
1 
 

Factors associated with deforestation probability in Central Vietnam: A case 1 

study in Nam Dong and A Luoi districts 2 

Canh Tran Quoc*1,2, Thang Tran Nam1, Christian A. Kull3, Loi Nguyen Van1, Tai Tien Dinh4, 3 
Roland Cochard3, Ross Shackleton3,5, Dung Tri Ngo6, Van Nguyen Hai3, Pham Thi Phuong Thao1 4 

 5 

1 University of Agriculture and Forestry, Hue University, Vietnam   6 
2 Thua Thien Hue Forest Protection and Development Fund, Vietnam 7 
3 Institute of Geography and Sustainability, University of Lausanne, Switzerland 8 
4 Institute of Resources and Environment, Institute of Biotechnology, Hue University, Vietnam 9 
5 Swiss Federal Institute for Forest, Snow and Landscapes Research, WSL, Zürcherstrasse 111, 10 
CH 8903, Switzerland 11 
6 Consultative and Research Center on Natural Resources Management, Vietnam 12 
* Corresponding author. Email: canhtq@gmail.com 13 

Abstract 14 

Vietnam is undergoing a forest transition stage with an overall increase in forest cover since 15 
1990s, however, deforestation and forest degradation of natural forests still occur in several areas, 16 
especially in Central region of the country. In order to better manage and protect natural forests, 17 
predicting deforestation probability and understanding its associated factors are necessary. In the 18 
present study, we focused on the two mountainous districts (Nam Dong and A Luoi) in Central 19 
Vietnam as a case study. We used Landsat satellite images for identifying changes of natural 20 
forests in the period of 1989-2020. The logistic regression model showed a good performance in 21 
prediction of deforestation (testing AUC = 0.874) in the study area. Our data showed that 22 
deforestation probability of natural forests in the study area in the period of 1989-2020 could be 23 
influenced by 11 socio-economic and topographical factors. In particular, forest areas with low 24 
elevation, gentle slopes, nearby rivers and residential areas have a high deforestation probability. 25 
Production forest, forest areas not included in payment for environmental service (PFES) schemes, 26 
forest with no ownership and forest areas managed by private owners may also have a high 27 
deforestation probability. The total area of very high level of deforestation probability in A Luoi 28 
(8,988 ha) and Nam Dong (5,304 ha) districts occupied about 11.4 % of natural forests in the study 29 
area. Our study suggests that protection activities should be focused on high deforestation 30 
probability-prone forest areas. 31 
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Introduction 39 

Forests cover 31% of the world’s land area and are home of more than 75% of terrestrial 40 

organisms (FAO 2020). Forest ecosystems play essential roles in providing habitat, services and 41 

resources for human beings and other creatures (Brockerhoff et al. 2017). Despite their 42 

indispensable functions, since the 1990s over 178 million ha of forests have been destroyed 43 

through anthropogenic impacts and natural disturbances (FAO 2020).  In recent years, 44 

deforestation and forest degradation have alarmingly continued (Meyfroidt and Lambin 2008; 45 

Adedire 2002), causing far-reaching consequences (e.g., soil erosion, flooding, greenhouse gas 46 

emissions, habitat loss) for biodiversity, ecosystems and human beings (Houghton 2016; Assefa 47 

and Bork 2014). Deforestation may also accelerate global warming and climate change through 48 

carbon emission and reduced carbon dioxide uptake (Di Lallo et al. 2017; Longobardi et al. 2016; 49 

Köhl et al. 2009). During the period of 2000-2010, the emissions caused by forest loss accounted for 50 

about 10% of global carbon emission (Houghton 2016). Tropical forests, the most biologically 51 

diverse terrestrial ecosystem with a great capacity of carbon sequestration, have occupied the 52 

largest proportion (45%) of global forest area (FAO 2020), but they have suffered the highest level 53 

of deforestation and forest degradation (Bonan 2008; Achard et al. 2002). 54 

The increase of forest plantation and natural forest regeneration has slowed the rate of global 55 

forest loss from 7.8 million ha per year in the period of 1990-2000 to 4.7 million ha per year in 56 

period of 2010-2020 (FAO 2020). However, deforestation and forest degradation are still on-going 57 

problems at global scales (Turner and Snaddon 2016; Vieilledent et al. 2013). The greatest level 58 

of deforestation was observed in developing countries of tropical region, in particular Southeast 59 

Asia (Keenan et al. 2015; Stibig et al. 2014; Achard et al. 2002). 60 
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Vietnam, a highly biodiverse country in Southeast Asia, had a significant decline of forest 61 

cover and resources in the past (Meyfroidt et al. 2013; Sterling and Hurley 2005). Over last 30 62 

years, several efforts at national and local scales have been made to promote forest restoration and 63 

afforestation at local and national scales, resulting an increase of forest cover from 28% in 1993 64 

to 42% in 2020 (MARD 2021). This rise in Vietnam’s forest cover is considered a “forest 65 

transition” phase and could be mainly attributed to the expansion of forest monoculture 66 

plantations, using primarily exotic species (e.g., Casuarina equisetifolia and Acacia species) and 67 

changes in forest definitions within national regulations (Vietnam National Assembly 2017; 68 

