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Signals of energy homeostasis interact closely with neural circuits of motivation to control food intake. An emerging hypothesis is that the
transition to maladaptive feeding behavior seen in eating disorders or obesity may arise from dysregulation of these interactions.
Focusing on key brain regions involved in the control of food intake (ventral tegmental area, striatum, hypothalamus, and thalamus), we
describe how activity of specific cell types embedded within these regions can influence distinct components of motivated feeding
behavior. We review how signals of energy homeostasis interact with these regions to influence motivated behavioral output and present
evidence that experience-dependent neural adaptations in key feeding circuits may represent cellular correlates of impaired food intake
control. Future research into mechanisms that restore the balance of control between signals of homeostasis and motivated feeding
behavior may inspire new treatment options for eating disorders and obesity.
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Introduction

Since 1980, the worldwide prevalence of overweight (body mass
index = 25) and obesity (body mass index = 30) has more than
doubled, affecting men, women and children in both developed
and developing countries (World Health Organisation, 2016).
An increase in body mass index represents a major risk factor for
many non-communicable diseases, including cardiovascular dis-
ease, some forms of cancer, and Alzheimer’s disease (Fadel et al.,
2013; O’Neill and O’Driscoll, 2015; Arnold et al., 2016). Eating
disorders, such as anorexia nervosa, although relatively rare
among the general population, are associated with elevated mor-
tality risks (Papadopoulos et al., 2009; Smink et al., 2012). A
multitude of both environmental and genetic factors influence
the prevalence of obesity and eating disorders (Bakalar et al.,
2015; Hruby et al., 2016), yet altered food intake is a common
symptom (American Psychiatric Association, 2015; World
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Health Organisation, 2016). Thus, understanding mechanisms
that mediate the regulation of food intake will likely aid in the
identification of novel treatment options for eating disorders and
obesity.

Food intake is determined by a rich interplay of circulating
signals of energy homeostasis with brain circuits encoding the
diverse behavioral repertoire required to acquire and consume
food (Berthoud, 2004; Kelley et al., 2005; Fulton, 2010; Naray-
anan et al., 2010; Sternson, 2013). For example, the adipose-
derived hormones insulin and leptin act on brain circuits to
suppress feeding and promote energy expenditure in response to
energy surfeit (Chen et al., 1975; Woods et al., 1979; Halaas et al.,
1995; Pelleymounter et al., 1995; Chua et al., 1996; Obici et al,,
2002). Short-term homeostatic signals, such as ghrelin and cho-
lecystokinin, are produced in the gastrointestinal tract and serve
to promote or inhibit feeding, respectively (Antin et al., 1975;
Tschop et al., 2000; Nakazato et al., 2001). Emerging evidence
suggests that some of these signals may also be produced centrally
(Csajbok and Tamas, 2016). However, there are times when sig-
nals of energy homeostasis can be overridden. For example, when
opting for dessert following an energy-repleting meal or when
food-associated stimuli provoke feeding, even when sated (We-
ingarten, 1983). Oppositely, in anorexia, individuals can forgo
eating even despite severe energy deficit (Berthoud, 2004; Kaye et
al., 2013). These examples of so-called “nonhomeostatic” feed-
ing, where a mismatch occurs between the motivation to eat and
energy demand, has several evolutionary advantages but has re-
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Major neural nodes controlling food intake. Major neural nodes involved in food intake control are shown in the rodent brain, together with their classically ascribed functions (Anand

and Brobeck, 1951; Kelley et al., 2005; Palmiter, 2007; Berridge etal., 2010; Petrovich, 2013). For simplicity, the illustration does not show all interconnections and excludes some additional regions,
including components of the MCL (e.g., hippocampus, basolateral amygdala, ventral pallidum) and output pathways. ARC, Arcuate nucleus; PFC, prefrontal cortex; SN, substantia nigra pars

compacta. Image adapted with permission from Franklin and Paxinos (2008).

cently gained recognition as being a defining feature of eating
disorders and obesity (Zheng et al., 2009; Berridge et al., 2010;
Petrovich, 2013; Brown et al., 2015a). Purely hedonic feeding is
one component of nonhomeostatic feeding that has been re-
viewed (Berridge, 2009) and will not be a focus of this review.

Where in the brain does the battle between motivation and
peripheral signals of energy homeostasis take place? Dopamine
(DA) projections from the ventral tegmental area (VTA) to the
medial prefrontal cortex, amygdala, hippocampus, and nucleus
accumbens (NAc), and connections among these neural nodes
form the mesocorticolimbic system (MCL; Fig. 1). This system is
critically involved in generating motivated behaviors, including
feeding (Kelley et al., 2005; Wise, 2006; Castro et al., 2015).
In addition, hypothalamic and thalamic nuclei implicated in
arousal, consumption and hunger; the paraventricular thalamic
(PVT) nucleus, lateral hypothalamus (LH), and the ventromedial
hypothalamus, respectively, interact closely with neural nodes of
the MCL (Fig. 1). In the following review we take a neural circuits
perspective and discuss how specific cell types in the MCL, hypo-
thalamic, and thalamic nuclei interact and can be affected by
signals of energy homeostasis to control motivated feeding be-
havior. We highlight how loss of control over MCL circuit activity
by circulating signals of energy homeostasis could favor nonho-
meostatic food intake, and how exposure to energy dense and
palatable foods can induce persistent alterations in MCL activity,
which may hold relevance for understanding the neural basis of
eating disorders and obesity.

VTA

Located near the base of the midbrain, the VTA is the origin of
DA neurons of the MCL, which comprise ~70% of all VTA neu-
rons, in addition to GABA (~30%) and glutamate (~2%-3%)
neurons (Nair-Roberts et al., 2008; Ungless and Grace, 2012)

(Fig. 2). VTA DA neurons respond to cues that predict rewards
(Schultz et al., 1997) and are implicated as a key substrate in the
incentive, reinforcing, and motivational aspects of food intake
(Salamone et al., 2003; Wise, 2006; Fields et al., 2007; Palmiter,
2007; Narayanan et al., 2010).

