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Abstract

The neural mechanisms determining the timing of even simple actions, such as when to
walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role
for ongoing activity fluctuations in neurons of central action selection circuits that drive ani-
mal behavior from moment to moment. To examine how fluctuating activity can contribute to
action timing, we paired high-resolution measurements of freely walking Drosophila mela-
nogaster with data-driven neural network modeling and dynamical systems analysis. We
generated fluctuation-driven network models whose outputs—locomotor bouts—matched
those measured from sensory-deprived Drosophila. From these models, we identified those
that could also reproduce a second, unrelated dataset: the complex time-course of odor-
evoked walking for genetically diverse Drosophila strains. Dynamical models that best
reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific
characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like
manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed
a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused
a depression in locomotor frequency following olfactory stimulation. Our models predict that
activity fluctuations in action selection circuits cause behavioral output to more closely
match sensory drive and may therefore enhance navigation in complex sensory environ-
ments. Together these data reveal how simple neural dynamics, when coupled with activity
fluctuations, can give rise to complex patterns of animal behavior.

Author Summary

The brain is never quiet. Even in the absence of environmental cues, neurons receive and
produce an ongoing barrage of fluctuating signals. These fluctuations are well studied in
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the sensory periphery but their potential influence on central circuits and behavior are
unknown. In particular, activity fluctuations in action selection circuits—neural popula-
tions that drive an animal’s actions from moment to moment—may strongly influence
behavior. To shed light on the influence of activity fluctuations on action timing, we devel-
oped a computational approach for automatically generating neural network models that
reproduce large-scale, high-resolution behavioral measurements of freely walking Dro-
sophila melanogaster. We found that models require stochastic activity fluctuations to
reproduce complex Drosophila locomotor patterns. Specific fluctuation-driven dynamics
allow these models to produce short and long bouts of locomotion in the absence of sen-
sory cues and to reduce locomotor activity after sensory stimulation. These results support
a role for ongoing activity fluctuations in the timing of animal behavior and reveal how
behavioral shifts can be brought about through changes in the dynamics of neural circuits.
Thus, simple dynamical mechanisms may underlie complex patterns of animal behavior.

Introduction

Even in the absence of environmental cues, neurons receive and produce a barrage of fluctuat-
ing, ongoing signals. These fluctuations are both deterministic, reflecting a neuron’s embed-
ding within complex dynamical networks, and random, arising from stochastic noise sources
at synapses and ion channels [1,2]. Although the influence of these fluctuations on peripheral
sensory processing is well studied [3-6], very little is known about how they may affect central
circuits [7].

Action selection (AS) circuits [8], including ‘command’ neurons that drive behavior from
moment to moment [9-11], may be particularly susceptible to activity fluctuations: they repre-
sent information bottlenecks where a relatively small number of neurons can have a dispropor-
tionately large influence on actions. The sensitivity of AS circuits to internally generated
fluctuations in neural activity is suggested by ecological studies showing how intermittent pat-
terns of walking and resting in animals [12] are well characterized by random walk models
[13]. Similarly, behavioral transitions in C. elegans can be effectively captured using a tunable
stochastic term within a deterministic mathematical framework [14].

While progress is being made [11,15,16], in vivo investigation of the dynamics of complex
AS networks remains challenging. In this light, computational modeling can serve as an excel-
lent starting point for generating theoretical predictions that guide in vivo studies. In particular,
tools that exploit the power of neural network optimization and dynamical systems analysis
[17] are gaining attention [18,19] for their ability to elucidate animal behavior [20,21] and the
activity of neural ensembles [22,23].

In this study we used neural network optimization to infer the dynamics of AS circuits driv-
ing the locomotor walking patterns of Drosophila melanogaster. Drosophila is an attractive
model organism for this type of investigation since its behaviors are increasingly well-described
[24,25]. Previous studies of Drosophila locomotor patterning have predominantly focused on
walking because this behavior has reproducible statistics and can be measured at high-through-
put [26-29]. Importantly, due to their relatively small number of neurons as well as the avail-
ability of powerful genetic tools, Drosophila AS circuits are under intense investigation
[11,16,30,31]. This raises the possibility of testing and further constraining computationally
derived theoretical predictions.

Several models may explain how fluctuations in AS circuits influence neural activity and
behavior. In the simplest, membrane potential fluctuations in AS neurons directly impact the
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firing of these neurons. Consequently, exceptionally high intensity fluctuations might cause
command neurons to fire and initiate actions more frequently. However, this simple feed-for-
ward framework ignores the highly interconnected nature of neural circuits within the central
brain. Therefore, more complex dynamical models incorporating feedback may be more
appropriate. However, the dynamical features that make central circuits more or less suscepti-
ble to the influence of activity fluctuations are unknown. These may include the location and
number of stable and unstable equilibrium points in neural activity phase space.

To address this question we developed a method for automatically generating neural network
models that reproduce measured animal behaviors. Our modeling approach relies on Continu-
ous-Time Recurrent Neural Networks (CTRNNS): dynamical systems that share important
properties with biological neural circuits [19,32]. These models are consequently more informa-
tive of in vivo circuit dynamics than other simple models like non-neuronal Markov [33,34] and
random walk schemes [12,13]. We emphasize that the resulting neural networks are not
intended to map directly onto the anatomy of Drosophila AS circuits. Instead they reveal emer-
gent dynamics that represent theoretical predictions about in vivo circuit function.

To generate a behavioral dataset for constraining our models we first measured Drosophila
basal (i.e., sensory deprived) and odor-evoked locomotor patterns. Next, to explore how neural
activity fluctuations might be used to drive basal locomotion in sensory deprived Drosophila,
we generated populations of neural network models whose virtual locomotor outputs repro-
duce the basal locomotor statistics of sensory deprived Drosophila. We next identified which of
these models could also match, without changing their underlying dynamics, the odor-evoked
locomotor patterns of genetically distinct Drosophila strains. Using dynamical systems analysis,
we discovered that models that best reproduce Drosophila basal and odor-evoked locomotor
patterns (i) require neural activity fluctuations and (ii) exhibit feedback-driven multistable
dynamics that reorganize in response to sensory stimulation.

Results
Measuring Drosophila basal and odor-evoked locomotor patterns

Our modeling approach relies on optimizing neural network parameters to match Drosophila
data. Therefore, we quantified Drosophila locomotion with high temporal resolution by devel-
oping a high-throughput system combining synchronized video-capture at 20 frames per sec-
ond (fps) [35,36], computer-controlled odor delivery (Fig 1A), and behavioral tracking [37]
(Fig 1B) of the position and orientation of individual flies within a planar arena. Using this sys-
tem we could study basal locomotion in the absence of visual [24,25], olfactory [38], gustatory
[39,40], and time-varying mechanosensory/auditory [41] stimuli. In addition, to capture Dro-
sophila behaviors driven by sensory cues [24,25], we used a system of valves to deliver precisely
timed and spatially homogeneous odor stimuli (10% acetic acid [42]). Using these tools, we
could acquire enough behavioral data to detect patterns in the highly variable behaviors of indi-
vidual animals [43].

We performed two experiments for each individual fly (Fig 1C). In the first ‘odor impulse’
experiment we tracked 60 s of basal locomotion in the absence of any sensory stimulus, fol-
lowed by 30 s of locomotor responses to uniform odor exposure, and finally 90 s of post-odor
basal locomotion. In the second ‘odor aversion’ experiment we tracked locomotion for 2 min
while presenting the aversive odorant on alternative sides of the arena in four separate 30 s
periods. We performed experiments under dim far-red illumination, a wavelength of light for
which flies are insensitive [44], to minimize the influence of visual cues on behavior.

