
Submitted 14 June 2022
Accepted 19 August 2022
Published 25 October 2022

Corresponding authors
Afonso M. Bravo,
afonso.martinsbravo.1@unil.ch
Jan-Willem Veening, jan-
willem.veening@unil.ch

Academic editor
Joseph Gillespie

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj.14041

Copyright
2022 Bravo et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

2FAST2Q: a general-purpose sequence
search and counting program for FASTQ
files
Afonso M. Bravo1, Athanasios Typas2 and Jan-Willem Veening1

1Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
2Genome Biology Unit, EMBL, Heidelberg, Germany

ABSTRACT
Background. The increasingly widespread use of next generation sequencing protocols
has brought the need for the development of user-friendly raw data processing tools.
Here, we explore 2FAST2Q, a versatile and intuitive standalone program capable of
extracting and counting feature occurrences in FASTQ files. Despite 2FAST2Q being
previously described as part of a CRISPRi-seq analysis pipeline, in here we further
elaborate on the program’s functionality, and its broader applicability and functions.
Methods. 2FAST2Q is built in Python, with published standalone executables in
WindowsMS, MacOS, and Linux. It has a familiar user interface, and uses an advanced
custom sequence searching algorithm.
Results. Using published CRISPRi datasets in which Escherichia coli andMycobacterium
tuberculosis gene essentiality, as well as host-cell sensitivity towards SARS-CoV2
infectivitywere tested, we demonstrate that 2FAST2Q efficiently recapitulates published
output in read counts per provided feature. We further show that 2FAST2Q can be
used in any experimental setup that requires feature extraction from raw reads, being
able to quickly handle Hamming distance based mismatch alignments, nucleotide
wise Phred score filtering, custom read trimming, and sequence searching within a
single program.Moreover, we exemplify how different FASTQ read filtering parameters
impact downstream analysis, and suggest a default usage protocol. 2FAST2Q is easier to
use and faster than currently available tools, efficiently processing not only CRISPRi-seq
/ random-barcode sequencing datasets on any up-to-date laptop, but also handling the
advanced extraction of de novo features from FASTQ files. We expect that 2FAST2Q
will not only be useful for people working in microbiology but also for other fields in
which amplicon sequencing data is generated. 2FAST2Q is available as an executable
file for all current operating systems without installation and as a Python3 module on
the PyPI repository (available at https://veeninglab.com/2fast2q).

Subjects Bioinformatics, Genomics, Microbiology
Keywords CRISPRi-seq, FASTQ, Barcode-seq, Tn-seq, Sequencing analysis, Python,
Bioinformatics, CRISPRi, 2FAST2Q

INTRODUCTION
Next generation sequencing (NGS) has drastically changed the landscape of experimental
biology, not only by helping to characterize cellular networks to an unprecedented level,
but also by generating vast quantities of data. Typical NGS data generated by Illumina

How to cite this article Bravo AM, Typas A, Veening J-W. 2022. 2FAST2Q: a general-purpose sequence search and counting program for
FASTQ files. PeerJ 10:e14041 http://doi.org/10.7717/peerj.14041

https://peerj.com
mailto:afonso.martinsbravo.1@unil.ch
mailto:jan-willem.veening@unil.ch
mailto:jan-willem.veening@unil.ch
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.14041
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://veeninglab.com/2fast2q
http://doi.org/10.7717/peerj.14041

sequencing is delivered in the form of a so-called FASTQ file: a text file that contains
the inferred DNA sequences with their respective quality scores, typically existing in a
compressed form with the extension *.fastq.gz. However, as newer sequencing platforms
become available, so do the sequencing file types. For example, Oxford Nanopore
sequencers store their data in FAST5 format, which needs to be converted to FASTQ
before any traditional downstream sequence analysis can be performed. More than the
file itself, the compression format can also vary: DRAGEN ORA (.ora) is currently being
rolled out by Illumina as an alternative to the standard .gz format. Despite these constant
advancements, FASTQ remains the standard format, in large part probably due to the
current convergence of NGS analysis programs to mainly accept FASTQ as first input. In
time, however, format complexity might increase and lead to the requirement of further
pre-analysis format-exchange programs, or the rewrite of current bioinformatics core
programs.

Since big data analysis becomes an increasingly needed skill in biology, the demand for
versatile user-friendly applications also rises. As NGS becomes simpler and widespread, so
must its respective data processing. Thus, there is a need for intuitive, reproducible, and
versatile tools that can handle the sometimes overwhelming initial raw data processing
step.

NGS applications often require features to be extracted and counted from FASTQ files
for downstream analysis. Several analysis tools and scripts exist for systematic reverse
genetic screens, such as CRISPRi-seq (Liu et al., 2021) and random-barcode sequencing
(RB-Seq) (Wetmore et al., 2015; Cain et al., 2020). At the moment, such pipelines tend
to overspecialize into CRISPR/Cas9 workflows, are complex, or require informatics
skills beyond the average user (Winter et al., 2017; Li et al., 2014; Liao, Smyth & Shi, 2019;
Winter et al., 2016). A notable example, MAGeCK, allows for both feature counting and
downstream feature differential analysis (Li et al., 2014). Due to being primarily optimized
for the latter, it has some caveats regarding more complex feature extractions procedures.
Indeed, when dealing with mismatches or dynamic read trimming/feature extraction it
requires the installation of 3rd party command line only software such as bowtie2 and/or
cutadapt. Current, more user friendly approaches such as CRISPRAnalyzeR and PinAPL-Py
are also limiting in throughput in regards to searching and returning reads with specific
sequences, especially when considering sequence mismatches, nucleotide wise Phred score
filtering, and dynamic sequence search using multiple sequences of variable length (Winter
et al., 2017; Spahn et al., 2017). This is particularly important in the cases where a user wants
to control these sequencing processing parameters to analyze their experimental setup. As
such, when these advanced requirements are needed, it is the current standard to create
custommadepipelines for handling the specifics of the experiment, normally in conjunction
with bioinformatics tools such as Trimmomatic, cutadapt, and/or Bowtie2 (Bolger, Lohse &
Usadel, 2014; Langmead & Salzberg, 2012; Martin, 2011). When handling highly variable,
and/or trying to retrieve unknown sequences from NGS data, the user will thus have no
choice but to create their own custom made processing scripts, or outsource the data
processing. The first assumes bioinformatics, sequencing, and programming knowledge,