Direct control of VTA by signals of energy homeostasis

Given the importance of VTA DA neurons in feeding (Salamone
etal., 2003; Wise, 2006; Fields et al., 2007; Palmiter, 2007; Naray-
anan etal., 2010), it is of particular interest that they are subject to
direct modulation from circulating signals of energy homeostasis
(Palmiter, 2008; van Zessen et al., 2012). For example, leptin
inhibits DA neuron activity and decreases food intake and effort-
ful food seeking (Hommel et al., 2006; Domingos et al., 2011),
whereas ghrelin increases VT A DA neuron activity and promotes
food intake, effortful food seeking and favors consumption of
palatable food over regular chow (Naleid et al., 2005; Abizaid et
al., 2006; Zigman et al., 2006; Egecioglu et al., 2010; King et al.,
2011; Skibicka et al., 2011). The appetite suppressant glucagon-
like peptide-1 (GLP-1) also acts in the VTA to reduce high-fat
diet intake, likely by reducing excitatory drive onto VTA DA
neurons projecting to the NAc (Wang et al., 2015b).

Another important regulator of VTA activity is insulin, whose
receptors are enriched on DA neurons (Figlewicz et al., 2003).
When infused directly into the VTA, insulin reduces food antic-
ipatory activity and decreases preference for a context previously
associated with palatable food while not affecting effort to obtain
food (Labouebe et al., 2013). The synaptic mechanism of this
effect involves an endocannabinoid-mediated, LTD of excitatory
transmission onto VTA DA neurons (Labouebe et al., 2013). El-
evating endogenous insulin with a sweetened, high-fat meal sub-
sequently occludes insulin-induced LTD onto VTA DA neurons,
providing evidence of this mechanism occurring in a physiolog-
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Multiple interactions between circuits of homeostasis and motivation. Microcircuitry of major neural nodes involved in food intake control (shown in Fig. 1) are shown in the rodent

brain, together with known modulation of specific cell types by signals of energy homeostasis. To emphasize direct and indirect modulation of the MCL by circulating signals of energy homeostasis,
only outputs from each region to other key nodes in the MCL are shown. For simplicity, not all known cell types, interconnections, and outputs are shown. AR, Arcuate nucleus; BLA, basolateral
amygdale; CART, cocaine- and amphetamine-regulated transcript; CIN, cholinergic interneuron; GIN, GABAergic interneuron; Glu, glutamate; HIP, hippocampus; MCH, melanin-concentrating
hormone; NPY, neuropeptide Y; PFC, prefrontal cortex; VP, ventral pallidum. Images adapted with permission from Franklin and Paxinos (2008).

ically relevant situation (Labouebe et al., 2013), although the pre-
cise relationship between central and peripheral insulin is still
poorly understood. Collectively, these data suggest that insulin
serves to regulate energy homeostasis in part by limiting the mo-
tivational drive of food-associated contextual cues by reducing
excitatory drive onto VTA DA neurons.

VTA signaling is also implicated in the phenomenon of food
priming; wherein brief exposure to palatable food drives future
food approach and consumption that persists for days after the
initial exposure (Liu et al., 2016). This effect is mediated by a
rapid increase in synaptic density and excitatory synaptic trans-
mission onto VIT'A DA neurons, which persists for atleast 7 d (Liu
et al., 2016). Suppressing excitatory transmission onto VTA DA
neurons with insulin can reverse the behavioral effects of palat-
able food priming, whereas inhibition of insulin signaling imme-
diately after palatable food consumption enables subsequent
food approach behavior (Liu et al., 2016). These results suggest
that even short-term exposure to palatable foods can prime fu-
ture feeding behavior by “rewiring” VTA DA neurons. Interest-
ingly, intranasal insulin has been shown to act on the CNS to
suppress food consumption and attention to food-related cues
(Kullmann et al., 2013). Thus, future studies should explore
whether intranasal insulin could also be efficient to decrease food
priming or food-associated cue-induced overeating.

Finally, the pathological relevance of insulin’s effect on VTA
DA neuron signaling has been investigated using a hyperinsuline-
mic mouse strain that is predisposed to obesity (Liu et al., 2013).
In this mouse, insulin-induced LTD onto VTA DA neurons is
disrupted, likely due to reduced VTA insulin receptor efficacy,
because other forms of excitatory LTD in the VTA are unaffected
(Liu et al., 2013). In the condition of hyperinsulinemia, it follows
that insulin may be unable to suppress information transmitted
to the VTA regarding food-associated cues, which could promote
further food-seeking, even in an energy-replete state, leading to
weight gain and obesity.

LH-VTA projections linking homeostasis to motivation

As well as direct modulation of VTA DA neurons, inputs to VTA
from brain areas that monitor metabolic need provide additional,
indirect routes to translate these needs into behavioral output. In
this regard, a notable example is LH (Fig. 2), which runs the
length of the hypothalamus lateral to the fornix (Hahn and Swan-
son, 2010) and provides major direct innervation of VTA, as
identified by electrophysiology (Bielajew and Shizgal, 1986; Grat-
ton and Wise, 1988), viral tracing (Watabe-Uchida et al., 2012),
and optogenetic phototagging (Nieh et al., 2015). Initial studies
of LH found that lesions led to fatal anorexia, whereas electrical
stimulation triggered intense feeding, leading to the description
of LH as a “feeding center” (Anand and Brobeck, 1951; Delgado
and Anand, 1953). However, this initial description was an over-
simplification (King, 2006), as decades of additional studies have
shown that LH contributes not only to feeding behavior, but also
to energy balance, arousal, reward, and motivated behaviors (for
review, see Bonnavion et al., 2016). Recent studies suggest that
the projection from LH to VTA (LH-VTA) plays a major role in
these functions.

