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Abstract

Background: Brain inflammation plays a central role in numerous brain pathologies, including multiple sclerosis
(MS). Microglial cells and astrocytes are the effector cells of neuroinflammation. They can be activated also by
agents such as interferon-y (IFN-y) and lipopolysaccharide (LPS). Peroxisome proliferator-associated receptor
(PPAR) pathways are involved in the control of the inflammatory processes, and PPAR-3 seems to play an
important role in the regulation of central inflammation. In addition, PPAR-[3 agonists were shown to have trophic
effects on oligodendrocytes in vitro, and to confer partial protection in experimental autoimmune
encephalomyelitis (EAE), an animal model of MS. In the present work, a three-dimensional brain cell culture
system was used as in vitro model to study antibody-induced demyelination and inflammatory responses. GW
501516, a specific PPAR- agonist, was examined for its capacity to protect from antibody-mediated
demyelination and to prevent inflammatory responses induced by IFN-y and LPS.

Methods: Aggregating brain cells cultures were prepared from embryonal rat brain, and used to study the
inflammatory responses triggered by IFN-y and LPS and by antibody-mediated demyelination induced by
antibodies directed against myelin-oligodendrocyte glycoprotein (MOG). The effects of GW 501516 on cellular
responses were characterized by the quantification of the mRNA expression of tumor necrosis factor-o. (TNF-
a), interleukin-6 (IL-6), inducible NO synthase (i-NOS), PPAR-, PPAR-y, glial fibrillary acidic protein (GFAP),
myelin basic protein (MBP), and high molecular weight neurofilament protein (NF-H). GFAP expression was also
examined by immunocytochemistry, and microglial cells were visualized by isolectin B4 (IB4) and ED| labeling.

Results: GW 501516 decreased the IFN-y-induced up-regulation of TNF-a and iNOS in accord with the
proposed anti-inflammatory effects of this PPAR-f3 agonist. However, it increased IL-6 m-RNA expression. In
demyelinating cultures, reactivity of both microglial cells and astrocytes was observed, while the expression of
the inflammatory cytokines and iNOS remained unaffected. Furthermore, GW 501516 did not protect against the
demyelination-induced changes in gene expression.

Conclusion: Although GW 501516 showed anti-inflammatory activity, it did not protect against antibody-
mediated demyelination. This suggests that the protective effects of PPAR- agonists observed in vivo can be
attributed to their anti-inflammatory properties rather than to a direct protective or trophic effect on
oligodendrocytes.
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Background

Neuroinflammation is a common phenomenon in
numerous brain pathologies [1]. In multiple sclerosis
(MS), active demyelinating lesions are surrounded by
inflammatory foci [2,3]. Inflammation plays a central role
in MS pathology, contributing to both the onset and the
progression of this autoimmune disease. Brain inflamma-
tory reactions involve microglial cells and astrocytes,
which in the activated state undergo profound changes in
cell morphology and physiology, accompanied by the
release of numerous inflammatory mediators and other
bioactive factors [4-6]. Among the pro-inflammatory
mediators, tumor necrosis factor-a. (TNF-a) and inter-
leukin-6 (IL-6) seem to play a predominant role because
of their involvement at multiple levels of neuroimmune
regulation (for review [5,7]). An inflammatory response
can be induced experimentally by various agents activat-
ing microglial cells and astrocytes. The cytokine inter-
feron-y (IFN-y), secreted by activated lymphocytes and
detected in the brain during the symptomatic phase of MS
[8], can directly activate cells of the macrophage lineage
[9-11]. IFN-y is also able to target oligodendrocytes [12]
and can lead to demyelination after a repeated application
[13]. The endotoxin lipopolysaccharide (LPS) from bacte-
rial origin has been shown to activate microglia and to
induce the expression of pro-inflammatory mediators
[14,15]. LPS also induced the death of oligodendrocytes
and neurons [16,17].