Bravo et al. (2022), PeerJ, DOI 10.7717/peerj.14041 2/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.14041

requiring weeks or months of time to implement from scratch for the average user, while
the latter needs either extra funds or the right willing colleague.

Here, we explore 2FAST2Q, a fast and versatile FASTQ file processor for extracting
and counting sequence occurrences from raw reads. 2FAST2Q requires no installation
by default, and works in all common operative systems. 2FAST2Q has been previously
published as part of a CRISPRi-seq protocol, however, in this work we further elaborate on
the program’s functionalities (De Bakker et al., 2022). We demonstrate novel applications
and provide an in-depth description of 2FAST2Q. As a proof of concept, we show that
2FAST2Q efficiently and reliably counts single guide RNA (sgRNA) features in FASTQ
files originating from published prokaryotic and eukaryotic CRISPRi-seq experiments.
Moreover, we explore 2FAST2Q novel functions, and how these can be used for any de
novo sequence searching, or for extracting and counting any kind of sequences from FASTQ
files using advanced search and filtering methods.

MATERIALS & METHODS
Installation and code availability
All 2FAST2Q executable files can be downloaded from zenodo: https://zenodo.org/
record/5410822. The code, usage instructions, and test datasets are available on GitHub:
https://github.com/veeninglab/2FAST2Q. 2FAST2Q is also a Python package, and can be
accessed on PyPI: https://pypi.org/project/fast2q/. When using the executable version on
MS Windows or MacOS, no further installation is required and a double click on the
executable should suffice. For a more in depth description, please see the online tutorial
on https://veeninglab.com/2fast2q. 2FAST2Q is fully implemented in Python3.

Usage considerations
All indicated 2FAST2Q running times were performed on a desktop PC with a 12 core 3.7
GHz processor, and 32GB of RAM. However, 2FAST2Q runs on any up-to-date desktop or
laptop. When using 2FAST2Q without mismatch search (perfect alignment only), sample
processing should be in the order of seconds or minutes (after file decompression). When
using the mismatch search, it is possible for 2FAST2Q analysis to take several minutes per
sample. When processing more than one sample, 2FAST2Q will automatically parallelize
all analyses by distributing each sample per available processor core.

2FAST2Q fast sequence mismatch search function was possible due to the use of
Python numpy (Harris et al., 2020) and numba (Lam, Pitrou & Seibert, 2015) modules. An
advanced and in-depth tutorial on 2FAST2Q parameters is available on GitHub and PyPI.

2FAST2Q algorithm
When initialized in standard feature count mode, 2FAST2Q will automatically handle
all compressed or uncompressed FASTQ files, and create a hash table for all supplied
sequence features. 2FAST2Q will then forward all samples for parallel processing, which
can be monitored via progress bars (Fig. S1). Each FASTQ file is sequentially read, saving
RAM space. The individually loaded reads are submitted to trimming based on the
indicated parameters, either using a fixed position, or a dynamic search. The first assumes

Bravo et al. (2022), PeerJ, DOI 10.7717/peerj.14041 3/15

https://peerj.com
https://zenodo.org/record/5410822
https://zenodo.org/record/5410822
https://github.com/veeninglab/2FAST2Q
https://pypi.org/project/fast2q/
https://veeninglab.com/2fast2q
http://dx.doi.org/10.7717/peerj.14041#supp-1
http://dx.doi.org/10.7717/peerj.14041

the presence of a fixed feature length in the same location for all reads. The second requires
one or two search sequences. When one sequence (either up or downstream) is provided,
2FAST2Q will search the read until the sequence is found, and return the predetermined
sized feature (again, either up or downstream). When two sequences are used, 2FAST2Q
will return any feature within the found search sequences. The location and feature length
parameter can thus be ignored in this latter scenario. A sequence mismatch search can also
be performed.

Following read trimming, the Phred-score corresponding to each nucleotide of the
trimmed sequence is considered. If any of the scores is below the indicated parameter
threshold, the read is discarded.

If the read passes quality control, alignment against the input features is finally attempted.
Depending on the user input, any kind of feature alignment is performed using either
mismatch search or not. By default, 2FAST2Q will always first check for a perfect match.
Perfect matching uses hashing, directly comparing all features to the read sequence using
hashing runtime complexity. When dealing with mismatches, 2FAST2Q will perform
sequence search based on a faster custommade search algorithm. At first, all feature/search
sequences are converted to their numerical binary form, subsequently reducing them to
integer8 format using numpy. Sequence mismatches are counted by tracking the non-zero
result positions of subtracting both sequences. 2FAST2Qmismatch search is therefore based
on a Hamming distance calculation. As simple numpy constructs, arithmetic operations
can be easily processed using the Python Numba module njit decorator. Therefore, all
2FAST2Q search functions are pre-compiled and effectively run at much faster speeds (Fig.
S2). All read sequences searches, and features mismatch alignments are performed using
this approach, allowing all search operations to run faster than standard Python code.
Moreover, reads that fail to safely align, within the given parameters, to any of the provided
features, are stored and used for quick hashed based comparison. The same is performed
for reads that align with mismatches. By performing the much faster hashed comparison,
this feature avoids the slower de novo mismatch search for previously seen same sequence
reads. Runtime is thus decreased, paradoxically maintaining sample processing time as
file size increase. ‘‘Already seen read’’ hashing is especially useful with datasets comprising
dozens of different independent samples from the same sequencing run (see results). In
this case, the generated failed/passed read hash tables for each sample are compiled and
used as a seed to the next batch of samples. Each new sample thus takes advantage of the
already processed reads in a previous sample, avoiding reprocessing the exact same read
several times.