While much information can be extracted from our measurements, we focused on the pres-
ence or absence of walking bouts since these most directly reflect the activity of AS circuits
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Fig 1. A high-resolution, high-throughput assay for measuring Drosophila locomotor patterns. (A)
Schematic of planar behavioral arenas. Laminar flow of air or odor (10% acetic acid) is presented to either or
both halves of the arena. Colored arrows indicate flow inlets and outlets (green/blue and red, respectively).
(B) Camera-view of five experimental arenas and behavior tracking. Each fly is represented as a colored
triangle. A colored line represents a fly’s location during the previous 10 s. (C) Schematic time-course of the
behavioral experiment. We studied basal and odor-evoked locomotion as well as odor aversion for each fly.
While not shown, during minutes 3—4.5, air flowed throughout the arena. (D) Speed time-series (black) were
transformed into binary ‘Walking’ or ‘Stationary’ time-series (red). (E) Representative locomotor traces for five
Canton-S strain flies during the odor impulse experiment. Flies were exposed to 60 s of air flow, 30 s of odor
throughout the arena, and then 90 s of air flow. Behavior for each fly is shown in red. High values indicate
walking while low values indicate stationary periods. (F) Locomotor traces averaged across 225 Canton-S
flies during the odor impulse experiment. Prior to odor stimulation (grey bar) there is basal locomotion (green)
followed by decay in locomotor frequency (cyan) to a reduced level of basal locomotion (magenta).

doi:10.1371/journal.pcbi.1004577.g001

rather than downstream central pattern generators that control leg coordination and walking
speed [45,46]. As in previous studies [47,48], we classified locomotor behaviors as intermittent
walking or stationary intervals (Fig 1D) [12] by applying a cutoff to walking speed data (SIA
and S1B Fig). As expected, basal locomotor behaviors for individual flies were unpredictable
(Fig 1E) and characterized by bursts of locomotor activity separated by longer intervening
periods of inactivity [26,28]. Therefore, to reveal patterns behind these highly variable behav-
iors, we averaged walking/stationary time-series across 225 genetically identical flies of a
single, Canton-S strain. Prior to odor stimulation, flies exhibited a high basal locomotor fre-
quency: many animals walked in the absence of salient sensory cues (Fig 1F, green, ‘Basal loco-
motion’). Upon odor presentation, locomotor frequency increased rapidly (Fig 1F, black).
When the odor was removed (S1C Fig), locomotor frequency decayed (Fig 1F, cyan, ‘Decay’).
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Surprisingly, basal locomotor frequency did not simply return to the pre-odor rate but contin-
ued decaying to a substantially lower level (Fig 1F, magenta, ‘Reduced basal locomotion’).

Measuring odor-evoked locomotor patterns across 98 Drosophila strains

To examine the variation in these complex odor-evoked locomotor patterns, we tracked
approximately 200 individuals from each of 98 genetically-distinct, inbred fly strains from the
Drosophila melanogaster Genetic Reference Panel (DGRP) [49]. These experiments resulted in
a behavioral dataset comprising 20,223 animals. Indeed, as for Canton-S flies (Fig 1F), across
most of the DGRP strains (Fig 2A, see S1 Table for ‘RAL’ (Raleigh) strain IDs) we observed (i)
basal locomotion (Fig 2D), (ii) post-odor decay of locomotion for periods ranging over an
order of magnitude (Fig 2A and 2B), and (iii) in most strains, reductions in post-odor basal
locomotion (Fig 2A and 2C, post-/pre-odor frequency < 1).

This rich behavioral diversity might reflect random experimental variation or, alternatively,
intrinsic biological differences between each strain. To distinguish between these possibilities,
we examined the reproducibility of locomotor patterns and found that average basal locomo-
tion was highly consistent for each strain (Fig 2D). Similarly, the time-course of odor-evoked
and post-odor locomotion more closely matched between flies of the same strain (Fig 2E, red)
than between flies of different strains (Fig 2E, blue). Importantly, these simple locomotor char-
acteristics are linked to more complex, ethologically relevant behaviors: median odor aversion
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Fig 2. Locomotor patterns for genetically distinct Drosophila strains. (A) Locomotor frequency for 98 strains from the Drosophila melanogaster Genetic
Reference Panel (DGRP) during the odor impulse experiment. Strains are sorted by average pre-odor basal locomotor frequency. (B) The duration of
locomotor decay following odor removal for all DGRP strains. Strains are ordered as in panel A. (C) The ratio of post-odor to pre-odor basal locomotion for all
DGRP strains. Strains are ordered as in panel A. The black dashed line indicates no change in basal locomotion. Values below this line represent reduced
post-odor basal locomotor frequency. (D) The basal locomotor frequency for 65 randomly sampled flies (50% of flies for the strain with the smallest sample
size: 130 flies) from each strain. The mean (light gray boxes) and standard deviation (black error bars) of 100 random samplings for each strain are shown.
Strains are ordered as in panel A. (E) The correlation (R?) between odor-evoked locomotion time-series for groups of 65 randomly sampled flies taken from
either the same strain (red) or from different Drosophila strains (blue). Strains are ordered as in panel A. The mean of 100 correlation measurements is
shown. (F) Walking trajectories (black lines) along the long axis of the arena during an odor aversion experiment for 201 flies of the DGRP strain 78 (RAL85).
Red bars indicate the half of the arena filled with odor. A histogram of odor aversion values for these flies is shown below. For each fly, odor aversion was
calculated as the time spent in the odor zone subtracted from the time spent in air zone, divided by the total time of the odor aversion experiment. The median
for this population of flies is indicated (black arrowhead). (G) A scatter plot showing the correlation between mean pre-odor basal locomotion and median
odor aversion across all 98 strains (Pearson’s correlation coefficient R = 0.65, P < 10~*). A black dashed line indicates the best linear fit.

doi:10.1371/journal.pcbi.1004577.9002
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(Fig 2F) was significantly correlated with basal locomotor frequency across all strains (Fig 2G,
Pearson’s correlation coefficient R = 0.65, P < 10_4).

Data-driven generation of dynamical neural network models

We next asked to what extent fluctuations in AS neural activity can explain these common and
reproducible locomotor properties, and what the underlying neural dynamics might be. To
address these questions, we built neural network models that were constrained by the require-
ment to reproduce Drosophila basal and odor-evoked walking patterns. We took a three-step
approach for generating and studying AS network models (Fig 3). First, we generated a popula-
tion of models (Fig 3B) whose virtual locomotor outputs matched the statistics of basal loco-
motion for a single Canton-S Drosophila strain (Fig 3A and 3C). Second, from these models we
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Fig 3. Workflow for generating and analyzing neural network models. (A) Basal locomotor patterns (filtered as in Fig 1D) are shown for two of ten
Canton-S flies recorded for 30 min each. A stationary interval is highlighted for fly number ten. From these data, walking and stationary interval durations are
aggregated and represented using weighted variable-width histograms for walking (top) and stationary (bottom) intervals. (B) A Continuous-Time Recurrent
Neural Network (CTRNN) modeling framework used to investigate AS network dynamics. Models included up to five neurons, Gaussian noise inputs
representing ongoing activity fluctuations, reciprocal and recurrent connections, odor inputs, and an output threshold to define the locomotor state of the
virtual fly. (C) In the first step, a stochastic optimization approach is used to generate models that best reproduce Drosophila basal locomotor statistics.
Locomotor statistics generated by a given model for 100 trials (virtual flies) are aggregated and compared to Canton-S strain data. The parameters for this
model are then adjusted to reduce the difference from Canton-S data. This process is performed iteratively. (D) In the second step, odor inputs are added to
the best previously generated models. For each model the strength of these inputs and the output threshold are adjusted iteratively to reduce the Root-Mean-
Square Error (RMSE) between the model’s odor impulse locomotor pattern averaged across 200 trials (virtual flies) and a Drosophila strain’s odor impulse
locomotor pattern averaged across ~200 flies. (E) In the third step, models that could match both Canton-S basal walking statistics and DGRP strain odor
impulse locomotor patterns are characterized by the number of times specific neural activity levels are observed (‘Trajectory density’) color-coded from very
frequent (dark red) to very rare (dark blue), and the tendency of neural activity, in the absence of fluctuations, to move toward (‘Stable’, cyan) or away from
(‘Unstable’, orange) equilibrium activity levels (‘Phase portrait’). In each Trajectory density plot and Phase portrait, the bottom-left corner represents the
lowest neural activity values.