Among the peroxisome proliferator activated receptors
(PPARs), a family of nuclear transcription factors, PPAR-
B, also known as PPAR-6, FAAR and NUC-1, is the pre-
dominant and most widely expressed subtype in the
brain. It is highly expressed in the developing neural tube
[18] as well as in oligodendrocytes and neurons of the
adult brain [19,20]. Nevertheless, still little is known
about its physiological ligands [21,22] and target genes
[23]. PPARs, and particularly PPAR-B, are supposed to
modulate brain cell maturation, which may involve also
inflammatory mediators released by brain cells [24].
PPAR-B activity promoted oligodendrocyte development
and myelin formation [25-27], and PPAR-f} deficient mice
showed altered myelination [28]. Besides their involve-
ment in metabolism, and in particular in lipid metabo-
lism (for review [29]), PPARs, when activated, are able to
trans-repress the activation of the NF-xB pathway [30,31]
which decreases inflammatory gene expression [31-38].
The anti-inflammatory effects of PPAR-y and PPAR-a. ago-
nists are well described. Specific agonists of PPAR-a [39]
and PPAR-y [36,37] were found to inhibit the release of
pro-inflammatory cytokines by microglial cells and astro-
cytes, and to be effective in the treatment of experimental
autoimmune encephalomyelitis (EAE), an animal model
of MS [40,41]. Moreover a PPAR-y agonist was shown to
partially protect aggregating brain cell cultures from anti-
body-induced demyelination [42]. Concerning the anti-
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inflammatory potential of PPAR-, little is known. Never-
theless, a protective effect in EAE was also reported for a
PPAR-B-specific agonist [43]. Furthermore, PPAR- is sup-
posed to play an important role in the control of central
inflammation, as indicated by an increased infarct size,
and an increase in the level of interferon-y in PPAR-f KO
mice compared to wild-type mice [44] in a model of focal
cerebral ischemia. Therefore, it is thought that PPAR ago-
nists could be used therapeutically as potent anti-inflam-
matory agents.

In the present work, aggregating brain cell cultures were
used as in vitro model to study the effects of GW 501516,
a specific PPAR-f agonist, on brain inflammation and on
antibody-induced demyelination. These 3-dimensional
cell cultures were prepared from mechanically dissociated
embryonal brain cells and grown in a chemically defined
medium [45]. Under constant gyratory agitation, free-
floating spheroids of 200-300 um diameter form sponta-
neously, allowing a high degree of cell-cell interactions
and extensive neuronal and glial maturation. Within the
aggregates, the different brain cell types (i.e., neurons,
astrocytes, oligodendrocytes, and microglia) are organ-
ized histotypically, while lymphocytes and fibroblasts are
absent, providing a unique model to study the anti-
inflammatory potential of PPAR-f on brain inflamma-
tion. For experimentation, aggregates were taken at cul-
ture day 26 (DIV 26), when the myelination of axons was
nearly maximal. The inflammatory response was triggered
by the treatment with IFN-y and LPS. Antibody-mediated
demyelination was induced as described previously
[13,46,47]. The present results show that GW 501516 was
efficacious as anti-inflammatory agent, but did not protect
oligodendrocytes against antibody-induced demyelina-
tion in this in vitro model.

Methods

Aggregating brain cell cultures

Serum-free aggregating brain cell cultures were prepared
from the telencephalon of 16-day embryonal rats
(Hsd:SD, Harlan, NL-5960 AD Horst) as described previ-
ously in detail [45,48]. The embryonal brain tissue was
mechanically dissociated using nylon sieves of 100-pm
and 200-um pores, and the dissociated cells were incu-
bated under gyratory agitation in serum-free medium. The
resulting aggregate cultures were maintained in serum-
free medium under constant gyratory agitation (80 rpm)
at 37°C in an atmosphere of 10% CO, and 90% humidi-
fied air. Media were replenished by the replacement of 5
ml of culture supernatant (of a total of 8 ml per flask) with
fresh medium every 314 day until day in vitro (DIV) 14, and
every 2nd day thereafter.

Antibody-mediated demyelination
Antibody-mediated demyelination was performed as
described previously [13,46,47]. At DIV 26, culture repli-
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cates were prepared by randomizing and aliquoting the
aggregates of the original cultures. The aggregates from
several flasks were pooled, and aliquots of the aggregate
suspension redistributed into flasks containing pre-equil-
ibrated medium (to give a total volume of 4 ml). Two sets
of control cultures were used, one that remained
untreated, and another that received guinea pig serum (25
pl/ml) as a source of complement. Demyelination was
induced by the addition of guinea pig serum (25 pl/ml)
and rat anti-MOG antibodies (62.5 pg/ml). This antibody
was derived from clone 8-18C5 [47]. The immunoglobu-
lin G (IgG) fraction was purified by affinity chromatogra-
phy using the Bio-Rad Econo-Pac protein A kit (Bio-Rad,
Richmond, CA, USA).

Chemicals

All chemicals used were of the highest available purity.
GW 501516 (Alexis Biochemicals) was dissolved in
dimethylsulfoxid (DMSO), and 103-fold concentrated
stock solutions were prepared and stored at 4°C, pro-
tected from light. The final concentration of DMSO in
treated cultures and controls was 0.1% (v/v). Interferon-y
(Peprotec) (50 U/ml) was dissolved in phosphate buff-
ered saline (PBS) supplemented with 0.1% BSA (pH 8).
Lipopolysaccharide (LPS, 5 pg/ml) (Sigma) was dissolved
in sterile NaCl (0.9% w/v).