A Python dictionary with a class feature count is used to keep track of all found aligned
sequences. When no feature file is provided (i.e., when running in ‘‘Extractor+Counter’’
mode), all found read sequences are returned and counted. Each FASTQ file will originate
a unique output file. At the end of the analysis, all samples files are compiled into a single
file, which can be readily used for downstream applications.

Bravo et al. (2022), PeerJ, DOI 10.7717/peerj.14041 4/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.14041#supp-2
http://dx.doi.org/10.7717/peerj.14041#supp-2
http://dx.doi.org/10.7717/peerj.14041

RESULTS
Developing 2FAST2Q
A major goal when doing targeted (amplicon) sequencing is to know the abundance of
each target within a sample. To that end, we wrote the Python-based tool called 2FAST2Q
(Fig. 1). 2FAST2Q is able to efficiently extract, align, filter, and count DNA sequences
from standard FASTQ files in a single step. 2FAST2Q also performs mismatch sequence
searching, nucleotide Phred score quality filtering, dynamic sequence search and trimming
(including double sequence search), and automatically loads and detects FASTQ (.gz
compressed or not) files. The program also exists as an easy-to-use intuitive executable
version for MS Windows, macOS, and Linux, requiring no installation. Alternatively,
2FAST2Q is also available as a Python3 package in the PyPI repository, and can be installed
with the ‘‘pip install fast2q’’ command. As input, 2FAST2Q requires only a FASTQ file,
and, when reference feature sequences exist (i.e., sgRNAs, barcodes), a .csv file with all
the lookup DNA sequences. As an output, 2FAST2Q returns an ordered .csv file with all
the raw feature counts per condition, as well as quality control statistics (Figs. 1B–1C).
2FAST2Q contrasts with other current methods by being easy to setup and intuitive to
use (Fig. 1A), while simultaneously maintaining advanced configuration settings such
as efficient mismatched sequence searching, and quality filtering. 2FAST2Q is thus able
of going beyond traditional CRISPRi experimental setups, handling any kind of feature
extraction, known or unknown, from FASTQ files.

Counting features using 2FAST2Q
An important feature of performing CRISPRi-seq or RB-seq is to obtain reliable counts
of each sgRNA or barcode, for any experimental condition. When using 2FAST2Q in
‘‘counting mode’’, (i.e., for CRISPRi-seq, or sequence barcode counting), it can be used to
quickly obtain an absolute feature sequence count from FASTQ files. Moreover, it might
also be of interest to extract all features existing before/in-between/after a given sequence.
2FAST2Q has an ‘‘extract and count mode’’ for this occasion, where the program doesn’t
require the input of any feature sequences, and will retrieve the count of all found read
sequences. In both instances, the program can search for any feature by either specifying
a starting read position, or by providing upstream and/or downstream constant search
sequences. The feature length must be specified, except in the latter, where variable sized
sequences can be retrieved and/or aligned to (Fig. 2).

Benchmarking 2FAST2Q
2FAST2Q was initially benchmarked against a published CRISPRi-seq dataset comprising
479M reads dispersed over 118 FASTQ files (Rousset et al., 2021). In this study,Rousset et al.
(2021) examined which genes are essential in Escherichia coli under different environmental
conditions using CRISPRi-seq. 2FAST2Q was used to find an alignment and count the
occurrence of each feature from a list of 11,629 sgRNAs across all the 118 files. When only
considering perfect alignments between a feature and a read, 2FAST2Q was able to output
the final compiled sgRNA count table in 7 min on a personal desktop computer (33s per
sample distributed over 10 parallel cores). For comparison, the same files and parameters

Bravo et al. (2022), PeerJ, DOI 10.7717/peerj.14041 5/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.14041

A B

C

Figure 1 2FAST2Q: A general-purpose sequence search and counting program for FASTQ file
2FAST2Q interface, and outputs. (A) All program parameters are given by interacting with 2FAST2Q
user interface. 2FAST2Q outputs two .csv files; a raw read count file for all samples (B), and a file with
each sample statistics (C). Each independent file is considered to be a sample, and the file name the sample
name.

Full-size DOI: 10.7717/peerj.14041/fig-1

were also input into MAGeCK. Despite its faster individual file processing speed, its
lack of inbuilt sample multiprocessing resulted in a total run time of 23 min. Moreover,
MAGeCK fails to return an organized file for all combined samples, leaving the user with
the individual count files for each sample (118 in this case). MAGeCK also requires explicit
indication of all the FASTQ files to be processed, a time consuming step which 2FAST2Q
performs automatically, unless indicated. When comparing the read counts returned from
both 2FAST2Q and MAGeCK, a perfect correlation (r = 1) was observed for all features
(Fig. S3), indicating similar read counting accuracy.

