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Vaccination of stage III/IV melanoma patients with long NY-ESO-1 peptide 1	

and CpG-B elicits robust CD8 and CD4 T-cell responses with multiple 2	

specificities including a novel DR7-restricted epitope 3	
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ABSTRACT 43	

 44	
Long synthetic peptides and CpG-containing oligodeoxynucleotides are promising 45	

components for cancer vaccines. In this phase I trial, 19 patients received a mean of 8 (range 46	

1-12) monthly vaccines s.c. composed of the long synthetic NY-ESO79-108 peptide and CpG-B 47	

(PF-3512676), emulsified in Montanide ISA-51. In 18/18 evaluable patients, vaccination 48	

induced antigen-specific CD8 and CD4 T-cell and antibody responses, starting early after 49	

initiation of immunotherapy and lasting at least one year. The T-cells responded antigen-50	

specifically, with strong secretion of IFNγ and TNFα, irrespective of patients’ HLAs. The 51	

most immunogenic regions of the vaccine peptide were NY-ESO-189-102 for CD8 and NY-52	

ESO-183-99 for CD4 T-cells. We discovered a novel and highly immunogenic epitope (HLA-53	

DR7/NY-ESO-187-99); 7/7 HLA-DR7+ patients generated strong CD4 T-cell responses, as 54	

detected directly ex vivo with fluorescent multimers. Thus, vaccination with the long synthetic 55	

NY-ESO-179-108 peptide combined with the strong immune adjuvant CpG-B induced 56	

integrated, robust and functional CD8 and CD4 T-cell responses in melanoma patients, 57	

supporting the further development of this immunotherapeutic approach.  58	
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INTRODUCTION 59	

Over the past years, several vaccines consisting of exactly fitting MHC class-I binding 60	

peptides have been evaluated for therapeutic efficacy in different cancer types1. Although 61	

induction of specific CD8 T-cell responses was observed2-4, absence of concomitant CD4 T-62	

cell activation may have been a reason that clinical benefit remained minimal. In agreement 63	

with this notion, inclusion of MHC class II peptides in the vaccine formulation showed 64	

superior CD8 T-cell responses in both preclinical models and clinical trials5. More recently, 65	

the use of long synthetic peptides (LSPs) harboring both CTL and T helper epitopes has 66	

demonstrated induction of strong immune responses6, 7. The additional advantages of LSPs 67	

are that they need professional APCs for efficient MHC I epitope presentation, and that their 68	

use is not limited to patients with defined HLA molecules8. In various Phase I/II clinical trials 69	

using LSPs, we and others showed potent CD8 and CD4 T-cell responses in patients with 70	

different solid cancers, as well as in pre-malignant lesions as vulvar intraepithelial neoplasia9-71	

14. 72	

 73	

The cancer germ line antigen New York esophageal squamous cell carcinoma-1 (NY-ESO-1) 74	

was discovered in 199715, and the NY-ESO-1 protein is aberrantly overexpressed in 75	

malignant transformed cells of different histological types15. During the past years, it has 76	

emerged as a potential target for cancer immunotherapy since it is highly immunogenic and 77	

includes both humoral and T-cell epitopes16. Interestingly, among all currently known NY-78	

ESO-1 T-cell epitopes, approximately half of them are present within the region 80-11117-20, 79	

making it an attractive protein stretch to be used for patient’s immunization using LSPs. 80	

 81	

Synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG (CpG–ODNs) are 82	

TLR-9 agonists. Class B CpG-ODNs directly induce activation and maturation of 83	
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plasmacytoid dendritic cells and promote B cells differentiation21. Various results in mice 84	

demonstrated the improvement of therapeutic responses of DC-based vaccines, short and long 85	

peptide immunizations and protein vaccines with this adjuvant22. Similarly, short peptide-86	

based clinical trials that included CpG-B in melanoma patients showed the generation of a 87	

stronger and more rapid Melan-A-specific CD8 T-cell response compared to the vaccine 88	

alone3. In another vaccination trial with recombinant NY-ESO-1 protein supplemented with 89	

CpG-B and Montanide, results showed a significant augmentation of tumor-specific 90	

antibodies as well as the detection of NY-ESO-1-specific CD8 T-cells23. 91	

 92	

To date, no clinical trial evaluated vaccination with CpG-B in combination with LSPs. Some 93	

recent studies assessed the safety and in vivo immunogenicity of synthetic overlapping long 94	

NY-ESO-1 peptides in combination with diverse adjuvants. In an initial study, 91% of 95	

patients in the cohort receiving the vaccine supplemented with the TLR-3 agonist Poly-ICLC 96	

showed T-cell responses, as compared to the modest specific T-cell induction in the absence 97	

of Poly-ICLC. The cellular response correlated in these patients with an acceleration of 98	

seroconversion and a significant increase in specific antibody titers14. Similar results were 99	

obtained by Tsuji et al., who characterized NY-ESO-1–specific vaccine-induced CD4 T-cell 100	

lines to investigate the effect of both Montanide and Poly-ICLC adjuvants24. While 101	

Montanide promoted a Th2 polarization and an expansion of high avidity vaccine induced 102	

CD4 T-cells through a better protein recognition, the addition of Poly-ICLC abrogated IL-4, 103	

IL-13, and IL-10 secretion, resulting in a more prominent Th1 polarization. As comparison, 104	

only half of the patients had CD8 T-cell responses when vaccinated with full NY-ESO-1 105	

protein supplemented with Montanide and CpG-B (CpG-7909/ PF-3512676)23. 106	

 107	

In this study we evaluated safety and immunogenicity of the combination of the 30 amino 108	
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acid LSP NY-ESO-179-108, administered in combination with CpG-B (CpG-7909/ PF-109	

3512676) and Montanide ISA-51 subcutaneously, accompanied or not by low dose 110	

interleukin-2, in patients with advanced malignant melanoma.   111	
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RESULTS 112	

 113	

Patients’ characteristics 114	

 115	

In this clinical trial, 19 patients with resected cutaneous melanoma of stage III or IV were 116	

enrolled in 2 groups, as summarized in Table I and supplemental Tables I-II [1.1; number 117	

labeling based on the MIATA checklist is highlighted in green throughout the manuscript]. 118	

Ten patients were in group A (without IL-2) and 9 patients in group B (with IL-2). Six (60%) 119	

and 7 (78%) patients from groups A and B, respectively, discontinued the study treatment 120	

prior to completion of the 3 vaccination cycles (Table I and Supplemental Tables I-II), mainly 121	

due to disease progression. Patient LAU 1408 received only 1 vaccine and was thus not 122	

evaluable for immune response. 123	

 124	

Expression of Melan-A, and NY-ESO-1/LAGE-1, and MAGE-A/MAGE-A10 was assessed 125	

for each patient. Table I shows TAA expression as assessed either by immunohistochemical 126	

analysis or qPCR depending on material availability [1.1]. For IHC detection of MAGE-A 127	

expression, we used clone 6C1 specific for MAGE-A1/A2/A3/A4/A6/A10 and A1225. 128	

Unfortunately, there is no MAGE-A10 mono-specific antibody available. 129	

 130	

Safety and tolerability 131	

 132	

The vaccine was generally well tolerated. Amongst all patients enrolled in groups A and B 133	

there were a total of 2 events of Grade 3 (10%) for those who were definitely, probably and 134	

possibly related to the study treatment, while no Grade 4 (life-threatening) or Grade 5 (death) 135	

adverse events were observed during the study (Supplemental Table III). 136	
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 137	

The most commonly reported adverse events were general disorders and conditions of mild 138	

intensity mainly represented by injection site reactions (rash/erythema, skin induration, pain 139	

and warmth) and systemic reactions (chills, myalgia, arthralgia, asthenia and headache). 140	

There were no severe adverse events related to the study drugs. 141	

 142	

As expected, the low dose IL-2 treatment (group B) induced frequent side effects, with 143	

inflammatory reactions at s.c. injection sites, and systemic effects (chills, fever, asthenia, 144	

headache, arthralgia, myalgia, nausea, diarrhea and insomnia). Many patients required IL-2 145	

dose reductions and/or stopped IL-2 treatment prematurely. Instead of the 45 intended 146	

injections for each patient on average, patients received 33 injections on average, resulting in 147	

an average of 73.8% of the intended cumulated dose (Supplemental Table IV). 148	

 149	

Monitoring of NY-ESO-1-specific CD8 T-cell responses 150	

 151	

A total of 18 patients were analyzed for immune responses by intracellular cytokine staining, 152	

separately for CD8 and CD4 T-cells. As shown in representative flow cytometry examples in 153	

