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Abstract. The coefficient of variation and the dispersion are two examples of widely
used measures of variation. We show that their applicability in practice heavily depends
on the existence of sufficiently many moments of the underlying distribution. In partic-
ular, we offer a set of results that illustrate the behavior of these measures of variation
when such a moment condition is not satisfied. Our analysis is based on an auxiliary
statistic that is interesting in its own right. Let (Xi)i≥1 be a sequence of positive inde-
pendent and identically distributed random variables with distribution function F and
define for n ∈ N

Tn :=
X2

1 + X2
2 + . . . + X2

n

(X1 + X2 + . . . + Xn)2
.

Mainly using the theory of functions of regular variation, we derive weak limit theorems
for the properly normalized random quantity Tn, given that 1 − F is regularly varying.
Following a distributional approach based on Tn, we then analyze asymptotic properties
of the sample coefficient of variation. As a second illustration of the same method,
we then turn to the sample dispersion. We also include asymptotic properties of the
first moments of these quantities. Finally, we give a distributional result on Student’s
t-statistic which is closely related to Tn. The main message of this paper is to show that
the unconscientious use of some measures of variation can lead to wrong conclusions.

1. Introduction

Let (Xi)i≥1 be a sequence of positive independent and identically distributed random
variables with distribution function F and define

(1) Tn :=
X2

1 +X2
2 + . . .+X2

n

(X1 +X2 + . . .+Xn)
2 , n ∈ N.

The limiting behavior of arbitrary moments of Tn as n → ∞ has been investigated in [1]
under the condition that X1 satisfies

(2) 1− F (x) ∼ x−α`(x), x→∞
for some slowly varying function ` and α > 0, meaning that 1 − F is regularly varying
with negative index −α. It is clear that the smaller the value of α, the fatter the tail.
Recall that a measurable and ultimately positive function f on R+ is regularly varying
with index γ ∈ R (written f ∈ RVγ) if limx→∞ f(tx)/f(x) = tγ for all t > 0. When γ = 0,
the function f is said to be slowly varying. We refer to [7] for a textbook treatment on
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the theory of functions of regular variation.

It is well-known that the tail condition (2) appears as the essential condition in the do-
main of attraction problem of extreme value theory. For a recent treatment, see [5]. A
distribution F satisfying (2) is called of Pareto-type with index α. When 0 < α < 2, the
condition coincides with the additive domain of attraction condition for weak convergence
to a non-normal stable law with index α.

It is important to remark that distributions satisfying (2) have been used for modeling pur-
poses in numerous practical situations including finance (see e.g. [33, 20, 34]), (re)insurance
(e.g. [22, 4, 3]) and geology (see [8]). In telecommunication networks, (2) appears for the
modeling of transmission durations and file sizes, see e.g. [29, 30, 47, 48, 39, 40].

In this paper, we focus on weak convergence in deriving limits in distribution for the
appropriately normalized random quantity Tn under the assumption (2), in that way com-
plementing the results of [1].

For β > 0, define µβ := E(Xβ
1 ) = β

∫∞
0 xβ−1 (1− F (x)) dx ≤ ∞ and put µ := µ1 for

convenience. Moreover, we put Var (X1) := µ2 − µ2 for the variance of X1. Clearly, both
the numerator and the denominator in (1) exhibit an erratic behavior if µ = ∞, whereas
this is the case only for the numerator if µ <∞ and µ2 = ∞. When X1 satisfies the tail
condition (2) then µβ is finite if β < α but infinite whenever β > α. In particular, µ <∞
if α > 1 while µ2 <∞ as soon as α > 2. Since the asymptotic behavior of Tn is influenced
by the finiteness of µ1 and/or µ2, different limiting distributions will consequently show
up according to the range of α. The possible limit forms are fully covered in our results
given in Section 2.

