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1. Introduction

Many modern actuarial tasks such as quantification of large risks and aggregated risk, estimation of ruin

probabilities in the presence of financial risks, or reinsurance pricing accounting for both claims and expenses

strongly rely on the use of multivariate extreme value theory. Typically, the adequacy of the probabilistic models

employed by the actuaries is determined by their flexibility to allow for the dependence among risks. Most of

classical insurance models assume independence of risks, a phenomenon which is rarely observed in practical

actuarial tasks. The role of the dependence among risks is crucial, especially when modelling the impact of

large risks. Dependence modeling and in particular that of large risks has been the topic of several contributions

such as Goovaerts et al. (2005), Denuit et al. (2006), Li et al. (2010), Asimit et al. (2011), Chen (2011), Haug

et al. (2011), Manner and Segers (2011), Tang et al. (2011), Chen and Yuen (2009,2012) among many others.

Asimit et al. (2011) successfully demonstrates the role of asymptotic dependence and asymptotic independence in

actuarial modelling. As shown therein, multivariate risks which exhibit asymptotic dependence imply in general

different results compared to multivariate risks which have asymptotic independent components. Tractable

multivariate distributions like the Fairlie-Gumbel-Morgenstern (FGM) ones exhibit asymptotic independence.

In various risk models employed by actuaries two related tasks are the asymptotic analysis of aggregated risk,

and the asymptotic quantification of the effect random scaling (or deflation) of risks. Since the empirical data

always support the fact that risks are stochastically dependent, aggregation of dependent risks has become

recently a key topic for insurance, finance, and risk management. Recent results of Mitra and Resnick (2009)

and Asimit et al. (2011) pave the way for the analysis of the impact of a single large risk to the aggregated risk.

In a mathematical framework, if X0, . . . , Xn are non-negative random variables (rv’s) with distribution functions

(df’s) F0, . . . , Fn, then the aggregated risk is S =
∑n
i=0Xi. In order to avoid triviality, we assume that the risks

are all non-degenerate at zero. Large values of S mean large financial risks for the company, and therefore the

actuarial interest focusses mainly on the quantification of the probability of such large values, i.e., P (S > u)

where the level u reaches some extreme point.

In another context, X0 can be considered as the base risk, whereas X1, . . . , Xn as random deflators/inflators.
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Of actuarial interest is the asymptotic tail behaviour of the ultimate deflated risk (u→∞)

P (Z > u) , with Z = X0

n∏
i=1

Xi. (1.1)

For independent risks recent results in this direction are derived in Hashorva at al. (2010).

The main goal of this paper is to introduce a tractable class of dependent risks which allows for explicit

calculation of various actuarial quantities of interest. The motivation for introducing such a class of risks

comes from the simple structure of multivariate FGM df’s. By definition, a (n+ 1)-dimensional random vector

X = (X0, . . . , Xn) has a multivariate FGM df Q with marginal df’s F0, . . . , Fn if

Q(x0, . . . , xn) =

n∏
i=0

Fi(x)
[
1 +

∑
0≤i<j≤n

θijFi(xi)Fj(xj)
]
, xi ∈ [0, x̂i], 0 ≤ i ≤ n, (1.2)

where Fi := 1 − Fi, and θij ’s are some real constants which satisfy certain restrictions so that Q is a df. Here

x̂i := sup{x ∈ R : Fi(x) < 1} stands for the upper endpoint of the marginal df Fi.

Throughout the paper we assume that the risks are non-negative, thus Fi has support on [0,∞).

The tractability of X with df Q given by (1.2) relates to the fact that Q is obtained by the product distribution

Q∗ =
∏n
i=0 Fi (in fact Q∗(x0, . . . , xn) =

∏n
i=0 Fi(xi)). By a closer inspection, it follows that

Q(x0, . . . , xn) =

∫ x0

0

· · ·
∫ xn

0

[
1 +

∑
0≤i<j≤n

θij(1− 2Fi(si))(1− 2Fj(sj))
]
Q∗(ds0, . . . ,dsn)

holds for any xi ∈ [0, x̂i], 0 ≤ i ≤ n. The larger class of multivariate Sarmanov distributions is introduced

by substituting above 1 − 2Fi by some kernel φi; some insurance applications of Sarmanov distributions are

illustrated in Tang et al. (2011) and Yang and Wang (2012).

Motivated by the underlying relationship between Q and the product df Q∗ =
∏n
i=0 Fi, in this paper we consider

a wider class of multivariate df’s which are absolutely continuous with respect to a product df – we refer to

that as AC-product class. Specifically, the members of this class are all absolutely continuous df’s with respect

to Q∗.

It turns out that under some weak conditions the asymptotic behaviour of the aggregated risk S and the deflated

risk Z for risks with an AC-product distribution can be derived explicitly.

Organization of the rest of the paper: In the next section we briefly discuss some basic properties of AC-product

distributions. Further, we derive a novel result concerning the Sarmanov distribution, which is the canonical

example of the AC-product class. Section 3 shows the asymptotic independence of AC-product risks, whereas

Section 4 investigates the asymptotic behaviour of the deflated risk Z under extreme value type conditions on

the marginal df’s. In Section 5 we present three applications concerning risk aggregation, Value-at-Risk and

conditional tail expectation, and the probability of ruin under risky investment. The proofs of all the results

are postponed to Section 6.

2. Multivariate AC-Product and Sarmanov Distributions

In this section we present some details on the class of AC-product distributions and Sarmanov distributions.