Cochard et al. 2016; Meyfroidt et al. 2013). According to new definitions, some vegetation types 69 

that was not considered as forest in the past are now categorized as forest. For instance, Arecaceae 70 

species assemblages, vegetation on sandy areas and wetlands with canopy cover over 10% are now 71 

considered as forest (Vietnam National Assembly 2017). Although overall forest cover of the 72 

country has been increasing, its natural forests are still being lost and degraded due to various drivers 73 

(Pham et al. 2019; World Bank 2019; Matthews et al. 2014), leading to crucial losses in biodiversity 74 

and natural ecosystems (Turner and Snaddon 2016). In this context, Vietnamese Government has 75 

developed policies and programs to halt deforestation and forest degradation such as participating 76 

in the REDD+ (Decision No. 419/QD-TTg dated April 5, 2017 on approving the national program 77 

on reduction of greenhouse gas emissions through the mitigation of deforestation and forest 78 

degradation; conservation and enhancement of forest carbon stocks and sustainable management 79 

of forest resources through 2030) and target program for sustainable forestry development 80 

(Decision No. 886/QD-TTg dated June 16, 2017). 81 

Similar to the national forest transition, Thua Thien Hue province in Central Vietnam has also 82 

experienced major forest transitions. In the period of 2014 - 2020, the province’s forest cover has 83 
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increased from 56.6 to 57.4%, while over 8,243 ha of its natural forests were deforested (PPC 84 

2021). In the province, the main direct causes of deforestation and forest degradation may relate 85 

to (1) conversion of natural forests to agricultural land and plantation forest, (2) forest logging and 86 

encroachment, and (3) residential expansion and infrastructure development (Pham et al. 2018; 87 

Thiha 2017; Ty et al. 2013). 88 

 Deforestation and forest degradation could be associated with many biophysical and socio-89 

economic factors such as elevation, slope, population distribution and distance from agricultural 90 

land (Kayet et al. 2021; Saha et al. 2020; Sahana et al. 2018; Ramachandran and Reddy 2017). 91 

The affecting factors are complex and can vary between regions of a country (Kissinger 2020; 92 

Austin et al. 2019; Mas et al. 2004; Angelsen and Kaimowitz 1999). Thus, identifying factors 93 

relating to forest loss and predicting deforestation probability for specific regions are important 94 

for forest protection and management (Khuc et al. 2018; Chomitz et al. 2007). In Thua Thien Hue 95 

province, little is known about the factors influencing the loss of natural forests and there is a need 96 

to identify areas with a high probability of deforestation (Thiha 2017). The present study, therefore, 97 

sought to determine deforestation-associated factors and predict deforestation probability in the 98 

two mountainous districts (Nam Dong and A Luoi) of the province. 99 

Materials and Methods 100 

Study site 101 

Our study was conducted in the Nam Dong and A Luoi districts of Thua Thien Hue province 102 

in Vietnam (Figure 1). Natural forests cover about 48,215 and 81,873 ha in Nam Dong and A Luoi 103 

districts, respectively and these areas together occupies over 60% of the forest area in the province 104 

(PPC 2021). The study site is characterized by secondary tropical forests regenerating after past 105 

natural disturbances, overexploitation and the war (Tuong et al. 2019). The total population of the 106 
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two districts is about 71,500 people. The proportion of ethnic minority groups is about 77.5% and 107 

46.4 % of A Luoi and Nam Dong population, respectively (A Luoi district data 2019; Nam Dong 108 

district data 2020). The income of local people is mainly from agricultural and forestry production. 109 

Especially, minority ethnic groups have relied heavily on products from natural forests for their 110 

livelihoods (Thang et al. 2010).  111 

The study site has the tropical monsoon climate. In Nam Dong district, annual temperature 112 

and precipitation range from 20.2 to 28.2 °C and from 2,700 to 3,800 mm, respectively (HUSTA 113 

2020; Chung et al. 2014). These ranges in A Luoi district are from 17 to 25 °C and from 2,500 to 114 

3,500 mm, respectively (Herzberg et al. 2019). 115 

Study approach and data collection 116 

Forests are going through major changes in Vietnam, including the study region (Cochard et 117 

al. 2016), and these changes could be associated with several factors (Tuong et al. 2019).  Previous 118 

studies have examined the effect of biophysical and socio-economic variables on deforestation. 119 

For instance, Kayet et al. (2021) used 20 biophysical and socio-economic variables (e.g., slope, 120 

elevation, rainfall, forest density, soil type, distance from settlement and distance from agricultural 121 

land) to identify deforestation susceptibility in Saranda forest of India. Saha et al. (2020) used 12 122 

topographic, biological and social variables (e.g., aspect, population density, distance from forest 123 

edge and agricultural land density) for predicting deforestation in the Gumani River Basin, India. 124 

Based on the approach of previous studies (Saha et al. 2020; Ullah et al. 2020; Vieilledent et al. 125 

2013; Harris et al. 2009), the local context, and data availability, we proposed 16 potential 126 

variables that might affect deforestation in our study site (Table 1).  127 

Data analysis 128 
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Information on forest loss in the past is very important for predicting future deforestation. In 129 

our study, we used Landsat satellite images in 1989 and 2020 to identify areas of natural forest 130 

loss in the period. The used images are Landsat TM05 image dated February 17, 1989 and Landsat 131 