Let Sn :=
∑n

i=1Xi and V 2
n :=

∑n
i=1X

2
i so that Sn/Vn = 1/

√
Tn. Motivation for our

work arose from a number of theorems in connection with weak convergence for the self-
normalized sum Sn/Vn, most prominently those of [15, 32, 11, 19, 18, 10, 37] where the
distribution F has support in R (and not necessarily in R+ as supposed here). The line of
research leading to these results actually started with the conjecture of [32] stating that
”Sn/Vn is asymptotically normal if [and perhaps only if] X1 is in the domain of attraction
of the normal law” (and X1 is centered). For X1 symmetric, the parenthetical ”only if”
part was proved in [19]. For the general case of a not necessarily symmetric X1, the con-
jecture was proved in [10] sharpening the result of [18] where is was assumed that Sn/Vn
was asymptotically standard normal. Besides, weak convergence results for Sn/Vn when
X1 belongs to the domain of attraction of a stable law with index 0 < α < 2 have been
derived in [15, 32, 11, 10, 37]. For example, it was shown in [32] that all limit laws of
Sn/Vn for X1 in the domain of attraction of a stable law with index 0 < α < 2, centered
if 1 < α < 2 and symmetric if α = 1, have a subgaussian tail. The asymptotic properties
of Tn that we derive in Section 2 fit well into the above framework with the additional
assumption that we deal with positive random variables.

Armed with the asymptotic results on Tn, we devote Section 3 to applications on the
asymptotic behavior of some widely used measures of variation, namely the sample coeffi-
cient of variation and the sample dispersion. Both the coefficient of variation CV (X1) :=√

Var (X1)/EX1 and the dispersion D(X1) := Var (X1)/EX1 found many applications
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Figure 1. Sample coefficient of variation for X ∼ Par(α) (as a function
of n) with α = 0.5 (a), 1.5 (b), 3.5 (c), 4.5 (d). In solid lines, true value of
CV (X) ' 0.4364 (c), 0.2981 (d). In dotted lines, 95%−confidence intervals
(d).

within the context of insurance and reinsurance, see e.g. [35, 25]. They are usually advo-
cated for comparing variability between distributions with different expected values. As
such, they are very popular among actuaries. For an application in actuarial risk theory
on mergers of companies, we refer to [17]. We also point out the importance of these quan-
tities in premium calculation in (re)insurance. The reciprocal value 1/CV (X1) defines the
so-called Sharpe’s ratio that is very popular in finance as a measure of portfolio perfor-
mance (see the recent application in [26]). It has been developed as a tool for comparing
the risk-adjusted performance of mutual funds, see [42]. We further refer to [41] for an
application in the analysis of portfolio selection models with α-stable return distributions.
We point out that Sharpe’s ratio is also used as a measure of market risk, see [36]. Finally,
we refer to [13] for a recent illustration of its use in insurance. For a set of papers dealing
with the coefficient of variation in the engineering literature, we refer to [9, 31, 23, 27].
The coefficient of variation is also used in botany ([45, 21]), in chemistry (see [44]) and in
physics (see [16]). Apart from applications in statistics, we mention that the dispersion is
often used as a measure of heterogeneity in portfolios.

In practice, the coefficient of variation and the dispersion will be replaced by the corre-
sponding sample values. Let us look at the coefficient of variation first. Since nTn =
̂CVn(X)

2
+ 1, the quantity Tn represents, up to scaling, the sample coefficient of varia-

tion ̂CVn(X) of a set of independent observations X1, . . . , Xn from X. Since under (2)
the existence of moments of X is not always guaranteed, one has to use ̂CVn(X) with
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Figure 2. Sample dispersion for X ∼ Par(α) (as a function of n) with
α = 0.5 (a), 1.5 (b), 3.5 (c), 4.5 (d). In solid lines, true value of D(X) '
0.2667 (c), 0.1143 (d). In dotted lines, 95%−confidence intervals (d).

great care. We illustrate this with some simulations. To that end, assume that X has
a strict-Pareto distribution Par(α), α > 0, meaning that 1 − F (x) = x−α for x ≥ 1
(note that (2) then holds with ` ≡ 1). We depict the behavior of ̂CVn(X) in Fig. 1 as
a function of the sample size n for α ∈ {0.5, 1.5, 3.5, 4.5}. For α = 0.5 and then µ = ∞
in Fig. 1(a), the jumps in the simulated values of ̂CVn(X) are enormous and indicate a
drift to ∞. For α = 1.5, when µ < ∞ but µ2 = ∞, Fig. 1(b) shows that the jumps are
smaller but the tendency to infinity continues in a similar erratic way. For larger values
of α, convergence towards the finite value of CV (X) is already visible. When the first
two moments exist, the sample coefficient of variation behaves well and converges to the
true value, as illustrated in Figs. 1(c)-(d) for α = 3.5 and α = 4.5. Only when α > 4 is
it possible to give approximate confidence intervals as illustrated in Fig. 1(d). For these
larger values of α, it becomes interesting to investigate asymptotic second-order properties.