When allowing for one mismatch in the sgRNA search count, the total run time only
increased by 2min, to 9min. Under these program conditions, this corresponds to a more
than 40x speed improvement over the use of similar purpose standard search functions,
such as the Python regex module match function (Python Software Foundation). For
mismatch searching, MAGeCK requires the use of Bowtie2, and respective setup, and thus
was not used for further benchmarking.

Using the same dataset published by Rousset et al. (2021) as benchmark data, we assessed
the impact of different initial 2FAST2Q parameters on both absolute feature counts, and
on downstream data analysis. When not using any Phred-score filtering (Q ≥0), and not
allowing for any mismatches, we were able to fully recapitulate the reported total read

Bravo et al. (2022), PeerJ, DOI 10.7717/peerj.14041 6/15

https://peerj.com
https://doi.org/10.7717/peerj.14041/fig-1
http://dx.doi.org/10.7717/peerj.14041#supp-3
http://dx.doi.org/10.7717/peerj.14041

.fastq.gz files

Sample01.fastq.gz
...

Sample10.fastq.gz

Trimmed reads

Read Trimming

ATGGCAGATTAG
ATGGCAGATTAG
ATGGCAGATTAG

fixed
position

with single
search

ATGGCAGATTA
GGCAGATTA
CGTGGCAGATTA

with double
search

ATGGCAGATTACGT
GGCAGAGTCCGT
CGTGGCAGACGT

Phred-score Filtering

AGATTA

Q≥30 Q>0

Filtered reads

Feature Finding With perfect
alignment

Feature1,AGATTA
...

Feature20000,ATGCGG

Counted features

Alignment with max
1 mismatch

Without
alignments

#Feature1=AGATTA=1

features.csv
(optional)

Input

Condition sample1 sample2
Feature1 200 100
. . .
Feature20 356 3

Output

Compiling compiled.csv

ABFGHI

#Feature1=1 #Feature1=2

AGATTA
#$%(\&

sequence -
quality -

sequence -
quality -

AGATTA
ABFGHI

AGATTA
#$%(\&

AGATCA
AGAGAA

AGATTA
AGATCA
AGAGAA

AGATTA
#Feature2=AGATCA=1
#Feature3=AGAGAA=1

stats.csv

Condition Reads
Sample1 2000000
. .
Sample10 2500000

Figure 2 2FAST2Q: A general-purpose sequence search and counting program for FASTQ files
2FAST2Q pipeline. 2FAST2Q requires only .fastq.gz (or .fastq) files as input. When in alignment mode,
a csv file with all the features must also be provided. 2FAST2Q performs all described steps automatically
and without requiring external software. Trimming parameters, filtering scores, and mismatch tolerances
can be easily adjusted using 2FAST2Q graphic interface.

Full-size DOI: 10.7717/peerj.14041/fig-2

counts/sgRNA for all conditions (Fig. 3E) (Tables S1 and S2). However, high-quality read
length has been reported to improve Illumina sequencing results interpretation (Bokulich
et al., 2013). We therefore implemented a filtering for nucleotide wise Phred-scores (Q),
where all the sequenced nucleotide scores corresponding to the found feature read location
are required to be above an indicated threshold. As expected, filtering using Q ≥30,

Bravo et al. (2022), PeerJ, DOI 10.7717/peerj.14041 7/15

https://peerj.com
https://doi.org/10.7717/peerj.14041/fig-2
http://dx.doi.org/10.7717/peerj.14041#supp-4
http://dx.doi.org/10.7717/peerj.14041#supp-5
http://dx.doi.org/10.7717/peerj.14041

indicating a 0.1% probability of a nucleotide sequencing mistake, lowers the amount of
reads/sgRNA. In some cases, by more than 1 order of magnitude (Fig. 3G). However,
when considering the millions of reads generated by a typical sequencing experiment, the
presence of mismatches in high quality reads is a likely event (any length of 20 nucleotides
with Q ≥30 have, at most, a 2% chance of having a mismatch: 0.001 * 20 = 0.02). We
therefore implemented feature mismatch search where a read is considered valid if it
unambiguously aligns to a single feature for any number of considered mismatches, thus
retrieving more high quality reads, especially from lower overall quality sequencing runs.
Allowing for mismatches expectedly increased the number of reads/feature (Figs. 3A,
3C, 3I and 4A), without sacrificing total run time (Fig. 4B) (Tables S3 and S4). As an
extreme benchmark case, we allowed for the same number of mismatches as the feature
length (20 bp) (Figs. 3I–3J). In practice, these parameters mapped any read to its closest
feature, meaning the sequence that unambiguously differs the least from the read. This is
performed by an inbuilt safetymechanism, where if more than one feature possible matches
the read at the lowest amount of allowed mismatches (i.e., 1), the read is always discarded,
but otherwise kept. In regards to the Rousset et al. (2021) dataset, which is on average of
high quality, these parameters recovered on average 3% more reads/sgRNA (Fig. 4A).
However, it is conceivable that the use and outcome of these parameters varies depending
on the experimental setup and user requirements, requiring careful consideration before
proceeding to downstream data analysis. In here, we report only on the possibilities of
2FAST2Q functionalities.

Higher stringency parameters can aid in biological discovery
We used the Jupyter notebook analysis pipeline published by Rousset et al. (2021) to assay
how these different read processing scenarios impact downstream analysis. Using the
different read count tables directly outputted by 2FAST2Q, we calculated and compared
the median gene scores as defined by Rousset et al. (2021) (essentially, the median of the
log2 fold change for each feature in all experimental replicates) for the LB medium and gut
microbiota medium (GMM) conditions. Using more stringent criteria than Rousset et al.
(2021) (a gene is considered significant if it has an absolute gene fold change≥ 4, instead of
≥ 3.5), we compared how different Phred-scores and mismatch filtering criteria influenced
downstream analysis, namely how these criteria influence gene score calculations, and thus
gene essentiality (Figs. 3B, 3D, 3F, 3H and 3J).