Hereafter X = (X0, X1, . . . , Xn) is a (n+ 1)-dimensional random vector with non-negative univariate marginal

df’s Fi, 0 ≤ i ≤ n. It is not standard to write the first component of X by X0; we do this since this component

will be a reference one in the part when the products of the components of X are discussed. Clearly, if X

possesses the df Q∗ =
∏n
i=0 Fi, then the random vector X has independent components, a situation which is

often not encountered in practical applications. Starting from this independence setup, a tractable dependence
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structure is introduced by considering X such that its df Q is absolutely continuous with respect to the product

df Q∗ i.e.,

Q(x0, . . . , xn) =

∫ x0

0

· · ·
∫ xn

0

η(s0, . . . , sn)Q∗(ds0, . . . ,dsn), xi ∈ [0, x̂i], 0 ≤ i ≤ n, (2.1)

where η(·) is a non-negative measurable function, i.e., if we write (2.1) as

dQ = η · dQ∗,

we see that η is the Radon-Nikodym derivative. Throughout this paper

X∗0 , . . . , X
∗
n

are independent rv’s with df’s Fi, 0 ≤ i ≤ n, respectively, and thus joint df Q∗. We refer to Q as an AC-product

distribution. Since Q is a proper df we shall assume that

E
{
η(X∗x0

, . . . , X∗xn
)
}
<∞ (2.2)

almost surely with respect to Q∗ where X∗xi
= X∗i or X∗xi

= xi with xi in the support of Fi. Further, we suppose

that

E {η(X∗0 , . . . , X
∗
n)} = 1 (2.3)

holds. Clearly, (2.2) is satisfied when η(·) is a bounded function.

The Sarmanov distributions mentioned in the Introduction are obtained when

η(x0, . . . , xn) = 1 +
∑

0≤k<l≤n

θklφk(xk)φl(xl), (2.4)

with φ0, . . . , φn some given real-valued kernels, and θkl, 0 ≤ k < l ≤ n non-negative constants.

In order for such η(·) to define a proper df, we shall impose the following assumptions on the kernels:

A1. φi, 0 ≤ i ≤ n are not identical to 0 in [0, x̂i];

A2. for all xi ∈ [0, x̂i], 0 ≤ i ≤ n we have ∑
0≤k<l≤n

θklφk(xk)φl(xl) ≥ −1 (2.5)

almost surely with respect to Q∗;

A3. for any 0 ≤ i ≤ n we have

E {φi(Xi)} = 0. (2.6)

Apart form the choice φi = 1− 2Fi which leads to the FGM distribution, another common specification of the

kernels is φi(s) = gi(s)− E {gi(Xi)} , s > 0, for some function gi such that E {gi(Xi)} <∞.

We may consider for instance gi(s) = exp(−s), or gi(s) = sαi , αi ∈ R, provided that E {Xαi
i } < ∞ and

x̂i <∞. The next lemma shows that the kernels need to obey certain asymptotic restrictions.

Lemma 2.1. Let Q be a (n+1)-dimensional multivariate Sarmanov distribution of (X0, . . . , Xn) with η defined

by the kernel functions φi, 0 ≤ i ≤ n and non-negative weights θkl, 0 ≤ k < l ≤ n, as in (2.4). Suppose that φi

is continuous at both 0, x̂i and bounded on finite intervals of (0, x̂i). If further A1–A3 hold, then

sup
x∈[0,x̂i]

|φi(x)| < Mi <∞ 0 ≤ i ≤ n (2.7)

holds for some positive constants M0, . . . ,Mn.
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In the light of Lemma 2.1 if the df F̃i is such that

1− F̃i(x) =

∫ x̂i

x

(
1− φi(u)

Mi

)
Fi(du), 0 ≤ x < x̂i, 0 ≤ i ≤ n, (2.8)

then F̃i are proper univariate df’s. For each 0 ≤ i ≤ n, by (2.6), F̃i is a proper df with the same upper endpoint

x̂i as the df Fi.

Lemma 2.1 motivates the following assumptions on the kernel functions

lim
x↑x̂i

φi(x) = κi ∈ R, 0 ≤ i ≤ n, (2.9)

which implies that for any Mi > κi

1− F̃i(x) ∼
(

1− κi
Mi

)
Fi(x), x ↑ x̂i. (2.10)

In this paper ∼ means asymptotic equivalence, i.e., the quotient of both sides tend to 1. A consequence of

condition (2.9) is that

lim
xi↑x̂i,i=0,...,n

(
1 +

∑
0≤k<l≤n

θklφk(xk)φl(xl)
)

= 1 +
∑

0≤k<l≤n

θklκkκl =: Λ−. (2.11)

Since η(·) is non-negative, then also Λ− is non-negative; if we do not explicitly specify the Radon-Nikodyn

derivative of Q the natural extension of the above is to require that

lim
xi↑x̂i,i=0,...,n

η(x0, . . . , xn) = Λ− ∈ [0,∞). (2.12)

3. Asymptotic Independence

In various insurance applications, see e.g., Asimit et al. (2011) it is crucial to find concrete multivariate distri-

butions which possess certain asymptotic dependence properties. As mentioned above, the FGM distribution is

included in the class of Sarmanov distributions; Hashorva and Hüsler (1999) shows that these distributions have

asymptotically independent marginals (see below for the definition), and therefore the maxima of multivariate

random samples with underlying FGM distribution have asymptotically independent components, provided that

each marginal distribution is in the max-domain of attraction (MDA) of some univariate df. In order to give

more precise statements, we briefly mention that a univariate df F on R belongs to the MDA of a univariate

extreme value df N , denoted by F ∈ MDA(N), if

lim
n→∞

sup
x∈R
|Fn(cnx+ dn)−N(x)| = 0 (3.1)

holds for constants cn > 0 and dn ∈ R, n ≥ 1.

Only three candidates for the df N are possible, namely the Fréchet distribution Φγ , the Gumbel distribution Λ

and the Weibull distribution Ψγ , where γ > 0 indexes members of the Fréchet and Weibull families. We mention

some basic properties of univariate extreme value distributions and their MDA below; see Resnick (1987) or

Embrechts et al. (1997) for more details.