Very similar remarks apply to the dispersion D(X) and its sample value D̂n(X). The
behavior of D̂n(X) is illustrated in Fig. 2 as a function of the sample size n for the same
values of α ∈ {0.5, 1.5, 3.5, 4.5}. Note that for α = 0.5, the sample values are larger than
for the case when α = 1.5 (see Figs. 2(a)-(b)). Comparing the two sample measures of
variation, it is apparent that for a given α < 2, the speed of divergence to ∞ is even faster
for D̂n(X) than for ̂CVn(X). The theoretical results for D̂n(X) are based on a statistic
Cn that is similar to Tn. For this reason, we restrict the theoretical derivations to Tn.
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The results of Section 2 allow us to derive limits in distribution for the (appropriately
normalized) sample coefficient of variation, viewed as a statistic, also in the cases where
the first moments do not exist (see Subsection 3.1). In Subsection 3.2, we obtain similar
results for the sample dispersion D̂n(X). Asymptotic properties on moments of the quan-
tities Tn, ̂CVn(X) and D̂n(X) are also specified. Some concluding remarks are given in
Section 4. In particular, after pointing out the link between Tn and Student’s t-statistic,
we establish a distributional result for the latter quantity.

We end with some notation. Whenever X1 satisfies (2) for some ` ∈ RV0, we define
˜̀(x) :=

∫ x(`(t)/t) dt. It is well-known that ˜̀∈ RV0 again and ˜̀(x)/`(x) →∞ for x→∞,

see e.g. [7]. The symbol d−→,
p−→, a.s.−→ stands for convergence in distribution, in probability

and almost surely, respectively. For two positive measurable functions f and g, we write
f(x) = O(g(x)) if f(x)/g(x) ≤ c as x → ∞ for some positive constant c, f(x) = o(g(x))
if f(x)/g(x) → 0 as x → ∞ and f(x) ∼ g(x) if f(x)/g(x) → 1 as x → ∞. Finally, Γ(·)
denotes the gamma function.

2. Limiting Distributions for Tn

We provide limits in distribution for the (normalized) sequence of random variables (Tn)n≥1,
where F satisfies (2). We give a detailed proof for the case α < 1 (Theorem 2.1) to illus-
trate the technique, but in order to avoid repetition, we omit the proofs of the cases with
α ≥ 1 as they can be obtained in a similar manner by appropriate scaling. We also would
like to point out that an alternative way to derive the limiting results of this section is to
use Fourier methods applied to the appropriately centered and normalized two-dimensional
sums (

∑n
i=1Xi,

∑n
i=1X

2
i ) along techniques described in [2] or to use probabilistic methods

as those of [11].

We need to distinguish seven cases depending on the value of α.

Theorem 2.1. Case 1: 0 < α < 1. Then

Tn
d−→ U

V 2

where the joint distribution of the random variables (U, V ) is given by the Laplace transform

(3) E(e−sU−t V ) = exp

{
−2 et

2/(4 s)

∫ ∞

0
e
−
“
u+ t

2
√

s

”2 (
u+

t

2
√
s

)(
u√
s

)−α
du

}
.

Proof. Let 1 − F (x) ∼ x−α`(x) for some ` ∈ RV0 and 0 < α < 1. For θ > 0 and ψ ≥ 0,
we have

1− E (e−θ X
2
1−ψX1) =

∫ ∞

0

(
1− e−θ x

2−ψ x
)
dF (x)

=
∫ ∞

0
(1− F (x)) e−θ x

2−ψ x (2θ x+ ψ) dx

= 2eψ
2/(4θ)

∫ ∞

ψ/(2
√
θ)
e−y

2
y

(
1− F

(
y√
θ
− ψ

2θ

))
dy(4)

where the last equality is obtained by the change of variables y =
√
θ x+ ψ

2
√
θ
.
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Define a sequence (an)n≥1 by 1− F (an) ∼ 1
n , i.e. `(an)/aαn ∼ 1

n . Now, from the indepen-
dence of the random variables Xi one gets

E
(
e
−s 1

a2
n

Pn
i=1X

2
i −t 1

an

Pn
i=1Xi

)
= exp

{
n log E

(
e
−s 1

a2
n
X2

1−t 1
an

X1

)}

∼ exp
{
−n

[
1− E

(
e
−s 1

a2
n
X2

1−t 1
an

X1

)]}

and by choosing θ = s/a2
n and ψ = t/an, we obtain from (4) and dominated convergence