We observed a higher stringency for the 2FAST2Q parameters of onemismatch, and base
pair quality filtering of ≥ 30 (Fig. 3B), with fewer genes being considered essential for any
given condition with these criteria than with the criteria that recapitulate the published data
(0 mismatches allowed, and no Phred-score consideration) (Fig. 3F). As expected, different
read filtering criteria resulted in fold change differences, and consequently in differences
in the genes considered essential for these conditions. What criteria to use would depend
on the specifics of each individual experiment. The default 2FAST2Q parameters uses a
Phred-score of ≥ 30, while allowing up to one mismatch (representing for any 20 basepair
(bp) sequence, a 5% bp deviation error with, at maximum, a 2% chance of any nucleotide
being wrongly sequenced). As shown in Fig. 3, although the default setting of 2FAST2Q give

Bravo et al. (2022), PeerJ, DOI 10.7717/peerj.14041 8/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.14041#supp-6
http://dx.doi.org/10.7717/peerj.14041#supp-7
http://dx.doi.org/10.7717/peerj.14041

A

C

G

R
ea

ds
/s

gR
N

A
[R

ou
ss

et
, F

. e
t a

l.]

E

R
ea

ds
/s

gR
N

A
[R

ou
ss

et
, F

. e
t a

l.]

2FAST2Q: 1 mismach, Q≥0

M
ed

ia
n

G
en

e
Sc

or
e

(G
M

M
)

M
ed

ia
n

G
en

e
Sc

or
e

(G
M

M
)

B

H

D

F

Reads/sgRNA [2FAST2Q]

JI

2FAST2Q: 1 mismach, Q≥30

2FAST2Q: 0 mismaches, Q≥0

M
ed

ia
n

G
en

e
Sc

or
e

(G
M

M
)

2FAST2Q: 0 mismaches, Q≥30

2FAST2Q: 20 mismaches, Q≥30

M
ed

ia
n

G
en

e
Sc

or
e

(G
M

M
)

Median Gene Score (LB)

R
ea

ds
/s

gR
N

A
[R

ou
ss

et
, F

. e
t a

l.]

R
ea

ds
/s

gR
N

A
[R

ou
ss

et
, F

. e
t a

l.]

R
ea

ds
/s

gR
N

A
[R

ou
ss

et
, F

. e
t a

l.]

M
ed

ia
n

G
en

e
Sc

or
e

(G
M

M
)

Figure 3 2FAST2Q: A general-purpose sequence search and counting program for FASTQ file Abso-
lute read counts/sgRNA for the Rousset et al. (2021) dataset MG1655 LB 1 condition. The total read
counts using different 2FAST2Q mismatch and/or quality filtering inputs are plotted against those (con-
tinued on next page. . .)

Full-size DOI: 10.7717/peerj.14041/fig-3

Bravo et al. (2022), PeerJ, DOI 10.7717/peerj.14041 9/15

https://peerj.com
https://doi.org/10.7717/peerj.14041/fig-3
http://dx.doi.org/10.7717/peerj.14041

Figure 3 (. . .continued)
reported by Rousset et al. (2021). Pearson correlation for each plot is also shown. Plots B, D, F, H and J
were generated using an adaptation of the published Jupyter notebook analysis pipeline, and highlight the
significant genes (absolute fold change ≥4 in one condition and ≤1 in the other) when using different
2FAST2Q input parameters. green: fold change <4 in GMMmedia, and >−1 in LB; blue: fold change <4
in LB media, and >−1 in gut microbiota medium (GMM).

N
um

be
r o

f s
gR

N
As

N
um

be
r o

f r
ea

ds

Time [s]Number of reads

A B

Figure 4 Read/sgRNA distribution and runtime analysis of 2FAST2Qwith different mismatch param-
eters and algorithms.Data analysis was performed on the Rousset et al. (2021) ‘‘UTI89_T0’’ fastq sam-
ple (Rousset et al., 2021) when submitted to 2FAST2Q analysis with either 0, 1, or 20 mismatches (and
Phred score ≥30). Increasing mismatches allows for greater read recovery by matching a given read to its
closest matching (and thus most likely) feature. (A) The median reads/sgRNA increased from 182 to 187,
and then to 196, when considering 0,1, and 20 mismatches, respectively. (B) 2FAST2Q runtime analysis
demonstrates the efficiency of real time creation of pre-processed failed/passed read hash tables (see meth-
ods) vs. the ‘‘no hash’’ method, where each read is always processed de novo for mismatches.

Full-size DOI: 10.7717/peerj.14041/fig-4

slightly fewer significant hits, they were all also reported by Rousset et al. (2021). It is also
conceivable for a user to be interested in aligning all reads to their closest matching feature.
This is possible by setting the total amount of mismatches to the same length of the feature.
In this case, the 2FAST2Q inbuilt alignment safety mechanism will prevent ambiguous read
alignments from being considered. Once again, we intend only to demonstrate the range
of uses of 2FAST2Q. Ultimately, the biological relevance of which parameters to choose is
left upon the user.