8 OLI image dated February 25, 2021 with a resolution of 30 × 30 m at WRS row 49 and WRS path 132 

125. The Random Forest algorithm (RF) was employed to classify the satellite image of study area 133 

into two classes including natural forest and non-natural forest. We used the Semi-Automatic 134 

Classification Plugin to implement Random Forest algorithm (Congedo 2021). In the model, the 135 

number of trees (ntree) is set as 100 and the number of variables randomly sampled as candidates 136 

at each split (mtry) is set default as the square root of the number of input variables. Our RF model 137 

showed that total area of natural forests in the two districts was about 130,357 and 118,577 ha in 138 

1989 and 2020, respectively. We randomly selected 300 samples from the study area for validation 139 

of RF classification model in the two time points (1989 and 2020). Overall accuracy of RF 140 

classification model was 0.91 and 0.88 in 1989 and 2020, respectively. Changes of natural forests in 141 

the period of 1989-2020 were then identified by overlaying the two obtained forest cover layers. 142 

Several models such as Maxent (Aguilar-Amuchastegui et al. 2014), frequency ratio (Saha et 143 

al. 2020; Sahana et al. 2018), artificial neural network (Saha et al. 2020; Mas et al. 2004) and 144 

logistic regression model (Kayet et al. 2021; Saha et al. 2020; Mon et al. 2012) have been used to 145 

predict deforestation in many regions. Logistic regression is an interpretable model, thus we 146 

employed this model to examine the effect of potential variables on deforestation probability. The 147 

dependent variable had two values showing non-loss (0) and loss (1) of natural forest areas that 148 

were identified from changes of natural forests retrieved from satellite image analysis in the period 149 

of 1989-2020. Denoted 𝑥𝑖 is a set of independent variables, and 𝑝 is the probability of forest loss 150 

in a given area. The relationship between 𝑝 and 𝑥𝑖 is modeled through logit transformation as follows:  151 
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logit	(p) = α + β!x! 152 

in which, 𝛼 is the intercept, and 𝛽𝑖 is a set of regression coefficients. 153 

In our study, 𝑥𝑖 refers to 16 predictors as described in Table 1. We randomly selected 4000 154 

sample localities (points) from study area and assigned their attributes from 16 predictors and the 155 

forest change variable for using in the logistic model.  156 

 No high multicollinearity among predictors and independence among observations are the 157 

two important assumptions of the logistic model. We used the variance inflation factor (VIF) 158 

calculated in the package car (Fox and Weisberg 2019) to test the collinearity of predictors. In 159 

each predictor, the value of VIF > 5 indicates a collinearity problem (Saha et al. 2020). We also employed 160 

Moran’s I index computed in the package spdep to test the spatial autocorrelation in the model (Bivand 161 

and Wong, 2018; Portier et al. 2018). The index values range from -1 to 1. Strong dispersion and strong 162 

clustering patterns in the data correspond to the index value of -1 and 1, respectively. 163 

We randomly split data into a training set (70% of the data) for model fitting and a testing set 164 

(30%) for model evaluation. In addition, we used 213 deforested points in the period of 2020-2021 165 

that were officially identified by competent organization (Forest Protection and Development 166 

Fund) of Thua Thien Hue province to further evaluate the model performance. We used Akaike’s 167 

Information Criterion (AIC) with the stepwise procedure for model selection (Portier et al. 2018). 168 

The model with the lowest AIC value was selected as “the best” for interpretation and mapping. 169 

We used the Nagelkerke's R2 as a measure for goodness of fit of the model. In addition, the three 170 

metrics, including the accuracy, Cohen’s Kappa statistic and Area Under the Curve (AUC) were 171 

employed to evaluate model prediction performance (Schulltz et al. 2016).  172 

Prior to fitting the model, we transformed the unit of distance-related predictors and elevation 173 

from 1 to 100 m to ensure that model interpretation would be meaningful and understandable. The 174 



8 
 

effect of a given predictor on deforestation probability was interpreted using the odds ratio (OR), 175 

calculated by taking the exponential of the coefficient estimate (Dinh et al. 2018; Mon et al. 2012). 176 

The logistic model was fitted in R version 3.6.2 (R Core Team 2019) and the probability threshold 177 

for classification between forest non-loss and loss groups was set as 0.5. The probability of 178 

deforestation estimated from logistic model was classified into 4 classes with interval of 0.25, 179 

including low (0-0.25), medium (0.25-0.5), high (0.5-0.75) and very high (0.75-1) probability 180 

levels.  A deforestation probability map was made using regression coefficients from the selected 181 

logistic model in QGIS 3.10.2. Values of 16 predictors in the study area were computed for each 182 

cell (30 × 30 m) in raster maps (Supplementary Figure S1). 183 

 184 

Results 185 

Characteristics of predictors 186 

In our study, the sampled data points (n = 4000) distributed in forest non-loss (n = 2277) and 187 

forest loss areas (n = 1723). We found a significant difference between the forest non-loss and loss 188 

groups in 12 predictors (Table 2). For instance, deforested areas (760 m) were was significantly 189 

closer to roads than forest areas (2610 m). Slope in deforested areas were significantly lower than 190 

that of forest intact areas. In production forest type, proportion of forest loss areas (0.65) was 191 

significantly higher, compared with forest non-loss areas (0.35). Meanwhile, the opposite trend 192 

was observed in protection and special-use forest types. 193 

We used Spearman's correlation coefficient to examine pairwise correlation between 194 

continuous and discrete variables. The Spearman's correlation coefficients between these 195 

predictors were not high (Supplementary Figure S2). The highest correlation (Spearman's ρ = - 196 
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0.77) was detected between income score (income_sc) and proportion of ethnic minority group 197 