doi:10.1371/journal.pchi.1004577.9003
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identified those that could also reproduce the time-course of odor-evoked locomotion for three
genetically distinct Drosophila strains (Fig 3D). Finally, we examined how the emergent
dynamics of these networks allow them to reproduce Drosophila behavior (Fig 3E).

For the first step, we reasoned that basal locomotion in a sensory-deprived environment
would most closely reflect the unperturbed, ongoing activity of Drosophila AS circuits. There-
fore, we used these behaviors as a target dataset for neural network generation. In our initial
experiments, we observed that some flies could remain stationary for over 20 min. Therefore,
to capture the complete range of behavioral intervals, we acquired 5 h of basal locomotor
sequences from Canton-S strain flies (Fig 3A).

The exact time-courses of individual fly behaviors depend on many, often unknown, factors.
Therefore, we aimed to generate network models that could reproduce the duration of walking
and stationary intervals rather than exact walking trajectories. Although flies spent more time
near the arena edges [47] (52 Fig), walking and stationary interval durations were only very
weakly correlated with arena location (S2B-S2E Fig): the distance correlation [50] between
interval start/end locations and interval durations were ~0.18 and ~0.08 for walking and sta-
tionary intervals, respectively (S2B-S2D Fig). These values roughly correspond to a 20% and
10% correlation between walking and stationary bout durations and locations (S2E Fig). Thus,
locomotor patterns in our sensory-deprived environment were largely uncoupled from the
arena geometry.

Our model-discovery method was based on stochastic parameter optimization and there-
fore required well-defined quantitative metrics for comparing candidate network models with
Drosophila behavior (i.e., a cost function that guides the search for models). Additionally, to
efficiently generate models, small changes to model parameters must result in similarly small
changes in these quantitative metrics (i.e., a smooth fitness landscape) [51]. Therefore, we nor-
malized histograms of walking and stationary interval durations in two ways. First, each histo-
gram bin was multiplied by its own duration to ensure that more frequent, short-duration
locomotor bouts were not over-valued. Second, empty bins were removed from each histogram
by using variable bin widths (S3 Fig; see Materials and Methods). The resulting histograms pro-
vided a quantitative measure reflecting Drosophila basal locomotor patterns (Fig 3A, bottom).

To generate network models we employed a well-established neural network modeling
framework, the Continuous-Time Recurrent Neural Network (CTRNN) [20]. CTRNNS are an
intermediate representation of neural circuits that do not model precise ionic conductances or
action-potential generation but retain the dynamical characteristics of neural circuits. There-
fore, the emergent dynamics of generated network models, rather than their precise connectiv-
ity, are the instructive features [52]. Our CTRNN models were fully connected with recurrent
and reciprocal connections between neurons, an intrinsic tau defining the time-scale of activity,
and a bias input that constitutively drives the activity of each neuron. Depending on the experi-
ment, our models could also have a Gaussian noise input—representing ongoing fluctuations
in neural activity arising from both deterministic network dynamics as well as stochastic neu-
ronal noise—and could have inputs representing olfactory sensory drive (Fig 3B). For each
model, one neuron was selected prior to parameter optimization as the output neuron (NoyT)
driving locomotor behavior. If this output neuron’s activity exceeded a threshold, the virtual fly
was walking. Otherwise, the virtual fly was stationary.

Using this modeling framework (Fig 3B), we developed an automated pipeline to generate
models whose virtual locomotor walking and stationary bouts had the same durations as the
Canton-S strain basal locomotor bouts (Fig 3A). We used an iterative optimization algorithm,
Particle Swarm Optimization [53], to define all network parameters (e.g., edge weights, tau,
bias inputs) for multiple models in parallel (Fig 3C). To assess a new model, the optimization
algorithm simulated it (i.e., a virtual fly) 100 times. An output threshold was then applied to
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the activity of the model’s output (Noyr), resulting in a binary (walking or stationary) time-
series. We then aggregated the walking and stationary interval durations from this time-series
and compared these histograms to the target Canton-S basal locomotion histograms. The opti-
mization process allowed us to discover model parameters that minimize the difference
between virtual basal locomotor patterns and Canton-S basal locomotor patterns. This value,
‘Difference from Drosophila data’, is a non-linear distance metric. It is therefore most intui-
tively understood by comparing it to values obtained when the full Drosophila dataset is com-
pared to subsets of the same data (S4A Fig).

We generated models 50 times for each network size (1-5 neurons) either in the absence or
presence of neural activity fluctuations. This resulted in 500 candidate models. In the second
step, we further filtered this population of models by identifying those that could also replicate
the complex odor-evoked locomotor patterns of three genetically distinct DGRP strains (Fig
2A). To mimic olfactory stimulation, we added virtual odor inputs to each model (Fig 3D). In
the final step, we analyzed the emergent dynamics of models that best matched both basal and
odor-evoked locomotor patterns by (i) identifying the most common neural activity levels for
each model using a ‘trajectory density’ representation and (ii) performing dynamical systems
analysis of each model in the absence of activity fluctuations to identify equilibrium points in
phase space: activity levels that the network tended to settle towards (Stable) or move away
from (Unstable) (Fig 3E). This revealed how activity fluctuations and dynamical properties
allow models to reproduce complex Drosophila locomotor patterns.

Small, fluctuation-driven models reproduce Drosophila locomotor
patterns

Using this approach we first asked if neural activity fluctuations were required to match the
ongoing locomotor patterns of sensory-deprived Drosophila. Specifically, we tested if activity
fluctuations were required by neural networks to reproduce Canton-S strain basal locomotor
statistics (Fig 3C). Indeed, we found that fluctuations and network dynamics were both
required by models to match these in vivo data (Fig 4A and 4B). Neither network dynamics
alone (Fig 4A, n = 250 models with 1-5 neurons, P < 0.001, Wilcoxon Rank Sum Test; S4C-
S4E Fig), nor a threshold applied to fluctuations in the absence of a network—the simplest,
feed-forward AS model—performed as well (S4B Fig).

Fluctuation-driven networks with as few as two neurons accurately reproduced long and
short time-scale Drosophila locomotor intervals (Fig 4B & S5A Fig). Notably, many of these two-
neuron networks had similar dynamics. Each had two stable equilibrium points (S5B Fig) and
could be further classified post-hoc based on the frequency with which neural activity visited
each stable point (S5C Fig). Importantly, for all classes these equilibria did not represent a trivial
mapping of two stable points onto two behavioral states (walking and stationary): both equilib-
rium points were below the threshold for walking (S5 Fig). Instead, in a manner akin to stochastic
resonance in peripheral sensory pathways [4,6], walking bouts were engaged when activity fluctu-
ations caused neural activity near the Up state to rise above the threshold for walking. These
results reveal how surprisingly compact fluctuation-driven neural network models can reproduce
complex Drosophila basal locomotor statistics spanning both long and short time-scales.