2FAST2Q dynamically performs FASTQ feature extraction
Under certain experimental setups, the extraction of features from FASTQ files might
require the use of a dynamic trimming and search function (i.e., when the location and/or
size of the feature differs from read to read) (Fig. 2). In this case, a delimiting search
sequence of any length (up and/or downstream of the feature) can be provided. Similar
to feature mismatch search, an arbitrary number of mismatches can also be indicated for
the search sequence-based trimming, as well as a minimum Phred-score. 2FAST2Q will
search each read for the indicated sequences, returning the correctly trimmed read for
further processing, and bypassing the need for more complex tools such as Trimmomatic
and Bowtie2. As a proof of concept, we used a published CRISPRi-seq dataset by Wei et
al. (2021), where dynamic read trimming was required. In this study, a CRISPRi screen

Bravo et al. (2022), PeerJ, DOI 10.7717/peerj.14041 10/15

https://peerj.com
https://doi.org/10.7717/peerj.14041/fig-4
http://dx.doi.org/10.7717/peerj.14041

was performed using Vero-E6 cells (kidney epithelial cells from an African green monkey)
infected with SARS-CoV-2 to identify host genes important for viral replication (Wei et al.,
2021). In this dataset, the location of each feature was at a variable location within the read.
2FAST2Q dynamic trimming allowed each read to be independently trimmed based on the
relative location of the found search sequences, thus always returning the correct feature
location. Using this method, we submitted six FASTQ files (SRR14668185 - SRR14668190)
for 2FAST2Q processing. As search sequence we used a 10bp upstream constant sequence
(CGAAACACCG), allowing for one mismatch search error in this sequence. We used the
provided list of 84,953 sgRNA sequence features, and ran 2FAST2Q (Q≥30, 0mismatches).
2FAST2Q simultaneously processed all six samples, comprising 324M reads, within 8 min
on a standard desktop PC (Tables S5 and S6). This result corresponds to a slowdown
of only 22% (speed comparisons were determined using processed reads/second) when
compared with the non-dynamic feature extraction process, such as the one we used for
the same parameter 2FAST2Q run with the Rousset et al. (2021) dataset.

Recently, Bosch et al. (2021) published a CRISPRi-seq experimental setup with variable
length sgRNAs. In this case, both the trimming of each read and the length of each
sgRNA need to be considered read by read. This is a feature, to our knowledge, beyond easy
implementation in any of the programs mentioned in this work. Once again, 2FAST2Q was
also able to extract, count, and align all the found features in a Mycobacterium tuberculosis
dataset (SRR13734827), to the provided 96,700 long sgRNA file, albeit using 2 delimiting
constant search sequences (upstream: GTACAAAAAC; downstream: TCCCAGATTA),
while allowing for one mismatch in each. The returned variable length sequence between
the two constant search sequences was used for perfect match alignment against the sgRNAs
(Tables S7 and S8). When compared with the non-dynamic extraction process, a slowdown
of 44% was observed, in line with what was observed for the Wei et al. dataset.

As the sequence search algorithm uses a similar process to the one used for feature
alignment mismatch, a similar speed improvement over standard Python functions is also
obtained. Together, these benchmarks demonstrate that 2FAST2Q is a versatile and quick
computational tool that can extract relevant features and counts from FASTQ files.

DISCUSSION
FASTQ files are the current standard sequencing output file format. Considering that new
sequencing based differential analysis techniques emerge on an almost weekly basis, the
need for easy-to-use, versatile and efficient programs specifically designed for extracting
and counting features form FASTQ files is pressing. To this end we have developed a fast,
intuitive, and easy to use tool for counting sequence occurrences in FASTQ files. We have
recently implemented 2FAST2Q in our CRISPRi-seq pipeline and have found it useful in
the first step of data analysis (De Bakker et al., 2022). In here we describe novel 2FAST2Q
functionalities and explore the program’s parameter versatility, covering most current
user applications that require the extraction and counting of specific feature sequences,
such as CRISPRi-seq and RB-Seq. Despite only handling single-ended FASTQ files at
the moment, the processing of paired-ended files is possible by running two separate

Bravo et al. (2022), PeerJ, DOI 10.7717/peerj.14041 11/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.14041#supp-8
http://dx.doi.org/10.7717/peerj.14041#supp-9
http://dx.doi.org/10.7717/peerj.14041#supp-10
http://dx.doi.org/10.7717/peerj.14041#supp-11
http://dx.doi.org/10.7717/peerj.14041

instances of 2FAST2Q. The program will automatically compile all samples at the end if all
intermediary files of the first run are copied to the output folder of the second instance while
processing. If both reads from the paired-ended are to be analyzed as a single contiguous
read, a pre-process step of read merging (for example using PEAR) is recommended. The
resulting merged reads can be input into 2FAST2Q as normal.

Depending on the desired output, current methods might require users to handle several
different software pipelines in order to extract relevant data from FASTQ files. However,
2FAST2Q is a standalone program that can, in a single step, efficiently and quickly perform
nucleotide wise quality filtering, mismatch sequence searching, de novo feature extraction,
and sequence occurrence counting. 2FAST2Q outputs an individually compiled, easy to
interpret, excel readable .csv file with all the feature counts per sample, alongside a file with
relevant sample statistics.

2FAST2Q fully recapitulated the feature counts independently returned by MAGeCK,
and reported by Rousset et al. (2021) for all conditions when using the same filtering
criteria. 2FAST2Q was also successful at extracting features starting at different positions
per read when using a published dataset of a CRISPRi screen on eukaryotic cells that
were infected with SARS-CoV-2 (Wei et al., 2021). 2FAST2Q inbuilt search functions also
allow for more complex experimental setups. For example, recent work by Bosch et al.
applied CRISPRi-seq with variable length sgRNAs to identify conditionally essential genes
inM. tuberculosis (Bosch et al., 2021). By providing up and downstream search sequences,
2FAST2Q was able to extract these sgRNAs. In the case of experiments with more than
one feature per read, such as with dual barcode sequencing, or dual CRISPRi-seq, it is
conceivable that 2FAST2Q could also be used, taking into account that the parameters
need to be adjusted to capture different features per read each time, and by compiling the
data at the end.

