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a b s t r a c t 

Multi-echo T 2 magnetic resonance images contain information about the distribution of T 2 relaxation times of 
compartmentalized water, from which we can estimate relevant brain tissue properties such as the myelin water 
fraction (MWF). Regularized non-negative least squares (NNLS) is the tool of choice for estimating non-parametric 
T 2 spectra. However, the estimation is ill-conditioned, sensitive to noise, and highly affected by the employed 
regularization weight. The purpose of this study is threefold: first, we want to underline that the apparently in- 
nocuous use of two alternative parameterizations for solving the inverse problem, which we called the standard 
and alternative regularization forms, leads to different solutions; second, to assess the performance of both pa- 
rameterizations; and third, to propose a new Bayesian regularized NNLS method (BayesReg). The performance 
of BayesReg was compared with that of two conventional approaches (L-curve and Chi-square (X 2 ) fitting) using 
both regularization forms. We generated a large dataset of synthetic data, acquired in vivo human brain data 
in healthy participants for conducting a scan-rescan analysis, and correlated the myelin content derived from 

histology with the MWF estimated from ex vivo data. Results from synthetic data indicate that BayesReg provides 
accurate MWF estimates, comparable to those from L -curve and X 2 , and with better overall stability across a 
wider signal-to-noise range. Notably, we obtained superior results by using the alternative regularization form. 
The correlations reported in this study are higher than those reported in previous studies employing the same 
ex vivo and histological data. In human brain data, the estimated maps from L -curve and BayesReg were more 
reproducible. However, the T 2 spectra produced by BayesReg were less affected by over-smoothing than those 
from L -curve. These findings suggest that BayesReg is a good alternative for estimating T 2 distributions and MWF 
maps. 
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. Introduction 

Multi-component T 2 relaxometry can be used to study brain tissue
icrostructure. It allows one to obtain relevant information about the
ater fractions of different tissue constituents and their T 2 relaxation

imes non-invasively Does (2018) . Specifically, this technique provides
stimates for the fraction of the water trapped between the myelin layers
overing the axons in the brain’s white matter (WM) ( Piredda et al.,
020 ). The estimated myelin water fraction (MWF) is highly correlated
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ith myelin content ( Alonso-Ortiz et al., 2015 ) and hence is being used
o study brain disorders affecting the WM tissue, like multiple sclerosis
 Laule et al., 2008 ) and schizophrenia ( Lang et al., 2014 ). 

Previous studies using Multi-echo T 2 (MET 2 ) data demonstrated the
xistence of cellular-compartment-specific T 2 values ( Andrews et al.,
005 ; Deoni et al., 2013 ; MacKay et al., 2006 ). For instance, it is be-
ieved that the fraction of the measured signal with T 2 in the range of
0–40 ms (in 3T scanner) arises from myelin water. The signal fraction
ith an intermediate T 2 in the range of 40–200 ms is attributed to the

ntra- and extra-cellular (IE) water. And the component with the longest
ber 2021 
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𝑃  
 2 s > 1000 ms is assigned to the ’free water’ in the cerebrospinal fluid
CSF). 

Data from various studies suggest that a high signal-to-noise ratio
SNR) is required for estimating different components in the T 2 distri-
ution ( Andrews et al., 2005 ; Graham et al., 1996 ). For example, an
ssessment based on synthetic data found that for a clinically achiev-
ble SNR = 100 the myelin water component was undetected in 5.6%
f the voxels, and the percentage increased to 12.9% for SNR = 50
 Kumar et al., 2012 ). Similar results have been reported in human brain
ata, where MWF values equal to zero were estimated in several brain
oxels located in myelinated areas of the frontal and lateral projec-
ion fibers ( Raj et al., 2014 ). Although the fitting instability of non-
arametric estimation algorithms has been improved by using regular-
zed non-negative least squares (NNLS) ( Whittall et al., 1997 ), the esti-
ation is ill-conditioned, sensitive to noise contamination, and strongly
epends on the chosen regularization weight. 