Figures 2A and 3A, significant responses were observed both in CD8 and CD4 T-cells. 154	

Baseline frequencies of NY-ESO-1-specific CD8 T-cells were undetectable or very low in the 155	

majority of the patients (Figure 2B-C, Supplemental Figure 2A-B). However, 6 patients 156	

showed significant NY-ESO-1-specific natural responses, reaching frequencies of IFNγ and 157	

TNFα positive cells of 1.23 % of total CD8 T-cells before vaccination (Figure 2B-D and 158	

Figure 4). All patients mounted significant responses upon vaccination, as shown by the 159	

patient’s individual longitudinal curves (Figure 2B, summary in Figures 2C-D and 4). 160	

Frequencies of cytokine+ CD8 T-cells readily increased after 2-4 immunizations in the 161	
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majority of the patients. Total cytokine+ cells reached high levels, accounting for one third of 162	

total CD8 T-cells (total cytokine+ CD8 T-cells ranging from 0.05 to 33.1%). Some patients 163	

displayed a more delayed kinetics and showed initial responses only during cycle 2. Specific 164	

CD8 T-cell responses were sustained, as assessed by cytokine measurement during the third 165	

cycle of immunization (Figure 2D, Supplemental Figure 2C). No significant differences in 166	

CD8 T-cell responses were observed when Group A and Group B patients were compared. 167	

 168	

Monitoring of NY-ESO-1-specific CD4 T-cell responses and specific antibody responses 169	

 170	

Similar to CD8 T-cell responses (Figure 2), 4 out of 18 patients already showed baseline 171	

detectable frequencies of IVS specific CD4 T-cells (ranging from 0.1 - 5.77%). Nevertheless, 172	

in all patients NY-ESO-1-specific CD4 T-cells were highly significantly increased by 173	

immunization (Figure 3B-D, Supplemental Figure 3A-B). Responses were observed as early 174	

as after 2 vaccinations, and reached 70% of specific cells after IVS. They were long-lasting, 175	

since high frequencies of cytokine+ cells were detectable one year after the initiation of the 176	

trial (Figure 3D, Supplemental Figure 3C). In general, CD4 T-cell expansions occurred earlier 177	

than the ones of CD8 T-cells, suggesting that CD4 T-cell help might be necessary for specific 178	

CD8 T-cell induction (Figure 4). Responses with higher magnitude were detected at earlier 179	

time points in Group B, however long-term no difference was observed between the two 180	

groups. Importantly, not only Type I, but also Type II cytokines were detectable, arguing for 181	

the capacity of the vaccine to also impact on T-cell polarization. Type II cytokines might also 182	

have contributed to the generation of specific antibodies. We measured a significant increase 183	

in NY-ESO-1-specific antibodies in the majority of the patients, with also a discrete increase 184	

of antibodies specific for other tumor antigens, in particular Melan-A, arguing for induction 185	

of antigen spreading (Figure 4 and Supplemental Figure 4). 186	
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 187	

Determination of immunodominant regions for CD8 and CD4 T-cells, and identification 188	

of a novel HLA-DR7 specific epitope 189	

 190	

Results using individual overlapping peptides showed that the a.a. regions 90-102 and 87-99 191	

were the most immunogenic sequences for CD8 and CD4 T-cells, respectively (Figure 5A). 192	

However, the analysis of fine specificity of recognition using the set of overlapping 193	

nonapeptides revealed individual patterns (Supplemental Figure 5A), and suggests that each 194	

patient focuses CD8 T-cell responses on distinct portions of the LSP. EC50 of peptide 195	

recognition for specific CD8 T-cells ranged from micro- to nanomolar concentrations 196	

(Supplemental Figure 5B). Using HLA-B35 multimers loaded with NY-ESO-194-104, we 197	

identified specific CD8 T-cells in HLA-B35 patients not only after IVS, but also directly ex 198	

vivo (Figure 5B). For CD4 T-cells, the contribution of individual MHC class II was evaluated 199	

using blocking antibodies and HLA class II typing (Supplemental Table I). In 8/9 patients that 200	

could be included in these analyses, we observed a partial or complete abrogation of NY-201	

ESO-1-specific CD4 T-cell responses in the presence of pan-HLA-DR blocking antibodies 202	

(Figure 5C). In in vitro peptide competition assays, we identified the peptide NY-ESO-187-99 203	

as a strong binder to HLA-DR7 (data not shown). We generated DR7/NY-ESO-187-99 204	

multimers and stained IVS cultures from the 7 HLA-DR7+ patients included in our study. We 205	

identified specific cells in 7/7 HLA-DR7+ patients. As shown in a representative example in 206	

Figure 5D and as summarized in Table II multimer+ cells accounted for a large proportion of 207	

the overall response induced by vaccination. Interestingly, in all 7 HLA-DR7+ patients, 208	

multimer+ cells could be detected in samples collected before immunization. Their frequency 209	

significantly increased during time and was maintained until completion of the trial. Notably, 210	

in one patient that was previously recruited in another vaccination trial consisting of MAGE-211	
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A1 immunizations, high baseline DR7/NY-ESO-187-99 multimer+ cells were observed (e.g. 212	

19.6%). This data suggest that natural CD4 T-cell responses to the novel NY-ESO-1 epitope 213	

might have been induced in this patient by antigen spreading upon vaccination with MAGE-214	

A1 peptide. 215	

 216	

Polyfunctionality and cytolytic activity of HLA-DR7/NY-ESO-187-99-specific CD4 T-cell 217	

clones 218	

 219	

We generated HLA-DR7/NY-ESO-187-99-specific CD4 T-cell clones and lines from 4 HLA-220	

DR7+ patients (Figure 6A, upper panel). By functional characterization we defined the peptide 221	

87-99 as the minimal epitope inducing maximal responses in 15/19 of the clones (data not 222	

shown). Clones responded by secreting both Th1 and Th2-prototypic cytokines, albeit with a 223	

different EC50 (Figure 6A, lower panel). Then, we assessed whether DR7/NY-ESO-187-99-224	

specific cells are able to recognize the newly identified NY-ESO-1 epitope when presented by 225	

tumor cells. We used HLA-DR7+/- melanoma cell lines, pre-treated or not with IFNγ, and co-226	

cultured them with specific CD4 T-cell clones. We observed that specific clones secreted 227	

significant amounts of cytokines in response to NY-ESO-1/DR7 peptide presented by tumor 228	

cells (Figure 6B, left panel). We also assessed whether NY-ESO-187-99 CD4 T-cell clones 229	

could directly kill target cells. When co-cultured with 3 different HLA-DR7+ melanoma cell 230	

lines, displaying either endogenous or IFNγ-induced MHC II expression, the clones induced 231	

significant tumor cell lysis of the HLA-DR7+ tumor cells, pulsed with the specific peptide 232	

(Figure 6B, right panel). As expected, HLA-DR7- tumor cells were not susceptible to killing. 233	

 234	

Direct ex vivo visualization of HLA-DR7/NY-ESO-187-99-specific CD4 T-cells 235	

 236	
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Finally, we performed multicolor flow cytometry analyses directly ex vivo (without prior in 237	

vitro T-cell expansion) from HLA-DR7+ patients. Remarkably, in 7/7 patients we were able to 238	

detect multimer+ cells without prior in vitro stimulation (representative examples in Figure 6C, 239	

summary in Figure 6D). Their frequencies varied between 0.01 and 0.18% of total CD4 T-240	

cells, and their phenotype corresponded to antigen-experienced, memory cells (data not 241	

shown). 242	

 243	

Follow-up and clinical observations 244	

 245	

The median follow up time was 63.8 months for group A (ranging from 8.5 to 80.5 months) 246	

and 55.9 months for group B (ranging from 2.2 to 68.4 months) at the time of analysis 247	

(December 8th, 2015). Overall, the median follow up time was 56.8 months (with a range 248	

from 2.2 to 80.5 months). At the last follow-up, twelve patients were alive (5 of group A and 249	

7 of group B), whereas 7 patients died (5 of group A and 2 of group B) due to progressive 250	

disease. Eight patients (4 patients of each of the two groups) remained without evidence of 251	

disease (Table I). Patients with above median levels of IFNγ+ NY-ESO-1-specific CD4 T-252	

cells showed tendencies for longer overall and progression-free survival than patients with 253	

below median levels, but the differences were not statistically significant (Figure 7). These 254	

clinical results are relatively favorable, but not conclusive as expected for a phase I study.   255	
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DISCUSSION 256	