The LH-VTA projection is heterogeneous and composed of
neurons releasing glutamate or GABA (Nieh etal., 2015,2016), as
well as neuropeptides, including orexin/hypocretin (Harris et al.,
2005; Borgland et al., 2006, 2008) and neurotensin (Leinninger et
al., 2011; Kempadoo et al., 2013; Opland et al., 2013) (Fig. 2).
Optogenetic stimulation of the bulk LH-VTA projection was
shown to support intracranial self-stimulation (Kempadoo etal.,
2013) and reinforce compulsive sucrose-seeking (Nich et al.,
2015). Indeed, Nieh et al. (2015) found that mice were more
willing to endure foot-shocks to obtain a sugar reward when the
LH-VTA projection was stimulated. In this study, in vivo multi-
unit recordings revealed that the LH-VTA projection specifically
encodes the conditioned response (i.e., the action of obtaining
the sucrose reward only after the CS-US pairing was learned)
(Nieh et al., 2015).
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With bulk optogenetic stimulation of LH-VTA projections,
Kempadoo et al. (2013) demonstrated that the ability of this
pathway to support ICSS required activation of neurotensin-
receptor-1 and NMDARs in the VTA. However, Nieh et al. (2016)
later found that optogenetic stimulation of the isolated LH-VTA
glutamate projection did not support ICSS and instead led to
aversion when assayed in a real-time place preference task. In-
stead, it has been proposed that the LH-VTA GABA projection
provides the rewarding and feeding effects seen in stimulation of
bulk LH-VTA projections (Nieh et al., 2015, 2016; Barbano et al.,
2016), acting to disinhibit VTA DA neurons and increase DA
release in the NAc via inhibition of local VTA GABA neurons
(Nieh et al., 2016). Moreover, optogenetic inhibition of the LH-
VTA GABA projection was found to decrease feeding in hungry
animals, demonstrating the necessity, in addition to the suffi-
ciency, of this projection for driving feeding behaviors (Nieh et
al., 2016).

Depending on the environment or context, the LH-VTA
GABA projection actually has the capacity to support a variety of
motivated behaviors. In the presence of food, stimulation of this
projection evokes feeding (Nieh et al., 2015), but in the presence
of a social cue or novel object, stimulation evokes interaction or
investigation, respectively (Nich et al., 2016). This suggests that
stimulation of the LH-VTA GABA projection may serve to in-
crease an animal’s motivation to fulfill a need, and the action that
is taken will differ depending on the state of the animal. Thus,
with respect to feeding, the LH-VTA GABA projection likely
modulates the behavioral activation required to cause an animal
to eat while the processing of cues that necessitate feeding are
processed upstream and the motor actions of feeding are pro-
cessed downstream (Nieh et al., 2016).

In addition to LH GABA or glutamate inputs, VTA DA neu-
rons are also subject to modulation from LH-derived neuropep-
tides. Of note are hypocretin/orexin (Hcrt/Ox) neurons, which
are found only in the lateral, perifornical, and dorsomedial hypo-
thalamus (Harris and Aston-Jones, 2006). LH Hert/Ox signaling
is associated with increased food intake (Sakurai et al., 1998),
driven by excessive food seeking (Barson et al., 2013). Hert/Ox
neurons are sensitive to metabolic status and are activated during
energy deficit (Cai etal., 1999, 2001). Specifically, ghrelin directly
activates Hcrt/Ox neurons (Sheng et al., 2014), whereas leptin
indirectly inhibits them. This inhibition arises from presynaptic
leptin receptor-expressing neurotensin and/or GABA neurons
(Leinninger et al., 2011; Sheng et al., 2014). The net effect of
Hert/Ox signaling in VTA is to promote DA neuron activity by
enhancing excitation and suppressing inhibition onto these neu-
rons (Borgland et al., 2006; Baimel et al., 2015). Blockade of VTA
orexin-1 receptors drives rats to switch choice from high-effort,
high-fat pellets to low-effort, regular food (Thompson and
Borgland, 2011). Thus, by promoting DA release, the LH-VTA
Hecrt/Ox projection allows the transfer of metabolic information
to drive motivated behavior necessary to obtain salient rewards
(Harris and Aston-Jones, 2006; Harris et al., 2007; Cason and
Aston-Jones, 2013).

The Hert/Ox neurons also belong to the glucose-inhibited
subtype of glucose-sensing neurons (Burdakov et al., 2005).
Sheng et al. (2014) have found that both fasting and ghrelin en-
hance activation of Hcrt/Ox neurons in low glucose, whereas
leptin does the converse. One possibility is that the glucose-
sensing function of Hcrt/Ox neurons could be important for
linking metabolic need to the motivated behavior required to
obtain food via alterations of VTA DA neuron signaling. Using a
horizontal acute brain slice that contains both LH and VTA,
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Sheng et al. (2014) found that lowering glucose concentration
increased glutamatergic EPSCs onto VTA DA neurons. More-
over, this effect was blocked by an orexin-1 receptor antagonist.
These data lend support to the hypothesis that activation of
Hecrt/Ox neurons by low glucose may enhance food-motivated
behavior, especially in the fasted state, via downstream actions on
VTA DA neurons. Such reinforcement of reward-based feeding
behavior by LH Hecrt/Ox glucose-inhibited neurons could con-
tribute to the difficulty in maintaining weight loss after dieting.