E
(
e
− s

a2
n

Pn
i=1X

2
i − t

an

Pn
i=1Xi

)
∼ exp

{
− 2 et

2/(4 s)

∫ ∞

t
2
√

s

y e−y
2
n

[
1− F

(
an

(
y√
s
− t

2 s

))]
dy

}

→ exp

{
−2 et

2/(4 s)

∫ ∞

t
2
√

s

y e−y
2

(
y√
s
− t

2 s

)−α
dy

}
:= e−ψα(s,t).

An additional change of variables y = u+ t
2
√
s

leads to

ψα(s, t) = 2 et
2/(4 s)

∫ ∞

0
e
−
“
u+ t

2
√

s

”2 (
u+

t

2
√
s

)(
u√
s

)−α
du.

Thus, we have shown
( 1
a2
n

n∑

i=1

X2
i ,

1
an

n∑

i=1

Xi

)
d−→ (U, V )

where the joint distribution of U and V is given by (3). The continuous mapping theorem
finally gives

Tn =
X2

1 +X2
2 + . . .+X2

n

(X1 +X2 + . . .+Xn)
2

d−→ U

V 2

and the proof is complete. 2

Remark 2.1. The marginal distribution of U is the weak limit of 1
a2n

∑n
i=1X

2
i and hence

is determined by taking t = 0 in (3). This leads to

E(e−sU ) = exp
{
−sα/2 Γ(1− α/2)

}

so that U is stable with index α/2. For the marginal distribution of V , which is the weak
limit of 1

an

∑n
i=1Xi, a little more care is needed, but following the same line of arguments

in the proof above with s = 0, one obtains

E(e−t V ) = exp {−tα Γ(1− α)}
so V is stable with index α, as it should be.

Theorem 2.2. Case 2: α = 1 and E(X1) = ∞. Then
(
a′n
an

)2

Tn
d−→ U

where U is a stable random variable with Laplace transform

(5) E(e−sU ) = exp
{−√π s}

and where (an)n≥1 is defined by `(an)/an ∼ 1
n and (a′n)n≥1 is defined by ˜̀(a′n)/a′n ∼ 1

n .
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Remark 2.2. In Theorem 2.2, we have (a′n/an)2 ∈ RV0 because a′n ∈ RV1 and an ∈ RV1.
Further, it proves that a′n/an →∞ as n→∞ since ˜̀(x)/`(x) →∞ for x→∞.

Theorem 2.3. Case 3: 1 < α < 2 (including α = 1 if E(X1) <∞). Then
(
n

an

)2

Tn
d−→ U

µ2

where U is a stable random variable with Laplace transform

(6) E(e−sU ) = exp
{
−sα/2 Γ(1− α/2)

}

and (an)n≥1 is defined by `(an)/aαn ∼ 1
n .

Remark 2.3. Since an ∈ RV1/α in Theorem 2.3, we deduce that (n/an)2 ∈ RV2−2/α. When
1 < α < 2, we then have n/an → ∞ as n → ∞. When α = 1 and E(X1) < ∞, we have
`(x) = o(1) so that (n/an)2 ∈ RV0 satisfies n/an →∞ as n→∞.

Theorem 2.4. Case 4: α = 2 and E(X2
1 ) = ∞. Then

(
n

a′n

)2

Tn
p−→ 2

µ2

where (a′n)n≥1 is defined by ˜̀(a′n)/a′2n ∼ 1
n .

Remark 2.4. In Theorem 2.4, since a′n ∈ RV1/2, it is clear that (n/a′n)2 ∈ RV1 so that
n/a′n →∞ as n→∞.

Remark 2.5. Notice that for all 1 ≤ α ≤ 2, the normalizing sequences are regularly varying
with index 2− 2/α which is increasing with α.

In the following results, the case α > 2 is treated. Since E(X1) < ∞ and E(X2
1 ) < ∞, it

follows that nTn
a.s.−→ µ2

µ2 by the law of large numbers. We then deal with second-order
weak limit theorems, i.e. we consider convergence in distribution of kn(nTn − µ2

µ2 ) for
appropriate normalizing constants kn →∞ as n→∞.