Biochemical assays

For biochemical analyses, brain cell aggregates were
washed twice with 5 ml of ice-cold PBS and homogenized
in 0.4 ml of potassium phosphate buffer (2 mM, pH 6.8)
containing 1 mM EDTA, using glass-teflon homogenizers
(Bellco, Vineland, NJ, USA). The different homogenates
were briefly sonicated and stored in aliquots for the differ-
ent assays at -80°C. The protein concentration was deter-
mined by the Folin phenol method [49] using bovine
serum albumin as standard. The intracellular lactate dehy-
drogenase (LDH; EC 1.1.1.27) activity was measured pho-
tometrically [50] to assess cytotoxicity.

Quantitative RT-PCR

Aggregating cell cultures were washed twice with 5 ml of
ice-cold PBS and stored at-80°C in RNA later (Qiagen AG,
Basel, Switzerland). The RNeasy kit from Qiagen was used
to extract total RNA. The reverse transcription (RT) reac-
tion was performed using the High capacity cDNA Reverse
Transcription Kit and protocols from Applied Biosystem
(ABI, Foster City, CA, USA). Briefly, the RT was run with 2
pg of total RNA in a reaction volume of 20 ul. Aliquots of
this reaction mixture were used for the subsequent PCR
reactions. The PCR mixture (10 pl) was composed of
primers (150-400 mmol/l), 1x SYBR Green PCR master
mix (ABI) and H,O. For measuring the expression of
iNOS, MBP, MOG, NF-H, PPAR-B and PPAR-y, 3.2 ng of
c¢DNA was disposed per well. For the expression of IL-6
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and TNF-a, 16 ng of cDNA was disposed in each well.
Each set of primer sequences was designed to meet the
quality criteria previously described in detail [51]. Results
are calculated using the ACt method [52]. Results are
expressed as fold change relative to untreated control cul-
tures, each value coming from 6-7 replicate cultures
obtained in 2 independent experiments performed with
cultures from different batches. The following sequences
were used: GFAP, forward: CCT TGA CCT GCG ACC TTG
AG, reverse: GCG CAT TTG CCT CTC ACA CAG A; 1L-6,
forward: ATA TGT TCT CAG GGA GAT CIT GGA A,
reverse: TGC ATC ATC GCT GTT CAT ACA A; iNOS, for-
ward: TCC TCA GGC GGT CIT GIT A, reverse: CTG CAC
CAA CTC TGC TGT TCT C; MBP, forward: GCA CGC TTT
CCA AAA TCT TTA AG, reverse: AGG GAG GC TCT CAG
CGT CIT; MOG, forward: TGT AGG CCT TGT ATT CCT
CTT CCT, reverse: TCC GAT GGA GAT TCT CGA CIT C;
NF-H, forward: CAG GAC CTG CTC AAC GTC AA, reverse:
CTT CGC CIT CCA GGA GIT TTC T; PPAR-B, forward:
AGA ACC GCA ACA AGT GTC AGT ACT, reverse: CTC
CGG CAT CCT TCC AAA G; PPAR-y, forward: GAC CCA
ATG GTT GCT GAT TAC A, reverse: GGG ACG CAG GCT
CTA CTIT TG; TNF-qa, forward: ACC CTC ACA CTC AGA
TCA TCT TG, reverse: TGG TGG TIT GCT ACG T

Immunocytochemistry and in situ hybridization
Aggregating brain cell cultures used for immunocyto-
chemistry and in situ hybridization were washed twice
with prewarmed PBS, embedded in cryomatrix (Jung,
Nussloch, Germany), frozen in isopentane cooled with
liquid nitrogen, and stored at -80°C [48].

For immunocytochemistry, cryosections (10 pum) were
fixed for 10 minutes in 4% paraformaldehyde in PBS at
room temperature, washed in PBS, and kept overnight at
4°C. Sections were incubated first in horse serum (1:25 in
PBS with 0.1% Triton-X100, Vector) for blockade of non-
specific binding, then exposed overnight at 4°C to a mon-
oclonal antibody directed against GFAP (1:800; Sigma).
For staining, biotinylated horse anti-mouse IgG (1:200;
Vector) and avidine coupled to FITC (avidine DCS, Vec-
tor) were used. Sections were mounted in Vectashield
with DAPI (Vector Laboratories) and analyzed on a Zeiss
LSM 510 Meta confocal microscope.