Much progress has been made in dissecting LH-VTA circuitry,
yet important challenges remain. One is that subpopulations of LH
neuropeptide releasing cells also have the capacity for GABA and/or
glutamate synthesis and/or release (Meister, 2007; Schone and
Burdakov, 2012; Jego et al., 2013; Chee et al., 2015). It will be critical
to understand whether corelease of LH peptides with different neu-
rotransmitters from the same axon represents a physiologically im-
portant function at LH-VTA synapses. Second, LH can also control
VTA indirectly via glutamatergic projections to the lateral habenula,
whose stimulation suppresses food intake (Stamatakis et al., 2016). It
is not known how information is routed between these indirect ver-
sus direct LH-VTA projections. Third, LH GABA neurons show
heterogeneity in their neuronal responses during food seeking and
consumption (Jennings et al., 2015). It is not known whether such
heterogeneity is segregated among the different projections of these
neurons, including those innervating VTA. Finally, LH also contains
a distinct, non—Hcrt/Ox-expressing population of GABA neurons
(Karnani et al., 2013; Jennings et al., 2015; O’Connor et al., 2015),
some of which are glucose inhibited (Karnani et al., 2013). Other LH
neuropeptide populations have also been described, including neu-
ropeptide Y, thyrotropin-releasing hormone, encephalin, and uro-
cortin-3 expressing neuron populations (Marston et al., 2011;
Bonnavion et al., 2016) and glucose activated melanin-concentrat-
ing hormone neurons (Qu et al., 1996; de Lecea et al., 1998; Burda-
kov et al., 2005). Clearly, then, LH neurons are as diverse as their
functions, and it will be important to dissect how this complex mi-
crocircuit operates to determine LH output in both healthy and
disease states.

Striatum

A major target of midbrain DA neurons is the striatum, which is
broadly divided into dorsal striatum (DS) and ventral (NAc core
and shell) regions. Across the striatum, the majority (90-95%) of
neurons are inhibitory medium-sized spiny neurons (MSNs), di-
visible into approximately two equal populations based on their
projections and/or expression of DA D1R or D2R receptors (Fig.
2) (Beckstead and Cruz, 1986; Gerfen et al., 1990; Meredith et al.,
2008; Bertran-Gonzalez et al., 2010; Kupchik et al., 2015). Local
interneurons comprise the remaining fraction of cells and in-
clude large cholinergic interneurons and GABA interneurons,
which play key roles in coordinating striatal activity (Tepper and
Bolam, 2004; Gittis and Kreitzer, 2012).

Dorsal and ventral striatum have distinct inputs, outputs, and
roles in behavior (Sesack and Grace, 2010; Kupchik et al., 2015;
Yager et al., 2015). In brief, DS integrates DA signals arising from
the substantia nigra pars compacta with glutamate input from
sensorimotor cortical areas and thalamus, and sends inhibitory
projections via D1R-MSNss to output nuclei of the basal ganglia
(EPN and SNr), or via D2R-MSNss to the globus pallidus, forming
the “direct” and “indirect” pathways, respectively (Gerfen et al.,
1990). These pathways play a critical role in the bidirectional
regulation of motor behavior (Kravitz et al., 2010; Cui et al,,
2013), but also in reinforcement learning and punishment (Bal-
leine, 2005; Kravitz et al., 2012).
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The accumbens integrates VTA DA signals with glutamate
inputs from the hippocampus, amygdala, prefrontal cortex, and
PVT nucleus. The NAc is also a target of many direct and indirect
inputs from hypothalamic regions (Opland et al., 2010). A num-
ber of peptides and hormones, including GLP-1, leptin, insulin,
endogenous opioids, and ghrelin, can also alter NAc activity and
function (Perry et al., 2010; Castro and Berridge, 2014; Stouffer et
al., 2015; Dailey et al., 2016; Hayes and Schmidt, 2016). Unlike
DS, the projection pattern of NAc MSNs is not clearly segregated
according to DA receptor expression. Both D1R- and D2R-MSNs
innervate the ventral pallidum (Kupchik et al., 2015), whereas
D1R-MSNs form the major projection from accumbens to LH
(O’Connor et al., 2015) and VTA (Bocklisch et al., 2013). The
function of accumbens is perhaps best described as a “limbic-
motor interface” (Mogenson et al., 1980), playing a critical role in
conditioned motivation, hedonic evaluation, and acting as a
“sensory sentinel” to allow flexible control of consumption via its
descending projections to premotor effector areas (Taha and
Fields, 2005; Baldo and Kelley, 2007; Berridge et al., 2010;
O’Connor et al., 2015).

Given the powerful regulation of midbrain DA neurons by
circulating signals of energy homeostasis (see VTA), it is valuable
to briefly consider the role of DS and NAc DA signaling in feeding
behavior, and how perturbation of striatal function may have
relevance for feeding disorders and obesity (Tomasi and Volkow,
2013; see also Kenny et al., 2013).

Dorsal striatum DA and feeding behavior

Initial evidence supporting a critical role of DS DA signaling in
feeding came from DA-depleted mice, which do not eat and will
starve without intervention (Szczypka etal., 2001). Restoration of
DA selectively in the DS, but not NAg, is sufficient to enable these
animals to eat and survive (Szczypka et al., 2001; Sotak et al.,
2005; Hnasko etal., 2006). Impaired feeding in DA-depleted mice
does not reflect a deficit in the ability to eat per se, or in the
perception of signals of energy homeostasis, but rather a failure to
initiate feeding behavior (Cannon and Palmiter, 2003; Palmiter,
2008). Thus, DS DA signaling may serve as a permissive, “action
initiation” signal, enabling animals to orient their attention to-
ward nutritive food retrieval and consumption in response to
metabolic demand (Palmiter, 2008).