Theorem 2.5. Case 5: 2 < α < 4 (including α = 2 if E(X2
1 ) <∞). Then

n1−2/α

`#1 (n2/α)

(
nTn − µ2

µ2

)
d−→ W

µ2

where W is a stable random variable with index α/2 and `#1 ∈ RV0 is defined as the de
Bruyn conjugate of `1(x) := `−2/α(

√
x) ∈ RV0.

Remark 2.6. In Theorem 2.5, we clearly have n1−2/α/`#1 (n2/α) ∈ RV1−2/α. In the case
2 < α < 4, it follows that the normalizing sequence goes to infinity for n → ∞. When
α = 2 and E(X2

1 ) <∞, it turns out that `(x) = o(1) yielding 1/`#1 (n) →∞ as n→∞.

Theorem 2.6. Case 6: α = 4 and E(X4
1 ) = ∞. Then

√
n

`#2 (
√
n)

(
nTn − µ2

µ2

)
d−→ N(0, 1)

µ2

where N(0, 1) is a standard normal random variable and `#2 ∈ RV0 is defined as the de
Bruyn conjugate of `2(x) := 1

2
√

˜̀(
√
x)
∈ RV0.
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Remark 2.7. In Theorem 2.6, we have
√
n/`#2 (

√
n) →∞ as n→∞ since the normalizing

sequence is regularly varying with index 1/2. Further, as we have already noticed, the
slowly varying function `#2 satisfies `#2 (x) →∞ when x→∞.

Finally, if the fourth moment of X1 exists then nTn is asymptotically normal (written
AN), as given by the following classical result of statistical theory:

Theorem 2.7. Case 7: E(X4
1 ) <∞. Then

(7)
√
n

(
nTn − µ2

µ2

)
d−→ N

(
0, σ2

∗
)

where

(8) σ2
∗ =

µ4

µ4
−

(
µ2

µ2

)2

+ 4
(
µ2

µ2

)3

− 4µ2µ3

µ5
.

Remark 2.8. In particular, Theorem 2.7 obviously applies if X1 is of Pareto-type with
index α > 4 or α = 4 and E(X4

1 ) <∞.

3. Applications to Risk Measures

We now look at implications for the asymptotic behavior of two well-known risk measures,
namely the sample coefficient of variation (see Subsection 3.1) and the sample dispersion
(see Subsection 3.2). More specifically, we derive limit results in terms of distributions and
the first moments. In Subsection 3.1, we also include an asymptotic analysis of the first
two moments of Tn, since Tn naturally arises in connection with the sample coefficient of
variation.

3.1. Asymptotic behavior of the sample coefficient of variation. The coefficient

of variation of a positive random variable X is defined by CV (X) :=
√

Var (X)
EX . From a

given set of independent observations X1, . . . , Xn of X with sample mean X := n−1 (X1 +
· · ·+Xn) and sample variance S2 := n−1

∑n
i=1(Xi −X)2, CV (X) is estimated by

̂CVn(X) :=
S

X
which is called the sample coefficient of variation. Note that there is a slight abuse of
notation, since S is usually estimated with normalizing factor n− 1 instead of n, but for
the asymptotic considerations in the sequel this becomes irrelevant. The theoretical inves-
tigation of properties of the sample coefficient of variation has a long history, see e.g. [43].
The analysis of properties of ̂CVn(X) is typically based on the assumption that sufficiently
many moments of X exist, see e.g. [14, 38]. The special case of normally distributed X,
where the exact distribution of ̂CVn(X) is available, has received considerable attention
in the literature (e.g. [6, 24, 46]). For statistical inference for the coefficient of variation
based on small sample size n, see [49].

As mentioned before, the existence of moments of X is not always guaranteed in practical
applications while there is still a need to study the asymptotic properties of the statistic
̂CVn(X), also in these cases. Due to

nTn = ̂CVn(X)
2
+ 1

this can be done by using the results of Section 2. For instance, we have the following.
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(i) 0 < α < 1: If X is in the domain of attraction of a stable law with index 0 < α < 1, it
follows from Theorem 2.1, Slutsky’s theorem and the continuous mapping theorem that√
Tn − 1/n d−→ √

U/V so that
̂CVn(X)√
n

d−→
√
U

V

where the joint distribution of U and V is given by (3). Thus ̂CVn(X) ↗ ∞ at rate
√
n

as n→∞ and the estimator ̂CVn(X) is useless in this case. Note that from Theorem 3.1
of [1], it follows that E(nTn) ∼ (1− α)n and Var (nTn) ∼ α(1− α)n2/3.