Besides being able to align and count provided features in FASTQ files, 2FAST2Q is also
able to extract and count all unique read sequences when in ‘‘extract and count mode’’. In
this case, all different sequences that fulfill the required parameters are returned, with any
possible mismatches being accounted as distinct sequences.

As experiments that produce large datasets (>1GB) become more widespread, the need
for versatile, fast and easy to use software that handles raw data becomes more pressing.
It is thus our hope that 2FAST2Q can contribute to facilitate the processing of the large
amounts of sequencing data originating from NGS studies.

CONCLUSIONS
Here, we explored and benchmarked 2FAST2Q, a tunable novel Python3-based program
capable of single-step quality filtering, read feature searching, extraction, and feature
counting in FASTQ files. 2FAST2Q exists as a standalone program, not requiring any
installation whatsoever, and as a Python module available at the PyPI depository. We
demonstrated how 2FAST2Q can be used for the processing of FASTQ files originating
from different experimental setups, and how it handles different input parameters to
adapt to most conceivable datasets requiring feature counting. 2FAST2Q is an easy to use

Bravo et al. (2022), PeerJ, DOI 10.7717/peerj.14041 12/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.14041

program, that we believe can streamline sequencing data feature extraction for most users,
without the need for advanced bioinformatics setups, or the use of multi-step complex
pipelines.

ACKNOWLEDGEMENTS
We thank Julien Dénéréaz and Vincent de Bakker for their software tests, and all members
of the Veening lab for helpful discussions.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
Work in the Veening lab is supported by the Swiss National Science Foundation (SNSF)
(project grant 310030_192517), SNSF JPIAMR grant (40AR40_185533), SNSF NCCR
‘AntiResist’ (51NF40_180541) and ERC consolidator grant 771534-PneumoCaTChER.
The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Swiss National Science Foundation (SNSF): 310030_192517.
SNSF JPIAMR: 40AR40_185533.
SNSF NCCR ‘AntiResist’: 51NF40_180541.
ERC consolidator: 771534-PneumoCaTChER.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Afonso M. Bravo conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.
• Athanasios Typas conceived and designed the experiments, authored or reviewed drafts
of the article, and approved the final draft.
• Jan-Willem Veening conceived and designed the experiments, authored or reviewed
drafts of the article, and approved the final draft.

DNA Deposition
The following information was supplied regarding the deposition of DNA sequences:

All the datasets analysed during the current study are available in the European Archive
Depository (ENA).

The Rousset, F. et al. dataset is available at: PRJEB37847. The Wei et al. datasets are
available at: SRR14668185, SRR14668186, SRR14668187, SRR14668187, SRR14668187,
and SRR14668190. The Bosch et al. dataset is available at: SRR13734827.

Bravo et al. (2022), PeerJ, DOI 10.7717/peerj.14041 13/15

https://peerj.com
https://www.ncbi.nlm.nih.gov/bioproject/PRJEB37847
https://www.ncbi.nlm.nih.gov/sra/SRR14668185
https://www.ncbi.nlm.nih.gov/sra/SRR14668186
https://www.ncbi.nlm.nih.gov/sra/SRR14668187
https://www.ncbi.nlm.nih.gov/sra/SRR14668187
https://www.ncbi.nlm.nih.gov/sra/SRR14668187
https://www.ncbi.nlm.nih.gov/sra/SRR14668190
https://www.ncbi.nlm.nih.gov/sra/SRR13734827
http://dx.doi.org/10.7717/peerj.14041

Data Availability
The following information was supplied regarding data availability:

The program is available as a standalone executable on MSwindows and MacOS,
and Zenodo: afombravo, & Veening lab. (2022). veeninglab/2FAST2Q: V2.5.0 (V2.5.0).
Zenodo. https://doi.org/10.5281/zenodo.7012813.

2FAST2Q is available as a python package (https://pypi.org/project/fast2q/) and is also
available at Github: https://github.com/veeninglab/2FAST2Q.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.14041#supplemental-information.

REFERENCES
Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Ca-

poraso JG. 2013. Quality-filtering vastly improves diversity estimates from Illumina
amplicon sequencing. Nature Methods 10(1):57–60 DOI 10.1038/nmeth.2276.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics 30(15):2114–2120
DOI 10.1093/bioinformatics/btu170.

Bosch B, DeJesus MA, Poulton NC, ZhangW, Engelhart CA, Zaveri A, Lavalette S,
Ruecker N, Trujillo C,Wallach JB, Li S, Ehrt S, Chait BT, Schnappinger D, Rock
JM. 2021. Genome-wide gene expression tuning reveals diverse vulnerabilities of M.
tuberculosis. Cell 184(17):4579–4592 e24 DOI 10.1016/j.cell.2021.06.033.

Cain AK, Barquist L, Goodman AL, Paulsen IT, Parkhill J, Opijnen TVan. 2020. A
decade of advances in transposon-insertion sequencing. Nature Reviews Genetics
21(9):526–540 DOI 10.1038/s41576-020-0244-x.

De Bakker V, Liu X, Bravo AM, Veening J-W. 2022. CRISPRi-seq for genome-wide
fitness quantification in bacteria. Nature Protocols 17:252–281
DOI 10.1038/s41596-021-00639-6.