To identify the most explanatory of these network models, we tested their ability to match
an unrelated behavioral dataset: the time-course of odor-evoked locomotor patterns across
genetically distinct Drosophila strains. Of the original 98 DGRP strains, we selected three that
spanned a large proportion of the behavioral variation that we observed (Fig 4C). Next, to keep
their emergent dynamics unchanged, we left all network parameters fixed for the best perform-
ing network of each dynamical class (S5 Fig) while optimizing odor input strength and the
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Fig 4. Small, fluctuation-driven models reproduce Drosophila locomotor patterns. (A) The capacity of
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models of each size) to reproduce the basal locomotor statistics of Canton-S flies. (B) Fluctuation-driven
models from panel A, dashed box, separated as a function of network size (n = 50 models for each size). (C)
A dendrogram illustrating the similarity of odor-evoked locomotor patterns across 98 DGRP strains.
Hierarchical clustering distance was based on the Pearson’s correlation coefficient between odor-response
time-series for each strain. The three strains chosen for further analysis are color-coded cyan (strain A—
RAL57), orange (strain B—RAL790), and red (strain C—RAL707). (D) A graph representation of the best
model overall in panel B. This model was chosen for all subsequent analysis. Recurrent and reciprocal
connection strengths are color-coded. The tau value for each neuron is shown in grey-scale. (E) Odor
impulse locomotor patterns for the model in panel D (purple) optimized to match the odor impulse locomotor
patterns of DGRP strains A (RAL57), B (RAL790), and C (RAL707). Locomotor frequency time-series for
each strain are color-coded cyan, orange, and red, respectively.

doi:10.1371/journal.pcbi.1004577.9g004

locomotor output threshold to best match the time-course of odor-evoked locomotor patterns
for each Drosophila strain (Fig 3D).

The best Class 1 model (Fig 4D) could faithfully reproduce the time-course of odor-evoked
locomotor patterns for every Drosophila DRGP strain. It exhibited pre-odor basal locomotion,
sharp increases in locomotor frequency at odor onset followed by a slow decay, and reduced
post-odor basal locomotion (Fig 4E). Notably, not all models were as effective; the best Class 2
model failed to replicate odor-response dynamics (S6 Fig, Root-Mean-Square Error or
RMSE > 0.08). The capacity for a given model to reproduce odor-evoked locomotor patterns
was consistent across all three Drosophila strains (S6 Fig). In addition to fluctuations with
Gaussian statistics—a standard modeling approach (e.g., [54])—our best Class 1 model could
also match DGRP strain A locomotor patterns when driven by fluctuations with Power law, or
Ornstein-Uhlenbeck (OU) statistics [54-56](S6C and S6D Fig).

Dynamical mechanisms for reproducing Drosophila locomotor patterns

We next investigated how our best Class 1 model (S5D and S5E Fig) reproduced Drosophila
basal and odor-evoked locomotor patterns (Fig 4E). We closely examined neural activity trajec-
tories over time and identified several key roles for fluctuations. First, in the absence of fluctua-
tions or sensory input, network activity remained trapped within stable equilibria below the
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doi:10.1371/journal.pcbi.1004577.9005

threshold for walking (Fig 5A, top & S1 Video). By contrast, in the presence of fluctuations,
neural trajectories could periodically and unpredictably transit between stable equilibria and
sometimes exceed the activity threshold for walking (Fig 5A, bottom & S2 Video). Second, in
our models, fluctuations were partially responsible for delayed changes in the dynamics of neu-
ral activity during and following odor removal. Rather than returning rapidly to stable equilib-
rium levels (Fig 5A, top ‘Individual network activity’), fluctuations caused neural activity to
take a more tortuous path to these equilibria (Fig 5A, bottom ‘Individual network activity’).
When averaged across a population of virtual flies, this results in a decay of locomotor fre-
quency following odor stimulation (Fig 5A, compare top and bottom ‘Population average’).
Fluctuations by themselves were not sufficient, however, to explain the reduction in basal
locomotion following odor stimulation. Traditionally, reductions in neural activity are often
attributed to physiological depression due to over-stimulation [57]. However, we observed that
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several DGRP strains showed little (S7 Fig, RAL371) to no (S7 Fig, RAL642) odor-evoked
increases in locomotion but still exhibited reductions in locomotor frequency following odor
presentation. Since our models could reproduce post-odor reductions in locomotor frequency
without physiological depression, we used these models to investigate how changes in neural
dynamics might account for shifts in basal locomotion.

In our best Class 1 model matched to Drosophila strain A (RAL57), we discovered that odor
stimulation caused a dramatic shift in network dynamics: the multistable network became
monostable with a single subthreshold stable equilibrium point (Fig 5D, ‘Odor Impulse’).
Therefore, although neural activity was initially pushed above the threshold by the odor (Fig
5C, ‘Odor impulse’, white arrowhead), its subsequent attraction to this new equilibrium point
resulted in a decay of locomotor frequency even during odor stimulation (Fig 5C, ‘Odor
impulse’, red arrowhead). When the odor was removed, although the network was once again
multistable (Fig 5D, ‘Decay’), neural activity remained trapped near the odor-induced equilib-
rium point and took a long time to return to the original, basal equilibria (Fig 5C, ‘Reduced
basal locomotion’, red arrowhead). This was due to both the diffusing influence of activity fluc-
tuations as well as the structure of phase space. The same mechanisms allowed our best model
to match Drosophila strain B (RAL790) (S8A-S8C Fig). Interestingly, even when two stable
equilibrium points were retained, a substantial shift in the position of one stable point also
resulted in decay dynamics matching those of Drosophila strain C (RAL707) (S8D-SS8F Fig).

Discussion

We have combined high-throughput behavioral analysis with automated neural network opti-
mization to generate models that can reproduce complex Drosophila locomotor patterns. The
resulting models, while not intended to inform the topology of Drosophila AS circuits, repre-
sent predictions about their emergent dynamics [19]. The key feature that allowed network
models to reproduce Drosophila locomotor patterns was their dependence upon neural activity
fluctuations. At first glance this may seem unsurprising given the complex nature of the behav-
ioral data. However, fluctuations driving behavior in a simple feed-forward manner were insuf-
ficient (S4 Fig). Instead fluctuations required coupling to neural dynamics with two attributes.
First, our best models exhibited multistable dynamics reminiscent of persistent Up and Down
states in vertebrate striatal [58] and cortical neurons [59]. Like stochastic state switching in
genetic circuits [60,61] and stochastic mathematical models of C. elegans behavioral transitions
[14], in our models fluctuations allowed neural activity to escape stable equilibria and to rise
above the threshold for walking. Fluctuations near the Up state led to rapid bursts of walking
while residence near the Down state led to longer periods of inactivity [28]. This is strikingly sim-
ilar to stochastic resonance mechanisms observed in the sensory periphery [4,6]. There, noisy
fluctuations uncover otherwise subthreshold sensory information. Similarly, in our networks, we
found that fluctuations make it possible for weak sensory input to drive locomotion (Fig 6A).
More generally, as for neurons in visual cortex [5], we observed that activity fluctuations linearize
an otherwise nonlinear relationship between sensory drive and behavioral output (Fig 6B).
Second, in our best models, odor stimulation drove changes in network dynamics by shift-
ing the position and, sometimes, number of stable equilibrium points. After the odor was
removed the dynamics returned to the pre-odor state. However, neural activity trajectories
were delayed in returning to these original basins of attraction due to both the structure of
phase space as well as the diffusive influence of fluctuations. This represents an alternative
dynamical mechanism for shifting circuit activity that complements well-studied molecular
mechanisms like physiological depression [57]. Dynamical properties of a network can be
pushed into a new regime through stimulation and, although the network is identical before
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doi:10.1371/journal.pcbi.1004577.9006

and after stimulation, it produces a very different output. Therefore, the difference in pre- and
post-odor Drosophila locomotor frequency may be explained by changes in the dynamic trajec-
tories of a fixed system, without any modifications of synaptic strength.