(prop_minority_sc).  198 

Factors affecting deforestation probability 199 

The best logistic model (with the lowest AIC value = 1754.7) comprised of 11 predictors 200 

(Table 3). The variance inflation factor (VIF) of each predictor in the selected logistic model was 201 

smaller than 5, thus our model did not violate the model assumption of multicollinearity. The model 202 

was also not violated the independence assumption (Moran’s I statistic = 0.029, P-value = 0.106). 203 

We found that the two predictors, proportion of households without agricultural land 204 

(prop_NoAgri_sc) and plantation forest to natural area ratio (planta_ratio_sc), had significantly 205 

positive effects on deforestation probability in study area (Table 3). In contrast, the remaining 9 206 

predictors in the model showed significantly negative effects on deforestation probability. Based on 207 

odds ratio (OR), an increase of 100 m in elevation resulted in a decrease of exp (-0.33) - 1 = 0.72 - 1 = 208 

- 0.28 (or 28 %) of deforestation probability. The probability of deforestation decreased by 7% for a 209 

100-m increase in distance from the nearest road.  Compared with forests managed by private owners 210 

and unallocated forests (G1), the forests of special-use forest management board (G4) had a 59% lower 211 

of deforestation probability. Our model showed that deforestation probability of protection forest and 212 

special-use forests respectively was 57 and 70% lower than that of plantation forests.  The PFES area 213 

had a 43% lower of deforestation probability, compared with area without PFES payment.  214 

The Nagelkerke's R2 of our model was 0.71, indicating that the model explains deforestation 215 

pattern in the study area quite well. The accuracy, Cohen’s Kappa statistic and AUC calculated 216 

from the training set (0.875, 0.746, 0.874, respectively) and testing set (0.875, 0.745 and 0.874, 217 

respectively) were almost the same. In addition, we found that 152 out of 213 deforested points in 218 

the period of 2020-2021 (accounting for about 71.4%) was in medium, high and very high levels 219 
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of deforestation probability. The obtained results implied that our model is potential in predicting 220 

deforestation in the study area. 221 

Deforestation probability prediction 222 

The total area of natural forests in the two studied districts was about 125,775 ha, in which 223 

the area of low, medium, high and very high deforestation probability levels was 94,947, 8,240, 224 

8,295 and 14,292 ha, respectively (Table S1; Figure 2). We observed that the area with very high 225 

level of deforestation probability in A Luoi and Nam Dong districts was 8,988 and 5,304 ha, 226 

respectively that occupied about 11.4 % of natural forests in study area. Of the 21 communes in A 227 

Luoi district, three communes with the largest area of very high level of deforestation probability 228 

were Huong Nguyen (1,256 ha), Hong Ha (1,154 ha) and Hong Thuy (1,065 ha) (Table S1 and 229 

Figure S3). We found that nearly a half of area of natural forests (1,834 ha) in Hong Van commune 230 

was under very high level of deforestation probability. In A Luoi district, the smallest area of very 231 

high level of deforestation probability was observed A Luoi town. In 11 communes in Nam Dong 232 

district, the largest area of very high level of deforestation probability was found in Thuong Nhat 233 

commune (1,238 ha), followed by Huong Loc (953 ha) and Thuong Quang (720 ha). Noticeably, the 234 

total area of natural forests in Khe Tre town, Huong Giang and Huong Hoa communes was under very 235 

high level of deforestation probability. 236 

Discussion 237 

In Vietnam, deforestation and forest degradation have occurred across the country, 238 

especially in remote upland areas of the Central region (Meyfroidt et al. 2013). In our study area 239 

(Nam Dong and A Luoi districts), about 417 ha of natural forests were lost during the period of 240 

2010-2020 (FPD 2011; PPC 2021). Since 1990s, the Vietnamese government has issued forest 241 

decentralized policies (e.g., Decree No. 163/1999/CP; Decision No. 178/2001/QD-TTg) that 242 
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allocate degraded forest land and natural forest to organizations, households and individuals for 243 

stable and long-term use for forestry purposes. However, the forest allocation process combining 244 

with the increased market demand of pulp, timber and industrial products has a “side effect” on 245 

natural forest that leads to the conversion of natural forest to plantation forests and industrial crops 246 

(e.g., rubber, coffee and Acacia species), illegal logging and encroachment in our study area (Thiha 247 

2017; Dung and Webb 2007)”. Residential expansion and infrastructure development (e.g., roads, 248 

hydropower dams) have also contributed considerably to deforestation and forest degradation. For 249 

instance, the construction of A Luoi hydropower dam in 2007 was responsible for the conversion of 250 