 257	

Montanide in combination with TLR3 agonists and LSPs has been shown to elicit both 258	

humoral and cellular responses in cancer patients14, 24. Here, we assessed for the first time the 259	

combination of Montanide, CpG-B and LSP in advanced melanoma patients. We report on 260	

the induction of strong and long-lasting polyspecific CD8 and CD4 T-cell responses, with T-261	

cells able to recognize and kill tumor cells, and the generation of specific antibodies. By in-262	

depth characterization of the induced CD4 T-cell responses, we identified a novel, 263	

immunodominant HLA-DR7 restricted NY-ESO-1 epitope, that triggers CD4 T-cells 264	

detectable directly ex vivo in all evaluable patients. Hence, combination of LSP and CpG-B 265	

represents an attractive immunotherapy strategy in cancer patients, beyond virus-driven 266	

tumors. 267	

 268	

DNA containing CG repeats, mimicked by CpG-ODN, ligate TLR9 and induce production of 269	

TNFα (CpG-B) or IFNα (CpG-A). Thus, CpG-ODN are considered the most advanced danger 270	

signals for the development of adjuvants for immunotherapy. CpG-A ODNs spontaneously 271	

assembly in nanoparticles26 and have been shown to induce tumor specific CD8 T-cell 272	

responses in VLP based vaccines27. Yet, current evidence suggests that CpG-B might be 273	

superior, as previously reported by us and others in adjuvanted short peptide- and protein-274	

based trials2, 3, 23, 28-30. 275	

Here, we show that the combination of CpG-B and a 30-amino acid long peptide is safe and 276	

well tolerated by the majority of the patients. Short peptide-based vaccines have the 277	

disadvantage to be limited for use in selected cohorts of HLA-compatible patients, and harbor 278	

the potential hazard to directly bind to MHC molecules and induce tolerance31. In contrast, 279	

full protein-based vaccines depend on processing for epitope generation, lead to a broad 280	
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spectrum of T-cell epitopes and induce antibody responses; however, they are expensive, 281	

might lead to the generation of poorly immunogenic epitopes, and are often suboptimal in 282	

inducing CD8 T-cell responses32. Therefore, selection of strong and immunogenic LSP has 283	

proven interesting. Hence, patients with HPV-driven pre-malignant and malignant tumors 284	

treated with E6/E7 LSP show immunological10, 11, 33, preclinical and clinical benefits12, 34, and 285	

combination of a TLR3 agonist with overlapping LSP from NY-ESO-1 also resulted in 286	

significant T-cell induction in ovarian cancer patients14, 24. Here, we observe early onset, 287	

highly significant, sustained NY-ESO-1-specific CD4 T-cell responses, followed by very high 288	

frequencies of specific CD8 T-cells, in all patients. Importantly, kinetics of CD8 T-cell 289	

responses are delayed compared to CD4 T-cells, suggesting that helper CD4 T-cells35 and 290	

CpG induced DC-activation might play a critical role in activating and sustaining the effector 291	

phase of CD8 T-cells. Moreover, by deconvoluting the specific T-cell responses using 292	

individual overlapping peptides, we show that CD8 T-cells recognize different regions of the 293	

LSP, while CD4 T-cell responses are confined to a common stretch of the LSP (aa 83-97). 294	

These data suggest that in contrast to short peptide and protein vaccination, the use of a LSP 295	

allows generation of multiple MHC class I epitopes36, likely favored by the presence of CpG. 296	

Immunodominant regions for CD8 T-cells in the LSP sequence are heterogeneous and 297	

probably linked to the MHC class I of the patients. HLA-B35+ patients showed directly ex 298	

vivo detectable CD8 T-cell responses to a known NY-ESO-1-B35 epitope, while HLA-B35- 299	

patients mounted responses to other regions of the LSP, including putative novel MHC class I 300	

epitopes. In contrast, different MHC class II molecules might efficiently bind peptides 301	

processed from the region 83-97 and promiscuously present the same peptide, as previously 302	

shown by us and others for other epitopes from tumor-associated antigens17, 37. In that regard, 303	

numerous publications have reported on the immunogenicity of NY-ESO-1, and in particular 304	

of the protein region 87-11117, 18, 20, 38. Mandic et al. previously reported on the 305	



	

	 15	

characterization of a CD4 T-cell clone recognizing the epitope 87-101 presented by HLA-306	

DR7 transfected cells17, By fine mapping of specific CD4 T-cell responses in our cohort of 307	

HLA-DR7+ patients, we identified NY-ESO-1 87-99 as a minimal, immunogenic epitope 308	

presented by HLA-DR7. Importantly, the presence of directly ex vivo detectable DR7-309	

restricted NY-ESO-1-specific CD4 T-cells in patients even before immunization convincingly 310	

show the endogenous generation of this epitope. Given the abundance of this HLA in the 311	

Caucasian population (25%) further evaluation of directly ex vivo and in vitro expanded 312	

DR7/NY-ESO-1-specific CD4 T-cells is warranted. By comparing frequencies of total 313	

cytokine+ CD4 T-cells to those of multimer+ CD4 T-cells after IVS, our initial quantification 314	

points towards a dominant contribution of the DR7-restricted response to the total specific T-315	

cell response. Furthermore, phenotypic and functional characterization of DR7/NY-ESO-1 T-316	

cells indicates a predominant Th1 polarization. Yet, by stimulating specific clones with high 317	

peptide doses we observed secretion of Type-2 cytokines, arguing for plasticity and 318	

polyfunctionality of these cells. In that regard, it was previously reported both in mice and 319	

primates that TLR9 agonists induce potent antitumor effects, through induction of adaptive 320	

Th1 cellular responses. Inversely, Montanide seems to favor Th2 differentiation of vaccine-321	

induced TAA-specific CD4 T-cells39, suggesting that a careful evaluation of adjuvant and 322	

peptide doses are needed to optimize vaccinations based on LSP with CpG-B/Montanide 323	

combination, as compared to other adjuvants. In addition, caution will be needed when LSP 324	

and potent molecularly-defined immune adjuvants are used, in order to avoid life threatening 325	

immune responses and vaccine toxicity, as reported in a murine study using HY-LSP 326	

combined with CpG40. Nevertheless, an advantage in the utilization of TLR9 agonists, but not 327	

TLR4, TLR5 or TLR7-agonists41, is the ability of CpG to safely tilt the immunologic balance 328	

towards effector rather than regulatory T-cells 29, 42, thus favoring the overcoming of immune 329	

tolerance. The direct ex vivo phenotypic characterization of DR7/NY-ESO-1 CD4 T-cells 330	
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showed very low levels of regulatory T-cells upon immunization (data not shown), in line 331	

with our previous results29. 332	

Finally, beside Type 1 cytokine secretion upon co-culture with HLA-matched tumor cells, 333	

DR7/NY-ESO-1 CD4 T-cells were also able to directly kill targets. Importantly, beside 334	

implications of killer specific CD4 T-cells against viruses, recent reports on killer CD4 T-335	

cells in solid tumors have emerged43. It was recently reported on the potent rejection of 336	

melanoma in lymphopenic mice after transfer of small numbers of naive CD4 T-cells in 337	

combination with CTLA-4 blockade44. Similarly, co-culture of antigen-specific CD4 T-cells 338	

obtained from patients treated with anti-CTLA-4 antibodies specifically recognized and killed 339	

tumors45. In parallel, an increased killing capacity of specific CD4 T-cells was triggered via 340	

OX40/OX40L in combination with chemotherapy46. Additional work is needed to define the 341	

exact contribution of these cells to tumor eradication and the potential involvement of CpG-B 342	

in their generation. Moreover, it will be of interest to determine antigen recognition of 343	

endogenously processed antigens by tumor cells as compared to professional APCs. In this 344	

context, it has recently been shown that in addition to endosomal/lysosomal proteases that are 345	

typically involved in MHC class II antigen processing, other pathways usually used for MHC 346	

class I presentation, could also be involved in the presentation of intracellular NY-ESO-1 on 347	

MHC class II by ovarian tumor cells47. Thus, these observations suggest that inclusion of 348	

multiple LSP from different TAA in optimized vaccine formulations might exploit these 349	

novel pathways, favor the induction of epitope spreading and promote the generation of 350	

robust and combined CD8 and CD4 T-cell, and humoral responses. 351	

We did not observe significant differences in the results from patients without vs. with IL-2 352	

treatment, even though a trend for stronger CD4 T-cell responses was observed in the patients 353	

receiving IL-2, at the early immunomonitoring time points. This contradicts previous studies 354	
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showing that frequencies of tumor-antigen specific T-cells are reduced in the blood of patients 355	

treated with low dose IL-2, likely due to T-cell emigration into peripheral tissues48, 49. 356	

