-) absence of a clinical feature, WH = wooly hairs, HT = Hypotrichoses. 

Family 
ID 

Disease 
onset/status 

Body 
hairs 

Dermatitic 
lesions 

Excessive 
sweating 

Itching Soft 
skin 

Excessive 
bleeding 

Rapid 
nails 

growth 

Crowded 
teeth 

PK-L Congenital - + - - + - - - 

PK-N Congenital - - - - - - - - 

F117 Congenital - + + + + + + + 

F118 Progressive - - + + + + + + 

F134 Progressive - - + + + + + + 

F164 Progressive - - + + + + + + 

F165 Progressive - - + + + + + + 

F166 Progressive - - + + + + + + 

F168 Progressive - - + + + + + + 

F64 Congenital WH - - - - - - - 

F65 Congenital HT - - + + + + + 



 

2.3.3 Genetic findings in families with hair loss disorders 

Collectively, we identified disease-causing variants in 11 of the total 15 pedigrees 

analyzed through either direct Sanger sequencing of the HR and LIPH genes (nine families) 

or whole exome sequencing in one proband per family (two families). Thus far, genetic 

findings have been inconclusive in four probands with whole exome sequencing data 

available. The mutational spectrum in the 11 genetically solved families include nine 

distinct variants reported in four separate genes (HR, LIPH, LPAR6, DSP) (Table 3). For 

example, five alleles were reported in HR gene, two alleles in the LIPH gene, while one 

allele each was found in LPAR6 and in DSP genes. Four of these nine variants were never 

published before. With the exception of one family with compound heterozygosity in the 

LIPH gene, all patients had homozygous variants in the HR, LPAR6, and DSP genes, thus 

reflecting on the practice of endogamy in the country. As expected, majority of the 

families (8 out of 11) had disease-causing variants in the HR gene, thus supporting data 

from existing literature [2, 56], 

Of the five HR variants, four represented loss-of-function alleles and were all reported in 

the proximal part of HR protein, while one variant was a missense substitution 

(p.Arg1095Trp) and was located inside a functionally important Jmjc domain of HR 

protein that possess histone demethylase activity (Figure 9). Interestingly, two of the five 

alleles reported in the HR gene could be considered as founder variants, due to their 

recurrence in five independent families of our cohort. These include p.Trp612GlyfsTer4 

(two families), and p.Pro144LeufsTer24 (three families). Since these variants were 

identified through Sanger sequencing, no further data were available to perform 

haplotype analysis. Similarly, two frameshift mutations in the LIPH gene 
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(p.Val437GlyfsTer4; p.Ile220ArgfsTer25), previously known to be founder alleles in 

Pakistan [57], were detected in compound heterozygosity in one family. WES analysis 

revealed a novel frameshift deletion (p.Phe24HisfsTer29) in LPAR6, co-segregating with 

hypotrichosis as a recessive trait in one family. Finally, a previously-known [58] 

pathogenic variant (p.Pro498Leu) in DSP gene was reported in a homozygous state in one 

family with hereditary hair loss disorder, through WES analysis (Table 3). 

 

Table 3. Genetic variants identified in 11 families with hereditary hair loss disorders 

Family Gene Transcript cDNA Change *Protein Change PMID 

PK-L LPAR6 NM_001162498.1 c.66_69dup p.(Phe24HisfsTer29) Novel 

PK-N DSP NM_001319034.1 c.1493C>T p.(Pro498Leu) 26148547 

F117 HR NM_005144.4 c.3283C>T p.(Arg1095Trp) Novel 

F118 HR NM_005144.4 c.1837C>T p.(Arg613Ter) 10674375 

F134 HR NM_005144.4 c.1834delT p.(Trp612GlyfsTer48) Novel 

F164 HR NM_005144.4 c.431delC p.(Pro144LeufsTer24) Novel 

F165 HR NM_005144.4 c.431delC p.(Pro144LeufsTer24) Novel 

F166 HR NM_005144.4 c.431delC p.(Pro144LeufsTer24) Novel 

F168 HR NM_005144.4 c.2455C>T p.(Arg819Ter) 21919222 

F64 LIPH NM_139248.2 c.1303_1309dupGAAAACG p.(Val437GlyfsTer4) 19262606 

F64 LIPH NM_139248.2 c.659_660delTA p.(Ile220ArgfsTer25) 19262606 

F65 HR NM_005144.4 c.1834delT p.(Trp612GlyfsTer48) Novel 

MAF = Minor allele frequency, PMID = PubMed ID, *Likely founder mutations shown in bold face, n.a = not available. 
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Figure 12. Genetic landscape of HR variants and functional domains.  

Upper panel: HR variants reported in HGMD/ClinVar databases. Our variants are indicated in 
red-font. legends: green: missenses, black: loss-of-function variants, purple: Start-loss 
(created using MutationMapper). Lower panel: Different functional domains of the HR 
protein. legends: NMTS, nuclear matrix-targeting signal; NLS, nuclear localization signal; RID, 
RORa interaction domains; DNA binding domain; TIR, TR interaction domains, and Jmjc 
domain (adopted from Maatough et al. 2018).



 

2.4 Subproject: Genetic findings in Japanese patients with rare retinal ciliopathies 

As our laboratory is heavily involved in research in the genetic basis of eye disorders, I had 

the opportunity to participate in a project related to a large cohort of Japanese patients with 

rare retinal ciliopathy. This provided me with the opportunity of comparing the findings in 

Pakistani families with those of a very different population, both geographically as well as in 

terms of population structure.  