For B4 labeling, microglia were visualized in sections of
PBS-washed and Carnoy-fixed aggregates by the specific
binding of horseradish peroxidase-conjugated lectin (GSI-
B4) of Griffonia simplicifolia according to Streit and Kreut-
zberg [53] and Ashwell [54]. Briefly, aggregates were fixed
in Carnoy and embedded in paraplast. The 5 um sections
were incubated for 30 min in absolute methanol contain-
ing 0.3% H,0, to block endogenous peroxidase activity,
and then exposed overnight at 4° C to the horseradish per-
oxidase-conjugated lectin (Griffonia simplicifolia GSI-B4
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isolectin, conjugated with type VI HRP, Sigma) dissolved
at a final concentration of 1.25 mg per 100 ml in 0.1 M of
Tris-buffered saline (pH 7.4) containing 1% Triton X-100.
As a control, the specific lectin binding sites were satu-
rated by preincubation (2 h at room temperature) with
0.1 M of melibiose (6-O-a-D-galactopyranosyl-D-glu-
cose, Sigma). Quantification of microglial staining was
performed using Image J.

For in situ hybridization, a cDNA comprising nucleotides
1-238 of the sequence of rat PPAR-} (Genebank AJ306400;
[55]) was subcloned into the BamHI and Smal sites of the
pBluescript KS- vector (Stratagene, Heidelberg, Germany),
yielding pBS-PPAR-B. Digoxigenin labelled PPAR-B ribo-
probes were transcribed in vitro as described [56]. The anti-
sense probe was transcribed from pBS-PPAR-B linearized
with Xbal, while the sense probe was synthesized from pBS-
PPAR-B linearized with HindlIl. Of the frozen aggregating
brain cell cultures, cryosections (12 um) were prepared,
and analyzed by in situ hybridization as described [56].
Briefly, hybridization with antisense and sense riboprobes
for rat PPAR- was carried out at 58°Cin 5 x SSC and 50%
formamide for 40 hours. Then, washes (30 minutes in 2 x
SSC at room temperature, 1 hourin 2 x SSCat 65°C, 1 hour
in 0.1 x SSC at 65°C), and alkaline-phosphatase staining
(15 hours at room temperature) were performed. The spe-
cificity of hybridization was ascertained by the use of a
sense probe having the same length, GC content, and spe-
cificity as the antisense probe. Sections were further proc-
essed for immunohistochemistry as described [56].
Neurons, astrocytes, oligodendrocytes, and microglia were
labelled using anti-MAP2 (mouse monoclonal, MAB378,
Chemicon), GFAP (mouse monoclonal, MAB3402,
Chemicon), MBP (goat polyclonal, sc-13914, Santa Cruz),
ED1 (mouse monoclonal, Santa Cruz Biotechnology) anti-
bodies and GSI-B4, respectively. Briefly, after rehydration,
the ISH stained sections were fixed 1 h in 4% paraformal-
dehyde-PBS at room temperature and washed 3 x 5 min in
PBS. Immunohistochemistry was then performed with pri-
mary antibodies diluted 1:100 for MAP2 and GFAP, and
1:50 for ED1, and subsequently with the mouse Histostain-
Plus kit (Zymed Laboratories); and for MBP by anti-goat
IgG biotinylated secondary antibody followed by streptavi-
din-peroxidase conjugation. Peroxidase staining was per-
formed for 10 min using aminoethyl carbazole (AEC) and
H,0,. The double-stained sections (blue signal for ISH and
red signal for immunohistochemistry) were mounted in
glycerol.

Statistics

For mRNA expression, results are expressed as fold change
compared to untreated control cultures. Statistical evalua-
tions were made by the Kruskal-Wallis test followed by the
Mann-Whitney test.
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Results

Effects of GW 501516 in IFN-» and LPS-induced
inflammatory responses

Aggregating brain cell cultures were treated at DIV 26 with
IFN-y (50 U/ml) and LPS (5 pg/ml), given either sepa-
rately or combined. GW 501516 (5 uM) was added twice,
first 18 hours before, and then simultaneously with the
inflammatory agent(s). The concentration of GW 501516
chosen (5 uM) was based on a previous concentration-
response evaluation between 0.1 uM to 10 uM at different
developmental periods, showing in mature cultures the
absence of cytotoxicity up to 5 uM, as assessed by the
measurement of LDH activity (data not shown).