When Q is the df of the bivariate random vector (X1, X2) with marginal df’s F1 and F2 such that Fi ∈
MDA(Ni), i = 1, 2, then we say that Q has asymptotically independent marginal distributions if for any

positive x, y

lim
n→∞

nP (X1 > cn1x+ dn1, X2 > cn2y + dn2) = 0,

where cni > 0, dni, n ≥ 1, i = 1, 2 are constants such that Fi ∈ MDA(Ni) holds as given by (3.1). In order to

simplify the presentation we abbreviate the above as Q ∈ MDA(N1;N2).

Next, we consider Q a bivariate distribution functions such that it has marginal distributions F1, F2 and a

positive Radon-Nikodyn density η(·) with respect to F1 · F2. The general case of a d-dimensional distribution
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follows easily since pair-wise asymptotic independence implies asymptotic independence of the multivariate dis-

tributions.

Proposition 3.1. Let Q be a bivariate df as above with marginal df ’s F1 and F2 such that Fi ∈ MDA(Ni), i =

1, 2. If further

lim sup
s↑x̂1,t↑x̂2

η(s, t) < ∞, (3.2)

then Q ∈ MDA(N1;N2).

By combining the above result with Lemma 2.1 we obtain:

Corollary 3.2. If Q is a multivariate Sarmanov distribution such that the kernels satisfy the assumptions of

Lemma 2.1, then Q has asymptotically independent marginal distributions and it belongs to the max-domain of

attraction of a product max-stable distribution provided that Fi ∈MDA(Ni), 0 ≤ i ≤ n with Ni some univariate

extreme value distribution.

4. Extreme Value Risk Models

In various insurance and finance applications the investigation of the tail asymptotics of products is a crucial

task, see e.g., Berman (1992), Cline and Samorodnitsky (1994), Jessen and Mikosch (2006), Tang (2006a,b,2008),

Hashorva and Pakes (2010), Hashorva et al. (2010,2011,2012), Liu and Tang (2010), Arendarczyk and Dȩbicki

(2011,2012), Constantinescu et al. (2011), Yang et al. (2011), Hashorva (2011,2012), Yang and Wang (2012).

Specifically, if X0, . . . , Xn are non-negative rv’s modeling some risks, then it is of interest to investigate the tail

asymptotics of the deflated risk Z =
∏n
i=0Xi with df H. When Xi, 0 ≤ i ≤ n are mutually independent, using

extreme value theory, it is possible to obtain some explicit results. A classical case is when X0 has a regularly

varying survival function and the other rv’s satisfy certain moment conditions which allow to use Breiman’s

lemma (see Breiman (1965) and the recent results of Yang and Wang (2012)). Recall that a univariate df F has

a regularly varying survival function F with index −γ ≤ 0, if for any y ∈ (0,∞)

lim
x→∞

F (xy)

F (x)
= y−γ . (4.1)

It is well-known that when γ > 0, then (4.1) is equivalent with F ∈ MDA(Φγ), see e.g., Mikosch (2009). Note

that Φγ(x) = exp(−x−γ), x > 0, and necessarily, for the Fréchet case we have that the upper endpoint of F

is infinite. For a univariate df F with a finite upper endpoint x̂ ∈ (0,∞) we are interested on its asymptotic

behaviour at x̂. Instead of (4.1) we shall assume for this case that F is regularly varying at x̂ with index γ ≥ 0

i.e.,

lim
x→∞

F (x̂− y/x)

F (x̂− 1/x)
= yγ (4.2)

for any y > 0. When γ > 0 the above condition is equivalent with F is in the MDA of the Weibull df Ψγ (we

recall Ψγ(x) = exp(−|x|γ), x < 0).

If otherwise specified, in the sequel we assume that X = (X0, X1, . . . , Xn) has the df dQ = η · dQ∗, where

Q∗ =
∏n
i=0 Fi is a product df with non-degenerate univariate df’s F0, . . . , Fn. We state next the first result of

this section, the case of Gumbel MDA is treated in Theorem 4.2 below. Recall that (X∗0 , . . . , X
∗
n) has df Q∗.
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Theorem 4.1. a) Suppose that for each fixed x1, . . . , xn ≥ 0 and η(·) some bounded function

lim
x0→∞

η(x0, x1, . . . , xn) = η(x1, . . . , xn). (4.3)

If further F0 satisfies (4.1) with some γ ≥ 0 and E
{
Xγ+ε
i

}
< ∞ holds for all 1 ≤ i ≤ n and some ε > 0, then

the survival function H of Z satisfies (4.1) and moreover as x→∞

H(x) ∼ F0(x)E
{
η(X∗1 , . . . , X

∗
n)

n∏
i=1

(X∗i )γ
}
. (4.4)

b) Suppose that Fi, 0 ≤ i ≤ n satisfy (4.2) with γi ≥ 0, 0 ≤ i ≤ n. If (2.12) holds with Λ− > 0, then as

x ↑
∏n
i=0 x̂i

H(x) ∼ Λ−
Γ(
∑n
i=0 γi + 1)

n∏
i=0

(
Γ(γi + 1)Fi(x̂ix)

)
, (4.5)

where x = x
∏n
i=0 x̂

−1
i , and Γ(·) is the Euler gamma function.

Applied to the case of Sarmanov distributions, Theorem 4.1 a) implies the following result:

Corollary 4.1. Under the assumptions of statement a) of Theorem 4.1, if further X = (X0, X1, . . . , Xn) follows

a multivariate Sarmanov distribution of the form (2.1) such that the assumptions of Lemma 2.1 hold, then as

x→∞

H(x) ∼ F0(x)

n∏
i=1

E {Xγ
i }

(
1 + κ0

∑
1≤l≤n

θ0l
E {Xγ

l φl(Xl)}
E {Xγ

l }
+

∑
1≤k<l≤n

θkl
E {Xγ

kφk(Xk)}E {Xγ
l φl(Xl)}

E {Xγ
k }E {X

γ
l }

)
, (4.6)

provided that limx→∞ φ0(x) = κ0 ∈ R.