(ii) 1 < α < 2: If at least the mean exists and X is in the domain of attraction of a stable
law with 1 < α < 2, Theorem 2.3, Slutsky’s theorem and the continuous mapping theorem
lead to √

n

an
̂CVn(X) d−→

√
U

µ

where the distribution of U is given by (6) and (an)n≥1 is defined by 1−F (an) ∼ 1
n . This

implies ̂CVn(X) ↗ ∞ at rate an/
√
n as n → ∞. Note that an/

√
n ∈ RV 2−α

2α
and then

an/
√
n → ∞ as n → ∞. Theorem 3.3 of [1] shows that E(nTn) ∼ Γ(2−α) Γ(1+α)

µα n2−α`(n)

and Var (nTn) ∼ Γ(4−α) Γ(1+α)
6µα n3−α`(n).

(iii) 2 < α < 4: Here, X is of Pareto-type with index 2 < α < 4 and σ2 := Var (X) <∞.

From Theorem 2.5, we see that nTn
p−→ µ2

µ2 . Thus, by virtue of the continuous mapping
theorem

(9) ̂CVn(X)
p−→ CV (X).

Moreover, using the identity

bn

(
̂CVn(X)− CV (X)

)
=
bn

(
nTn − µ2

µ2

)

2CV (X)︸ ︷︷ ︸
:=An

−
bn

(
nTn − µ2

µ2

)2

2CV (X)
(
̂CVn(X) + CV (X)

)2

︸ ︷︷ ︸
:=Bn

one also observes from Theorem 2.5 that for bn = n1−2/α

`#1 (n2/α)
, we have An

d−→ 1
2µσ W and

Bn
d−→ 0 leading to

n1−2/α

`#1 (n2/α)

(
̂CVn(X)− CV (X)

)
d−→ 1

2µσ
W

where W has a stable law with index α/2 and `#1 ∈ RV0 is defined as in Theorem 2.5.

Now, a detailed study of the proof of Theorem 3.4 of [1] gives E(nTn) = µ2

µ2 +O
(
nmax(2−α,−1)

)

which implies (by virtue of the above identity and Bn ≥ 0) that bn( ̂CVn(X) − CV (X))
is uniformly integrable and subsequently E( ̂CVn(X)) → CV (X) as n → ∞. Together
with (9), it follows that ̂CVn(X) is a consistent and asymptotically unbiased estimator for
CV (X).
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From Theorem 3.4 of [1], we also see that Var (nTn) ∼ Γ(4−α) Γ(1+α)
6µα n3−α`(n) ↗ ∞ for

α < 3 whereas Var (nTn) ↘ 0 in the case α ≥ 3 with µ3 <∞. However

Var ( ̂CVn(X)) = E( ̂CVn(X)
2
)− E2( ̂CVn(X)) = E(nTn − 1)− E2( ̂CVn(X)) → 0.

(iv) µ4 = E(X4) <∞: If the first four moments of X exist then Theorem 2.7 shows that
nTn is asymptotically normal. Moreover, the corresponding proof can be repeated using
the function H(a1, a2) =

√
a2 − a2

1/a1 and this leads to

(10)
√
n

(
̂CVn(X)− CV (X)

)
d−→ N

(
0,
σ2∗ µ2

4σ2

)

where σ2∗ is given by (8) and σ2 := Var (X). Alternatively, this result can also be ob-
tained by using the decomposition under (iii). The weak law (10) can now be used to set
up confidence intervals for the estimation procedure of CV (X).

If n( ̂CVn(X)−CV (X))2 is uniformly integrable, then one can obtain the limit of Var (
√
n ̂CVn(X))

as the variance of the limiting normal distribution, which by (10) implies that Var ( ̂CVn(X)) ∼
σ2∗µ2/(4σ2 n). Thus ”the coefficient of variation of the coefficient of variation” behaves
like CV ( ̂CVn(X)) ∼ σ∗µ2/(2σ2√n).