However, the IL-2 doses delivered in our study were very low, and therefore perhaps without 357	

significant consequences for T-cell functions. Despite the very low doses, patients 358	

experienced many adverse events typical for IL-2 treatment. The maximally tolerated dose 359	

was as low as 1 Mio UI/m2/day, thus significantly lower than what is conventionally regarded 360	

as low dose IL-2 therapy. We suspect that the concomitant treatment with CpG-B may have 361	

contributed to this relatively high toxicity, because previous peptide/Montanide vaccination 362	

studies without CpG showed lower toxicity despite higher IL-2 doses50. However, a direct 363	

comparison is required to determine a potential role of CpG-B in IL-2 toxicity. 364	

Finally, we observed a trend for longer overall and progression-free survival in patients with 365	

above median levels of IFNγ+ NY-ESO-1-specific CD4 T-cells. However, beside the 8 366	

patients that remained without evidence of disease throughout the study, the others 367	

experienced progressive disease. The discrepancy between strong immunological and only 368	

modest clinical responses might be due to the fact our trial was performed in advanced 369	

melanoma patients (stage III/IV). In addition, we monitored T-cell responses in the circulation, 370	

but not at tumor site. We and others previously showed that local tumor-derived factors might 371	

block efficient immune responses in tumors2. Future studies on tumor-infiltrating 372	

lymphocytes in patients receiving LSP combined with CpG will provide additional 373	

information on T-cell fitness directly at tumor site. 374	

In conclusion, the high immunogenicity power of NY-ESO-179-108 LSP combined with CpG-375	

B, the relatively low synthesis costs and the relative ease of production defines this vaccine 376	

formulation as a great candidate to be explored for cancer immunotherapy.  377	
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MATERIALS AND METHODS 378	

 379	

Study Design, Patients and Treatment 380	

 381	

This is a phase I vaccination study of stage III and IV (American Joint Committee on Cancer-382	

AJCC) malignant melanoma patients [1.1]. The vaccines were composed of clinical-grade 383	

antigenic peptides, CpG-B 7909/PF-3512676 (Pfizer Inc) and Montanide ISA-51 (Seppic SA) 384	

and were administered subcutaneously (s.c.). Antigenic peptides were the 30-amino acid long 385	

NY-ESO-179-108 peptide (for all patients), and the short HLA-A2 restricted peptides Melan-386	

A26-35 (native EAAGIGILTV), Melan-A26-35(A27L) (analog ELAGIGILTV) and MAGE-A10254-387	

262 (GLYDGMEHL) (only for HLA-A2 positive patients). Vaccinations were administered in 388	

cycles of 4 monthly vaccines with intervals of 2 months between the cycles (Figure 1). 389	

 390	

The primary objectives of the study were safety and specific cellular immune responses to 391	

NY-ESO-1, Melan-A and MAGE-A10. The secondary endpoints were tumor responses and 392	

disease status. Nineteen patients were enrolled in this study and first assigned to group A 393	

(without IL-2), followed by group B with supplementary daily low dose IL-2 (Novartis) s.c. 394	

for 10 days after each vaccination, starting the day of the second vaccination up to the end of 395	

cycle 3. IL-2 was administered following a dose escalation scheme (3 doses injected: 0.5, 1 or 396	

2 Mio UI/m2/day). For inclusion, tumors had to express either NY-ESO-1 (LAGE-2) or 397	

LAGE-1, and Melan-A in HLA-A2 positive patients (HLA haplotype analysis and 398	

immunohistochemistry/PCR for TAA expression was performed on tumor biopsies, after 399	

given written informed consent [1.1]). 400	

. 401	

 402	
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Administered vaccines were composed of 0.5 mg NY-ESO-179-108 peptide, 1 mg CpG-B 403	

7909/PF-3512676 and 0.5 ml Montanide (syringe 1). HLA-A2+ patients received a second 404	

injection (syringe 2), with the short Melan-A26-35 and MAGE-A10254-262 peptides, 1 mg CpG-405	

B and 0.5 ml Montanide. The three vaccines of the cycle 3 were formulated without 406	

Montanide. The short peptides were given in a “prime-boost” approach, as follows: for the 407	

first cycle 0.1 mg Melan-A26-35 natural peptide and 0.02 mg MAGE-A10254-262 peptide, and 408	

for the following cycles 0.1 mg Melan-A26-35(A27L) analog peptide and 0.1 mg MAGE-A10254-409	

262 peptide. A total of 19 immunocompetent patients (5 female and 14 male) with median age 410	

of 59 years old were vaccinated [1.1]. 411	

 412	

Disease status was assessed every 3 months for patients with measurable disease and every 6 413	

months for patients with no measurable disease. The study (NCT00112242) sponsored by the 414	

Ludwig Center for Cancer Research was approved by the Lausanne University Hospital 415	

Ethics Committee and written informed consent was obtained from patients prior to enrolment. 416	

Safety was evaluated according to the National Cancer Institute CTC Scale (Version 2.0; 417	

April 30, 1999). 418	

This study was performed under GLP conditions [5.1], following SOP developed in the 419	

laboratory [5.4] and using investigative assays [5.5]. 420	

 421	

Blood collection and PBMCs isolation 422	

 423	

Heparinized blood samples were withdrawn by venipuncture [1.2, 1.3, 1.4] at baseline, after 2 424	

and 4 vaccinations during the first cycle and at the end of each of the following cycles. 425	

Peripheral blood mononuclear cells were isolated by Lymphoprep centrifugation gradient 426	

[1.6] from blood kept at room temperature [1.5] no longer than 4 hours following blood 427	

drawn [1.7]. Isolated PBMCs were immediately stored in cryovials at 10 x 106 cells in 1ml of 428	
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cold 50% RPMI (Gibco), 40% FCS (PAA laboratories) and 10% DMSO freezing medium 429	

(Sigma Aldrich) [1.9, 1.12] at -80°C, and further into liquid nitrogen until use [1.10, 1.11]. 430	

Before freezing cells were counted using trypan blue [1.20] and viability was >95% [1.15, 431	

1.16]. 432	

Cryopreserved cells were thawed at 37°C, washed once and resuspended at the desired 433	

concentration in RPMI supplemented with 10% FCS, 1.15% nonessential amino acids 434	

(Sigma), 1% penicillin�streptomycin (Sigma), 1% Hepes buffer (Gibco, Life Tchnologies) 435	

[2.3]. Cells were resuspended in RPMI (Gibco), 8% Human Serum (pooled human sera from 436	

healthy donors’ blood from the local blood bank), 1% nonessential amino acids, 1% 437	

penicillin-streptomycin, 1% L. glutamine (Gibco, Life Technologies), 1% sodium pyruvate 438	

(Gibco, Life Technologies), and 0.1% 2-mercaptoethanol (Sigma) [2.1] and counted using 439	

trypan blue [1.20] with viability >80% [1.15, 1.17]. 440	

Cell media supplemented with serum were negative from previous tests for extracellular 441	

contamination sources [2.2]. 442	

 443	

Peptide/MHC Multimers 444	

 445	

Fluorescent mulitmers were: HLA-B35/NY-ESO-194-104, HLA-DR*0701/NY-ESO-187-99. All 446	

multimers were provided by TCMetrix [2.4]. 447	

 448	

In vitro peptide stimulation (IVS) of CD8 and CD4 T-cells 449	

 450	

Patients’ CD8 T-cells were purified by positive selection using MACS isolation microbeads 451	

(Miltenyi), followed by CD4 T-cell positive selection starting from the CD8 negative fraction. 452	

Positive T-cells were stimulated in vitro (IVS) and CD4/CD8 depleted PBMCs were 453	

irradiated (30 Gy) and used as feeders for stimulation of the cultures [2.4]. T-cells and 454	

autologous APCs were mixed at 1:1 ratio and co-cultured for 14 days with three 18-mers 455	

(NY-ESO-179-96, NY-ESO-185-102, NY-ESO-191-108) spanning the entire vaccine NY-ESO-179-456	

108 sequence, with 12 amino acids overlaps, at 2 µM, in RPMI 1640 medium supplemented 457	
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with 8% heat inactivated, pooled human serum. In parallel, a CD4 T-cell blast culture was set 458	

up using 1 µg/ml PHA. At day 2, 100 U/ml IL-2 was added and cultured until day 14 [2.1, 459	