Remarks: i) For the case of bivariate FGM distributions Jiang and Tang (2011) obtained the tail asymptotic

of Z, see also Yang et al. (2011).

ii) Yang and Wang (2012) derived (4.6) under weaker conditions for the bivariate setting of Sarmanov distribu-

tions.

In various applications due for instance to different currencies, original risks are linearly transformed. In order

to widen the applications to those cases, suppose therefore that Xi, 0 ≤ i ≤ n has df with lower endpoint equal

0 (i.e., inf{x ∈ R : Fi(x) > 0} = 0), and let the random vector Y = (Y0, . . . , Yn) be such that

Yi = (ai + biXi)
−1, ai > 0, bi > 0, 0 ≤ i ≤ n. (4.7)

The df QY of Y is related to Q∗Y :=
∏n
i=0 FYi

by dQY = ηY · dQ∗Y , where

ηY (t0, . . . , tn) = η(b−10 (t−10 − a0), . . . , b−1n (t−1n − an)).

The following result is a consequence of statement b) of Theorem 4.1.

Corollary 4.2. If Fi, 0 ≤ i ≤ n is regularly varying at zero with index γi ≥ 0, and further

lim
xi↓0,i=0,...,n

η(x0, . . . , xn) = η(0+, . . . , 0+) =: Λ+ ∈ (0,∞), (4.8)

then as x ↑
∏n
i=0 a

−1
i

P
( n∏
i=0

Yi > x
)
∼ Λ+

Γ(
∑n
i=0 γi + 1)

n∏
i=0

(
Γ(γi + 1)Fi(b

−1
i (y−1i − ai))

)
, yi := x

n∏
j=0,j 6=i

ai. (4.9)
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Next, our main assumption on F0 is that it belongs to Gumbel MDA; we recall that when in (3.1) N(x) =

Λ(x) = exp(−e−x), x ∈ R, then an equivalent condition for (3.1) to hold is

lim
x↑x̂

F (x+ ya(x))

F (x)
= e−y, ∀y ≥ 0, (4.10)

with some positive scaling function a(·). When (4.10) holds we shall use the abbreviation F ∈ MDA(Λ, a(·)).
The scaling function a(·) satisfies

lim
x↑x̂

x

a(x)
=∞, and lim

x↑x̂

x̂− x
a(x)

=∞ if x̂ <∞. (4.11)

Theorem 4.2. If F0 ∈ MDA(Λ, a(·)) and further Fi, 1 ≤ i ≤ n satisfy (4.2) with non-negative constants

γi, 1 ≤ i ≤ n, then as x ↑
∏n
i=0 x̂i

H(x) ∼ Λ−F0(x̃)

n∏
i=1

(
Γ(γi + 1)Fi

(
x̂i −

x̂ia(x̃)

x̃

))
, x̃ := x

n∏
i=1

x̂−1i . (4.12)

Remarks: i) The Gumbel MDA assumption on F0 and the assumptions on Fi, 1 ≤ i ≤ n imply that F0(x̂0−) =

· · · = Fn(x̂n−) = 0. Consider for simplicity n = 1 and P (X1 = x̂1) = p1 > 0. Then under the assumptions of

Theorem 4.2 for F0, we obtain as x ↑ x̂0x̂1

H(x) ∼ Λ−p1F0(x̂−11 x). (4.13)

ii) Since uniformly with respect to z in every compact set of R

lim
u↑x̂

a(u+ za(u))

a(u)
= 1 (4.14)

it follows that H is in the Gumbel MDA with the same scaling function a(·) as F0.

5. Applications

5.1. Asymptotics of CTE and VaR. For this application we regard X0 as a base rv which models an

insurance risk, and X1, . . . , Xn as random deflators of the base risk. In various applications, say for instance in

risk management, the deflated risk Z = X0

∏n
i=1Xi needs to be investigated. We write as above Fi, 1 ≤ i ≤ n

for the df of Xi and assume that F0 is continuous. Due to regulatory restrictions, it is of actuarial interest to

quantify the asymptotic behaviour of VaRZ(p) (Value-at-Risk) and CTEZ(p) (conditional tail expectation) as

p→ 1. We recall that

CTEZ(p) := E {Z|Z > V aRZ(p)} = E {Z − V aRZ(p)|Z > V aRZ(p)}+ V aRZ(p), p ∈ (0, 1),

where

VaRZ(p) := inf {x : P (Z ≤ x) ≥ p} , p ∈ (0, 1).

See Denuit et al. (2006) for the basic properties of VaR and CTE. When the base risk X0 is dependent to

Xi, 1 ≤ i ≤ n such that the assumptions of Theorem 4.2 hold, then by (4.14) Z has its df in the Gumbel MDA

with the same scaling function as X0. Since the scaling function a(·) is asymptotically equivalent to the mean

excess function, we may write (see also Asimit and Badescu (2010))

lim
p↑1

E {Z − V aRZ(p)|Z > V aRZ(p)}
E {X0 − V aRX0

(p)|X0 > V aRX0
(p)}

= 1, (5.1)

and consequently,

lim
p↑1

CTEX0
(p)

V aRX0
(p)

= lim
z↑

∏n
i=0 x̂i

CTEZ(z)

z
= 1. (5.2)
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It is well-known that for continuous risks CTE is more conservative than Value at Risk (VaR), which is the

quantile function of the random variable of interest, if both are evaluated at the same confidence level p (see also

the CTE definition from above). In the next result we show that Value-at-Risk for p close to 1 is asymptotically

the same for Z and X0.

Theorem 5.1. Under the assumptions of Theorem 4.2 we have

CTEZ(p) ∼ VaRZ(p) ∼ VaRX0(p) ∼ CTEX0(p) (5.3)

as p ↑ 1.