Another approach to determine the limiting behavior of E( ̂CVn(X)
k
) based on k-statistics

can be found in [14].

As a comparison, note that given the uniform integrability of n(nTn − µ2/µ
2)2, one can

obtain the asymptotic behavior of Var (nTn) as the corresponding variance of the limiting
normal distribution which leads to Var (nTn) ∼ σ2∗/n. This may also be obtained directly
from Theorem 3.4 of [1] by employing a second-order asymptotic analysis.

3.2. Asymptotic behavior of the sample dispersion. Another measure of variation of
a positive random variable X that is frequently used in practice is the dispersion defined
by D(X) := Var (X)

E(X) . For instance, in insurance the value of the dispersion allows to
determine whether a given portfolio has a Poissonian character or not. With the same
notation as before, D(X) is typically estimated by

D̂n(X) :=
S2

X

which is called the sample dispersion. Again, the normalizing factor n instead of n− 1 in
S2 does not matter asymptotically. If we introduce the quantity

Cn :=
X2

1 + · · ·+X2
n

X1 + · · ·+Xn
, n ∈ N

then we have
D̂n(X) = Cn −X

and we can use results from Section 2 to investigate asymptotic properties of the statistic
D̂n(X) also in cases where X is in the domain of attraction of a stable law.

(i) 0 < α < 1: If X is in the domain of attraction of a stable law with index 0 < α < 1,

it follows from Theorem 2.1 and the continuous mapping theorem that 1
an

Cn
d−→ U/V ,
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where (an)n≥1 is defined by 1 − F (an) ∼ 1
n and the joint distribution of the random

variables (U, V ) is given by (3). Slutsky’s theorem yields

1
an

D̂n(X) d−→ U

V

so D̂n(X) ↗∞ at rate an as n→∞ with an ∈ RV1/α. Note that an →∞ for n→∞.

Further, it is easy to verify that E(Cn/an) and subsequently E(D̂n(X)) tends to ∞.

(ii) 1 < α < 2: If at least the mean exists and X is in the domain of attraction of a stable
law with 1 < α < 2, Theorem 2.3, Slutsky’s theorem and the continuous mapping theorem
lead to

n

a2
n

D̂n(X) d−→ U

µ

where the distribution of U is given by (6) and again (an)n≥1 is defined by 1−F (an) ∼ 1
n .

So, in this case, D̂n(X) ↗∞ at rate a2
n/n as n→∞ with a2

n/n ∈ RV 2−α
α

. In particular,

a2
n/n→∞ as n→∞. Moreover, along the line of arguments developed in Section 3 of [1]

it follows that

E(Cn) = n

∫ ∞

0
ϕ′′(s)ϕn−1(s) ds =

∫ ∞

0
ϕ′′

(
t

n

)
ϕn−1

(
t

n

)

︸ ︷︷ ︸
→ e−µ t

dt

∼ αΓ(2− α)n2−α`(n)
∫ ∞

0
tα−2 e−µ t dt =

απ

sin ((α− 1)π)µα−1
n2−α`(n).

Since E(X) → µ, this term is negligible and we obtain

E(D̂n(X)) ∼ απ

sin ((α− 1)π)µα−1
n2−α`(n).

Remark 3.1. From (i) and (ii), we see that the sample dispersion tends to infinity at a
faster rate the smaller the index α.

(iii) 2 < α < 4: Here, X is of Pareto-type with index 2 < α < 4 and we have Var (X) <∞.

Analogous to Theorem 2.5, we obtain for bn = n1−2/α

`#1 (n2/α)
that

bn

(
D̂n(X)−D(X)

)
= bn

(
Cn − µ2

µ
−X + µ

)

=
bn

X

(
1
n

n∑

i=1

X2
i − µ2

)

︸ ︷︷ ︸
d−→W

µ

+
µ2 bn

X µ

(
µ−X

)

︸ ︷︷ ︸
d−→0

− bn
(
X − µ

)
︸ ︷︷ ︸

d−→0

where W has a stable law with index α/2 and `#1 ∈ RV0 is defined as in Theorem 2.5.
Slutsky’s theorem now leads to

n1−2/α

`#1 (n2/α)

(
D̂n(X)−D(X)

)
d−→ W

µ
.
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Note that the latter implies the following convergence:

D̂n(X)
p−→ D(X).