2.4]. 460	

NY-ESO-179-108-specific T-cell responses were evaluated after IVS in a 6-hour re-challenge 461	

experiment using overlapping peptide pools (2 µM final concentration) in the presence of 462	

Brefeldin A (10 µg/ml): for evaluation of CD4 T-cell responses 10 13-mer peptides 463	

overlapping by 11 amino acids were used, while for CD8 T-cell responses 22 9-mer peptides 464	

were pulsed on autologous PHA CD4 T-cell blasts for 1 hour, before addition to the CD8 T-465	

cells [2.4]. As negative control, cells from the same cultures were left unchallenged and as 466	

positive control, 2 wells for CD8 and CD4 T-cells were stimulated with PMA/Ionomycin in 467	

the presence of Brefeldin A (Figure 2) [2.5]. 468	

 469	

NY-ESO-1 restimulated T-cells were evaluated for IFNγ, TNFα, and IL-2 production and 470	

analyzed by flow cytometry. Additionally, CD4 T-cells were concomitantly analyzed for IL-5 471	

and IL-13 production. Cells were first stained for CD3-APC AF750 (BD Biosciences), CD4-472	

PB (BD Pharmingen) and CD8-ECD (Beckman Coulter) and Live/Dead Aqua (Invitrogen), 473	

followed by a fixation step. Cells were washed with buffer (PBS, 0.2% BSA, 0.2% azide, 5 474	

µM EDTA) and permeabilized with 0.1% saponin for staining for IL-2-FITC (BD 475	

Pharmingen), IFNγ-PECy7 (BD Pharmingen), TNFα-AF700 (BD Pharmingen) for read out of 476	

CD8, while CD4 T-cells were additionally stained for IL-5 and IL-13-APC (BD Biosciences) 477	

[2.4]. Samples were aquired on a Gallios flow cytometer (Beckman Coulter) and data were 478	

analyzed using FlowJo software (TreeStar) [3.1, 3.2]. The PMT voltages were adjusted for 479	

each fluorescence channel using unstained PBMCs and compensations were set using PBMCs 480	

stained with single antibodies according to a local SOP [3.2]. The analysis was performed on 481	

living, singlets, CD3+CD4+ or CD3+CD8+ lymphocytes [3.3]. A representative example of the 482	
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full gating strategy is shown on Supplementary Figure 6 [3.4]. Dot plots can be provided per 483	

request [4.3]. Stainings were considered as positive for each measured cytokine if the 484	

stimulated responses were at least three times higher than the unstimulated control [4.4] as 485	

defined during the study design [4.6]. 486	

 487	

Generation of HLA-DR7-restricted NY-ESO-187-99-specific CD4 T-cell clones and lines 488	

 489	

Polyclonal cultures from HLA-DR7 patients containing NY-ESO-187-99-specific CD4 T-cells 490	

were sorted using NY-ESO-187-99/HLA-DR7 multimers by fluorescence activated cell sorting 491	

following the staining panel: anti-CD4 and anti-CD3 antibodies, DAPI and PE-conjugated 492	

NY-ESO-187-99/HLA-DR7 multimer [4.6]. Clones were obtained by limiting dilution (0.5 493	

cell/well) in Terasaki plates and cultured in RPMI medium with 8% HS and 100 U/ml IL-2, 494	

10000 irradiated allogenic feeder cells per well and 1 µg/ml PHA [2.4]. Unstained cultures 495	

from the same patients were used as controls [2.5]. 496	

 497	

Direct ex vivo enumeration of HLA-DR7-restricted NY-ESO-187-99-specific CD4 T-cells 498	

 499	

PBMCs from HLA-DR7+ patients were stained directly ex vivo using a combination of PE-500	

conjugated NY-ESO-187-99/HLA-DR7 multimer, followed by staining using PerCP-Cy5.5-501	

conjugated anti-CD3 (Biolegend), AF700-conjugated anti-CD45RA (Biolegend), APC-H7 502	

conjugated anti-CD4 (BD Bioscience) and Vivid Aqua (Invitrogen). 503	

 504	

Killing Assay  505	

 506	
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The specific lytic activity of the NY-ESO-187-99 CD4 T-cell lines was assessed against HLA-507	

DR7+ (T331A; GEF I; GEF II) or HLA-DR7- (T1415A) melanoma cell lines, pre-treated or 508	

not with hrIFNγ (50 U/ml, Peprotech) for 48 hours [2.4]. Cells were labeled with 51Chromium 509	

(Amersham Biosciences), loaded or not with peptides, and washed [2.4]. Labeled target cells 510	

were incubated with effectors at the indicated ratio for 4 hours at 37°C [2.4]. The supernatants 511	

were harvested and radioactivity was counted in an automatic gamma-counter [3.1]. The 512	

percentage of specific lysis was determined using the formula: (experimental-spontaneous 513	

release)/(maximum-spontaneous) x 100. Internal controls were included in each assay to 514	

measure the spontaneous release (target cells alone) and the total release (target cells with 1 515	

M HCl) [2.5]. 516	

 517	

IFNγ ELISA 518	

 519	

NY-ESO-187-99 CD4 T-cells were co-cultured at 1:1 ratio with HLA-DR7+ (T331A; GEF I; 520	

GEF II) or HLA-DR7- (T1415A) melanoma cell lines, pre-treated or not with hrIFNγ (50 521	

U/ml, Peptrotech) for 48 hours, pulsed or not with peptides [2.4]. Supernatants from 522	

stimulated conditions and unstimulated controls [2.5] were harvested after 24 hours and IFNγ 523	

ELISA was performed using the Human BD OptEIA ELISA set (BD Biosciences) [2.4, 3.1]. 524	

 525	

IFNγ ELISPOT 526	

 527	

The Elispot was performed using the ELISpotPRO kit for Human IFN-γ from MABTECH 528	

(3420-2APT-10), following the standard supplier instructions. CD8 T-cells after IVS were 529	

thawed and rested in presence of 100 U/ml IL-2 for two days before use. The cell number per 530	

well was adjusted to have maximum 3% of cytokine producing cells per well to avoid 531	
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saturation of the membrane (values taken from the previous immune monitoring). For the 532	

analysis the values had been normalized to equal percentages of spot forming units (SFU) 533	

[2.4]. 534	

 535	

Serology 536	

 537	

Recombinant NY-ESO-1 protein and control dihydrofolate reductase (DHFR) proteins were 538	

used to coat plates and measure specific serum antibody levels in ELISA as previously 539	

described14 [2.4, 2.5]. A reciprocal titer was estimated from optical density readings of 540	

serially diluted plasma samples. Negative control sera from healthy individual and positive 541	

control sera for each antigen from patients with cancer were always included [2.5]. The anti-542	

human immunoglobulin antibodies used as secondary reagents were: alkaline phosphatase 543	

(AP)-labeled goat-anti-human IgG (polyclonal antisera; Southern Biotech), biotinylated 544	

mouse-anti-human IgG1 (Clone JDC-1; BD Pharmingen), AP-labeled mouse anti-human 545	

IgG2 (clone HP6002; Southern Biotech), AP-labeled mouse anti-human IgG3 (clone HP6050; 546	

Southern Biotech), AP-labeled mouse anti-human IgG4 (clone HP6023; Southern Biotech), 547	

AP-labeled goat-anti-human IgA (polyclonal antisera; Southern Biotech), AP-labeled mouse-548	

anti-human IgD-AP (clone IADB6; Southern Biotech), AP-labeled goat-anti-human IgE 549	

(Clone HP6029; Southern Biotech) [2.4], and AP-labeled goat-anti-human IgM (polyclonal 550	

antisera; Southern Biotech). To be considered significant, reciprocal titers had to be more than 551	

100 [4.4]. 552	

 553	

Tumor responses 554	

 555	

In patients with measurable disease, tumor responses were classified as follows: complete 556	
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response as disappearance of all the tumor signs for at least 4 weeks, partial response as 557	

decrease of at least 50% of all tumor lesions for at least 4 weeks, minor response as decrease 558	

of all the lesions by at least 25% for the same minimum period of time, stable disease as no 559	

more than 25% changes in size of previous lesions for the same minimum period of time, 560	

progressive disease as appearance of new lesions or increased lesions by at least 25% in size, 561	

and major progressive disease as tumor progression requiring other standard therapy 562	

comprising chemotherapy and /or radiotherapy [4.6]. 563	

 564	

Statistical Analyses 565	

 566	

In IVS, baseline values from the same unstimulated CD8 and CD4 T-cell cultures were used 567	

as negative control and excluded from the peptide challenged responses [2.5]. For each 568	

patient and each time point at least 6 individual cultures were analyzed [2.8]. Vaccination 569	

effects on tumor specific CD8 and CD4 T-cell responses were analyzed according to the 570	

vaccination schedule and relative to the same results at study entry. For statistical analysis 571	

unpaired Kruskal-Wallis test was used. For all analyses, a p value less than 0.05 was 572	

considered as statistically significant and labeled with *, very significant less than 0.01 with 573	