The exceptionally high missing heritability seen in Japanese individuals with genetic retinal 

degenerations is a distinguishing feature that is rarely observed in other populations. 

Following the genetic screening of 331 unrelated Japanese patients, we successfully linked 

the disease etiology to two predicted loss of function (pLoF) variants in the RP1 gene. The 

variants included a disruptive Alu element insertion (c.4052_4053ins328/p.Tyr1352Alafs*9) 

and a nonsense mutation (p.Arg1933*). Unexpectedly, both variants were too frequent to be 

considered as causative individually for a rare retinal ciliopathy. The nonsense mutation 

(p.Arg1933*) is highly prevalent  in Japan (frequency = 0.6%), and Japanese individuals 

carrying this mutation, both in homozygosis and in heterozygosis, remain completely 

asymptomatic. Interestingly, however, significant enrichment was seen for p.Arg1933* in 

HRDs patients compared to controls (frequency = 2.1%, i.e., a 3.5-fold enrichment; p-

value = 9.2 × 10−5). Following familial co-segregation analysis and an association study, we 

showed that p.Arg1933* can act as a Mendelian mutation in trans with the Alu insertion. 

Nevertheless, p.Arg1933* might also associate with disease in combination with two other 

alleles in the EYS gene, in a non-Mendelian fashion. Thus, our findings suggest that rare retinal 

ciliopathies can be caused by relatively common variants in a quasi-Mendelian inheritance 
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pattern, thus intersecting monogenic and complex diseases. There is no indication yet of a 

similar phenomenon in the Pakistani population. 

 

Publication 

Findings of this project are published in “Nature Communications” and I co-authored this 

article. My contribution in the project included genotyping of Japanese IRDs cohort for 

selected mutations using Sanger sequencing. Section 7.3.1. 

 

2.5 Subproject: Case report of a patient with Usher syndrome 

We performed whole exome sequencing on the DNA of a Greek patient with Usher syndrome. 

The patient was a 28-year-old female with a history of RP and bilateral hearing impairment 

since childhood. Our genetic analysis revealed compound heterozygosity in the USH2A gene 

(OMIM 608400, NM_007123.5). The mutations included a nonsense change (c.100C>T; 

p.Arg34Ter) that was present in trans with a synonymous change (c.949C>A; p.Arg317=). The 

latter variant has been previously shown to activate a new splice site thus resulting in splicing 

defects [59]. Both variants were classified as pathogenic in the ClinVar database, by multiple 

submitters. Finally, segregation analysis in the family revealed strict genotype-phenotype 

correlation. The patient also underwent a successful closure of a full-thickness macular hole 

(FTMH) in her right eye. Of note, and as discussed below, we did not find any family with 

USH2A pathogenic variants in our Pakistani patient cohort.  

  



 29 

Publication 

A case report describing the surgical outcomes and genetic findings of this project is published 

in “Ophthalmology and Therapy”. My contribution to the project includes Sanger validation 

of the USH2A variants and segregation analysis in the family. Section 7.3.3. 

 

2.6 Families and cases without molecular diagnosis 

Despite the overall diagnostic success of 84%, genetic diagnosis was elusive in a subset of 

families with monogenic conditions (both ocular and skin cases). The reasons could be 

manifold, and possibly disease- or pedigree-specific. In general, comprehensive clinical data 

are required for correct initial diagnosis of patients suffering from phenotypically 

heterogeneous conditions or in cases where phenocopies/complex traits could overlap with 

true Mendelian phenotypes. Thus, correct initial diagnosis is always crucial for researchers to 

achieve a molecular diagnosis. By contrast, the minimal clinical data associated with Pakistani 

patients raises the possibility of misdiagnosis at the first place, thus hindering correct 

molecular diagnosis afterwards. For example, high myopia, a complex trait with enough 

familial aggregation, could easily be misclassified as inherited retinal disease if bona fide 

clinical data are not available. This is particularly true in the context of Pakistani population 

where consanguinity is very high and families have rather extended structures. Similarly, 

without sufficient clinical data, it is difficult to correctly discriminate between polygenic hair 

loss disorders (Examples: androgenetic alopecia or alopecia areata) and true monogenic hair 

loss disease (alopecia universalis congenita) due to the presence of clinical overlap between 

these two distinct disease types. As a proof of concept, molecular diagnosis in our data helped 

us to reclassify a few patients as suffering from congenital cataracts, and corneal dystrophy 
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who were initially misdiagnoses as retinal diseases. Thus, it is not unlikely that our cohort of 

monogenic families was also prone to such prejudice at the first place owing to the availability 

of minimal clinical information, possibly resulting in lack of molecular diagnosis in certain 

cases. In addition, we have observed that two or more clinically similar phenotypes with 

distinct underlying genetic mechanisms could simultaneously segregate in the same family 

owing to the high level of genomic homozygosity. Without a detailed clinical dissection of 

such families, it is rather difficult to establish a correct molecular diagnosis through genotype-

phenotype co-segregation for a single variant. Alternatively, disease-causing variants in two 

or more genes could likely contribute to the same phenotype (so-called digenic or multigenic 

inheritance). 