Harris CR, JarrodMillman K, Van derWalt SJ, Gommers R, Virtanen P, Courna-
peau D,Wieser E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, Van
Kerkwijk MH, Brett M, Haldane A, Fernández del Río J, WiebeM, Peterson P,
Gérard-Marchant P, Sheppard K, Reddy T,WeckesserW, Abbasi H, Gohlke C,
Oliphant TE. 2020. Array programming with NumPy. Nature 585(7825):357–362
DOI 10.1038/s41586-020-2649-2.

Lam SK, Pitrou A, Seibert S. 2015. Numba. In: Proceedings of the Second Workshop on the
LLVM Compiler Infrastructure in HPC - LLVM ’15. 1–6.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature
Methods 9(4):357–359 DOI 10.1038/nmeth.1923.

LiW, Xu H, Xiao T, Cong L, LoveMI, Zhang F, Irizarry RA, Liu JS, BrownM,
Liu XS. 2014.MAGeCK enables robust identification of essential genes from
genome-scale CRISPR/Cas9 knockout screens. Genome Biology 15(2):554
DOI 10.1186/s13059-014-0554-4.

Bravo et al. (2022), PeerJ, DOI 10.7717/peerj.14041 14/15

https://peerj.com
https://doi.org/10.5281/zenodo.7012813
https://github.com/veeninglab/2FAST2Q
http://dx.doi.org/10.7717/peerj.14041#supplemental-information
http://dx.doi.org/10.7717/peerj.14041#supplemental-information
http://dx.doi.org/10.1038/nmeth.2276
http://dx.doi.org/10.1093/bioinformatics/btu170
http://dx.doi.org/10.1016/j.cell.2021.06.033
http://dx.doi.org/10.1038/s41576-020-0244-x
http://dx.doi.org/10.1038/s41596-021-00639-6
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1186/s13059-014-0554-4
http://dx.doi.org/10.7717/peerj.14041

Liao Y, Smyth GK, ShiW. 2019. The R package Rsubread is easier, faster, cheaper and
better for alignment and quantification of RNA sequencing reads. Nucleic Acids
Research 47(8):e47 DOI 10.1093/nar/gkz114.

Liu X, Kimmey JM, Matarazzo L, Bakker VD, VanMaele L, Sirard J-C, Nizet V,
Veening J-W. 2021. Exploration of bacterial bottlenecks and streptococcus
pneumoniae pathogenesis by CRISPRi-seq. Cell Host & Microbe 29:107–120
DOI 10.1016/j.chom.2020.10.001.

MartinM. 2011. Cutadapt removes adapter sequences from high-throughput sequencing
reads. EMBnet Journal 17:10–12.

Python Software Foundation. Python language and reference. version, 3.7. Available at
http://www.python.org .

Rousset F, Cabezas-Caballero J, Piastra-Facon F, Fernández-Rodríguez J, Clermont O,
Denamur E, Rocha EPC, Bikard D. 2021. The impact of genetic diversity on gene
essentiality within the Escherichia coli species. Nature Microbiology 6(3):301–312
DOI 10.1038/s41564-020-00839-y.

Spahn PN, Bath T,Weiss RJ, Kim J, Esko JD, Lewis NE, Harismendy O. 2017. PinAPL-
Py: a comprehensive web application for the analysis of CRISPR/Cas9 screens.
Scientific Reports 7(1):15854 DOI 10.1038/s41598-017-16193-9.

Wei J, AlfajaroMM, DeWeirdt PC, Hanna RE, Lu-CulliganWJ, CaiWL, Strine MS,
Zhang S-M, Graziano VR, Schmitz CO, Chen JS, Mankowski MC, Filler RB,
Ravindra NG, Gasque V, DeMiguel FJ, Patil A, Chen H, Oguntuyo KY, Abriola
L, Surovtseva YV, Orchard RC, Lee B, Lindenbach BD, Politi K, Van Dijk D,
Kadoch C, SimonMD, Yan Q, Doench JG,Wilen CB. 2021. Genome-wide CRISPR
screens reveal host factors critical for SARS-CoV-2 infection. Cell 184(1):76–91 e13
DOI 10.1016/j.cell.2020.10.028.

Wetmore KM, Price MN,Waters RJ, Lamson JS, He J, Hoover CA, BlowMJ, Bristow
J, Butland G, Arkin AP, Deutschbauer A. 2015. Rapid quantification of mutant
fitness in diverse bacteria by sequencing randomly bar-coded transposons.MBio
6(3):e00306-15.

Winter J, Breinig M, Heigwer F, Brügemann D, Leible S, Pelz O, Zhan T, Boutros
M. 2016. caRpools: an R package for exploratory data analysis and docu-
mentation of pooled CRISPR/Cas9 screens. Bioinformatics 32(4):632–634
DOI 10.1093/bioinformatics/btv617.

Winter J, SchweringM, Pelz O, Rauscher B, Zhan T, Heigwer F, Boutros M. 2017.
CRISPRAnalyzeR: interactive analysis, annotation and documentation of pooled
CRISPR screens. BioRxiv.

Bravo et al. (2022), PeerJ, DOI 10.7717/peerj.14041 15/15

https://peerj.com
http://dx.doi.org/10.1093/nar/gkz114
http://dx.doi.org/10.1016/j.chom.2020.10.001
http://www.python.org
http://dx.doi.org/10.1038/s41564-020-00839-y
http://dx.doi.org/10.1038/s41598-017-16193-9
http://dx.doi.org/10.1016/j.cell.2020.10.028
http://dx.doi.org/10.1093/bioinformatics/btv617
http://dx.doi.org/10.7717/peerj.14041