**, strongly significant less than 0.001 with *** and less than 0.0001 with **** [4.4]. Not 574	

significant differences were labeled with ns.  575	
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FIGURE LEGENDS 788	

 789	

Figure 1: Study design. Vaccinations (V) consisted of three cycles (C1-C3) of four monthly 790	

subcutaneous (s.c.) injections of 0.5 mg of NY-ESO-179-108 long peptide. HLA-A2+ patients 791	

were also vaccinated with 0.1 mg of Melan-A26-35 native peptide and 20µg of Mage-A10254-262 792	

peptide in the first cycle, followed by 0.1 mg Melan-A26-35(A27L) analog peptide and 0.1 mg of 793	

Mage-A10254-262 peptide in the following cycles. In addition, Group B patients were treated 794	

with low dose rh-IL-2. Peptides for HLA-A2+ patients were emulsified in 1 ml Montanide® 795	

ISA-51 and 2 mg CpG-7909/PF-3512676, peptides for HLA-A2- patients were emulsified in 796	

0.5 ml Montanide® ISA-51 and 1 mg CpG-7909/PF-3512676. The 3 vaccines of the cycle 3 797	

were formulated without Montanide. Blood samples were withdrawn and PBMC were 798	

prepared at baseline (100 ml), after 2 vaccinations (2 samples at 7 days interval: 30 and 100 799	

ml) and after 4 vaccinations (2 samples at 7 days interval: 30 and 100 ml) for the assessment 800	

of immune responses. 801	

 802	

Figure 2: Specific CD8 T-cell responses before and after vaccination with NY-ESO-1 803	

LSP. A. Representative example of a NY-ESO-1-specific CD8 T-cell response 14 days after 804	

IVS. Cytokine secreting cells are enumerated after 6-hour challenging of the expanded cells 805	

with the NY-ESO-1 pool of overlapping peptides, or without any peptide as control. B. 806	

Details of longitudinal NY-ESO-1-specific CD8 T-cell responses (IFNγ, TNFα, and IL-2) 807	

measured individually in each patient before and during vaccination. C. Polyfunctionality of 808	

NY-ESO-1-specific CD8 T-cell responses assessed as IFNγ+TNFα+ or IFNγ+TNFα+IL-2+ 809	

cells, measured individually in each patient before and during vaccination. D. Quantification 810	

of the contribution of each individual cytokine (IFNγ, TNFα and IL-2) to the NY-ESO-1-811	

specific CD8 T-cell response, before and during vaccination. The mean of the response for 812	
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each cytokine is shown for all patients grouped as % of the total response (that is defined as 813	

100%). The	magnitude	(mean	for	all	patients	grouped)	of	the	total	response	at	each	time	814	

point	is	indicated	on	the	bottom	of	each	pie. 815	

 816	

Figure 3: Specific CD4 T-cell responses before and after vaccination with NY-ESO-1 817	

LSP. A. Representative example of a NY-ESO-1-specific CD4 T-cell response 14 days after 818	

IVS. Cytokine secreting cells are enumerated after 6-hour challenging of the expanded cells 819	

with the NY-ESO-1 pool of overlapping peptides, or without any peptide as control. B. 820	

Details of longitudinal NY-ESO-1-specific CD4 T-cell responses (IFNγ, TNFα, IL2 and IL-821	

13) measured individually in each patient before and during vaccination. C. Polyfunctionality 822	

of NY-ESO-1-specific CD4 T-cell responses assessed as IFNγ+TNFα+, or IFNγ+TNFα+IL-2+, 823	

or IFNγ+TNFα+IL-2+IL-13+ cells, measured individually in each patient before and during 824	

vaccination. D. Quantification of the contribution of each individual cytokine (IFNγ, TNFα, 825	

IL-13 and IL-2) to the NY-ESO-1-specific CD4 T-cell responses, before and during 826	

vaccination. The mean of the response for each cytokine is shown for all patients grouped 827	

as % of the total response (that is defined as 100%). The	magnitude	(mean	for	all	patients	828	

grouped)	of	the	total	response	at	each	time	point	is	indicated	on	the	bottom	of	each	pie. 829	

 830	

Figure 4: Summary of NY-ESO-1-specific CD8 and CD4 T-cell responses, and antibody 831	

responses. Cellular responses were measured 14 days after IVS and humoral responses were 832	

analysed by ELISA against the NY-ESO-1 protein in plasma collected from enrolled patients’ 833	

pre- treatment and during treatment as indicated. 834	

 835	

Figure 5: Mapping of NY-ESO-1-specific CD8 and CD4 T-cell responses. A. Using 836	

individual overlapping peptides covering the entire NY-ESO-1 LSP sequence, NY-ESO-1-837	
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specific CD8 T-cell responses (n=5 patients) and CD4 T-cell responses (n=9 patients) were 838	

mapped, by monitoring IFNγ+TNFα (CD8 T-cells) and IFNγ (CD4 T-cells) production after 839	

6-hour peptide challenge. B. Representative example of NY-ESO-194-104/B35 multimer 840	

staining directly ex vivo and after IVS of CD8 T-cells from HLA-B35+ patients. C. MHC 841	

class II restriction of NY-ESO-1-specific CD4 T-cell responses was assessed in a 6-hour 842	

peptide challenge in the absence or presence of blocking anti-DR, -DP, or DQ antibodies. 843	

Specific responses were measured by quantification of IFNγ production. D. Representative 844	

example of NY-ESO-187-99/DR7 multimer staining of IVS CD4 T-cells obtained from HLA-845	

DR7+ patients, before and during immunization. 846	

 847	

Figure 6: NY-ESO-187-99 peptide represents a novel MHC II epitope. A. NY-ESO-187-99-848	

specific CD4 T-cell clones were generated and stained with NY-ESO-1/DR7 multimers 849	

(upper panels). Reactivity to specific peptide was tested and EC50 was calculated for both 850	

Type1 and Type2 cytokines (lower panels). B. NY-ESO-187-99-specific-CD4 T-cell clones 851	

were assessed for their capacity to secrete IFNγ or kill HLA-DR7+ targeT-cells, in the 852	

presence or absence of specific peptide. C. Representative example of direct ex vivo multimer 853	

staining of NY-ESO-187-99-specific-CD4 T-cells in HLA-DR7+ patients. D. Summary of 854	

frequencies of direct ex vivo detectable NY-ESO-187-99-specific-CD4 T-cells in HLA-DR7+ 855	

patients. 856	

 857	

Figure 7: Overall survival and progression-free survival depending on the maximal level 858	

of IFNγ+ NY-ESO-1-specific CD8 T-cell (A) and CD4 T-cell (B) frequencies reached during 859	

the study after IVS. A. Overall survival (left panel) and progression-free survival (right panel) 860	

in patients with low frequencies of IFNγ+ NY-ESO-1-specific CD8 T-cells (lower than the 861	

median, n=9) and in patients with high frequencies of IFNγ+ NY-ESO-1-specific CD8 T-cells 862	
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(higher than the median, n=9). B. Overall survival (left panel) and progression-free survival 863	

(right panel) in patients with low frequencies of IFNγ+ NY-ESO-1-specific CD4 T-cells 864	

(lower than the median, n=9) and in patients with high frequencies of IFNγ+ NY-ESO-1-865	

specific CD4 T-cells (higher than the median, n=9). 	  866	
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Table I: Patients’ characteristics 867	

868	
   869	

Study	entry Study	end Best	
response

Group	A	(no	IL-2)
LAU	986 M 35 IIIA 12 NED NED NED 63.8 63.8
LAU	205 M 36 IV 2 ED PD PD 73.6 8.5 PD
LAU	331 M 45 IV 18 NED NED NED 80.5 80.5
LAU	518 M 65 IV 9 ED PD PD 5.8 33.1 PD
LAU	1280 M 59 IIIB 8 NED PD NED 9.4 11.4 PD
LAU	1330 M 61 IIIC 8 NED PD PD 3.5 11.3 PD
LAU	1293 F 65 IV 12 NED NED NED 49.9 49.9
LAU	1286 F 31 IIIC 10 NED NED NED 71.6 71.6 Patient's	choice
LAU	1352 M 65 IIIC 12 NED PD NED 14.0 24.5
LAU	1350 M 61 IV 6 ED PD PD 3.9 34.6 PD
all	patients 2/8 60	(31-65) 10	(2-18) 32.0 33.8