NAc DA and feeding behavior

NAc DA regulates feeding in a manner distinct to that of DS. In
the NAc, food rewards and food-predictive cues increase local
DA levels (Brown et al., 2011; Cone et al., 2015). Notably, food-
evoked DA release is amplified in food-deprived animals (Avena
et al., 2008) and food cue-evoked DA release is augmented in
animals injected with the hunger signal ghrelin (Cone et al.,
2015). Ablation of NAc-projecting DA neurons or intra-NAc DA
receptor antagonist microinjection disrupts effort-related and
anticipatory aspects of feeding but has only subtle effects on the
microstructure of food consumption (Nowend et al., 2001; Sala-
mone et al., 2001; Baldo et al., 2002; Baldo and Kelley, 2007).
Conversely, elevating NAc DA with intra-accumbens amphet-
amine microinjection increases effortful food seeking (Zhang et
al., 2003). Together, NAc DA signaling appears critical for aug-
menting the salience of food-related stimuli, with a consequent
increase in effort directed at obtaining food (Hanlon et al., 2004;
Aitken et al., 2016). The regulation of NAc-projecting DA neu-
rons by circulating signals of energy homeostasis would therefore
allow the salience of food-related stimuli and subsequent eff-
ortful food seeking to be closely coupled with internal energy
demands.
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Striatal cell types controlling feeding behavior

The global functions of DS and NAc in feeding behavior have
been well characterized, but how these functions are encoded by
specific striatal cell types and how such cells may be affected by
circulating signals of energy homeostasis is only just beginning to
be understood. One recent intriguing finding is that activation of
insulin receptors on striatal cholinergic interneurons increases
local DA release in both DS and NAc and enhances sucrose pref-
erence behavior (Stouffer et al., 2015). Notably, this effect is am-
plified in food-restricted animals and blunted in rats fed an
obesigenic diet (Stouffer et al., 2015). In addition, insulin en-
hances both excitatory transmission onto NAc neurons and
cue-triggered food seeking (C.R.F., unpublished observations).
However, it is not known how the effects of insulin in the NAc
interact with insulin-induced LTD in the VTA, and questions
remain regarding how local effects of insulin are related to pe-
ripheral insulin signals. Nevertheless, together, these data sup-
port the idea that insulin normally serves to enhance striatal
activity and motivation.

Regarding the principal striatal cell type, the MSN, lick-
contingent optogenetic stimulation of DS D1R-MSNs was found
to increase intake of a noncaloric sweetener (sucralose) and an-
nulled aversion to an adulterated bitter solution (Tellez et al.,
2016). The same manipulation in NAc DI1R- or D2R-MSNss also
enhanced sweetener intake but did not attenuate aversion to the
bitter solution (Tellez et al., 2016). These data, together with
findings from in vivo DA measurements and cell-ablation studies,
suggest that DA levels in DS and NAc, acting via DIR-MSNs,
signal the nutritive and gustatory quality of sugar, respectively,
and that DS output may serve to prioritize energy seeking over
taste quality (Tellez et al., 2016; de Araujo, 2016). Surprisingly, in
vivo recordings of NAc DIR-MSNs found that the activity of
these neurons reduced during palatable food consumption and,
consistent with this observation, noncontingent optogenetic in-
hibition of NAc D1R-MSNs prolonged food intake (O’Connor et
al., 2015). Moreover, lick-contingent and noncontingent optoge-
netic stimulation of D1R-MSN projections to LH inhibited pal-
atable food intake, even in food deprived mice, suggesting that
the NAc D1R-MSN to LH pathway may serve to override imme-
diate metabolic need and allow rapid consumption control in
response to changing external stimuli (O’Connor et al., 2015).
The contradictory findings between these two studies may reflect
further segregation of NAc D1R-MSN function according to pro-
jection targeting of the ventral pallidum (Tellez etal., 2016) or LH
(O’Connor et al., 2015). Indeed, stimulation of dynophinergic
cells (i.e., predominantly DIR-MSNs) in the dorsal or ventral
NAc shell induces reinforcement or aversion, respectively (Al-
Hasani et al., 2015), although the projection targets of these func-
tionally opposing populations are not known. No doubt, further
understanding of striatal subcircuitry, both at the level of distinct
inputs to striatum and its output pathways, will greatly improve
our overall understanding of the integration of the regulation of
feeding by homeostatic and motivational systems.

Altered striatal function and obesity

Human neuroimaging studies have provided important insight
into the control of food intake by striatal DA and its dysregulation
in obesity (for review, see Small, 2009; Stice et al., 2013). A central
observation is that, compared with normal weight controls, over-
weight and obese humans show reduced striatal D2R availability
(Wang et al., 2001; Stice et al., 2008b; Kenny et al., 2013) and
individuals with the TaqlA Al allele, which is associated with
reduced D2R expression, are more likely to be obese (Stice et al.,
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2008b). Obese and overweight individuals also show enha-
nced striatal activation in response to food-predictive cues
(Rothemund et al., 2007; Stoeckel et al., 2008; Demos et al., 2012),
but reduced striatal activation following palatable food receipt
(Stice et al., 2008a, b; Babbs et al., 2013). Importantly these stri-
atal reactivity observations, which may reflect reward prediction
error signals (Kroemer and Small, 2016), are also predictive of
future weight gain, indicating that striatal network activity is
closely linked with the development of obesity (Stice et al., 2010,
2015; Demos et al., 2012).

The role of striatal DA signaling in obesity has been further
explored in rodent studies. In the dorsal striatum, prolonged
access to an energy dense “cafeteria style” diet has been found to
decrease (Johnson and Kenny, 2010) or increase D2R expression
(Valenza et al., 2015), whereas genetically obese Zuker rats show
reduced DS D2R levels (Thanos et al., 2008). Interestingly, rats
with extended access to cafeteria style diet become resistant to
punishment associated with feeding and show deficits in brain
reward function, as measured by elevated brain-stimulation re-
ward thresholds (Johnson and Kenny, 2010). In addition, viral-
mediated knockdown of DS D2Rs mimics effects of cafeteria diet
on self-stimulation and resistance to punishment, but not obe-
sity, suggesting a functional coupling at the level of DS D2Rs
between reduced brain reward function and compulsive food
consumption (Johnson and Kenny, 2010).