One limitation of our study is the reliance upon one type of neural network model.
CTRNN models are widely used and well-justified [19] but we expect that follow-up work
using models with more [62] or less [63] detailed neural implementations can test the
robustness of our predictions. In particular, highly-constrained models have been indispen-
sible for understanding anatomically well-described systems like the pyloric network of the
crustacean stomatogastric ganglion [64,65]. Although the anatomy and physiology of Dro-
sophila AS circuits are not sufficiently well-characterized to build such detailed models, the
body of anatomical and physiological data is growing [11,16,30,31]. This information will
help to constrain neural network topologies [66-68] and to reveal how anatomical motifs
contribute to the computation of Drosophila action timing.

Our dynamical models inform a long-standing debate about the relative influence of neu-
ral fluctuations on animal behavior [12,24]. Unlike in peripheral sensory circuits, fluctua-
tions in central circuits may largely arise from deterministic signals that occur naturally
within highly interconnected networks of neurons. Intriguingly, our models predict that
fluctuating activity in central action selection circuits may act in a stochastic resonance-like
manner [5] to linearize the relationship between sensory drive and behavioral output. This
suggests a potentially beneficial role for neural fluctuations in increasing the dynamic range
of sensory responses in complex environments.

Materials and Methods
Drosophila strains

Drosophila Canton-S strains were used in odor-impulse (Fig 1) and basal locomotion experi-
ments (Fig 3A). Drosophila melanogaster Genetic Reference Panel (DGRP) [49] strains were
used in odor-impulse experiments (Figs 2 & 4C and 4E).
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Drosophila behavior apparatus

Experimental arenas (50 mm x 10 mm enclosures with a height of 1.3 mm (Fig 1A-1C)) were
designed using the 3D CAD software, SolidWorks (Dassault Systémes, Waltham, Massachu-
setts, USA) and CNC machined from polyoxymethylene and acrylic glass. To backlight the are-
nas, we used a white LED panel (Lumitronix, LED-Technik GmbH, Hechingen) filtered with
far-red semitransparent film (Eastman Kodak, Rochester, NY USA), a color for which fruit flies
are visually insensitive [44]. For olfactory stimulation, we used air bubbled (Messer Schweiz
AG, Lenzburg, Switzerland) through either water or 10% acetic acid and controlled using Mass
Flow controllers (PKM SA, www.conab.gov.br) at a regulated flow rate of 500 mL/min via com-
puter controlled solenoid valves (The Lee Company, Westbrook, CT, USA). We used a custom-
fabricated circuit board and software [35] (sQuid, http://lis.epfl.squid/) to simultaneously con-
trol valves and acquisition cameras (Allied Vision Technologies, Stadtroda, Germany). We
measured the flow of odor using a miniPID (Aurora Scientific Inc. Aurora, Ontario, Canada).

Drosophila behavior experiments

We performed experiments on adult female Drosophila raised at 25°C on a 12 h light:12 h dark
cycle at 2-5 days post-eclosion. Experiments occurred either the morning or late afternoon
Zeitgeber Time. Prior to experiments, flies were starved for 4-6 h in humidified 25°C incuba-
tors. For odor stimulation experiments, we measured the locomotor behaviors of between 131
and 242 flies (median 205 flies). 98 DGRP strains were screened over the course of approxi-
mately 1 year. To minimize the effects of weekly and seasonal variation, we randomly selected
and simultaneously screened groups of ~20 strains at a time. We repeated measurements for a
single strain (RAL208) four times over the course of the screen to confirm season-independent
behavioral reproducibility.

For basal locomotion behavior experiments, we recorded ten Canton-S strain flies for 30
min each, 5 h in total in a temperature-controlled room at 25°C under low red light illumina-
tion without air flow. Prior to the odor impulse experiment, flies were allowed to acclimate to
the arena for 1 min. Subsequently, flies were first exposed to air throughout the arena for 1
min, then 10% acetic acid for 30 s, and finally, air for 90 s. Following an additional resting
period with air flow for 90 s, we began the odor aversion experiment during which 10% acetic
acid was presented on one side of the arena for 30 s and air on the other. This pattern alter-
nated for an additional three cycles (Fig 1C, ‘Odor aversion’).

Drosophila behavioral analysis

We measured each fly’s position over time using Ctrax and Matlab (The Mathworks, Natick,
Massachusetts, USA) Behavioral Microarray software scripts [37]. Afterwards we discretized
the speed of a fly into a binary time-series using a hysteresis threshold. Based on previous stud-
ies [26,28,47,48] and confirmed by our own measurements, we considered a fly to have begun
walking when its speed exceeded 1 mm/s. For walking flies, we considered locomotion to have
terminated when the speed decreased below 0.5 mm/s (a conservative value chosen to reduce
the effects of measurement noise). We could thus classify speed in a binary fashion: walking or
stationary (Fig 1D). When averaged over a population of flies, we obtained a ‘Locomotor fre-
quency’: the proportion of active flies at a given time point ranging from 0 when no flies are
walking, to 1 when all flies are walking (Fig 1F).

To calculate the reproducibility of basal locomotor frequencies for genetically identical
groups of flies, we randomly sampled a group of 65 flies (selected as 50% of the flies from the
strain with the smallest number of flies) from the same strain. We repeated this sampling 100
times per strain to measure the mean and standard deviation (Fig 2D).
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To calculate the correlation between odor-response time-courses for fly strains, we ran-
domly sampled two populations (groups A and B) of 65 flies (0.5* the minimum population
size) from each strain. We then normalized Odor impulse traces (58™- 200" s of the odor
impulse experiment) between 0 and 1. Comparisons were performed either between groups
from the same strain or from different strains. Each comparison was performed 100 times and
the mean R value was plotted (Fig 2E).

To calculate odor aversion, for each fly we measured the proportion of time spent in the air
zone minus the time spent in the odor zone over the course of the odor aversion experiment.
This was divided by the total time of the aversion experiment yielding a value between -1
(always in the odor) and 1 (never in the odor) (Fig 2F and 2G).

To assess the effects of chamber geometry on the durations of Drosophila walking and sta-
tionary bouts, we computed the distance correlation (DC) [50] between either (a) walking or
(b) stationary intervals start/end positions and their corresponding interval durations (S2B-
S2D Fig). To increase the power of our analyses, we aggregated data-points by their positions
with respect to one arena quadrant of the arena. To do this, data-points were folded twice—
once along the Y-axis and a second time along the X-axis—to virtually aggregate them within
one quarter of the arena. Consequently, all points near the four arena corners were considered
near one another regardless of their corner of origin. For the sake of clarity, this repositioning
is not shown in S2B-S2D Fig. To provide a reference metric for data with no correlation, we
shuffled one of the variables and recomputed the DC. We repeated this process 100 times for
each correlation. Additionally, to gain an intuitive understanding of DC values we took this
shuffled dataset and introduced known correlations to incrementally larger subsets.