The majority of our unsolved cases comprised multiplex families; however, three out of four 

unsolved skin families were simplex which are generally more challenging to characterize 

genetically than their multiplex counterparts. Likewise, genome-wide autozygosity level in 

our unsolved cohort was, in principle, higher than our minimum threshold of 50 Mb for a 

consanguineous family; this difference was only nominal in a few unsolved cases. Thus, lack 

of molecular diagnosis in few cases could possibly be attributed to the low level of genomic 

autozygosity. Nevertheless, molecular diagnosis has never been complete despite all 

technological advancements, and improvements in the analytical skills as well as theoretical 

knowledge. This is because variation in a large fraction of the human genome is either 

intractable by the current sequencing methods or difficult to interpret. For example, with the 

existing exome sequencing technologies that provide non-uniform coverage throughout the 

genome, it is difficult to uncover disease-causing variants in the GC-rich regions that requires 

special strategies. RPGR, which explains more than 70% of the X-linked retinitis pigmentosa 

(RP) cases, constitute the most famous example of poor coverage for its exon ORF15 in exome 
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sequencing as well as panel-based next-generation sequencing methods due to its highly 

repetitive purine-rich content. Compatible with this idea, we have found, through 

visualization of WES data on Integrative Genomics Viewer (IGV), that exon ORF15 of the RPGR 

gene was poorly covered in our exome data. This made us to speculate that causative variants 

in four unresolved probands with a suspected X-linked RP are likely to reside inside the exon 

ORF15 of RPGR gene, and thus our computational pipeline was unable to detect them due to 

the poor sequence coverage. Though we are optimistic to find causative variants in these four 

probands, we have not yet screened them for ORF15 exon. Thus, we postulate that 

“intractable genomic regions” (such ORF15) could possibly contribute, at least to some 

extent, to the missing heritability seen in our cohort. Likewise, current computational and 

analytical approaches have their own limitations specially to detect large structural 

variants/complex chromosomal rearrangements such as large deletions, inversions or 

duplications. Therefore, we cannot completely exclude the possibility of missing such variants 

or other potentially disease-causing variants during filtering of our exome data. We also argue 

that variation in the non-coding genome, regulatory sequences, and deep-intronic variants 

impacting splicing likely explain the unknown genetic mechanisms in our unsolved cases. Our 

analysis mainly focused on the coding part of genome (exome), and the discovery and 

understanding the role of such variants was beyond the scope of this thesis. Finally, we 

anticipate that non-conventional modes of inheritance such as digenic, oligogenic, and 

mitochondrial inheritance, although rare, could lead to the missing heritability in our cohort. 
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3. Discussion 

Consanguinity has been widely accepted as a major risk factor for the occurrence of rare 

recessive Mendelian disorders, yet it is a long-lived social practice in many Asian and African 

countries [60]. According to an estimate, there are approximately 7,000 rare diseases (RDs)  

affecting the human race, and the majority of them appear as the consequence of founder 

mutations in societies where community endogamy and close-kin marriages are common [8]. 

Pakistan has one of the world’s highest rates of inherited genetic diseases likely correlating 

with the exceptionally high rate of consanguineous marriages (~65%) in the country [61, 62].  

Pakistani families have been at the forefront in Medical Genetics research due to the highest 

rates of consanguinity in the country. While exploiting consanguinity as a means to identify 

recessive mutations, significant scientific findings in Pakistani families have been recently 

published [40, 61, 63-66]. Compatible with the same idea, we sought to understand the 

genetic etiology of consanguineous Pakistani families with different monogenetic diseases, 

mostly affecting the eyes and the skin. Our approach included targeted Sanger sequencing of 

founder mutations, SNP-based autozygosity mapping, candidate genes screening, and whole 

exome sequencing. Overall, we have been able to identify causative variants in 98 out of 116 

monogenic families analyzed (84% success rate). Our data generally demonstrate the 

presence of a very high degree of autozygosity and of prevalent founder mutations in the 

Pakistani population, irrespective of the individual disease categorization. Thus, more than 

90% of the families presented in this thesis were linked to homozygous pathogenic variants 

in known Mendelian disease genes. Our findings corroborate a previous study demonstrating 

92% homozygous recessive mutations in a cohort of Pakistani probands [66]. Similarly, more 

than 40% of the pedigrees in our cohort were associated with founder mutations, thus 
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reflecting on the traditional practice of endogamy and the presence of extensive stratification 

within the Pakistani population, as described earlier [65, 67-70]. Consistent with a previous 

study [66], our cohort was enriched for homozygous loss-of-function alleles compared to 

missense mutations. 

In Pakistan, an estimated 1.12 million people are blind, 1.09 million have severe vision loss 

while 6.79 million suffer from moderate vision loss. Surprisingly, the vision loss burden has 

continued to rise in the country in the last three decades [71]. In our cohort of inherited eye 

diseases (IEDs), we achieved a WES diagnostic rate of 83% (72 out of 86 families) which, to 

the best of our knowledge, represents a higher figure with respect to many previous studies 

[72-75]. We have also found marked genetic and allelic heterogeneity (41 genes carrying 61 

distinct variants) associated with IEDs in our cohort. Thirty-two out of 41 genes (78%) were 

previously linked to inherited retinal diseases (IRDs), whereas nine genes (COL18A1, CYP1B1, 