The above theorem shows that both risk measures VaR and CTE for the base risk X0 and the product risk Z

are asymptotically equivalent, provided that the underlying dependence structure of the risks is determined by

an AC-product df; see Hashorva et al. (2010) for the case of independent risks.

5.2. Risk Aggregation. A key topic in insurance and finance with diverse applications in risk management is

the risk aggregation, see e.g., Goovaerts et al. (2005), Geluk and Tang (2009), Asimit et al. (2011), Hashorva

(2013a), Kortschak and Hashorva (2013) and the references therein. Asymptotic considerations for the investi-

gation of the total (or aggregated) risk turn out to be quite important when risks are dependent. As already

shown in Section 2 the dependence structure of the risks therein exhibit asymptotic independence under a mild

condition on the density function η(·). For such risks, the Mitra-Resnick methodology developed in Mitra and

Resnick (2009) is powerful for deriving exact asymptotic results for the tail of aggregated risk. If X0, . . . , Xn

are independent, then under various conditions the aggregated risk S =
∑n
i=0Xi has a tractable tail asymptotic

behaviour. When X0 has the df in the Gumbel MDA, under the Mitra-Resnick framework the tail asymptotic

behaviour of S is determined by the tail asymptotics of one component, say X0. In our application below we

are able to describe the effect of a single component on the aggregated risk for the risk structures dealt with

here. Specifically, let (X0, . . . , Xn) has the joint df Q given by

dQ = η · dQ∗, Q∗ =

n∏
i=0

Fi,

with Fi marginal distributions with support on [0,∞). If Qij is the df of (Xi, Xj), then by (2.2) we have

dQij = ηij · d(FiFj), i 6= j. In view of Proposition 3.1 when

lim sup
s↑x̂i,t↑x̂j

ηij(s, t) <∞, (5.4)

then Qij has asymptotically independent marginals, provided that Fi and Fj are in some MDA of a univariate

extreme value df. In the next theorem we shall assume that only F0 is in the Gumbel MDA with some scaling

function a(·) and upper endpoint x̂0 =∞; all the df’s Fi, 0 ≤ i ≤ n satisfy

lim
x→∞

Fi(x)

P (X0 > x)
= ci ∈ [0,∞), 0 ≤ i ≤ n. (5.5)

Theorem 5.2. Let (X0, . . . , Xn) be as above, and assume that F0 ∈ MDA(Λ, a(·)) and both (5.4), (5.5) are

satisfied. If further limx→∞ a(x) =∞ and for positive constants Lij , 1 ≤ i < j ≤ n

lim
x→∞

max
0≤i<j≤n

Fi(a(x)Lij)Fj(a(x)Lij)

F0(x)
= 0, (5.6)

then as x→∞

P (S > x) ∼ P (X0 > x)

n∑
i=0

ci (5.7)
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and S has df in the Gumbel MDA with the same scaling function a(·) as F0.

Clearly, when all marginal distributions are tail equivalent to F0, then condition (5.6) is the Mitra-Resnick

condition for the aggregation of independent risks, see (2.15) in Mitra and Resnick (2009).

5.3. Ruin in the Presence of Risky Investments. Our next application concerns the discrete-time insurance

risk model discussed in Hashorva et al. (2010) and Tang et al. (2011). Let in the following R1, . . . , Rn be

independent real-valued rv’s with common df F being further independent of ∆1, . . . ,∆n, whose support is

(−1,∞). Several authors have considered the asymptotic behaviour as u→∞ of the following ruin probability

ψ(u;n) = P
(

min
0≤i≤n

Ui < 0
∣∣∣ U0 = u

)
, U0 = u ≥ 0,

where

Υi(Ui +Ri) = Ui−1, 1 ≤ i ≤ n,

with δi > 0, pi ∈ [0, 1), 1 ≤ i ≤ n and

Υi := (ci + pi(1 + ∆i))
−1, ci := (1− pi)(1 + δi).

In the light of Theorem 5.1 in Tang et al. (2011) we have when the df F belongs to the well-known subexponential

class

ψ(u;n) ∼
n∑
k=1

P
(
R

k∏
i=1

Υi > u
)
, u→∞, (5.8)

where Υ1, . . . ,Υn can be arbitrarily dependent. We note in passing that a df F on [0,∞) is said to be subex-

ponential, written as F ∈ S, if F 2∗(x) ∼ 2F (x) as x → ∞, where F 2∗ denotes the two-fold convolution of F ;

more generally, F on R is still said to be subexponential if the df F+(x) = F (x)1{x≥0} is subexponential, see

e.g., Embrechts et al. (1997).

Hashorva et al. (2010) discussed the case Υi, 1 ≤ i ≤ n are independent, whereas the recent paper Tang et

al. (2011) obtained some refinements of (5.8), which allow for dependence assuming a multivariate Sarmanov

distribution for (1 + ∆1, . . . , 1 + ∆n), see Theorem 4.1 and 4.2 in Tang et al. (2011).

Two recent papers Chen (2011) and Yang and Wang (2012) investigated a similar case where (Ri,Υi), 1 ≤ i ≤ n
are independent and for each 1 ≤ i ≤ n, (Ri,Υi) follows a bivariate FGM or Sarmanov distribution, respectively,

see Theorem 3.1 and Corollary 3.1 in Chen (2011) and Theorem 4.1 in Yang and Wang (2012). As we show

below, it is possible to obtain similar results as Theorem 4.1 and 4.2 in Tang et al. (2011) by considering a

more general dependence structure.