Dendrogram generation

We generated a dendrogram representation of the correlation between odor impulse time-
series across all 98 DGRP strains (Fig 4C) using an agglomerative hierarchical clustering algo-
rithm. The algorithm performed single-linkage clustering using a distance function of 1 minus
the sample correlation between points. The length of each branch represents the correlation
between the odor impulse time-series of two strains of flies. For subsequent model matching
we selected at random one strain from each of the following correlation intervals: p< 0.9,
0.9<p<0.95, p>0.95 (Fig 4C). We focused on only three DGRP strains due to the prohibitive
computational time and resources required to optimize populations of virtual flies for each
strain.

Neural network modeling framework

For modeling we used Continuous-Time Recurrent Neural Networks (CTRNNs). This model-
ing framework was chosen for its ability to mimic the dynamics of biological neural circuits
[17]. A CTRNN with M neurons N;,N,,. . .,Ny, is defined by a system of ordinary differential
equations (ODE):
M
dx, 1 )
E:Fi(t, Xpy Koy evny Xy) = |t wi-a(x+b)+1 |, i={1,...,M}
1 le
The state of a neuron N; is defined by the variable x; and is updated by an increment dx;
inversely proportional to the time constant 7; €[0.05,50]. The output of a neuron N; is obtained
1

by evaluating a sigmoid transfer function ¢(x) = 7, on the state x; added to a constant bias

b; € [-10,10]. Neurons N; and N; are connected with synaptic links of weight w;; € [-20,20].
Furthermore, each neuron can receive an optional input I; (e.g., odor input). We tested models
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up to five neurons in size since even three neurons are sufficient to exhibit a wide variety of
dynamical behaviors including chaos [69].

To investigate the capacity of activity fluctuations alone to match Drosophila basal locomotion,
we optimized a threshold ranging from -4o to 40 directly upon a Gaussian noise source [2,70].

For network models without fluctuations (S4A Fig), the fluctuation input is set to zero (I;
=0). For fluctuation-driven models, each neuron receives Gaussian noise with standard
deviation wyorsgi(li = Wyorsesr G, where G ~ N(0, 1) follows a Normal distribution). To
test the effects of different noise sources, we substituted Gaussian noise with either 1/f*
Power law noise (CNOISE, https://people.sc.fsu.edu/~jburkardt/m_src/cnoise/cnoise.html),
or Ornstein-Uhlenbeck (OU) noise. OU noise was implemented following the standard for-
mulation of an OU process:

dx, = 0(p — x,)dt + ad W,

x(0) = x,

where W, represents the Wiener process. Using the best Class 1 model, we performed the
odor impulse experiment while also optimizing the Power law parameter (o), or OU parame-
ters (0 and 0).

We simulated CTRNNSs using a custom high-performance C++ implementation. Our
implementation used an approximation of the sigmoid function o(x) [71] to speed-up simula-
tions. Furthermore, to decrease the computational load of the simulations the noise value G
was generated every Tnorsg €[0.01,1] s. For intermediate time-steps the noise value G was
interpolated. Although this introduced correlations in the noise, the time-scale at which the
noise value changed was orders of magnitude smaller than the time-scale at which the slowest
dynamics occurred (hundreds of seconds). ODEs regulating the evolution of the CTRNN were
integrated using ODEINT [72], a publicly available solver for ODE and a Runge-Kutta 4™-
order method at a constant integration time-step of 10 ms (five times smaller than the smallest
time constant of a neuron).

During the simulation of a neural network model, the trajectory of a model’s activity evolves
over time from an initial condition, represented by the neuron states x;(t,), to eventually reside
within the dynamical regime of the model (e.g., an equilibrium point, a limit cycle, etc.). In our
experiments, we took two precautions to discard the long transients that sometimes occurred
as trajectories passed from their initial positions into the model’s dynamical regime. First, we

dx
=
in the neighborhood of identified equilibrium points by sampling from a multivariate Gaussian

distribution having an identity covariance matrix centered at the equilibrium points. Second, at
the beginning of each simulation we integrated the model for 5 min of real time (3-10* time-
steps) to discard dynamics during transit from initial conditions.

To generate a binary time-series equivalent to Drosophila walking and stationary bouts, we
applied a threshold THR € (0,1) to the output of a neuron, arbitrarily chosen to be Nj (referred
to in the text as Noyr). Whenever the output of this neuron was greater than the threshold (o
(x1+b1)> THR), the virtual fly was walking and otherwise it was stationary.

found the equilibrium points of the model (i.e., 0). Then we generated initial conditions

Neural network model parameter optimization

We optimized neural network model parameters using a stochastic optimization method for
tuning model parameters in an iterative manner [53]. First, we generated a population of mod-
els of a given size (e.g., three neurons). Next, we measured the activity of these models and
transformed these into binary time-series comprising walking and stationary bouts using a
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threshold. Finally, walking and stationary bout durations were measured and aggregated into
weighted variable bin-width histograms for walking or stationary intervals. Bin-widths were
derived from the Drosophila target dataset. We compared these histograms to target histo-
grams measured from Canton-S flies. After assessing this population of models, parameters
were adjusted towards those of the best performing models in this and previous iterations. The
stochastic nature of this process ensured that final models were not identical to one another.
This process was repeated until model performance converged. We then studied the topologi-
cal and dynamical properties of the best models found.

In more detail, the Np = {w;;,7;,bi;Wnorsgsis THR, Tyorsg| i, € 1. . ..M} parameters of the
CTRNN models were optimized using Particle Swarm Optimization (PSO) [73]. We used stan-
dard parameter settings c; = 2, ¢, = 2. The inertia parameter w of the algorithm was modified
during an optimization run, following an update rule w(t) = 0.9 — 0.7 * £ to favor global
search at the beginning of the optimization process and local search towards the end, where t is
the current iteration and T = 200 is the maximum number of iterations. PSO operated concur-
rently on a set of M = 50 solutions. Therefore, a total of 10* solutions were evaluated during
each optimization run. Each function evaluation required between 11 s and 30 s of computa-
tional time. We optimized CTRNN models on a cluster (http://hpc.epfl.ch), using two nodes
with 48 cores AMD Opteron 6176 (Magny-Cours) 2.3 GHz and 192 GB of memory.

To optimize the odor input strength and output threshold of our best models to match Dro-
sophila odor impulse locomotor dynamics, we measured the activity of the model’s output dur-
ing 60 s of no stimulation (basal locomotion), 30 s of odor stimulation, and then 120 s of no
stimulation. We repeated this experiment while iteratively optimizing the few free parameters
(odor input strength per neuron, and output threshold) to minimize the Root-Mean-Square
Error (RMSE) between the target Drosophila odor-response time-series (average of ~200 flies)
and the model’s odor-response time-series (average of 200 virtual flies).

Measuring cost function values or the ‘Difference from Drosophila data’

The cost function assigns a score to each model evaluating how well it captures Drosophila
locomotor patterns by comparing histograms generated by the model with histograms gener-
ated from Canton-S strain data. The comparison of these histograms is a crucial aspect of cost
function design.