In the NAg, research on the effects of obesity has revealed that
both the type of nutrients consumed and physiological changes
accompanying obesity can alter the function of this structure. For
example, chronic overconsumption of saturated but not mono-
unsaturated dietary lipids dampens NAc DA signaling in the ab-
sence of obesity (Hryhorczuk et al., 2016) and consumption of
triglycerides acutely reduces food-seeking behavior (Cansell et
al., 2014). Diet and obesity also induce changes in NAc DA recep-
tor expression and transmission, which differ between obesity-
susceptible and resistant populations (Geiger et al, 2009;
Robinson etal., 2015; Valenza et al., 2015; Vollbrecht et al., 2016).
These data lend support to the idea that individual susceptibi-
lity to obesity influences both neural and behavioral observations
that promote weight gain (Stice et al., 2008b; Felsted et al., 2010;
Albuquerque et al., 2015). In addition to changes in NAc DA
signaling, diet-induced obesity impairs subsequent glutamatergic
plasticity in the NAc, particularly in obesity-susceptible rats
(Brown et al., 2015b). Consumption of sugar also enhances ex-
citatory transmission mediated by AMPA receptors onto NAc
neurons (Tukey et al., 2013; Counotte et al., 2014), whereas con-
sumption of a “junk-food” diet enhances transmission mediated
by calcium-permeable AMPARs in the NAc (Oginsky et al.,
2016). In these studies, diet-induced alterations in NAc function
occurred in the absence of obesity, suggesting that these changes
may drive overconsumption that promotes subsequent wei-
ght gain. Diet-induced increases in NAc calcium-permeable
AMPARSs are particularly interesting because these receptors me-
diate enhanced cue-triggered drug craving (Loweth et al., 2014;
Liischer, 2016; Terrier et al., 2016; Wolf, 2016) and cue-induced
motivation for food is enhanced in obese and obesity-susceptible
rats and humans (Small, 2009; Stice et al., 2013; Brown et al.,
2015b; Robinson et al., 2015).

Together, findings from human and rodent studies have led
some to propose a model in which overeating may occur to com-
pensate for preexisting striatal hypoactivity and reward defi-
ciency, which may further attenuate the responsiveness of this
circuit in a feedforward process (Stice et al., 2010; O’Connor and
Kenny, 2016). However, reduced striatal D2R expression is seen
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in rodents fed a junk-food diet regardless of the whether they
develop obesity or not (Robinson et al., 2015), suggesting that
this striatal adaptation cannot fully explain maladaptive weight
gain (Kroemer and Small, 2016). A more parsimonious explana-
tion emerging from the literature is one in which individual sus-
ceptibility interacts with the types of foods consumed to alter
striatal function and promote cue-induced food-seeking behav-
ior (Stice et al., 2008b, 2009; Stoeckel et al., 2008; Felsted et al.,
2010; Albuquerque et al., 2015; Brown et al., 2015b; Robinson et
al., 2015). This chain of events may then be further exacerbated
by increased adiposity and metabolic dysfunction that character-
ize obesity. In future work, it will be critical to resolve and disso-
ciate signaling pathways linking obesity and consumption of
energy dense and palatable foods with altered food seeking be-
havior and striatal function (including other molecular changes
not discussed here) (Alsio et al., 2010; Baladi et al., 2012; Robin-
son et al., 2015; Valenza et al., 2015; Hryhorczuk et al., 2016)
and to understand how such alterations may vary in obesity-
susceptible versus resistant individuals.

PVT-NAc projections controlling motivated feeding

A major glutamate input to accumbens arises from the PVT,
which has recently emerged as an important structure in the reg-
ulation of motivated feeding (Fig. 2). Like other thalamic nuclei,
PVT exhibits a high density of glutamatergic neurons (Watson,
2012), with neuronal subpopulations classified according to cal-
cium binding protein expression or diverse neuropeptides (Kir-
ouac, 2015), but almost no GABA cells (Watson, 2012). PVT
receives strong inputs from feeding-related hypothalamic areas,
including LH orexin neurons, ARC neurons expressing agouti-
related peptide (AGRP), and cocaine- and amphetamine-
regulated transcript (Parsons et al., 2006; Lee et al., 2015) and
from cortical areas linked to decision making (Kirouac, 2015).
Via a dense bundle of primarily glutamatergic fibers, PVT inner-
vates NAc shell and other MCL nodes, including medial prefron-
tal cortex, amygdale, and bed nucleus of the stria terminalis
(Parsonsetal., 2006; Vertes and Hoover, 2008). These anatomical
observations have led to the proposal that PVT serves as an inte-
grative relay, conveying feeding-related information from hypo-
thalamic areas to the MCL (Kelley et al., 2005; Parsons et al., 2006;
Martin-Fardon and Boutrel, 2012) and thereby influencing mo-
tivation to seek rewards (Matzeu et al., 2014; Kirouac, 2015).
Recent studies have begun to add functional support to these
ideas. For example, Haight et al. (2015) have shown that PVT
influences the motivation of rats to respond to food-predictive
cues, whereas optogenetic activation of AGRP projections to the
PVT or intra-PVT infusion of the GABAa receptor antagonist
muscimol is sufficient to elicit feeding in rodents (Betley et al.,
2013; Stratford and Wirtshafter, 2013).