The inflammatory responses were examined 48 hours
after the addition of the inflammatory agents. GFAP
mRNA expression (Fig. 1A) was significantly decreased by
IFN-y and LPS, while GFAP immunostaining remained
unchanged after the treatment with either IFN-y or LPS
(data not shown). GW 501516 decreased GFAP mRNA
expression in control cultures, and this decrease was also
observed in the presence of the inflammatory agents (Fig
1A, black bars). TNF-a mRNA expression was greatly
increased in response to either IFN-y or LPS (Fig. 1B, white
bars), and further increased in the presence of both
agents. GW 501516 strongly reduced the IFN-y- and LPS-
induced up-regulation of TNF-a (Fig 1B, black bars). IL-6
mRNA expression was up-regulated by the combined
treatment with IFN-y and LPS but not by the separate
treatments with these agents (Fig. 1C, white bars). GW
501516 increased IL-6 expression in control cultures and
in cultures treated with IFN-y and LPS (Fig. 1C, black
bars). The expression of iNOS mRNA (Fig. 1D) was
strongly up-regulated by IFN-y and by the combined treat-
ment with IFN-y and LPS, but not by LPS alone. GW
501516 greatly decreased the IFN-induced up-regulation
of iNOS. Besides the up-regulation of the expression of
cytokines and iNOS, IFN-y and LPS increased the number
and the clustering of microglia (data not shown), indicat-
ing microglial activation.

PPAR-B and PPAR-y mRNA levels (Fig 2A, B) remained
unaffected by IFN-y and LPS, but were up-regulated in
response to GW 501516. Furthermore, IFN-y decreased
MBP (Fig 3A) as well as MOG (data not shown) mRNA
expression. LPS alone did not affect MBP expression,
while it increased the IFN-y-induced drop in MBP mRNA
(Fig 3A). NF-H mRNA expression was slightly down-regu-
lated by IFN-y but not affected by LPS (Fig 3B, black bars).
GW 501516 strongly decreased MBP expression in control
cultures as well as in cultures treated with the inflamma-
tory agents (Fig 3A, black bars). GW 501516 also strongly
decreased NF-H expression in both the presence and the
absence of the inflammatory agents (Fig 3B, black bars).
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Effects of IFN-y, LPS and GW 501516 on GFAP, TNF-q, IL-6, and iNOS mRNA expression. GW 501516 down-
regulated GFAP mRNA expression in control cultures and in cultures treated with the inflammatory agents (A). GW 501516
decreased the up-regulation of TNF-o induced by the inflammatory agents. GW 501516 up-regulated IL-6 expression in con-
trol cultures and in cultures treated with the inflammatory agents (C), and it decreased the IFN-y-induced up-regluation of
iNOS expression (D). Cultures received GW 501516 (5 1tM) 18 hours before the addition of the inflammatory agents, and
again together with INF-y (50 U/ml) and LPS (5 pg/ml). Cultures were harvested 48 hours after the inflammatory treatment.
Values are expressed as fold change relative to the untreated control cultures (= |), each value being the mean of 7 replicate
cultures. Results were statistically evaluated for significance by the Kruskal-Wallis test followed by the Mann-Whitney test. (* P
< 0.05, *P < 0.01,***P < 0.001 compared with untreated control cultures; °°P < 0.01, °*°P < 0.001 compared with cultures

not treated with GW 501516).

Effects of GW 501516 in antibody-induced demyelination

The effects of GW 501516 were further investigated in an
in vitro model of antibody-mediated demyelination.
Aggregating brain cell cultures were treated at DIV 26 with
anti-MOG antibodies (62.5 pg/ml) and complement
(guinea pig serum, 25 pl/ml) to induce demyelination.
Cultures were treated twice with 5 uM of GW 501516, first
18 hours before the induction of demyelination and then

simultaneously with the demyelinating agents. The effects
of the demyelinating treatment and of GW 501516 on
several inflammatory markers were examined 48 hours
after the induction of antibody-mediated demyelination,
when MBP and MOG expression were decreased at both
the mRNA and protein levels indicating myelin loss
[42,47,57]. The reactivity of microglial cells and astrocytes
in response to the antibody-mediated demyelination was
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Effects of IFN-y, LPS, and GW 501516 on PPAR-[3 and
PPAR-y mRNA expression. GW 501516 (black bars) up-
regulated the expression of PPAR-f (A) and PPAR-y (B) in
control cultures and in cultures treated with the inflamma-
tory agents. Cultures received GW 501516 (5 uM) 18 hours
before the addition of the inflammatory agents, and again
together with INF-y (50 U/ml) and LPS (5 pg/ml). Cultures
were harvested 48 hours after the inflammatory treatment.
Values are expressed as fold change relative to the untreated
control cultures (= 1), each value being the mean of 7 repli-
cate cultures. Results were statistically evaluated for signifi-
cance by the Kruskal-Wallis test followed by the Mann-
Whitney test. (°°°P < 0.01 compared with cultures not
treated with GW 501516).