While it is possible to use standard statistical tests such as distance measures between empir-
ical cumulative distributions of data (e.g., the Kolmogorov-Smirnov test), these statistical tests
can mislead the optimization process by assigning reduced importance to rare events. For dis-
tributions of time durations, it is evident that these approaches would fail, since rare events
(e.g., long walking or stationary periods) would be effectively ignored when comparing distri-
butions. Therefore, we generated “weighted” histograms in which each bin was weighted by the
duration it represents. For example, 10 walking events of 1 s duration and 1 event of 10s dura-
tion, would classically be represented as two bins of different “height” (10 and 1 respectively).
In our weighted histograms these two bins have the same height (1s-10 = 10s-1).

We also wanted to remove empty bins. To do this we generated variable bin-width histo-
grams. The boundaries of each bin for walking and stationary interval histograms were deter-
mined using Canton-$ basal locomotion data (S3 Fig). We used the same bin boundaries when
evaluating each neural network model.

For each cost function evaluation, we simulated a model K = 100 times. The model was
started from K different initial conditions and simulated for 60 min of real time. For each of the
K simulations, we selected at random with equal probability either the first or second 30 min of
simulation, to mitigate overfitting of model behavior to the same trajectory and to foster model
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unpredictability. Each simulation produced a binary time-series representing walking (1) or sta-
tionary (0) behavior in a virtual fly. Thus, we computed the histogram for walking and for sta-
tionary periods using the data from all the selected K chunks. The generated histograms H,, for
walking bouts and Hg; for stationary bouts were compared to their respective target Drosophila
histograms Hry and Hr; obtaining the distance between the histograms d,, and d.

dw = d(HT,W7 Hs,w)

dl = d<HT717 HS,I)

The distance measure between a target and simulated histogram is defined as:

Al H) = > IR-R(i) — (i) (0

B is the number of bins in the histograms, h,(i) and hr,(i) returns the count for bin i in the syn-
thetic H, and target histogram H and t5(i) returns the interval duration represented by bin i,
here corresponding to the lower boundary of the bin. The scale factor R reconciles data obtained
from simulations to available Drosophila data. We tested K = 100 simulated initial conditions
per cost function evaluation. Therefore, R = 0.1 since we used data from 10 Canton-S strain flies.

The cost function f maps a model m to a cost function value in [0,00], fim — [0,00]. For the
sake of simplicity, we presented a normalized cost function value F. F is obtained by normalizing
the cost function using the value Fyy,, that a virtual fly would have if it is always walking or
always stationary such that F(m) = % = % A value of 0 corresponds to a perfect match, a
value of 1 corresponds to the score of a virtual fly that is always walking or always stationary.
Intermediate values ranging between 0 and 1 correspond to plausible distributions. Values
higher than 1 generally result from models with periodic dynamics at very high frequencies.

To derive an intuitive scale for cost function values, we evaluated values resulting from com-
paring subsets of Drosophila data with the full Drosophila dataset (54 Fig). We generated sub-
sets of data by selecting at random the desired number of flies F and replicating the data from
each selected fly 10/F times, rounded up to the closest integer. In cases with too much data (F is
not a divisor of 10), we randomly removed walking or stationary bouts until we obtained a

dataset with the same length as the full Drosophila basal locomotion dataset.

Generating variable bin-width weighted histograms

We computed the boundaries of variable bin-width weighted histograms using a vector v con-
taining walking or stationary interval durations from 5 h of Canton-S basal locomotion. This
routine took as inputs the minimum resolution r of a bin (the minimum separation between
boundaries) and the minimum count ¢ of events to generate a bin. Next it generated histogram
boundaries by recursively splitting the initial single-bin boundaries [0,max(v)] into smaller
bins containing a minimum of ¢ events and having minimum duration of r seconds (S3 Fig).

First, we applied this procedure to get bin boundaries for Drosophila walking and stationary
bout duration histograms (Hr,w,Hr1). Then we used these same bin boundaries to compute
both histograms from network model simulations (Hg y,Hs,p).

Dynamical systems stability analysis

Rather than studying their topologies (e.g., connectivity weights), we classified models by their
dynamics [74-76]. In this way the behavior of a model with n neurons can be understood by
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observing the time evolution of its trajectory through an n-dimensional neural activity phase
space. By studying the unfolding of phase space trajectories, one can identify common behav-
ioral motifs among network models with widely different parameters. Using this formalism,
features in phase space (e.g., attractors, limit cycles, and deterministic chaos) provide a clear
language with which to interpret and compare different models [74]. This dynamical systems
perspective has been successful in classifying both artificial neural networks and biological neu-
ral populations [23].

To analyze the global dynamical behavior of our models and to classify closely related ones,
we performed stability analysis on our models in the absence of Gaussian noise. First, the m
equilibrium points X, %;, ..., X,, of the CTRNN were identified by numerically finding the
roots of the system of differential equations F(x) = 0 using the multi-dimensional root finder
provided by the Gnu Scientific Library (http://www.gnu.org/software/gsl/). The Jacobian
matrix J of a CTRNN is defined as:

OF (x)  OF(x)

Ox, Ox,,
J(x) = : . :

OF,(x)  OF,(x)
Ox, 0x,,
w; et e
<L if i

aFi(X) 7 Ti (1 + exf+h))2 f 7£]
ox. 1 w et

ji

T, T (14 e9th)?

- ifi=j
We studied the stability of the CTRNN by linearizing the system in the neighborhood of
each equilibrium point and computing the eigenvalues of the Jacobian matrix J of the CTRNN

for each equilibrium point ¥ by solving det(J(x) — AI) = 0. For a classification of stability
given the equilibrium points’ eigenvalues refer to [74].

Trajectory density maps

We obtained neural activity trajectory density maps by discretizing a plane described by two
neuron states (x;.x;) into a grid of 10° x 10° cells ranging over the state values [-50,50]. Then
we counted how many times a trajectory (its projection onto(x;x;)) entered each cell. Density
maps were generated by initializing models from 10* random initial conditions. The color of a
cell in the trajectory density plot is related to the logarithm of the probability that a neural
activity trajectory passes through that cell.

Network model classification

To quantify differences in the dynamical behavior of two-neuron fluctuation-driven models
and to classify them, we generated 1000 initial conditions around each stable equilibrium point
and let trajectories evolve for 30 min. We then counted how many times a trajectory switched
from one equilibrium point to the other. Trajectories of Class 1 models switched many times
during each 30 min period while Class 2 models switched more rarely. Trajectories of Class 3
models did not switch equilibrium points.
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Lyapunov exponent computation

We computed Lyapunov exponents for models in the absence of fluctuations (i.e., Gaussian
noise) by integrating the variational equations % of the CTRNN together with the original system:

do dé
& a Ot Ouy
do B
dr : - : =7
% - déﬂ (SMl 5MM
dt dt

Following a standard procedure [77], we integrated the original system together with the
variational equations for Tyyap = 1000 time-steps. Then, we orthonormalized the perturbations
using the Gram-Schmidt algorithm and computed the full spectrum of M Lyapunov exponents
A1 > Ay . ..> Ay The Kaplan-Yorke dimension [78] was then computed as

k . k
Dyy = k+ Zi:l 7. where k is the largest integer such that Zizlii > 0.

Supporting Information

S1 Fig. Binary classification of walking and the time course of odor flow. (A) A representa-
tive speed time-series for one Canton-S fly, classified as walking (red) or stationary (blue).
High (1 mm/s) and low (0.5 mm/s) speed values for a hysteresis threshold are indicated (black
dashed lines). (B) Histograms of speed data points taken from walking (red) and stationary
(blue) intervals for 5 h of data from ten Canton-S flies. (C) Photoionization detector measure-
ments (arbitrary units [au]) of odor flow (10% acetic acid). A high grey line indicates odor flow
and a low grey line indicates air flow. Each colored trace represents one trial (n = 10). Both
odor onset (top) and odor removal (bottom) are shown.