FOXE3, FYCO1, LTBP2, PAX6, TDRD7, TEK, ZEB1) were previously known to cause various 

forms of structural abnormalities of the eye, notably: microphthalmia, primary congenital 

glaucoma, cataracts, and corneal dystrophies. Overall, more than half of the identified genetic 

variants were not previously published, and ~50% of them were absent from public databases 

such as gnomAD. Compatible with the heterogenous nature of IEDs, our findings are also in 

line with previous studies [73, 76-82]. Except for one family with X-linked disease and two 

families with autosomal dominant diseases, inheritance of the disorder in all remaining 

pedigrees was consistent with a recessive Mendelian pattern, and the variants discovered 

were indeed exclusively bi-allelic (homozygous or compound heterozygous). Homozygous 

pathogenic variants were mainly uncovered with the help of homozygosity mapping, again in 

line with the previous studies suggesting homozygosity mapping as an effective gene-

discovery tool in consanguineous families [40, 72, 83]. In general, it is a lot easier to establish 
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pathogenicity for loss of function (LoF) alleles compared to missense mutations. Consistent 

with a previous study [64], more than half (54%) of the identified variants in our cohort were 

predicted to result in LoF alleles, i.e. nonsense, frameshift, or splice-site mutations, and all, 

except for three alleles, were found in homozygous state. Among them, a large homozygous 

deletion was likely to lead to, a complete knock out, of the RP1 gene in two pedigrees. The 

deletion co-segregated in fact with the disease in both pedigrees. Thus, our findings support 

a recent case-control study showing that the occurrence of natural knock-outs for 1,317 

human genes in a Pakistani cohort is attributable to homozygous LoF mutations [63]. 

Scientists therefore believe that “a human knockout project” will soon be initiated [63], 

therefore by focusing on families from endogamous populations, such as Pakistani [63]. 

In addition to frequently mutated IED-associated genes, we found variants in genes that were 

either newly associated with IEDs or were known to cause rare forms of ocular conditions. 

For example, we detected a homozygous missense variant in the SLC6A6 gene 

(NM_003043.5:c.746C>T:p.Thr249Ile), co-segregating with a severe early-onset retinal 

degeneration and suggestive cardiomyopathy (as shown by abnormal ECGs) in four affected 

siblings of a consanguineous family. SLC6A6 encode taurine transporter (TauT) which is a 

ubiquitously expressed osmolyte transporter that maintains the intracellular taurine content 

in many tissues including heart, brain, retina, kidney, liver and skeletal muscles [84]. A number 

of taurine deficiency disorders, in particular affecting  kidney, retina and liver, were 

anticipated as early as 1990s [85]. However, a direct link between genetic alterations in 

SLC6A6 gene and any human pathological condition has been established only recently in 

three independent studies. First, a homozygous deletion of a canonical splice site in the 

SLC6A6 (c.229+1delT) was associated with dilated cardiomyopathy in a sporadic Pakistani 

patient born of consanguineous parents [49]. Secondly, a homozygous missense mutation in 
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the SLC6A6 (p.Ala78Glu) was found to cause early-onset retinal degeneration without obvious 

extraocular findings in two brothers of Turkish descent [50]. More recently, our group has 

found a homozygous missense mutation in the SLC6A6 (p.Gly399Val) causing progressive 

childhood retinal degeneration and cardiomyopathy in a consanguineous Pakistani family 

with two affected children. The later study has also shown beneficial effects of a long-term 

oral supplementation of taurine in their patients [51]. To sum up, our family with SLC6A6-

related human phenotype is the third in Pakistan while fourth in the world.  

We also report a rare form of congenital stationary night blindness (CSNB), commonly called 

Oguchi disease, in a consanguineous Pakistani family with four affected individuals. In this 

family, the disease was linked to a previously known pathogenic variant in the GRK1 

(p.Asp537ValfsTer7) [86, 87]. Thus far only twenty variants in the GRK1 have been associated 

with Oguchi disease [88].  

Overall, our study was successful in finding the molecular basis of IEDs and skin diseases in 

the majority of families analyzed. Interestingly, we did not uncover completely unknown 

disease genes but showed the presence of putative founder mutations in a number of known 

genes associated with disease. It is possible that based on our data and previous reports [64, 

65], more extensive studies involving an even larger number of Pakistani families could be 

useful to uncover additional genes causing visual impairment, or other ultra-rare recessively-

inherited monogenic disorders. The existence of both novel and previously known founder 

mutations is explained by the population sub-structuring in the country. To this end, our data 

may have practical significance as ten distinct founder mutations in nine separate genes 

explained the genetic etiologies in 44% of our cohort. Genes carrying founder mutations 

included ABCA4, CRB1, LRIT3, RPE65, NMNAT1, PDE6A, CERKL, RP1, and MYO7A. A founder 
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allele in the ABCA4 (p.Gly72Arg) was the most commonly reported disease-causing variant in 

our cohort of IEDs collectively accounting for 11 independent families. Thus, our findings 

corroborate several previous studies demonstrating high founder effects in Pakistan, 

occasionally leading to the discovery of novel gene-disease associations [65, 69]. 

Interestingly, we did not uncover any instance of retinal disorder associated with the USH2A 

gene: this is surprising as variants in this gene are highly prevalent in other cohorts of IED 

individuals [89]. Indirectly, this observation underscores the role of founder mutations in 

Pakistan: no founder mutation seems to exist for USH2A.  

The scope of this thesis also entails families with monogenic skin conditions, notably skin 

blistering and hair loss disorders. Through WES analysis in a consanguineous family with 

recessive dystrophic epidermolysis bullosa (EB), we identified a homozygous missense 

mutation in COL7A1 (p.Gly2680Ser). The mutation was previously known to cause EB in 

patients from diverse ethnic backgrounds such China, UK, Poland, and Iran [54, 55, 90, 91]. 