first examined by morphological and immunocytochemi-
cal analyses. As shown in Fig. 4, 48 h after the demyelinat-
ing insult, the number of 1B4-labeled microglial cells was
significantly increased compared to the untreated controls
(Fig. 4Cuvs. 4A, and Fig. 4D). Some of the microglial cells
were increased in size and contained vacuoles, indicating
a macrophage-like state. In cultures treated with comple-
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Effects of IFN-y, LPS, and GW 501516 on MBP and
NF-H mRNA expression. GW 501516 (black bars)
decreased MBP (A) and NF-H (B) mRNA expression in con-
trol cultures and in cultures treated with the inflammatory
agents. Cultures received GW 501516 (5 uM) 18 hours
before the addition of the inflammatory agents, and again
together with INF-y (50 U/ml) and LPS (5 pg/ml). Cultures
were harvested 48 hours after the inflammatory treatment.
Values are expressed as fold change relative to the untreated
control cultures (= 1), each value being the mean of 7 repli-
cate cultures. Results were statistically evaluated for signifi-
cance by the Kruskal-Wallis test followed by the Mann-
Whitney test. (* P < 0.05, ¥**P < 0.0] compared with
untreated control cultures; °°P < 0.0 compared with cul-
tures not treated with GW 501516).

ment alone, few microglial cells exhibited this reactive
phenotype (Fig. 4B). Demyelinating cultures also showed
enlarged astrocytic processes and increased intensity of
GFAP immunostaining (Fig. 4F vs. 4D), suggesting a
strong astrocytic reaction. In accord with this observation,
GFAP mRNA levels were significantly increased (Fig. 5A,
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Reactivity of microglial cells and astrocytes after antibody-mediated demyelination. |B4-labeled microglial cells
(A—C), 48 hours after the demyelinating insult, were more numerous in cultures subjected to the demyelinating treatment (C
compared to A). Some of them contained vacuoles and were increased in size, suggesting a macrophagic state. Complement
alone caused a slight microglial activation (B compared to A). Quantification of IB4-labeled microglial cells (D) expressing the
labeled area as percent of untreated control cultures. Twenty aggregate sections per treatment were measured. Results were
statistically evaluated for significance by the Kruskal-Wallis test followed by the Mann-Whitney test. (**P < 0.01, ***P < 0.001
compared with untreated control cultures). Astrocytes immunostained for GFAP (E-G) showed that demyelination caused
enlarged astrocytic processes and increased immunostaining (G compared to E). Complement alone did not affect neither
astrocytic morphology nor GFAP staining (F compared to E). A and E, untreated controls; B and F, complement treated (guinea
pig serum, 25 pl/ml); C and G, treated with antibody (anti-MOG, 62.5 pug/ml) and complement. A—C: bar = 50 um; E-G: bar =
10 um.
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white bars). In cultures treated with complement alone,
GFAP immunostaining (Fig 4Evs. 4D) appeared
unchanged, while the GFAP mRNA levels were increased
(Fig. 5A, white bars). These findings suggest that com-
pared to the strong glial reactivity in response to the anti-
body-mediated demyelination, complement (i.e., guinea
pig serum) alone caused a relatively weak glial response,
in relation with its slight demyelinating effect as observed
previously [13,58]. The presence of GW 501516 strongly
decreased GFAP mRNA expression in control cultures, but
did not modify the GFAP up-regulation in demyelinating
cultures (Fig. 5A). The measurements of cytokine mRNA
levels showed that TNF-o expression was not significantly
modified by the demyelinating agents (Fig. 5B, white
bars), while the treatment with GW501516 decreased sig-
nificantly TNF-a. expression in control cultures and in
demyelinating cultures (Fig 5B, black bars). IL-6 mRNA
expression (Fig 5C) was low in untreated cultures and in
cultures treated with the demyelinating agents, while it
was strongly increased in GW 501516-treated control cul-
tures.

This increase did not occur in cultures which received
complement alone or antibody plus complement. The
levels of iNOS mRNA were not affected, neither by the
demyelinating treatment nor by the treatment with GW
501516 (data not shown). Furthermore, the demyelinat-
ing treatment did not modify PPAR-B (Fig 6A) nor PPAR-
v (Fig 6B) mRNA expression. GW 501516 up-regulated
the expression of PPAR- (Fig 6A) and PPAR-y (Fig 6B) in
control cultures, but not in demyelinating cultures. The
analysis by in situ hybridization indicated that PPAR-B
was expressed by neurons as well as by glial cells (data not
shown). Microglia immunolabeled by ED1 (Fig 7) were
macrophagic and more numerous in cultures subjected to
antibody-mediated demyelination, in accord with the
results obtained by IB4 labeling (Fig 4). Furthermore, the
demyelinating treatment did not modify the cellular
expression of PPAR-B (Fig. 7, C compared to A and B,
respectively). As expected, the demyelinating treatment
decreased MBP mRNA expression (Fig. 8A). GW 501516
strongly down-regulated the mRNA expression of MBP in
control cultures (Fig. 8A) as observed previously (Fig. 3A),
and exacerbated the decrease of MBP mRNA in denyeli-
nating cultures. NF-H expression (Fig 8B) was not affected
by the demyelinating treatment, but by GW 501516,
which decreased NF-H mRNA levels in controls and in
demyelinating cultures. Nevertheless, the treatment with
GW 501516 did not affect the LDH activity in these cul-
tures (data not shown) indicating the absence of cytotox-

icity.