(TIF)

S2 Fig. Relationship between basal locomotor intervals and arena position. (A) Basal loco-
motor trajectories of ten Canton-S flies within the arena over 5 h. Each black circle represents
the location of one fly at one time-point. (B-D) The relationship between (B) walking interval
start positions and interval durations, (C) walking interval end positions and durations, and
(D) stationary interval start/end positions and durations. Intervals are color-coded by duration
(top). Distance correlation values are shown below for the original data (black dashed line) and
shuffled data (red boxplot, n = 100 each). (E) Distance correlation values for datasets in which
incrementally larger correlations were introduced into shuffled data (n = 100 each) ranging
from 10% (median DC ~0.1) to 100% (median DC ~0.9) of the data.

(TIF)

S3 Fig. Procedure for generating and comparing weighted, variable-width histograms. (A)
The procedure for determining bin-width sizes for variable bin-width histograms of Canton-$
strain walking and stationary interval durations. (B) The workflow for generating weighted,
variable bin-width histograms for Canton-S data (left) to compare with model data (right). His-
tograms were compared using a Root-Mean-Square Error (RMSE) to determine the cost func-
tion value or ‘Difference from Drosophila data’.

(TIF)

$4 Fig. Cost function values for subsets of Drosophila data, fluctuations alone, and models
without fluctuations. (A) Canton-S basal locomotion data as matched by increasingly larger
time-normalized subsets of the same dataset. ‘Drosophila data used’ indicates the percent of flies
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selected and time-normalized to allow comparison with the full 5 h dataset from ten flies.

N =1000 datasets per boxplot. (B) The ability of a threshold applied to a Gaussian noise source
(u=0, 0 = 1) representing ongoing fluctuations to reproduce Canton-S basal locomotion data.
The fluctuation time-step (i.e., noise correlation) is color-coded. Each data point is the lowest/
best cost function value for a given threshold and a given fluctuation/Gaussian noise source. (C)
The ability of models without fluctuations to reproduce Canton-S basal locomotion data. N = 50
models for each size ranging from 1-5 neurons. A black arrow indicates the best model in the
absence of fluctuations. (D) A graph representation of the best model from panel C. Recurrent
and reciprocal connection strengths are color-coded. The tau value for each neuron is shown in
grey-scale. (E) Neural output activity (Noyr) and locomotor patterns for the best model from
panel C. This model exhibits chaotic behavior (Largest Lyapunov Exponent = 0.011).

(TIF)

S5 Fig. Classification of fluctuation-driven, two-neuron, multistable models. (A) The cost
function value for each model sorted by class. The best model for each class is indicated (black
arrow and outline). (B) Phase portraits for the best model from each class in panel A. Stable
(cyan) and unstable (orange) equilibrium points are indicated. Grey lines with arrows are tra-
jectories that indicate the direction of flow in phase space. The threshold between walking and
stationary behavior is indicated (black dashed line). (C) The number of equilibrium points that
neural activity trajectories visited over the course of 30 simulated min for 36 two-neuron, mul-
tistable models. N = 1000 simulations per model. Class 1 models visited each stable equilibrium
point with high frequency. Class 2 models visited each equilibrium point a few times. Class 3
models visited only one equilibrium point. (D) Neural activity trajectory density plots for the
best models in each class from panel A. The threshold between walking and stationary behavior
is indicated (white dashed line). (E) A graph representation of the best models for each class
from panel A. Recurrent and reciprocal connection strengths are color-coded. The tau value
for each neuron is shown in grey-scale.

(TIF)

S6 Fig. Capacity of best models from each class to reproduce Drosophila locomotor pat-
terns. (A) Odor impulse responses for the best Class 2 two-neuron model (purple) tuned to
match the odor impulse responses of DGRP strains A (RAL57), B (RAL790), and C (RAL707).
Locomotor frequency time-series for each strain are color-coded cyan, orange, and red, respec-
tively. (B) Root-mean-square error (RMSE) between odor impulse responses for the best
model of each class and odor impulse responses for strains A, B, and C (cyan, orange, and red
boxplots, respectively). N = 5 comparisons each. (C) Odor-impulse responses for the best Class
1 two-neuron model (purple) tuned to match the odor-impulse response of DGRP strain A
(RAL57, cyan) when driven by fluctuations with Gaussian, Power law, or Ornstein-Uhlenbeck
statistics. (D) Root-mean-square error (RMSE) between odor impulse responses for the best
Class 1 model driven by fluctuations with Gaussian, Power law, or Ornstein-Uhlenbeck statis-
tics and odor impulse responses for strain A. N = 5 comparisons each.

(TIF)

S7 Fig. Drosophila strains exhibit reduced post-odor basal locomotion without substantial
odor-evoked increases in locomotion. Locomotor traces averaged across 225 flies for DGRP
strains (A) RAL371 and (B) RAL642 during the odor impulse experiment.

(TIF)

S8 Fig. Network dynamics of the best Class 1 model matched to Drosophila strains B & C.
(A,D) Odor impulse response for the best Class 1 model matching Drosophila strains B (A)
and C (D). Color-coded are pre-odor basal locomotion (green), odor impulse (blue), post-odor
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locomotor decay (cyan), and reduced basal locomotion (magenta) periods. (B,E) Trajectory
densities (top) and (C,F) phase portraits (bottom) for this model during each period. In all tra-
jectory density diagrams, arrowheads highlight neural activity levels observed with more fre-
quency than during pre-odor basal locomotion. These are further labeled as activity above
(white) or below (red) the threshold for walking. In all phase portraits, grey lines with arrows
are trajectories that indicate the direction of flow in phase space. The threshold between walk-
ing and stationary behavior is indicated in trajectory density plots (white dashed lines) and
phase portraits (black dashed lines).

(TTF)

S1 Table. RAL (Raleigh) strain number and mean pre-odor basal locomotor frequency for
each DGRP strain.
(XLSX)

S1 Video. Activity of the best fluctuation-driven model (Class 1) before, during, and after
odor stimulation, in the absence of fluctuations. The left panel shows the neural activity of
neurons N, (x-axis) and the output neuron Ny (y-axis) for 11 out of 200 virtual flies using
the best model (two-neuron fluctuation-driven, Class 1) in the absence of fluctuations. The out-
put threshold position is indicated (grey line). Each simulated virtual fly is color-coded. The bot-
tom-right panel shows whether each of these virtual flies is walking or stationary. The top-right
panel shows the locomotor frequency across the entire population of 200 virtual flies (purple)
overlaid on top of the locomotor frequency measured across 198 flies of Drosophila strain A
(cyan). Black vertical lines indicate the start and end of odor presentation, respectively.

(MOV)

$2 Video. Activity of the best fluctuation-driven model (Class 1) before, during, and after
odor stimulation, in the presence of fluctuations. The left panel shows the neural activity of
neurons N; (x-axis) and the output neuron Noyr (y-axis) for 11 out of 200 virtual flies using
the best model (two-neuron fluctuation-driven, Class 1) in the presence of fluctuations. The out-
put threshold position is indicated (grey line). Each simulated virtual fly is color-coded. The bot-
tom-right panel shows whether each of these virtual flies is walking or stationary. The top-right
panel shows the locomotor frequency across the entire population of 200 virtual flies (purple)
overlaid on top of the locomotor frequency measured across 198 flies of Drosophila strain A
(cyan). Black vertical lines indicate the start and end of odor presentation, respectively.

(MOV)
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