Little is known about how signals of energy homeostasis di-
rectly influence PVT output, although receptors for leptin and
GLP-1 are present in PVT (De Matteis and Cinti, 1998; Cork et
al., 2015) and indirect modulation via LH and ARC inputs is
likely. However, PVT contains neurons that respond to neurog-
lucopenia, a condition that mimics hypoglycemia, as shown
by strong neuronal activation observed in PVT following
2-deoxyglucose injection in rats (Dodd et al., 2010). In line with
this observation, Labouebe et al. (2016) recently identified a pop-
ulation of PVT glutamate neurons which project to NAc MSNs
and express Glut2, a glucose transporter implicated in the detec-
tion of glucose in both pancreatic 8 cells and the CNS (Lamy et
al., 2014; Tarussio et al., 2014). These PVT Glut2-positive neu-
rons increase their firing frequency when extracellular glucose
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concentration drops below normoglycemic levels, and mice lack-
ing Glut2 in PVT neurons make more effort to obtain sucrose,
but not the noncaloric reward saccharin (Labouebe et al., 2016).
Optogenetic activation of PVT Glut2-expressing projections to
the NAc shell was used to mimic hypoglycemia and thus test
causality between increased activity of PVT Glut2 neurons and
the motivation to seek sucrose. Indeed, this manipulation was
sufficient to enhance effortful sucrose seeking in mice (Labouebe
etal., 2016). Together, these data link regulation of PVT activity
by circulating glucose levels to the control of motivated, effortful
food seeking.

The regulation of motivated sucrose seeking by PVT Glut2
neurons projecting to NAc may occur via the modulation of pre-
synaptic accumbal DA levels (Parsons et al., 2007). However, a
functional link between accumbal DA and PVT-dependent mo-
tivated feeding behavior remains to be clearly demonstrated.
Nevertheless, findings reviewed here draw interesting parallels
with a similar phenotype observed in humans, wherein a Glut2
gene variant (Thr110Ile) is associated with higher sugar intake
(Eny et al., 2008). In addition, PVT activation was reported as
exacerbated in obese rats following food deprivation (Timofeeva
and Richard, 2001). Thus, further investigations into the cellular,
synaptic, and circuit mechanisms controlling PVT activity may
provide valuable new insight into eating disorders and obesity.

Arcuate (ARC) nucleus of the hypothalamus

Early studies of lesions to the basomedial part of the hypothala-
mus, which includes the ARC and ventromedial hypothalamus
nuclei, resulted in profound hyperphagia and obesity, and thus
provided the first evidence linking the function of these nuclei to
the maintenance of energy homeostasis (Hetherington and Ran-
son, 1940). Mechanisms underlying the hunger and satiety in-
ducing functions of basomedial hypothalamic nuclei have been
subject of intense research efforts and are reviewed previously
(Meister, 2007; Pandit et al., 2013; Sternson, 2013; Webber et al.,
2015; Sutton et al., 2016). Here we focus on recent findings that
have elucidated the motivational characteristics of neurons em-
bedded within ARC (Fig. 2).

AGRP and pro-opiomelanocortin (POMC) neurons in
motivated feeding
ARC is home to ~10,000 neurons that coexpress AGRP with
neuropeptide-Y and release GABA (Betley et al., 2013). These
AGRP neurons are activated by ghrelin (Cowley et al., 2003; van
den Top et al., 2004; Yang et al., 2011) and inhibited by leptin
(van den Top et al., 2004), insulin (Schwartz et al., 1992; Kénner
et al., 2007), and glucose (Fioramonti et al., 2007). Optogenetic
(Aponte et al., 2011) or chemogenetic (Krashes et al., 2011) acti-
vation of AGRP neurons rapidly elicits voracious feeding behav-
ior within minutes, and transient inhibition of these neurons
reduces appetite (Krashes et al., 2011; Betley et al., 2015). More-
over, AGRP neuron activation also increases the willingness to
work for food (Krashes et al., 2011; Atasoy et al., 2012; Betley et
al., 2015). AGRP neurons receive excitatory drive from paraven-
tricular hypothalamus (PVH) (Krashes et al., 2014), and mono-
synaptically inhibit local POMC neurons (Cowley et al., 2001;
Atasoy et al., 2012), whereas stimulation of AGRP projections to
the anterior BNST, PVH, PVT, and LH promotes food intake
(Atasoy et al., 2012; Betley et al., 2013; Garfield et al., 2015).
The motivated processes associated with AGRP neurons have
been investigated by cell type-specific activity perturbations (Bet-
ley et al., 2015). AGRP neuron activation was shown to transmit
a negative valence signal that influences learning such that mice
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can be conditioned to avoid a flavor or a place that was associated
with optogenetic AGRP neuron activation. Conversely, cues
associated with a reduction of AGRP neuron activity during
deprivation-induced hunger were preferred. This negative va-
lence property of elevated AGRP neuron activity is consistent
with human self-reporting about the unpleasantness of hunger.
However, it is seemingly paradoxical that a neuron population
that avidly elicits food intake would also lead to avoidance behav-
iors. It would be ethologically contradictory for an animal to
avoid environmental cues that predict food.

To resolve these issues, the endogenous activity dynamics of
AGRP neurons during feeding behaviors were monitored by bulk
fluorescence of population calcium activity (Chen et al., 2015),
single-cell-resolution calcium imaging (Betley et al., 2015), and
phototagging electrophysiological recording (Mandelblat-Cerf et
al., 2015). These methods showed that, in food-deprived mice,
AGRP neurons reduced activity upon presentation of food within
seconds, even before food was consumed. Specifically, in vivo
deep-brain calcium imaging revealed that 96% of AGRP neurons
rapidly reduced activity upon the sight of food or a food-
predictive auditory cue (Betley et al., 2015), whereas in vivo te-
trode recordings found that ~60% of AGRP neurons reduced
activity at meal onset (Mandelblat-Cerf et al., 2015). These con-
trasting results likely reflect different sensitivities between the two
recording techniques used. Nevertheless, activity of the majority
of AGRP neurons is low during food consumption, suggesting
that AGRP neurons are involved in food seeking, but not food
consumption.