Group	B	(IL-2)
LAU	1357 M 58 IIIB 12	+	IL-2 NED NED* NED 6.7 68.4
LAU	1397 F 36 IIIC 8	+	IL-2 NED PD NED 8.7 61.2 PD

LAU	1408 M 64 IIIB 1 NED PD PD 1.1 2.2 Degraded	health	
status

LAU	1415 M 46 IV 5	+	IL-2 NED PD NED 5.1 12.4 PD
LAU	1417 M 67 IIIA 8	+	IL-2 NED PD NED 8.0 55.9 PD
LAU	466 F 65 IV 2	+	IL-2 NED NED NED 41.3 41.3 Patient's	choice	
LAU	1394 M 64 IIIC 4	+	IL-2 NED PD PD 8.8 56.8 PD
LAU	1402 F 59 IIIA 4	+	IL-2 NED NED NED 49.1 49.1 Patient's	choice	
LAU	1504 M 37 IV 12 NED NED NED 20.2 20.2
all	patients 3/6 59	(36-67) 6	(1-12) 8.7 49.1

All	groups
3	-	IIIA 16	-	NED 8	-	NED 13-NED
3	-	IIIB 3	-	ED
5	-	IIIC 0	-	PD 11	-	PD 6-PD
8	-	IV

NED:	no	evidence	of	disease
ED:	evidence	of	disease
PD:	progressive	disease
*	The	patient	was	rendered	tumor-free	by	resection	of	a	left	axillary	metastase,	after	V6	

Discontinuation	
reason

Tumor	outcome Disease	Free	
Survival	
(months)

Overal	
Survival	
(months)

all	patients 5/146 59	(31-67) 8	(2-18)

Vaccines	
received

9.4 41.3

AJCC:	American	Joint	Committee	on	Cancer

Study	vaccination	
groups	 Patient	ID Sex	(F/M) Age	at	study	

entry

AJCC	tumor	
staging	at	
study	entry
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Table II: Summary of frequencies of NY-ESO-1/DR7-specific CD4 T-cells, detected 870	
after 1 round of IVS in HLA-DR7+ patients 871	
 872	

 873	

LAU 331 19.60 ND ND 6.50 1.38 6.74
LAU 1293 2.94 2.52 5.00 ND ND ND
LAU 1352 1.72 ND 1.54 ND 4.91 8.62
LAU 1350 0.13 0.26 ND 6.80 ND ND
LAU 1357 0.18 0.55 ND 1.41 1.44 ND
LAU 1397 0.08 9.67 9.94 ND 3.35 ND
LAU 466 0.10 3.69 ND ND ND ND

Patient ID 12vacc.Before 2vacc. 4vacc. 6vacc. 8vacc.

ND: not done 



1. vaccination cycle (C1) 2. vaccination cycle (C2) 
3. vaccination cycle (C3) 

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 

PBMC PBMC PBMC PBMC PBMC 

IL-2 IL-2 IL-2 IL-2 IL-2 IL-2 IL-2 IL-2 IL-2 IL-2 IL-2 Group B 
(IL-2) 

Day:       -7     0         29 32 39          57          85 88 95          141    169    197    225 235          281   309  337   365 375 

Figure 1 Baumgaertner P., et al. 



Figure 2 Baumgaertner P., et al. 
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Figure 3  Baumgaertner P., et al. 
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Figure 5  Baumgaertner P., et al. 
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Figure 6  Baumgaertner P., et al. 
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Figure 7 Baumgaertner P., et al. 
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Supplemental Table I: HLA-typing of the patients.  Baumgaertner P., et al. 

Group&A&(no&IL,2)
LAU$986 A*0201&A30(19);&B49(21)&Bx;&C*04&C*07;&DRB1*0101,&*1102;&DPB1*0401,&*1401,&DRw52neg
LAU$205 A*0201&A3;&B*3501/27&B51;&DRB1*0101,&*13;&DPB1*0401,&*0402/0602;&DRw52neg
LAU$331 A*0201&A29(19);&B8&B44(12);&C*07&C*1601;&DRB1*0301,&*0701;&&DPB1*0101,&*1101;&DRw52pos
LAU$518 A23(9)&A31(19);&B39(16)&B44(12);&C*05&C*07;&DRB1*0401,&*0404;&DPB1*0401,&*0601;&DRw52neg
LAU$1280 A*03&A*29;&B*07&B*44;&C*07&C*1601;&DRB1*0801,&*1501;&DPB1*0401,&*2001;&DRw52neg
LAU$1330 A1&A26(10);&B44(12)&B35;&C*04&C*07;&DRB1*0401,&*12;&DPB1*0201,&*0401;&DRw52neg
LAU$1293 A3&A26(10);&B13&B56(22);&C*01&C*06;&DRB1*0701,&*0801;&DPB1*0301,&*0401;&DRw52neg
LAU$1286 A1&A*0201;&B8&B63(15);&C*07&C@;&DRB1*1102,&*1302;&DPB1*0201,&*1301;&DRw52pos
LAU$1352 A*0201&A3;&B35&B51;&C*04&C*16;&DRB1*0701,&*0801;&DPB1*0401,&*0402;&DRw52neg
LAU$1350 A*0205&A3;&B14&B15;&C*08&C*12;&DRB1*0701,&@&;&DPB1*0401,&@;&DRw52neg

Group&B&(IL,2)
LAU$1357 A*01&A*01;&B*07&B*44;&C*05&C*07;&DRB1*0701,&*1501;&DPB1*0401,&*1601
LAU$1397 A*0201&A1;&B13&B57;&DR&*0701,&*0701;&DQ&*0202,&*03;&DP&*0401,&*1701/&DRb&neg;&DR1&*07*01
LAU$1408 A*01&A*24;&B*14&B*44;&DR&*0102,&*0701;&DQ&*0202,&*05;&DP&*1101,&*1701
LAU$1415 A*01&A*33;&B*08&B*58;&DR&*03,&*13;&DQ&*0201,&*0609;&DP&*0501,&*2401;&DR52&*0101,&*0301;&DRw52&pos
LAU$1417 A*01&A*24;&B*35&B*51;&DR&*0101,&*1104;&DQ&*03,&*05;&DP&*0402,&*1001/&;&DRw52&neg
LAU$466 A2&A26;&B44(12)&B35or75?;&DR*0701,&*1104;&DQ*0202,&*03;&DP&*0401,&*1101/&DRw52&neg
LAU$1394 A3&A68;&B18&B51;&DR*1104,&*13;&DQ&*03,&*06;&DP&*0402,&*1001;&DR52&*0101,&*0202/&DRw52&neg
LAU$1402 A*26&A*33;&B*27&B*35;&DR&*04,&*1303;&DQ&*03,&*03;&DP&*0201,&*0401;&DRw52&neg
LAU$1504 A*01&A*11;&B*35&B*51;&DR&*04,&*11;&DQ&*03,&*03;&DP&*0301,&*0402

Patient$ID HLA$typingStudy$vaccination$
groups



Supplemental Table II: Number of vaccination cycles completed and 
vaccines administered.  

Baumgaertner P., et al. 

Patients(
completed(
Cycle(1

Patients(
completed(
Cycle(2

Patients(
completed(
Cycle(3

Patients(
received(
Boost

Total(vaccines(
administered

Max(number(
vaccines(received(

per(patient
All#groups 16/19 .12/14 6/8 1 153 18

Group#A 9/10 8/9 4/6 1 97 18
Group#B 7/9 4/5 2/2 0 56 12



CTCAE:	Common	Terminology	Criteria	for	Adverse	Events	(AEs),	(Version	2.0,	April	30,	1999)	
SOC:	System	Organ	Class.		
The	MedDRA	terminology	was	developed	as	a	medically	validated	medical	terminology	for	uJlizaJon	throughout	the	regulatory	process.	A	SOC	is	the	highest	level	of	the	hierarchy	of	MedDRA	dicJonary		and	
disJnguished	by	anatomical	or	physiological	system,	eJology,	or	purpose.	CTCAE	terms	are	grouped	by	MedDRA	Primary	SOCs.	Within	each	SOC,	AEs	are	listed	and	accompanied	by	descripJons	of	severity	(Grade).	
	