This made us to speculate that this mutation could likely constitute a recurrent mutational 

hotspot in the COL7A1 gene. EB is a rare skin condition that affect ~1 in 120,000 people 

worldwide, or one out of every 20,000 live births in the United States. Mainly characterized 

by extreme skin fragility and trauma-induced blistering, there are more than 30 clinical 

subtypes of EB and associated mutations are known in as many as 18 genes [44]. Recent 

studies suggest that various treatment options such as gene replacement or correction, 

protein replacement, and cell-based therapies for EB are currently in their early clinical trials 

[92]. 

  



 37 

Genetic analysis in probands from 11 families with hereditary hair loss disorders revealed a 

total of nine distinct genetic variants within four genes (HR, LIPH, LPAR6, DSP). Among them, 

HR was the most frequently mutated gene (8 out of 11 families, or 73%). The first genetic 

variant that linked the human hairless (HR) gene to alopecia universalis two decades ago was 

also reported in a Pakistani family [93]. Since then, pathological changes in HR have been 

mainly associated with three overlapping human disorders, namely; alopecia universalis 

congenita (ALUNC), atrichia with papular lesions (APL), and Marie-Unna Hereditary 

Hypotrichosis (MUHH). While the first two categories arise from recessive mutations in the 

coding part of HR, the latter is associated with dominant changes in the upstream open 

reading frame (U2HR) of the gene [94]. Thus far, at least 79 variants in HR are flagged as 

pathogenic in the ClinVar database [95]. HR encodes a nuclear transcription factor that 

possess functional domains essential for DNA binding, histone demethylation, nuclear 

translocation and protein–protein interactions [94]. Previous literature suggests that the 

majority (75%) of mutations associated with APL or ALUNC are located inside these functional 

domains [94]. Consistent with these findings, all five HR mutations reported in this thesis 

localized within the functional domains of the HR protein: p.Pro144LeufsTer24 (nuclear 

matrix targeting signal, NMTS domain), p.Trp612GlyfsTer48; p.Arg613Ter (DNA binding 

domain), p.Arg819Ter (TR interaction domain, TID1), and p.Arg1095Trp (JmjC domain). Except 

for the missense (p.Arg1095Trp), all remaining four mutations constitute predicted loss-of-

function (LoF) alleles, and therefore we can easily postulate causality for them in our patients. 

We also report compound heterozygosity in the LIPH gene (p.Val437GlyfsTer4; 

p.Ile220ArgfsTer25), associated with wooly hair phenotype in one Pakistani family. These 

mutations were previously known to be founder alleles in Pakistani population [57]. 

Additional variants in two remaining families with hereditary hair loss disorders included a 
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novel homozygous frameshift deletion in LPAR6 (p.Phe24HisfsTer29), and a previously-known 

pathogenic mutation in DSP (p.Pro498Leu). 

Though largely similar to previous studies in the world populations, our study has a few 

distinctive features. First, the diagnostic yield (84%) achieved in our study was 

unprecedented. This is likely due to the high degree of consanguinity as observed from the 

pedigree-based estimations. Our analysis also confirmed this fact by showing a very high level 

of genome-wide autozygosity and significant enrichment for recessive genetic burden. This 

provides an evidence that consanguinity is the major contributing factor for recessive genetic 

diseases in Pakistan, and that autozygosity mapping is a powerful gene mapping tool when 

employed in consanguineous pedigrees. Second, the appearance of frequent founder variants 

in our study indicate that population stratification and community endogamy contribute 

significantly to the overall recessive genetic burden in Pakistan. This is in fact true for all kinds 

of Mendelian diseases and across all geographic and ethnic strata of Pakistan. Nevertheless, 

contribution of dominant and X-linked variants, though nominally present in our cohort, could 

not be completely ruled out while studying consanguineous pedigrees. Third, our data 

showed highest proportion of bi-allelic loss-of-function (LoF) variants, thus further 

strengthening the deleterious effects of null alleles. Since LoF alleles are predicted to 

inactivate/knock out protein coding genes, such variants could provide an insightful 

information about gene function, thus highlighting importance of Pakistani families for future 

medical research. Fourth, our analysis discovered ultra-rare retinal diseases while slightly 

depleted for some common retinal phenotypes. For example, we have found an extremely 

rare taurine-transporter deficiency disorder in a consanguineous Pakistani family associated 

with SLC6A6 gene. By contrast, our data completely lacked for USH2A-associated human 

phenotypes although pathogenic variants in USH2A gene are considered to be the most 
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common cause of non-syndromic retinitis pigmentosa or Usher syndrome (retinitis 

pigmentosa and deafness) [89]. Our analysis therefore highlights the unique genetic 

architecture of Pakistani families, and warrants further studies to uncover the full spectrum 

of retinal diseases (including rare human phenotypes) by undertaking large number of 

consanguineous families. In summary, our data generally confirm our starting hypothesis: a 

high degree of autozygosity in Pakistan leads to the frequent clinical expression of prevalent 

founder mutations in Pakistan, across the panel of different disease categories, thus making 

Pakistani families distinctive for gene hunt studies using autozygosity mapping. As outlined 

above, this is likely the consequence of the extensive population stratification as well as the 

high prevalence of consanguinity in the society. Our data introduce novel disease-causing 

alleles in the literature and thus further expands the current genetic landscape of inherited 

eye and skin diseases. 