716-ha natural forest to other land-use types in the study area (A Luoi District People's Committee 2013).  251 

Previous studies indicated that several factors could influence the pattern and magnitude of 252 

deforestation and forest degradation (Saha et al. 2020; Di Lallo et al. 2017; Mas et al. 2004). In 253 

our study, we found the association between 11 factors and the loss of natural forest. Consistent 254 

with other work, we observed that the deforestation tended to occur in areas of low elevation, 255 

gentle slope, nearby rivers and residential areas because of a high accessibility (Saha et al. 2020; 256 

Aguilar-Amuchastegui et al. 2014, Petrova et al. 2007). In southeastern Brazil, for instance, Freitas 257 

et al. (2010) showed the long-term effect of roads on accelerating deforestation owing to 258 

construction activities and increased accessibility to forests. 259 

We detected the negative association between deforestation probability and forest quality, 260 

suggesting that low quality forests in our study area are likely to be convert to other land-use types 261 

(e.g., plantation forests and agricultural land). In Vietnam, forests are categorized in three forest 262 

types based on their function, including production forest (mainly for timber and non-timber 263 

production), protection forest (mainly for environmental protection and ecological functions and 264 

ecosystem services), and special-use forest (mainly for nature conservation). In our study, we 265 
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found that the deforestation probability of production forest was highest, followed by protection 266 

and special-use forests (Table 3). This finding is rational because the conversion of production 267 

forest (both natural and plantation forests) to other land-use types is less restricted by law, 268 

compared with protection and special-use forests (Vietnam National Assembly 2017). In our study 269 

area, forests managed by private owners and unallocated forests (G1) and local household and 270 

community (G2) showed a higher probability of forest loss, compared with other owner types. This 271 

observation can be explained by the fact that G1 and G2 owners tended to convert a part of their 272 

allocated natural forests to plantation forests and agricultural land (Nguyen et al. 2016; Dung and 273 

Webb 2007). 274 

In Vietnam, Payment for Forest Environmental Services (PFES) policy has been implemented 275 

with the aim at mobilizing social financial sources for protecting forest ecosystems (Dien et al. 276 

2013). In PFES schemes, the users of forest environmental services (e.g., hydropower, water and 277 

tourism companies) must make payment to the service suppliers (i.e., forest owners). Since 2013, 278 

PFES scheme has been implemented in our study area. After analyzing Vietnam’s official forest data 279 

in the period of 2011-2016, Cochard et al. (2020) indicated a negative but not statistically significant 280 

effect of PFES on natural forest cover changes. In line with Cochard et al. (2020), we found the same 281 

effect trend of PFES on natural forest changes, showing that forests under PFES schemes had a lower 282 

probability of deforestation (Table 3). This finding is expected because forest owners in PFES 283 

scheme must protect their forests well to receive yearly payment from service users. In the scope of 284 

our study, the association between PFES and deforestation probability should be interpreted 285 

cautiously because the implementation of PFES is not at the beginning of study period of 1989-2020. 286 

Our data showed that communes with a higher proportion of households without agricultural land 287 

(prop_NoAgri_sc) and a higher ratio of plantation forest (planta_ratio_sc) appeared to have a greater 288 
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probability of deforestation.  In the study area, the local people’s livelihoods rely mainly on forest 289 

resources and agricultural cultivation. The lack of agricultural land may induce local people to 290 

encroach forest for slash and burn cultivation, expand forest plantations (mainly Acacia) and illegally 291 

exploit forest products (Duong et al. 2021; Tuan 2015) 292 

The deforestation prediction model in our study follows the assumption that the pattern of 293 

deforestation and its associated factors in the past 30 years will not change drastically in the near 294 

future (Aguilar-Amuchastegui et al. 2014). Thus, it would be important to re-analyze the model in 295 

the future, particularly a few years after new large-scale policy interventions. In the study site, the 296 

area of very high level of deforestation probability occupied about 11.4 % of total natural forests. 297 

Large area of natural forests in some communes (e.g., Huong Nguyen, Thuong Nhat and Hong 298 

Van) is being under very high level of deforestation probability. Based on the obtained results of 299 

this study, local authorities, forest rangers and managers need to pay much more attention to forest 300 

protection in high deforestation probability-prone forest areas, and the promotion of PFES 301 

implementation could be a feasible win-win solution to protect natural forests in study area (Duong 302 

et al. 2021). Local management plans and policies may need to be developed to better manage and 303 

protect natural forests. 304 

Conclusion 305 

 The present study indicated that the loss of natural forests in the study area (Nam Dong 306 

and A Luoi districts) could be related to 11 socio-economic and topographical factors. The logistic 307 

model showed a quite good performance and could be used to predict deforestation in the study 308 

area. The area of very high level of deforestation probability in A Luoi and Nam Dong districts 309 

was 8,988 and 5,304 ha, respectively, representing 11.4 % of the natural forest area in the region.  310 

Forest areas with low elevation, gentle slopes, nearby rivers and residential areas are likely to have 311 
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a high probability of deforestation. Production forest, forest areas not being in PFES scheme, 312 

and/or not being allocated and managed by private owners may also be under a high probability of 313 

changing to other land-use types. In order to better protect natural forests in the study area, forest 314 

rangers/managers and local authorities should carry out many more protection activities in high 315 

deforestation probability-prone forest areas and enhance PFES. 316 
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Tables in the Manuscript entitled “Factors associated with deforestation probability in Central 511 

Vietnam: A case study in Nam Dong and A Luoi districts” 512 

This document includes 3 Tables as follows. 513 

 514 

Table 1. Potential variables affecting deforestation in the study area 515 

ID Variable Notation Description Data sources 

1 Elevation (100 m) Elev This variable was treated as a 
continuous variable. 
 

Elevation data was extracted 
from SRTM Digital Elevation 
Model (DEM) global datasets.  