Discussion

The responsiveness of aggregating brain cell cultures to
inflammatory stimuli and the anti-inflammatory effects of
the specific PPAR-B agonist GW 501516 were investigated

http://www.jneuroinflammation.com/content/6/1/15

first by using two conventional inflammatory agents, IFN-
y and LPS. In good agreement with its known inflamma-
tory activity, IFN-y strongly up-regulated TNF-a and iNOS
mRNA expression and caused microglial reactivity. It also
decreased the expression of GFAP, MBP and NF-H at the
mRNA level, without affecting cellular viability. The
down-regulation of MBP mRNA expression by IFN-y is in
good agreement with previous observations [59]. In com-
parison to IFN-y, LPS caused only a relatively weak inflam-
matory response, indicated by a moderate up-regulation
of TNF-a, whereas the combined treatment with IFN-y
and LPS strongly up-regulated IL-6, TNF-o, and iNOS
expression. Under these inflammatory conditions, GW
501516 clearly exhibited anti-inflammatory properties,
since it strongly attenuated the up-regulation of TNF-a
and iNOS. On the other hand, it greatly up-regulated the
mRNA expression of IL-6. Since IL-6 is generally viewed as
a pro-inflammatory cytokine, this finding seems to con-
tradict the anti-inflammatory action of GW 501516. How-
ever, IL-6 is known to be a pleiotropic cytokine. It was
shown to contribute to glial development and neuropro-
tection in the brain [60-64], whereas cerebral overexpres-
sion of IL-6 in astrocytes, and systemic administration of
IL-6 together with its soluble receptor sIL-6Ra lead to neu-
rodegeneration, gliosis, and microglial activation (for
review [7]). Up-regulation of IL-6 was observed in neu-
rons in vivo after excitotoxic damage [65]. The present
finding that GW 501516 up-regulated IL-6 concomitantly
with the down-regulation of NF-H may therefore indicate
a detrimental effect of this PPAR- agonist on neurons.

In macrophages, Welch and collaborators [38] have
shown that the PPAR-f agonist GW 0742 decreased the
LPS-induced up-regulation of iNOS and COX2. In addi-
tion, PPAR-a. and PPAR-y agonists have been shown to
decrease iNOS, TNF-a, and IL-6 expression in different
cell types including monocytes/macrophages (for review
[66]). The present results, showing an attenuation of IFN-
y-induced up-regulation of TNF-a and iNOS by GW
501516 are in good agreement with these previous reports
showing anti-inflammatory effects of PPAR agonists.
These effects could be mediated through regulation of the
NF-xB pathway, as it had been proposed previously [66].

GW 501516 also up-regulated the expression of PPAR-
and PPAR-y. In good agreement with these findings, it was
shown that GW 0742, another PPAR-} agonist, increased
PPAR-B expression at the protein level [67], and that a
PPAR-y agonist up-regulated PPAR-y mRNA expression
[68,69]. The effects of GW 501516 on PPAR-y expression
could be due to a regulation of PPAR-3 on PPAR-y expres-
sion or to a residual affinity of this PPAR-B agonist for
PPAR-y.

The demyelinating treatment induced the reactivity of
both microglial cells and astrocytes, whereas IFN-y acti-

Page 8 of 13

(page number not for citation purposes)



Journal of Neuroinflammation 2009, 6:15 http://www.jneuroinflammation.com/content/6/1/15

A GFAP mRNA expression

35&“1

Ctrl C C+aMOG
Untreated B GW 501516

fold chanpe

=]

B TNF-a mRNA expression

(LR
4
0.2

]

Untreated MGW 501516

fold chanpe
=
(=]

C+aMOG

IL-6 mRNA expression

@

40 g
& 30
E 20
2 10 -
a e
Ctrl C C+aMOG

Untreated B GW 501516

Figure 5

Effects of antibody-mediated demyelination and GW 501516 on GFAP, TNF-a, and IL-6 mRNA expression.
The antibody-mediated demyelination induced a significant increase of GFAP mRNA (A), but did not affect TNF-a (B) nor IL-6
(C) mRNA expression. Cultures received GW 501516 (5 uM) I8 hours before and again together with the demyelinating
agents. Cultures were harvested 48 hours after the demyelinating treatment. Values are expressed as fold change relative to
the untreated control cultures (= 1), each value being the mean of 6 replicate cultures. Results were statistically evaluated for
significance by using the Kruskal-Wallis test followed by the Mann-Whitney test (**P < 0.01 compared with untreated control
cultures; °P < 0.05, °°P < 0.0] compared with cultures not treated with GW 501516).
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Figure 6