Analogous to Theorem 3.4 of [1], one can derive E(Cn) = µ2

µ +O(nmax(2−α,−1)) and subse-

quently E(D̂n(X)) = D(X) +O(nmax(2−α,−1)). It follows that D̂n(X) is a consistent and
asymptotically unbiased estimator for the dispersion of X. Furthermore, by adaptation of
the proof of Theorem 3.4 of [1], we derive

E(C2
n) = n

∫ ∞

0
sϕ(4)(s)ϕn−1(s) ds+ n(n− 1)

∫ ∞

0
s
(
ϕ′′(s)

)2
ϕn−2(s) ds

∼ αΓ(4− α) Γ(α− 2)
µα−2

n3−α `(n) +
µ2

2

µ2

where the first term asymptotically dominates for α < 3 and the second for α ≥ 3 with
µ3 <∞. Now

E(D̂n(X)
2
) = E(C2

n)− 2E(
1
n

n∑

i=1

X2
i ) + E(X2) ∼ E(C2

n)− 2µ2 + µ2.

Thus, Var (D̂n(X)) = E(D̂n(X)
2
)−E2(D̂n(X)) is bounded only if the third moment exists

and since the constant terms in Var (D̂n(X)) cancel out, we obtain in general

Var (D̂n(X)) = O(n3−α`(n)).

(iv) µ4 = E(X4) <∞: If the first four moments ofX exist, then using the functionH(a1, a2) =
a2/a1 − a1 in the proof of Theorem 2.7 yields

(11)
√
n

(
D̂n(X)−D(X)

)
d−→ N(0, σ̃2)

where σ̃2 := (µ2µ
4 − µ6 + µ3

2 − 2µ3µ3 − 2µµ2µ3 + 2µ2
2µ

2 + µ4µ
2)/µ4. This weak law can

be used to set up confidence intervals for the estimation procedure of D(X).

If sufficiently many moments exist then it follows from an adaptation of Theorem 3.4 of [1]
that E(Ckn) = (µ2

µ )k + O( 1
n). In particular, Var (D̂n(X)) = O( 1

n) and, more specifically,

from (11) we have Var (D̂n(X)) ∼ σ̃2/ n. Thus ”the dispersion of the sample dispersion”
behaves like D(D̂n(X)) ∼ σ̃2µ/(σ2 n).

4. Concluding Remarks

As we have illustrated, the practitioner needs to verify statistically the range of α−values
he might be working with. Fortunately, extreme value theory as in [5] provides a wealth
of statistical procedures to acquire sample information on the index. Moreover and as a
general statement, one needs to emphasize that also the normalizing sequence (an)n≥1 is
unknown in practice and therefore needs to be estimated, see e.g. [28].

The sample dispersion D̂n(X) is perhaps the most vulnerable among the two statistics
that we have considered. In the case 0 < α < 1, E(D̂n(X)) tends to infinity at a rate
faster than an. The same applies to the variance whenever α < 2. Only when E(X4) <∞,
the estimator for D(X) allows practical confidence intervals. The same applies to the sam-
ple coefficient of variation ̂CVn(X) although generally this statistic seems to have slightly
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better properties.

In practice, an alternative approach is to consider statistics like Tn and Cn directly. Apart
from the weak limits treated in this paper, rather explicit results about expectations and
variances have been provided in [1].

As a side product, the paper gives the limit distribution of Student’s t-statistic based upon
the sample X1, . . . , Xn when X1 is in the domain of attraction of a stable law with index
0 < α < 1. Indeed, Student’s t-statistic Qn is defined by

Qn :=
∑n

i=1Xi√
n
n−1

∑n
i=1

(
Xi −X

)2

where X is the sample mean. The class of distribution functions on R such that Qn has a
limiting distribution was described in [18]. Also, it was established in [18, 10] that Qn is
asymptotically (standard) normal if and only if X1 is in the domain of attraction of the
normal law and E(X1) = 0.

As pointed out by [15], Qn can be written in terms of Tn as

Qn =
√

n− 1
nTn − 1

so that the limiting distributions for Qn and 1/
√
Tn coincide. When X1 belongs to the

domain of attraction of a stable law with index 0 < α < 1, it then follows from Theorem 2.1
that

Qn
d−→ V√

U
where the joint distribution of U and V is given by (3).
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