Next, we assume that R1, . . . , Rn are independent real-valued rv’s, and (Υ1, . . . ,Υn), independent of R1, . . . , Rn,

has an AC-product distribution. Assume therefore that Υ = (Υ1, . . . ,Υn) has the joint df

dGΥ = ηΥ · dG∗, G∗ =

n∏
i=1

Gi,

where Gi is the df of Υi, 1 ≤ i ≤ n. Thus, for each 1 ≤ k < n, Υk = (Υ1, . . . ,Υk) has the joint df given by

ηΥk
·
∏k
i=1Gi with

ηΥk
(x1, . . . , xk) =

∫ c−1
k+1

0

· · ·
∫ c−1

n

0

ηΥ(x1, . . . , xn)

n∏
i=k+1

Gi(dxi). (5.9)
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Theorem 5.3. Consider the discrete-time risk model introduced above with pi ∈ [0, 1), 1 ≤ i ≤ n. Assume that

F ∈ MDA(Λ, a(·))∩S and Gi, 1 ≤ i ≤ n satisfy (4.2) at c−1i with non-negative constants γi, 1 ≤ i ≤ n. If for

each 1 ≤ k ≤ n the limit ΛΥk− = limxi↑c−1
i ,i=1,...,k ηΥk

(x1, . . . , xk) exists and is finite, then as u→∞

ψ(u;n) ∼ F (ũ)

n∑
k=1

ΛΥk−

k∏
i=1

(
Γ(γi + 1)Gi

(
c−1i −

c−1i a(ũ)

ũ

))
, (5.10)

where ũ = u
∏n
i=1 ci.

Note in passing that if F ∈ MDA(Λ, a(·)) with a(·) such that limu→∞ a(u) = ∞, then in order to show that

F ∈ S we can utilise the criteria given in Hashorva et al. (2010).

In the literature, there are several results concerned with the tail asymptotic behaviour of randomly weighted

sums with unbounded weights, that is, pi, 1 ≤ i ≤ n can be 1, see e.g., Resnick and Willekens (1991). Next,

we consider only the case that F is regularly varying at infinity.

Theorem 5.4. Consider the discrete-time risk model introduced above with pi ∈ [0, 1], 1 ≤ i ≤ n. Assume that

F satisfies (4.1) with some γ ≥ 0 and for each 1 ≤ i ≤ n and ε > 0 we have E
{

Υγ+ε
i

}
<∞. If the function ηΥ

is bounded, then as u→∞

ψ(u;n) ∼ KF (u), (5.11)

where K :=
∑n
k=1 E

{
ηΥk

(Υ∗1, . . . ,Υ
∗
k)
∏k
i=1(Υ∗i )

γ

}
∈ (0,∞) and Υ∗i , 1 ≤ i ≤ n are independent such that Υ∗i

and Υi have the same df for each 1 ≤ i ≤ n.

6. Proofs

Throughout this section, for two positive functions u(x) and v(x), as x tends to z, we write u(x) ∼ v(x)

if limx→z u(x)/v(x) = 1; write u(x) = o(v(x)) if limx→z u(x)/v(x) = 0. Further, write u(x) = O(v(x)) if

lim supx→z u(x)/v(x) <∞.

Proof of Lemma 2.1.: We show next that lim supx↑x̂1
φ1(x) =∞ is not possible. Let us suppose for a while

that this is possible, say for any given M large, in some left-neighbourhood of x̂1 we have φ1(x) > M . For any

x ∈ [0, x̂1) and y ∈ [0, x̂2) we obtain

P (X1 > x,X2 > y) = F1(x)F2(y) +

∫ x̂1

x

φ1(s)F1(ds)

∫ x̂2

y

φ2(s)F2(ds).

Since 1 + φ1φ2 is the Radon-Nikodyn density of (X1, X2) with respect to F1 · F2 we have

1 + φ1(x)φ2(y) ≥ 0, x ∈ [0, x̂1), y ∈ [0, x̂2).

The above relation and the fact that M can be arbitrarily large imply that φ2 is non-negative (almost surely

with respect to the measure generated by F1F2). Hence

F1(x)F2(y) +

∫ x̂1

x

φ1(s)F1(ds)

∫ x̂2

y

φ2(s)F2(ds) > F1(x)

holds for some x close to x̂1 and y such that
∫ x̂2

y
φ2(s)F2(ds) > 0. This is a contradiction, since necessarily

P (X1 > x,X2 > y) ≤ min(P (X1 > x) ,P (X2 > y)) = min(F1(x), F2(y)), x ∈ [0, x̂1), y ∈ [0, x̂2).

If we assume that lim infx↑x̂1 φ1(x) = −∞, then φ2 cannot be positive and the same argument as above can be

repeated to show that this is not possible.
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Next suppose that lim supx↓0 φ1(x) =∞ is possible. We have

P (X1 ≤ x,X2 ≤ y) = F1(x)F1(y) +

∫ x

0

φ1(s)F1(ds)

∫ y

0

φ2(s)F2(ds), x ∈ [0, x̂1), y ∈ [0, x̂2).

Hence since again it follows that φ2(y) > 0 for some y ∈ [0, x̂2), we obtain F (x, y) > F1(x) which is a contradic-

tion. Hence the proof follows showing with similar arguments that lim infx↓0 φ1(x) = −∞ is also not possible. 2

Proof of Proposition 3.1.: By the assumptions we have limn→∞ cnix + dni = x̂i, i = 1, 2 for any x < x̂i,

hence for some M positive and all n large we have (set uni(x) = cnix+ dni, i = 1, 2)

nP (X1 > un1(x), X2 > un2(y)) = nF1(un1(x))F2(un2(y)) + n

∫ x̂1

un1(x)

∫ x̂2

un2(y)

η(s, t)F1(ds)F2(dt)

≤ O(F1(un2(y))) + nM

∫ x̂1

un1(x)

∫ x̂2

un2(y)

F1(ds)F2(dt)

→ 0, n→∞,

since F1 · F2 ∈ MDA2(N1;N2), thus the proof follows. 2

Proof of Theorem 4.1.: a) Since F0 satisfies (4.1), Potter’s theorem (see, e.g., Theorem 1.5.6 of Bingham

et al. (1987)) implies that for any given ε > 0 there exist two positive constants C and D such that for all y > 0

and x ≥ D

F0(x/y)