2 Slope Slope Slope (0) was classified into 4 
scores, including 1 (0 <150), 2 (15-
300), 3 (30-450) and 4 (> 450), and 
was treated as a discrete variable. 

The variable was derived from 
DEM data using QGIS 3.10.2 
(QGIS Development Team 
2020). 

3 Forest owner  f_owner The forest owners were divided 
into 4 groups including: 
Unallocated forests and private 
owners (G1); Local household and 
community (G2); State owners 
(G3); and Special-use forest 
management board (G4). The 
variable was treated as a 
categorical variable. 
 
 

The variable was extracted 
from official data of Thua 
Thien Hue province in 2020 

4 Forest quality f_qual The variable describes forest 
quality in Vietnam based on forest 
volume. Forest quality was 
divided into poor (tree volume ≤ 
100 m3/ha), medium (101-200 
m3/ha) and rich (>201 m3/ha) 
forests. We treated forest volume 
as a discrete variable (1= poor 
forest, 2 = medium forest and 3 = 
rich forest) 

The variable was extracted 
from official data of Thua 
Thien Hue province in in 2020. 
Forest quality was classified 
with volume criteria regulated 
by Vietnamese policy (MARD 
2018)  
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5 Forest-use type f_use_type The variable describes 3 forest 
types, which are based on the use 
function including production, 
protection and special-use forest 
types. It is noted special-use 
forests are mainly used for nature 
conservation. The variable was 
treated as a categorical variable. 

The variable was extracted 
from official data of Thua 
Thien Hue province in 2015. 
 
  

6 Soil type soil_type Soil type in the study area was 
classified into 3 groups 
including Ferralsols (S1), Humic 
acrisols (S2) and Fluvisols (S3). 
The variable was treated as a 
categorical variable. 

The variable was extracted 
from official data of Nam Dong 
and A Luoi districts in 2007 

7 Plantation forest to 
natural area ratio 

 
planta_ratio_
sc 

The variable depicts the ratio 
between plantation forest and 
natural area at the commune level. 
The variable (%) was classified 
into 5 scores, including 1 (0 
<10%), 2 (10-20%), 3 (20-30%) 
and 4 (30-40%) and 5 (> 40%) and 
was treated as a discrete variable. 
 

The variable was extracted 
from official data of Nam Dong 
and A Luoi districts in 2020. 

8 Payment for forest 
environmental 
services (PFES) 

PFES_sc The variable depicts the payment 
amount per hectare for forest 
environmental services. The 
variable was classified into 4 
scores, including 1 (no payment), 
2 (low payment ~ 200×103 
Vietnamese Dong-VND), 3 
(medium payment ~ 400×103 
VND) and 4 (high payment ~ 
600×103 VND). The higher score 
implies the better forest 
management and protection. The 
variable was treated as a discrete 
variable. 
 

The variable was extracted 
from official PFES data of 
Thua Thien Hue province, 
averaged in the period of 2015-
2020. 

9 Distance to nearest 
residential area (m) 

d2_resi_area The variable describes the 
distance from a given forest area 
to the nearest residential site. The 
variable was treated as a 
continuous variable.  

The variable was retrieved 
using QGIS 3.10.2 (QGIS 
Development Team 2020).  
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10 Distance to nearest 
road (100 m) 

d2_road The variable describes the 
distance from a given forest area 
to the nearest road. The variable 
was treated as a continuous 
variable. 

The road data were extracted 
using Openstreet tool in QGIS 
3.10.2.  

11 Distance to nearest 
waterbody (100 m) 

d2_wb The variable describes the 
distance from a given forest area 
to the nearest water waterbody. 
The variable was treated as a 
continuous variable. 

The water body data were 
extracted from official data of 
Thua Thien Hue province. 

12 Income score income_sc The average annual income per 
capita at commune level was 
classified into 4 scores, including 
1 (< 650 USD), 2 (650-870 USD), 
3 (870-1085 USD) and 4 (>1085 
USD). The variable was treated as 
a discrete variable. 
 

The income was extracted from 
official data of Nam Dong and 
A Luoi districts in 2016 

13 Proportion of 
ethnic minority 
group 

prop_minorit
y_sc 

The proportion of ethnic minority 
groups was calculated at 
commune level. The proportion 
was classified into 4 scores 
including 1 (< 25%), 2 (25-50%), 
3 (50-75%) and 4 (> 75%). The 
variable was treated as a discrete 
variable. 