We also anticipate that these insights on eye and skin disorders, and possibly the strategies 

derived to create novel targeted approaches for rapid diagnosis and prevention, might apply 

to other recessive conditions that affect Pakistan and its regions, such as deafness, intellectual 

disabilities, and perhaps metabolic disorders and developmental defects.  
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4. Perspectives 

We hope that our findings, and specifically the identification of founder alleles in nine genes, 

will stimulate researchers and clinicians in Pakistan to screen their patients for known 

mutations in a time and cost-efficient way; indeed, an argument could be made to implement 

a panel of frequent founder mutations, both at a diagnostic level and, perhaps in the future, 

at a prevention level. This could be tailored to families or communities with a greater risk for 

one or another specific disease, who could then benefit from carrier testing and genetic 

counselling. 

Furthermore, our data could be used as a useful genetic resource for future studies 

undertaking gene therapy trials for retinal diseases associated with these particular genes, 

excluding RPE65 gene for which gene therapy has already been in the market. In addition, our 

data could provide a hope for individuals with certain genetic conditions to get benefits from 

existing gene or cell-based therapies. For example, patients with RPE65-associated visual 

impairment (five families in our study) could benefit from Luxturna, a gene therapy designed 

to treat patients with RPE65-related vision loss.  

Finally, we hope that scientific findings like ours might encourage the Pakistani nation to enter 

into an era of personalized medicine. With the growing knowledge about genetic disorders 

and increasing affordability of genetic testing, we hope that diagnostic services will soon be 

available to the public. As a subsequent step following diagnostics, we suggest that Pakistan 

might develop a national database of genetic diseases following the example of public 

databases and registries in many developed countries. These infrastructures would be the 

prerequisite to assist professionals and to guide the public health care systems towards 
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disease-specific or community-specific prevention and treatment strategies in accordance 

with epidemiologic data and treatment availabilities. 
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5. Author contribution 

This thesis document is solely written by me (Atta Ur Rehman) and reviewed by Prof. Carlo 

Rivolta and Prof. Andrea Superti-Furga and describes all the scientific findings that were 

produced during my three years PhD research work (September 2017 to August 2020). Except 

where necessary (Figure 1, 2, and 12 which are modified from other sources and thus cited), 

all the remaining data (including Tables and Figures) in this document are genuine, generated 

by myself and constitute part of my own thesis work.  

Identification and recruitment of monogenic Pakistani families and blood/saliva sampling was 

done partly by me and partly by our collaborators in Pakistan.  

All the laboratory (“wet lab”) procedures associated with this thesis were done by myself.  

Bioinformatic analysis of raw data (filtering of WES data and creation of autozygosity maps 

using in-house pipeline/AutoMap) was kindly done by Mathieu Quinodoz or Virginie Peter. 

All downstream analysis such as manual curation of the WES data for detection of 

pathogenic/likely pathogenic variants, Sanger validation of WES results, and segregation 

analysis was performed by myself. 

My contribution to the first author articles (published in Genes, and Clinical Dysmorphology) 

includes project design/execution, sample acquisition, wet lab work, data analysis, and 

manuscript write-up as well correspondence (Clinical Dysmorphology). Except for Figure 2 in 

the “Genes” article which was drawn with the help of Mathieu Quinodoz, remaining 

Figures/Tables in both first-author articles were drawn by myself.  

Of the co-author articles, my contribution to the project published in “Nature 

Communications” included genotyping of Japanese IRDs cohort for selected mutations using 
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Sanger sequencing. For the article published in “Ophthalmology and Therapy”, I performed 

segregation analysis in the family. Lastly, one co-author article is currently under review in 

“Human Mutation” where my contribution is the addition of one family with GRK1-related 

Oguchi disease to the manuscript. 
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7. Appendices 