F0(x)
≤ Cyγ±ε. (6.1)

For such a constant D, we split the survival function H of the deflated risk Z into two parts, namely

H(x) =

∫
{xi>0,i=1...n}

(∫ ∞
x
∏n

i=1 x
−1
i

η(x0, x1, . . . , xn)F0(dx0)
)
F1(dx1) · · ·Fn(dxn)

=
(∫
{
∏n

i=1 xi≤x/D}
+

∫
{
∏n

i=1 xi>x/D}

)(∫ ∞
x
∏n

i=1 x
−1
i

η(x0, x1, . . . , xn)F0(dx0)
)
F1(dx1) · · ·Fn(dxn)

=: J1(x) + J2(x). (6.2)

Since the function η(·) is bounded, then by Markov’s inequality and E{Xγ+ε
i } <∞, 1 ≤ i ≤ n, we have x→∞

J2 = O(1)P
( n∏
i=1

X∗i >
x

D

)
= O(x−(γ+ε)) = o(F0(x)), (6.3)

where the last equality holds by (6.1). According to the dominated convergence theorem and by (6.1), under

the conditions of the theorem we obtain that

lim
x→∞

J1(x)

F0(x)

=

∫
{xi>0,i=1...n}

(
lim
x→∞

1

F0(x)

∫ ∞
x
∏n

i=1 x
−1
i

η(x0, x1, . . . , xn)F0(dx0)1{
∏n

i=1 xi≤x/D}

)
F1(dx1) · · ·Fn(dxn)

=

∫
{xi>0,i=1...n}

η(x1, . . . , xn)(x1 · · ·xn)γF1(dx1) · · ·Fn(dxn)

= E
{
η(X∗1 , . . . , X

∗
n)

n∏
i=1

(X∗i )γ
}
. (6.4)
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Consequently, the claim follows from (6.2)–(6.4).

b) By the assumptions, since x̂i, 0 ≤ i ≤ n is finite, it follows easily that

H(x) = P
( n∏
i=0

Xi > x
)
∼ Λ−P

( n∏
i=0

X∗i > x
)

as x ↑
∏n
i=0 x̂i, hence the proof is established by a direct application of Lemma 2.1 and Theorem 3.1 in Hashorva

et al. (2010). 2

Proof of Corollary 4.1.: The proof follows by checking the assumptions of Theorem 4.1 which can then be

applied to establish the claim. 2

Proof of Theorem 4.2.: We show next the claim for the case x̂0 = ∞ and omit the proof when x̂0 < ∞
since it follows with similar arguments. For notational simplicity we assume that x̂i = 1, 1 ≤ i ≤ n. In view

of the Davis-Resnick property of H0 (see Proposition 1.1 of Davis and Resnick (1988), or details in Hashorva

(2013b)) we have that

lim
x→∞

( x

a(x)

)µF0(τx)

F0(x)
= 0 (6.5)

holds for any µ ≥ 0 and τ > 1. Hence for any c > 1 we have

H(x) ∼ P
( n∏
i=0

Xi > x, x ≤ X0 ≤ cx,Xi > 1− 1/c, i = 1, . . . , n
)
, x→∞.

Consequently, by the arbitrariness of c we obtain

H(x) ∼ Λ−P
( n∏
i=0

X∗i > x
)
, x→∞

and hence the proof follows applying again Theorem 3.1 in Hashorva et al. (2010). 2

Proof of Theorem 5.1.: In view of (5.2) we need to show that VaRZ(p) ∼ VaRX0(p) as p ↑ 1. Assume for

simplicity that n = 1 and x̂1 = 1, so we have that VaRZ(p) ≤ VaRX0(p) as p ↑ 1. If G = F0F1 and G−1, F−10 are

the generalised inverses of G and F0, respectively, then this can be rewritten as G−1(1−1/t) ≤ F−10 (1−1/t), t >

1. In view of (6.5) both F0 and G are in the Gumbel MDA with the same auxiliary function a(·). Consequently

(see e.g., Resnick (1987)) G−1(1− 1/t) and F−10 (1− 1/t) are slowly varying functions at infinity. Since further

in view of (6.5) for all x large and any ε ∈ (0, 1) we have

G(x) ≥ F (x(1− ε)),

then

lim
t→∞

G−1(1− 1/t)

F−10 (1− 1/t)
= 1

and hence the claim follows. 2

Proof of Theorem 5.2.: Since limx→∞ a(x) =∞, for all large x and some M > 0 assumption (5.4) implies

for any two different indices i, j and z > 0

P (Xi > x,Xj > a(x)z) =

∫ ∞
x

∫ ∞
a(x)z

ηij(s, t)Fi(ds)Fj(dt)

≤ MF i(x)F j(a(x)z).
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Consequently by (5.6)

lim
x→∞

P (Xi > x,Xj > a(x)z)

P (X0 > x)
= 0

and thus the proof follows by applying Corollary 3.2 of Mitra and Resnick (2009). 2

Proof of Theorem 5.3.: Since Υi, 1 ≤ i ≤ n are upper bounded and F is a subexponential distribution,

then (5.8) implies

ψ(u;n) ∼
n∑
k=1

P
(
Rk

k∏
i=1

Υi > u
)

=

n∑
k=1

P
(
R+
k

k∏
i=1

Υi > u
)
, u→∞.

By the fact that R1, . . . , Rn are independent of Υ, then for each 1 ≤ k ≤ n the random vector (Rk,Υ1, . . . ,Υk)

has the joint df

ηΥk
· d
(
F

k∏
i=1

Gi

)
,

where ηΥk
is defined in (5.9). Consequently, the proof of (5.10) follows by Theorem 4.2. 2

Proof of Theorem 5.4.: The proof is similar to that of Theorem 5.3 by using (5.8) and Theorem 4.1 a). 2
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[2] Arendarczyk, M. and Dȩbicki, K., 2012. Exact asymptotics of supremum of a stationary Gaussian process over a random

interval. Stat. Probab. Lett., 82, 645–652.