CTCAE	severity	(grade)	scale:	1=mild,	2=moderate,	3=severe	and	4=life	threatening	

	SOC	 n	of	events n	of	patients %	of	patients n	of	events n	of	patients %	of	patients nof	events n	of	patients %	of	patients n	of	events n	of	patients %	of	patients

CARDIAC	DISORDERS 1 1 5 1 1 5 0 0 0 0 0 0

EAR	AND	LABYRINTH	DISORDERS 1 1 5 0 0 0 0 0 0 0 0 0

EYE	DISORDERS 5 2 11 0 0 0 0 0 0 0 0 0

GASTROINTESTINAL	DISORDERS 35 12 63 5 2 11 1 1 5 0 0 0

GENERAL	DISORDERS	AND	ADMINISTRATION	SITE	CONDITIONS 577 19 100 30 10 53 1 1 5 0 0 0

INFECTIONS	AND	INFESTATIONS 1 1 5 0 0 0 0 0 0 0 0 0

INVESTIGATIONS 3 2 11 0 0 0 0 0 0 0 0 0

METABOLISM	AND	NUTRITION	DISORDERS 2 1 5 0 0 0 0 0 0 0 0 0

MUSCULOSKELETAL	AND	CONNECTIVE	TISSUE	DISORDERS 79 11 58 15 7 37 0 0 0 0 0 0

NEOPLASMS	BENIGN,	MALIGNANT	AND	UNSPECIFIED	(INCL	CYSTS	AND	POLYPS) 1 1 5 0 0 0 0 0 0 0 0 0

NERVOUS	SYSTEM	DISORDERS 55 10 53 10 5 26 0 0 0 0 0 0

PSYCHIATRIC	DISORDERS 3 3 16 0 0 0 0 0 0 0 0 0

RESPIRATORY,	THORACIC	AND	MEDIASTINAL	DISORDERS 4 1 5 1 1 5 0 0 0 0 0 0

SKIN	AND	SUBCUTANEOUS	TISSUE	DISORDERS 9 5 26 2 2 11 0 0 0 0 0 0

VASCULAR	DISORDERS 5 4 21 0 0 0 0 0 0 0 0 0

Total	AEs 781 64 2 0

CTCAE	grade	1	adverse	events CTCAE	grade	2	adverse	events CTCAE	grade	3	adverse	events CTCAE	grade	4	adverse	events

Supplemental Table III: Toxicity profile, list of adverse events that 
were definitely, probably and possibly related to the study treatment, 
according to their CTCAE severity scale.  
 

Baumgaertner P., et al. 



Supplemental Table IV: Number of IL-2 injections administered and cumulative 
IL-2 dose received by patients in group B. 
 

Baumgaertner P., et al. 

LAU$1357 12 15$x$0.5$Mio$UI/m2$$+$
6$x$0.25$Mio$UI/m2 18$Mio$UI

LAU$1397 8 70$x$0.5$Mio$UI/m2 70$Mio$UI
LAU$1408 1 ND 0
LAU$1415 5 36$x$0.5$Mio$UI/m2$$ 36$Mio$UI

LAU$1417 8 70$x$1$Mio$UI/m2$$+$
27x$1.7$Mio$UI/m2 131.9$Mio$UI

LAU$466 2 10$x$1$Mio$UI/m2 16.7$Mio$UI
LAU$1394 4 30$x$1$Mio$UI/m2 63$Mio$UI
LAU$1402 4 25$x$1.5$Mio$UI/m2 75$Mio$UI
LAU$1504 12 ND 0

ND:$not$done

Study$
group Patient$ID Vaccines$

received ILC2$injections

Group&B

Total$cumulative$
ILC2$doses



Supplemental Figure 1 Baumgaertner P., et al. 
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Supplemental Figure 1: IVS for the detection of antigen-specific CD4 and CD8 T-cells. CD8 T-cells were purified by positive 
selection using MACS isolation microbeads (Miltenyi) according to manufacturer’s recommendations, followed by CD4 T-cell 
positive selection starting from the CD8 negative fraction, using the same method. Positive T-cells were cultured in IVS and CD4/
CD8 depleted PBMCs were irradiated (30 Gy) and used as feeders for stimulation of the cultures. T-cells (either CD4 or CD8) 
and autologous APCs were mixed at 1:1 ratio and co-cultured for 14 days with 3 18-mers (NY-ESO-179-96, NY-ESO-185-102, NY-
ESO-191-108) spanning the entire vaccine NY-ESO-179-108 sequence, with 12 amino acids overlaps at 2 µM, in medium consisting 
of RPMI 1640 supplemented with 8% hear inactivated, pooled human serum. At day 2, 100 U/ml IL-2 was added and cultures 
were continued until day 14. Each individual initial culture was splitted separately when necessary. T-cell responses were 
evaluated after IVS in a 6-hour re-challenge experiment using overlapping peptide pools (2 µM final concentration) in the 
presence of Brefeldin A (10 µg/ml): for evaluation of CD4 T-cell responses 10 13-mer peptides overlapping by 11 amino acids 
were used, while for CD8 T-cell responses 22 9-mer peptides were pulsed on autologous PHA CD4 T-cell blasts for 1 hour, 
before addition to the CD8 T-cells. As negative control, each well was left unchallenged. As positive control, 2 wells for CD4 and 
CD8 T-cells were stimulated with PMA/Ionomycin in the presence of Brefeldin A and NY-ESO-1 restimulated T-cells were stained 
intracellularly for cytokines and analyzed by flow cytometry. 
 



Supplemental Figure 2 Baumgaertner P., et al. 
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Supplemental Figure 2:  Specific CD8 T-cell responses before and after vaccination with NY-ESO-1 LSP, 
in Groups A and B. A. Details of longitudinal NY-ESO-1-specific CD8 T-cell responses (IFNγ, TNFα, and 
IL-2) measured individually in each patient in Group A (left panels) and B (right panels), before and during 
vaccination. B. Polyfunctionality of NY-ESO-1-specific CD8 T-cell responses assessed as IFNγ+TNFα+ or 
IFNγ+TNFα+IL-2+ cells, measured individually in each patient in Group A (left panels) and B (right panels), 
before and during vaccination. C. Quantification of the contribution of each individual cytokine (IFNγ, TNFα 
and IL-2) to the NY-ESO-1-specific CD8 T-cell response, before and during vaccination. The mean of the 
response for each cytokine is shown for patients in Group A (upper pies) and B (lower pies). 
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Supplemental Figure 3: Specific CD4 T-cell responses before and after vaccination with NY-ESO-1 LSP, in 
Groups A and B. A. Details of longitudinal NY-ESO-1-specific CD4 T-cell responses (IFNγ, TNFα, IL2 and 
IL-13) measured individually in each patient in Group A (left panels) and B (right panels), before and during 
vaccination. B. Polyfunctionality of NY-ESO-1 specific CD4 T-cell responses assessed as IFNγ+TNFα+, or 
IFNγ+TNFα+IL-2+, or IFNγ+TNFα+IL-2+IL-13+ cells, measured individually in each patient in Group A (left 
panel) and B (right panel), before and during vaccination. C. Quantification of the contribution of each 
individual cytokine (IFNγ, TNFα, IL-13 and IL-2) to the NY-ESO-1-specific CD4 T-cell responses, before and 
during vaccination. The mean of the response for each cytokine is shown for patients in Group A (upper pies) 
and B (lower pies). 
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Supplemental Figure 4: Tumor antigen specific humoral responses. A. Plasma from patients before and 
during immunization was analyzed by ELISA for reactivity against recombinant NY-ESO-1, LAGE-1, Melan-
A, and MAGE-A10 proteins. Reciprocal titers were determined as described in Materials and methods part. 
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Supplemental Figure 5 Baumgaertner P., et al. 

Supplemental Figure 5: Mapping and avidity evaluation of NY-ESO-1-specific CD8 T-cell responses in individual 
patients. A. Using individual 9-mer overlapping peptides covering the entire NY-ESO-1 LSP sequence, NY-
ESO-1-specific CD8 T-cell responses were mapped in 5 patients, by monitoring IFNγ+ TNFα+ CD8 T-cells after 6-
hour peptide challenge. B. Using serial dilutions of the pool of 9-mer overlapping peptides covering the entire NY-
ESO-1 LSP sequence, avidity of peptide recognition of NY-ESO-1-specific CD8 T-cell responses was assessed 
using ELISPOT assay for 6 patients. 
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Supplemental Figure 6 Baumgaertner P., et al. 

Supplemental Figure 6: Gating strategy for identification of cytokine secreting T cells. The same strategy has 
been applied for both CD8 (shown heere) and CD4 T cells. 
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