7.1 List of genetic variants identified in our cohort of 86 IEDs families 

Family ID Gene Transcript ID cDNA change  Protein change 

gnomAD  

MAF Zygosity Method PMID 

PK-B ABCA4 NM_000350.2 c.214G>A p.(Gly72Arg) 0.00002784 Hom WES 10958763 

PK-D ABCA4 NM_000350.2 c.214G>A p.(Gly72Arg) 0.00002784 Hom WES 10958763 

PK-E ABCA4 NM_000350.2 c.214G>A p.(Gly72Arg) 0.00002784 Comphet WES 10958763 

PK-E ABCA4 NM_000350.2 c.3081T>G p.(Tyr1027Ter) n.a Comphet WES 25312043 

PK-F ABCA4 NM_000350.2 c.214G>A p.(Gly72Arg) 0.00002784 Hom WES 10958763 

PK-H MKKS NM_170784.2 c.280T>C p.(Phe94Leu) n.a Hom SNP Novel 

PK-J RDH12 NM_152443.2 c.609C>A p.(Ser203Arg) 0.00002786 Hom WES 22065924 

PK-L NMNAT1 NM_022787.3 c.25G>A p.(Val9Met) n.a Hom SNP 22842227 

PK-M NMNAT1 NM_022787.3 c.25G>A p.(Val9Met) n.a Hom SNP 22842227 

PK-O CYP1B1 NM_000104.3 c.1168C>A p.(Arg390Ser) 0.00001602 Hom SNP 14635112 

PK-P ABCA4 NM_000350.2 c.214G>A p.(Gly72Arg) 0.00002784 Hom TSS 10958763 

PK001 TULP1 NM_001289395.1 c.1307A>G p.(Lys436Arg) 0.00002472 Hom WES 9660588 

PK002 PDE6B NM_001145291.1 c.427del p.(Ala143LeufsTer7) n.a Hom WES Novel 

PK003 FOXE3 NM_012186.2 c.440T>C p.(Leu147Pro) n.a Hom SNP Novel 

PK004 CNGA3 NM_001298.2 c.847C>T p.(Arg283Trp) 0.0001402 Hom WES 9662398 

PK006 BBS2 NM_031885.3 c.1438C>T  p.(Arg480Ter) 0.00001647 Hom SNP 24608809 

PK007 CNGA1 NM_001142564.1 c.1298G>A p.(Gly433Asp) n.a Hom WES 25775262 

PK008 TDRD7 NM_014290.2 c.3036C>G p.(Phe1012Leu) n.a Hom WES Novel 

PK009 CNGB3 NM_019098.4 c.1574_1575del p.(Phe525Ter) 0.000003993 Hom WES Novel 

PK010 RPE65 NM_000329.2 c.550G>T p.(Glu184Ter) n.a Hom WES Novel 

PK026 RP1 NM_006269.1 c.? p.? n.a Hom WES Novel 

PK028 ABCA4 NM_000350.2 c.214G>A p.(Gly72Arg) 0.00002784 Hom TSS 10958763 
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Continued. 

 
PK029 SPATA7 NM_018418.4 c.1028G>A p.(Arg343Lys) n.a Hom WES Novel 

PK030 SLC6A6 NM_001134367.3 c.1049C>T p.(Thr350Ile) n.a Hom WES Novel 

PK031 AIPL1 NM_001285401.2 c.762G>A p.(Trp254Ter) 0.000329 Hom WES 30718709 

PK032 ABCA4 NM_000350.2 c.1222C>T p.(Arg408Ter) 0.0000159 Hom WES 28947085 

PK033 LCA5 NM_181714.3 c.664_669del p.(Ala222_Lys223del) n.a Hom WES Novel 

PK034 ABCA4 NM_000350.2 c.214G>A p.(Gly72Arg) 0.00002784 Hom TSS 10958763 

PK035 CRB1 NM_201253.2 c.2290C>T p.(Arg764Cys) 0.0000757 Hom WES 30718709 

PK036 CRB1 NM_201253.2 c.1459T>C p.(Ser487Pro) n.a Hom WES 24265693 

PK037 ABCA4 NM_000350.2 c.214G>A p.(Gly72Arg) 0.00002784 Hom TSS 10958763 

PK038 ABCA4 NM_000350.2 c.214G>A p.(Gly72Arg) 0.00002784 Hom TSS 10958763 

PK039 PAX6 NM_001604.5 c.510G>A p.(Trp170Ter) n.a Hom WES 28321846 

PK040 CRB1 NM_201253.2 c.1459T>C p.(Ser487Pro) n.a Hom WES 24265693 

PK041 CRB1 NM_201253.2 c.1459T>C p.(Ser487Pro) n.a Hom WES 24265693 

PK042 LCA5 NM_001122769.2 c.1261C>T p.(Gln421Ter) 0.00000413 Hom WES Novel 

PK043 ABCA4 NM_000350.2 c.214G>A p.(Gly72Arg) 0.00002784 Hom TSS 10958763 

PK044 MYO7A NM_000260.3 c.4838del p.(Asp1613ValfsTer32) 0.000008284 Hom WES 22135276 

PK046 PRPF31 NM_015629.3 c.322+5G>A p.? n.a Het WES Novel 

PK049 MYO7A NM_001127180.1 c.2525C>G p.(Thr842Ser) 0.00002898 Hom WES Novel 

PK051 AIPL1 NM_001285400.2 c.399G>T p.(Gln133His) 0.00001627 Hom WES Novel 

PK055 CERKL NM_001160277.1 c.715C>T p.(Arg239Ter) 0.0003319 Hom WES 30718709 

PK056 IFT172 NM_015662.2 c.3268G>A p.(Val1090Met) 0.0001768 Comphet WES Novel 

PK056 IFT172 NM_015662.2 c.4960A>G p.(Met1654Val) 0.0001774 Comphet WES Novel 

PK057 CERKL NM_001160277.1 c.715C>T p.(Arg239Ter) 0.0003319 Hom WES 30718709 

PK058 TTLL5 NM_015072.4 c.3744dup p.(Ser1249ValfsTer15) 0.00005178 Hom WES Novel 

PK059 COL18A1 NM_030582.3 c.4054_4055del p.(Leu1352ValfsTer72) 0.0002961 Hom WES 29977801 

PK060 PDE6H NM_006205.2 c.35C>G p.(Ser12Ter) 0.000092 Hom WES 22901948 

PK061 ABCA4 NM_000350.2 c.214G>A p.(Gly72Arg) 0.00002784 Hom TSS 10958763 
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PK100 RP1 NM_006269.1 c.4555del p.(Arg1519GlufsTer2) 0.000004008 Hom WES 28418496 