[3] Asimit, A.V., Furman, E., Tang, Q. and Vernic, R., 2011. Asymptotics for risk capital allocations based on conditional tail

expectation. Insurance Math. Econom. 49, 310–324.

[4] Asimit, A. V. and Badescu, A.L., 2010. Extremes on the discounted aggregate claims in a time dependent risk model. Scand.

Actuar. J. 2, 93–104.

[5] Berman, M.S., 1992. Sojourns and Extremes of Stochastic Processes, Wadsworth & Brooks/ Cole, Boston.

[6] Breiman, L., 1965. On some limit theorems similar to the arc-sin law. Theory Probab. Appl. 10, 323–331.

[7] Chen, Y., 2011. The finite-time ruin probability with dependent insurance and financial risks. J. Appl. Probab. 48, 1035–1048.

[8] Chen, Y. and Yuen, K.C. 2009. Sums of pairwise quasi-asymptotically independent random variables with consistent variation.

Stoch. Models 25, 76–89.

[9] Chen, Y. and Yuen, K.C. 2012. Precise large deviations of aggregate claims in a size-dependent renewal risk model. Insurance

Math. Econom. 51, 457–461.

[10] Cline, D.B.H. and Samorodnitsky, G., 1994. Subexponentiality of the product of independent random variables. Stochastic

Process. Appl. 49, 75–98.

[11] Constantinescu, C., Hashorva, E. and Ji, L., 2011. The Archimedean copula in finite and infinite dimensions - with applications

to ruin problems. Insurance: Mathem and Econom. 49, 487-495.

[12] Davis, R.A. and Resnick, S.I., 1988. Extremes of moving averages of random variables from the domain of attraction of the

double exponential distribution. Stochastic Process. Appl. 30, 41–68.



14

[13] Denuit, M., Dhaene, J., Goovaerts, M. and Kass, R., 2006. Actuarial Theory for Dependent Risks: Measures, Orders and

Models. Wiley.
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[17] Hashorva, E. and Hüsler, J., 1999. Extreme values in FGM random sequences. J. Multiv. Analysis 68, 2, 212–225.

[18] Hashorva E., 2013a. Exact tail asymptotics of aggregated parametrised risk. J. Math. Anal. Appl., 400, 1, 187–199.

[19] Hashorva, E., 2013b. Minima and maxima of elliptical triangular arrays and spherical processes. Bernoulli, in press, DOI

10.3150/12-BEJ463.

[20] Hashorva, E., 2012. Exact tail asymptotics in bivariate scale mixture models. Extremes, 15, 109–128.

[21] Hashorva, E., Ji, L., Tan, Z., 2012. On the infinite sums of deflated Gaussian products. Elect. Comm. Probab., 17, 31, 1-8.

[22] Hashorva, E., 2011. On beta-product convolutions. Scandinavian Actuarial J.

doi:10.1080/03461238.2011.555939.

[23] Hashorva, E. and Pakes, A.G., 2010. Tail asymptotics under beta random scaling. J. Math. Anal. Appl. 372, 496–514.

[24] Hashorva, E., Pakes, A.G. and Tang, Q., 2010. Asymptotics of random contractions. Insurance Math. Econom. 47, 405–414.
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171–192.

[27] Jiang, J. and Tang, Q., 2011. The product of two dependent random variables with regularly varying or rapidly varying tails.

Stat. Probab. Lett. 81, 957–961.

[28] Kortschak, D., Hashorva, E., 2013. Efficient simulation of tail probabilities for sums of log-elliptical risks. J. Comp. Appl.

Math., in press.

[29] Kortschak, D., 2011 Second order tail asymptotics for the sum of dependent, tail-independent regularly varying risks. Extremes,

15, 353–388.

[30] Li, J., Tang, Q. and Wu, R., 2010. Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model.

Adv. in Appl. Probab. 42, 1126–1146.

[31] Liu, Y. and Tang, Q., 2010. The subexponential product convolution of two Weibull-type distributions. J. Aust. Math. Soc.

89, 277–288.

[32] Manner, H. and Segers, J., 2011. Tails of correlation mixtures of elliptical copulas. Insurance Math. Econom. 48, 153–160.

[33] Mikosch, T., 2009. Non-Life Insurance Mathematics: An Introduction with Poisson Process, Second Edition. Springer, Berlin.

[34] Mitra, A. and Resncik, S.I., 2009. Aggregation of rapidly varying risks and asymptotic independence. Adv. Appl. Probab. 41,

797–828.

[35] Resnick, S.I., 1987. Extreme Values, Regular Variation and Point Processes. Springer, New York.

[36] Resnick, S.I. and Willekens, E., 1991. Moving averages with random coefficients and random coefficients autoregressive models.

Commun. Stat. Stoch. Models 7, 511–525.

[37] Tang, Q., 2006a. On convolution equivalence with applications. Bernoulli 12, 535–549.

[38] Tang, Q., 2006b. The subexponentiality of products revisited. Extremes 9, 231–241.

[39] Tang, Q., 2008. From light tails to heavy tails through multiplier. Extremes 11, 379–391.

[40] Tang, Q., Vernic, R. and Yuan, Z., 2011. The finite-time ruin probability in the presence of dependent extremal insurance and

financial risks. Preprint.

[41] Yang, Y., Hu, S. and Wu, T., 2011. The tail probability of the product of dependent random variables from max-domains of

attraction. Stat. Probab. Lett. 81, 1876–1882.

[42] Yang, Y. and Wang, Y., 2012. Tail behavior of the product of two dependent random variables with applications to risk theory.

Extremes doi:10.1007/s10687-012-0153-2.