Effects of antibody-mediated demyelination and GW
501516 on PPAR- and PPAR-y mRNA expression.
GW 501516 (black bars) up-regulated PPAR-3 (A) and
PPAR-y (B) expression in control cultures but not in demyeli-
nating cultures. Cultures were treated with GW 501516 (5
M) 18 hours before and again together with the demyelinat-
ing agents. Cultures were harvested 48 hours after the
demyelinating treatment. Values are expressed as fold change
relative to the untreated control cultures (= I), each value
being the mean of 6 replicate cultures. Results were statisti-
cally evaluated for significance by using the Kruskal-Wallis
test followed by the Mann-Whitney test (* P < 0.05, **P <
0.01, compared with untreated control cultures).

vated only microglial cells. On the other hand, the anti-
body-mediated demyelination, in contrast to IFN-y
stimulation, did not increase the expression of the inflam-
mation-related genes TNF-a, IL-6, and iNOS. Polak and
collaborators [43] reported that the PPAR- agonist GW
0742 attenuated clinical symptoms of EAE, increased the

http://www.jneuroinflammation.com/content/6/1/15

: .
' -
' ‘;“ ¥ 3
B
&

N

‘.} 'ﬁb !
¥

Q’;N ’ 50um

Figure 7

Expression of PPAR-3 mRNA in microglial cells after
antibody-mediated demyelination. The antibody-medi-
ated demyelination did not modify the cellular expression of
PPAR- analyzed by in situ hybridization. Macrophagic micro-
glial cells labeled by ED| were more numerous in cultures
subjected to the demyelinating treatment (C compared to A
and B, respectively). A, untreated control; B, complement
treated (guinea pig serum, 25 pl/ml); C, treated with antibody
(anti-MOG, 62.5 pg/ml) and complement. Bar = 50 um.
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Effects of antibody-mediated demyelination and GW
501516 on MBP and NF-H mRNA expression. GW
501516 (black bars) decreased MBP (A), and NF-H (B)
mRNA expression in control cultures and in demyelinating
cultures. Cultures received GW 501516 (5 uM) 18 hours
before and again together with the inflammatory agents. Cul-
tures were harvested 48 hours after the demyelinating treat-
ment. Values are expressed as fold change relative to the
untreated control cultures (= ), each value being the mean
of 6 replicate cultures. Results were statistically evaluated for
significance by the Kruskal-Wallis test followed by the Mann-
Whitney test. (* P < 0.05 compared with untreated control
cultures; °P < 0.05 compared with cultures not treated with
GW 501516).

expression of some myelin-specific genes, and decreased
the LPS-induced up-regulation of iNOS in cultures of
astrocytes and microglial cells. Since antibody-mediated
demyelination did not upregulate the expression of pro-
inflammatory cytokines and iNOS, it appears that in this
particular demyelination paradigm no typical inflamma-
tory responses occurred, despite the observed microglial
and astroglial activation. The isolated microglial reaction

http://www.jneuroinflammation.com/content/6/1/15

could have been elicited by the presence of myelin debris.
Interestingly, GW 501516 affected differently GFAP, IL-6,
PPAR-B and PPAR-y expression in controls compared to
demyelinating cultures, while the effects of this PPAR-3
agonist were similar to controls in the classical inflamma-
tory response triggered by IFN-y and LPS. Moreover, the
treatment with GW 501516 did not protect against demy-
elination.

Our results suggest that the protective effects of PPAR-
agonists observed in other studies could be mainly due to
their anti-inflammatory effects rather than to a direct pro-
tective effect on oligodendrocytes and myelin. In the EAE
model of demyelination, Polak and collaborators showed
that GW 0742 reduced the occurrence of small lesions in
some brain regions, while it did not affect the number of
cerebellar infiltrates. This suggests that the chronic treat-
ment with GW 0742 inhibited a specific set of lym-
phocytes. The present in vitro model of demyelination is
devoid of lymphocytes, thus inflammatory responses are
limited to microglial cells and astrocytes. The present
results are in agreement with the view that the protective
effect of GW 501516 in the in vivo demyelinating model
was due to its anti-inflammatory potency, and that it does
not provide direct protective or trophic effects on oli-
godendrocytes or myelin.
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