PK102 SPATA7 NM_001040428.3 c.157C>T p.(Arg53Ter) 0.00006744 Hom WES 25133751 

PK104 MYO7A NM_001127180.1 c.3724C>T p.(Gln1242Ter) n.a Hom WES 24651602 

PK105 PDE6B NM_001350155.1 c.571G>A p.(Gly191Ser) 0.000003988 Hom WES Novel 

PK107 PDE6A NM_000440.2 c.1444T>C p.(Cys482Arg) n.a Hom WES Novel 

PK108 PDE6A NM_000440.2 c.1444T>C p.(Cys482Arg) n.a Hom WES Novel 

PK109 PDE6A NM_000440.2 c.1444T>C p.(Cys482Arg) n.a Hom WES Novel 

PK110 MYO7A NM_000260.3 c.4838del p.(Asp1613ValfsTer32) 0.000008284 Hom WES 22135276 

PK111 MYO7A NM_001127180.1 c.3724C>T p.(Gln1242Ter) n.a Hom WES 24651602 

PK112 ZEB1 NM_030751.5 c.685-2A>G p.? n.a Hom WES 25441224 

PK301 ARL6 NM_001323514.1 c.387_394del p.(Asn130GlyfsTer3) n.a Hom WES Novel 

PK303 ABCA4 NM_000350.2 c.6658C>T p.(Gln2220Ter) 0.00005171 Hom WES 28118664 

PK304 RPGRIP1 NM_020366.3 c.2480G>T p.(Arg827Leu) n.a Hom WES 12920076 

PK305 RP1 NM_006269.1 c.? p.? n.a Hom WES Novel 

PK310 RP1 NM_006269.1 c.615+1G>A p.? n.a Hom WES Novel 

PK312 LRP5 NM_002335.3 c.629A>G p.(Tyr210Cys) 0.000003989 Hom WES Novel 

PK315 GUCY2D NM_000180.3 c.71del p.(Pro24ArgfsTer61) n.a Hom WES Novel 

PK316 CYP1B1 NM_000104.3 c.1018C>T p.(Gln340Ter) n.a Hom WES Novel 

PK317 NMNAT1 NM_022787.3 c.25G>A p.(Val9Met) n.a Hom WES 22842227 

PK318 CRB1 NM_201253.2 c.1459T>C p.(Ser487Pro) n.a Hom TSS 24265693 

PK320 PROM1 NM_001145847.1 c.1379_1380insT p.(Thr461AspfsTer48) n.a Hom WES Novel 

PK323 PAX6 NM_001258465.1 c.607C>T p.(Arg203Ter) n.a Het WES 7550230 

PK327 RP1 NM_006269.1 c.3396G>A p.(Trp1132Ter) 0.000007963 Hom WES 22317909 

PK331 LTBP2 NM_000428.2 c.5270G>A p.(Cys1757Tyr) n.a Hom WES 32165823 

PK333 TEK NM_001290078.1 c.2783G>C p.(Arg928Pro) n.a Hom WES Novel 

PK334 CRB1 NM_201253.2 c.1459T>C p.(Ser487Pro) n.a Hom WES 24265693 

PK401 RPE65 NM_000329.2 c.361del p.(Ser121LeufsTer6) 0.00000399 Hom WES Novel 
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PK402 RPE65 NM_000329.2 c.361del p.(Ser121LeufsTer6) 0.00000399 Hom WES 23878505 

PK404 GRK1 NM_002929.2 c.1610_1613del (Asp537ValfsTer7) n.a Hom WES 26349155 

PK405 RPE65 NM_000329.2 c.361del p.(Ser121LeufsTer6) 0.00000399 Hom WES 23878505 

PK406 RPE65 NM_000329.2 c.361del p.(Ser121LeufsTer6) 0.00000399 Hom WES Novel 

PK407 FYCO1 NM_024513.3 c.4127T>C p.(Leu1376Pro) 0.000003994 Hom WES 21636066 

PK408 LRP5 NM_001291902.1 c.2745+1G>A p.? n.a Comphet WES Novel 

PK408 LRP5 NM_001291902.1 c.430G>A p.(Val144Ile) 0.00003183 Comphet WES Novel 

PK409 CYP1B1 NM_000104.3 c.1169G>A p.(Arg390His) 0.0001032 Hom WES 10655546 

PK410 LRIT3 NM_198506.4 c.269dup p.(Tyr90Ter) 0.000006387 Hom WES Novel 

PK411 LRIT3 NM_198506.4 c.269dup p.(Tyr90Ter) 0.000006387 Hom WES Novel 

PK412 LRIT3 NM_198506.4 c.269dup p.(Tyr90Ter) 0.000006387 Hom WES Novel 

PK413 LRIT3 NM_198506.4 c.269dup p.(Tyr90Ter) 0.000006387 Hom WES Novel 

PK414 NYX NM_022567.2 c.37+5G>T p.? n.a Hemi WES Novel 

 

CNV: copy number variation, Del: deletion, Hom: homozygous, Comphet: compound 
heterozygous, Het: heterozygous, ROH: runs of homozygosity, WES: whole exome 

sequencing, SNP: single nucleotide polymorphism, PMID: PubMed ID, n.a: not available.
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7.2.2 Whole-exome sequencing in a consanguineous Pakistani family identifies a 

mutational hotspot in the COL7A1 gene, causing recessive dystrophic 

epidermolysis bullosa 
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7.3.1 A frequent variant in the Japanese population determines quasi-Mendelian 

inheritance of rare retinal ciliopathy 
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7.3.2 New pathogenic variants and insights into pathogenic mechanisms 

in GRK1-related Oguchi disease 
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Figure 1. 

 

 

 

 

 

 

 

 

 

 

Figure 2. 
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Figure 3. 
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Figure 4. 
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7.3.3 Management of full-thickness macular hole in a patient with Usher syndrome 
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