The variable was extracted 
from official data of Nam Dong 
and A Luoi districts in 2016 

14 Primary ethnic 
group 

pr_ethnicity The variable indicates the ethnic 
group with highest proportion at 
commune level. There were 4 
main people groups, including Co 
Tu (P1), Pa Cô (P2), Ta Oi (P3) 
and Kinh (P4). The variable was 
treated as a categorical variable. 

The variable was extracted 
from official data of Nam Dong 
and A Luoi districts in 2016 

15 Poverty rate pov_rate_sc  Poverty rate at commune level 
was classified into 3 scores, 
including 1 (<10%), 2 (10-20%) 
and 3 (>20%). The variable was 
treated as a discrete variable 

The variable was extracted 
from official data of A Luoi and 
Nam Dong districts in 2016 

16 Proportion of 
households without 
agricultural land 

prop_NoAgri
_sc 

Proportion of households lacking 
agricultural land was calculated at 
commune level. The variable was 
classified into 3 scores, including 
1 (< 25%), 2 (25-50%) and 3 (> 
50%). The variable was treated as 
a discrete variable 

The variable was extracted 
from official data of Nam Dong 
and A Luoi districts in 2016 

 516 
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 517 

 518 

 519 

 520 

Table 2.  Characteristics of predictors in forest non-loss and loss groups 521 

Predictor Notation Mean (SD) P-value *  

Forest non-loss 

(n = 2277) 

Forest loss 

(n = 1723) 

 

Payment for forest environmental services PFES 2.6 (0.9) 1.6 (1) < 0.001 

Slope (0) slope 2  (0.7) 1.6 (0.6) < 0.001 

Elevation (100 m) elev 5.7  (2.9) 4.1 (2.4) < 0.001 

Distance to nearest road (100 m) d2_road 26.1 (19.2) 7.6 (7.7) < 0.001 

Distance to nearest residential area (100 m) d2_resi_area 41.8 ( 22.4 ) 15.7 (12.2) < 0.001 

Distance to nearest waterbody (100 m) d2_wb 12.5 ( 9.5) 8.9 (6.9) < 0.001 

Forest quality  f_qual 2.2 (0.7) 1.7 (0.7) < 0.001 

Income score income_sc 1.9 ( 1.1) 2 (1.2) 0.058 

Proportion of ethnic minority group prop_minority_sc 3.5 (1) 3.4 (1.2) 0.666 

Poverty  rate pov_rate_sc 1.7 (0.6) 1.7 (0.7) 0.272 

Proportion of households without agricultural land prop_NoAgri_sc 1.3 (0.6) 1.3 (0.6) 0.693 

Plantation forest to natural area ratio planta_ratio_sc 1.8 (0.7) 2.1 (0.8) < 0.001 

Primary ethnic group 

 

pr_ethnicity1 

 

0.63 0.37 

< 0.001 
0.45 0.55 

0.45 0.55 

0.56 0.44 

Forest-use type  f_use_type 2 

0.35 0.65 

< 0.001 0.80 0.20 

0.95 0.05 
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* Wilcoxon rank-sum test was used to examine the difference between forest non-loss and loss groups in continuous and 522 
discrete variables. Chi-square test was used to determine the association between each of 4 categorical variables 523 
(pr_minority, f_use_type, f_owner and soil_type) and the binary dependent variable (non-loss and loss groups). SD: 524 
Standard deviation; n: Sample size. In the table, the group order in each of these 4 categorical predictors is as follows: 525 
1 pr_ethnicity: Co Tu (P1), Pa Cô (P2), Ta Oi (P3) and Kinh (P4) 526 
2 f_use_type: Production, protection and special-use forest types 527 
3 f_owner: Unallocated forests and private owners (G1), local household and community (G2), other state owners 528 
(G3), and special-use forest management board (G4) 529 
4 soil_type: Ferralsols (S1), Humic acrisols (S2) and Fluvisols (S3) 530 

 531 

 532 

 533 

        534 

 535 

 536 

Forest owner f_owner 3 

0.31 0.69 

< 0.001 
0.34 0.66 

0.81 0.19 

0.94 0.06 

Soil type soil_type 4 

0.56 0.44 

< 0.001 0.86 0.14 

0.13 0.87 
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 537 

 SE: Standard error; CI: Confidence interval 538 

 539 

  540 

Predictor 
 

Comparison unit Coefficient 
estimates (SE) 

Odd ratio (OR) – 1 
[95% CI]  

P-value 

PFES 1 -0.56 (0.06) -0.43 [-0.49 - -0.35] < 0.001 
slope 1 (15°) -0.36 (0.1) -0.30 [-0.42- -0.15] < 0.001 
elev 100 m -0.33 (0.03) -0.28 [-0.32 - -0.24] < 0.001 
d2_road 100 m -0.07 (0.01) -0.07 [-0.08- -0.05] < 0.001 
d2_resi_area 100 m -0.05 (0.004) -0.05 [-0.06 - -0.04] < 0.001 
d2_wb 100 m -0.02 (0.01) -0.02 [-0.04 - -0.01] < 0.01 
f_qual 1 -0.59 (0.09) -0.45 [-0.54 - -0.33] < 0.001 
prop_NoAgri_sc 1  0.5 (0.12)   0.65 [0.30 - 1.07] < 0.001 

f_use_type Protection forest -0.84 (0.14) -0.57 [-0.67- -0.43] < 0.001 
Special-use forest -1.21 (0.46) -0.70 [-0.88 - -0.26] < 0.001 

f_owner  G2 (Local household and 
community) -0.09 (0.16) -0.09 [-0.33 - 0.26] 0.595 