Rapid AGRP neuron inhibition by food presentation was
shown to involve learning. Neutral cues that initially have little
influence on AGRP neuron activity come to rapidly reduce AGRP
neuron activity after they have been repeatedly associated with
food delivery (Betley et al., 2015). However, food consumption is
required to sustain reduced AGRP neuron activity, which is con-
sistent with the homeostatic role of these neurons (Betley et al.,
2015).

Together, homeostatic AGRP neurons motivate behavior by a
negative valence signal of homeostatic need and also reinforce
preference for environmental cues that lead to prolonged reduc-
tion of their activity. This may explain the paradox of why mice
eat in response to negative valence AGRP neuron activation. Eat-
ing is a previously learned behavior that reduces negative valence
AGRP neuron activity, reinforces approach to food-associated
cues, and thus becomes reliably adopted as the animal’s response
to elevated activity of these neurons. Perhaps the closest similar-
ity of this process for people is the intense and unpleasant moti-
vational properties of starvation, which is even experienced in
food-abundant societies. For instance, on a weight-loss diet, the
negative emotional aspects of the AGRP neuron activity likely
contribute to the high failure rate for dieting.

In addition to AGRP neurons, ARC also contains neurons
coexpressing POMC and cocaine- and amphetamine-regulated
transcript release the anorexigenic signal a-melanoycte stimulat-
ing hormone (a-MSH). These POMC neurons are activated by
leptin to decrease food intake (Elias et al., 1999; Cowley et al.,
2001; Vong et al., 2011) and inhibited by insulin (Williams et al.,
2010) and ghrelin (Chen et al., 2015). Both acute (Steculorum et
al.,2016) and chronic (Zhan etal., 2013) chemogenetic activation
of POMC neurons inhibits feeding and body weight gain,
whereas chronic chemogenetic inhibition of these neurons in-
creased food intake (Atasoy et al., 2012). In addition to a role in
food consumption, real-time population recordings of calcium
activity revealed that POMC neurons are also activated solely
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upon food presentation; an effect modulated by both food quality
and metabolic state (Chen et al., 2015). This finding suggests an
important role for these neurons in sensory detection and the
control of appetitive behaviors, such as foraging. POMC neurons
innervate adjacent hypothalamic nuclei, including LH (King and
Hentges, 2011), PVH (Wang et al., 2015a) and key neural nodes
of the MCL, including the VTA and NAc (King and Hentges,
2011; Lim et al., 2012). Notably, intra-VTA «-MSH increases
NAc DA levels (Lindblom et al., 2001), whereas a.-MSH signaling
in the NAc is implicated in the anorectic effects of chronic stress
(Lim et al., 2012). Thus, projections of POMC neurons to the
MCL may serve as an important bridge linking energy sensing to
neural circuits controlling motivated behavior.

Conclusion

In conclusion, our review has focused on feeding behavior, which
represents just one element involved in the complex regulation of
energy homeostasis and body weight. We have reviewed how
distinct anatomical regions are involved in several components of
feeding behavior, from generating a negative valence teaching
signal to supporting effortful food seeking, choice, consumption,
and postingestive learning. Indeed, classical models have empha-
sized the assignment of specific feeding-related functions to dis-
tinct regions of “reward” and “homeostasis” brain networks
(Berridge, 1996; Berthoud, 2004; Palmiter, 2007). However, our
review also illustrates the enormous amount of interconnectivity
been these different regions and networks and highlights the need
to better understand how information is communicated among
them to ultimately determine food intake. This challenge is
daunting but may now be realized with the advent of multisite in
vivo imaging (Kim et al., 2016) and whole-brain activity mapping
(Renier et al., 2016).

The MCL has long been recognized as a key substrate in moti-
vated feeding and is subject to powerful modulation from circulating
signals of energy homeostasis acting directly on local neurons, or
indirectly via hypothalamic and thalamic inputs. We have high-
lighted studies in which consumption of fatty, sugary, “junk foods”
and obesity can produce long-lasting alterations in the MCL system,
and how the regulation of MLC activity is differentially altered by
signals of homeostasis in the normal and obese state. Thus, when
signals of homeostasis lose the battle to control neural circuits of
motivation, inappropriate, nonhomeostatic feeding can dominate.
However, it must be noted that many studies reviewed here have
elucidated neural circuits involved in the immediate control of food
intake, but in many cases it is not known whether perturbed function
of these circuits could be sufficient to drive long-term changes in
body weight relevant to feeding disorders and obesity. This repre-
sents an important and exciting avenue of research, particularly as
the underlying cell types become increasingly well-defined and ac-
cessible for recording and manipulation. An important challenge
will be to identify mechanisms that prevent or reverse maladaptive
feeding behaviors, which in turn may inspire new treatment options
for eating disorders and obesity.

For many, being overweight or obese results from increased
intake of easily available, energy-dense, high-fat, high-sugar
foods together with increased physical inactivity (World Health
Organisation, 2016). Much can be done at the societal level to
limit the so-called “obesity pandemic,” including increasing ac-
cess to affordable, healthy dietary choices and promoting physi-
cal activity (Cawley, 2016). However, modifications in diet and
exercise can be difficult to maintain (Langeveld and DeVries,
2015) and, particularly for eating disorders such as anorexia,
treatment options are limited and inconsistently applied (Hart et
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al., 2013). In this regard, neuroscience research stands ideally
poised to influence global policy and treatment provision for
obesity and eating disorders in offering a better understanding of
how neural circuits operate to determine food-related choices.
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