 G3 (Other state owners) -0.99 (0.2) -0.63 [-0.75 - -0.4] < 0.001 
 G4 (Special-use forest 

management board) -0.89 (0.41) -0.59 [-0.81- -0.08] 0.029 

planta_ratio_sc 1  0.27 (0.1) 0.31 [0.08 - 0.59] < 0.01 

Table 3. Effects of predictors on deforestation probability, using logistic regression model 
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Figures in the Manuscript entitled “Factors associated with deforestation probability in Central 541 

Vietnam: A case study in Nam Dong and A Luoi districts” 542 

This document includes Figure 1 and Figure 2 as follows. 543 

 544 

 545 

 546 

 547 

 548 

Figure 1. Nam Dong and A Luoi districts in Thua Thien Hue province, Vietnam 

Figure 2. Predicted deforestation probability in the study area, using logistic regression model 



28 
 

Supplementary materials for the Manuscript entitled “Factors associated with deforestation 549 

probability in Central Vietnam: A case study in Nam Dong and A Luoi districts” 550 

The supplementary materials include Table S1, Figure S1, Figure S2, Figure S3 and Response 551 
to the Editors and Reviewers as follows. 552 

District Commune Area by probability levels (ha) 

Proportion of 
very high level of 
probability (%) 

Total natural 
forest (ha) 

Low Medium High Very high   
A Luoi A Dot 553.0 36.1 38.1 30.4 4.6 657.7 
  A Luoi town 638.6 4.6 10.4 13.8 2.1 667.3 
  A Ngo 251.6 2.8 15.0 129.0 32.4 398.4 
  A Roang 1897.8 325.2 368.4 452.1 14.9 3043.5 
  Bac Son 225.5 55.1 84.2 83.1 18.6 447.9 
  Dong Son 1197.0 135.8 77.1 74.4 5.0 1484.4 
  Hong Bac 1055.4 39.9 107.2 438.4 26.7 1640.9 
  Hong Ha 7932.8 382.1 603.8 1154.2 11.5 10072.8 
  Hong Kim 3202.9 50.8 59.4 66.5 2.0 3379.6 
  Hong Thai 4123.2 217.1 363.6 294.2 5.9 4998.1 
  Hong Thuong 1176.8 282.9 296.2 393.5 18.3 2149.3 
  Hong Thuy 4278.3 160.1 303.4 1064.7 18.3 5806.5 
  Hong Trung 2700.7 233.1 661.4 976.2 21.4 4571.3 
  Hong Van 676.9 61.4 233.6 861.9 47.0 1833.9 
  Huong Lam 1683.9 468.1 701.0 421.1 12.9 3274.2 
  Huong Nguyen 20622.1 2030.5 1086.1 1255.8 5.0 24994.6 
  Huong Phong 3758.9 1191.8 840.0 453.5 7.3 6244.1 
  Nham 677.2 58.7 151.6 361.2 28.9 1248.6 
  Phu Vinh 1284.3 38.2 83.3 223.7 13.7 1629.5 
  Son Thuy 355.8 5.0 31.9 240.1 37.9 632.9 
Total area (ha)  58292.8 5779.3 6115.7 8987.6 11.4 79175.5 
 Nam Huong Giang  0  0  0 56.5 100.0 56.5 
 Dong Huong Hoa 0 0 0 13.5 100.0 13.5 
  Huong Huu  0 4.8 67.9 117.4 61.8 190.2 
  Huong Loc 3699.1 225.0 273.4 952.7 18.5 5150.2 
 Huong Phu 3066.6 186.9 54.9 501.1 13.2 3809.5 
  Huong Son 1559.7 120.8 282.6 652.6 24.9 2615.7 
  Khe Tre town  - - - 0.5 100.0 0.5 
  Thuong Lo 7502.2 394.2 339.9 654.1 7.4 8890.4 
  Thuong Long 2659.3 248.5 203.4 398.5 11.4 3509.8 
  Thuong Nhat 6635.7 599.8 461.9 1237.5 13.8 8934.9 
  Thuong Quang 11531.9 680.5 495.7 720.1 5.4 13428.2 
Total area (ha) 36654.6 2460.6 2179.7 5304.4 11.4 46599.2 

Grand total (ha) 94947.4 8239.9 8295.4 14292.0  125774.6 

Table S1. Deforestation risk area in A Luoi and Nam Dong districts 
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Elevation Slope 

Forest owner Forest quality 
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Forest-use type Soil type 

Plantation forest to natural area ratio Payment for forest environmental services 

Distance to nearest residential area Distance to nearest road 
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Figure S1. Spatial distribution of 16 potential predictors 568 

Distance to nearest waterbody Income score 

Proportion of ethnic minority group Primary ethnic minority group 

Poverty rate Proportion of households without agricultural 
land 
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Figure S2. Spearman's correlation coefficients between 12 continuous and discrete predictors 571 
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Figure S3. Communal boundary in the study area 580 
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