Recently, we compared several non-parametric regularized NNLS
ethods across different SNR levels ( Canales-Rodríguez et al., 2021 )

y employing three criteria for choosing the optimal regularization
eight (i.e., Chi-square (X 

2 ) residual fitting criterion ( Graham et al.,
996 ; Whittall and MacKay, 1989 ), L -curve method ( Hansen, 1992 ),
nd Generalized-cross validation ( Golub et al., 1979 )). The effect of
hese criteria was evaluated in combination with three different regu-
arization matrices for promoting smooth solutions: Identity matrix and
aplacian matrices of first- and second-order derivatives. We found that
or low SNRs the optimal regularization parameter should be selected by
mploying the L -curve method Hansen (1992) . In contrast, X 

2 was the
ethod of choice for higher SNRs. In both cases, the reconstruction al-

orithms showed superior performance when the regularization matrix
as the Identity matrix. However, the performance of these methods
as worse outside their optimal SNR ranges. This aspect makes it diffi-

ult to provide recommendations for which method to use for datasets
ith heterogeneous SNR levels. 

The main aim of this work is to continue the quest towards find-
ng the optimal methodology for estimating T 2 spectra from MET 2 data,
ith a special focus on improving the quantification of the myelin wa-

er fraction. In particular, the purpose of this study is threefold. Firstly,
e want to revisit the T 2 spectrum imaging inverse problem to show
ow the apparently innocuous use of two alternative parameteriza-
ions leads to two different solutions: the standard regularization form
 Whittall and MacKay, 1989 ), which promote solutions where the square
f the area under the spectrum is minimal, and the alternative form,
hat promotes solutions minimizing the square of the spectrum inten-
ities. We noted that the alternative regularization form is equivalent
o that previously proposed by ( Guo et al., 2013 ). Secondly, as these
wo regularization strategies have not been compared, we will evalu-
te them for the first time here. Finally, we propose a new Bayesian
egularization technique for determining the optimal regularization pa-
ameter. Our proposal is an extension of the seminal Bayesian interpola-
ion framework introduced by ( MacKay, 1992 ), but adapted for physical
odels where the estimated parameters cannot have negative values.
e hypothesize that the introduced Bayesian regularization framework
ill produce solutions similar to those from state-of-the-art regulariza-

ion approaches based on L -curve and X 

2 , but with better overall per-
ormance across a wider SNR range, and that the alternative regular-
zation form may provide better performance. To test our hypothesis,
 large dataset of synthetic data was generated, and several methods
ere compared. Moreover, in vivo MET 2 data were acquired in healthy
olunteers, which were scanned two times to conduct a scan-rescan re-
roducibility analysis. The performance of the algorithms was evalu-
ted on ex vivo multi-echo T2 data by correlating the estimated voxel-
ise myelin water fraction and the myelin content derived from histol-
gy. To foster reproducible research, the implemented methods were
ncluded in our freely distributed multi-component T 2 reconstruction
oolbox available at https://github.com/ejcanalesr/multicomponent-
2-toolbox. 
t  

2 
. Methods 

.1. T2 spectrum estimation by regularized NNLS 

The measured MET 2 signal 𝑆 for a given echo time ( 𝑇 𝐸) is modeled
y ( Mackay et al., 1994 ; Whittall et al., 1997 ) 

( 𝑇 𝐸) = ∫
𝑇 max 
2 

𝑇 min 
2 

𝑃 ( 𝑇 2 ) 𝐻 

(
𝑇 2 , 𝑇 𝐸 

)
𝑑 𝑇 2 

≈
∑𝑁 

𝑗=1 
𝑃 

( 

𝑇 
𝑗 

2 + 𝑇 
𝑗+1 
2 

2 

) 

𝐻 

( 

𝑇 
𝑗 

2 + 𝑇 
𝑗+1 
2 

2 
, 𝑇 𝐸 

) (
𝑇 
𝑗+1 
2 − 𝑇 

𝑗 

2 

)
, (1) 

here 𝑃 ( 𝑇 2 ) is the unknown distribution (often also called T 2 spectrum)
f relaxation times to be estimated, H is the kernel specifying the phys-
cal relaxation model for each water pool within the voxel (e.g., Bloch’s
xponential decay ( Mackay et al., 1994 ) or Extended Phase Graph (EPG)
odel ( Prasloski et al., 2012a )), and { 𝑇 𝑗 2 , j = 1,…N + 1 } is the discrete

rid of T 2 values used to evaluate the integral numerically. Note that for
otational simplicity we used a composite midpoint rule with N subin-
ervals/bins, and that others numerical integration rules are possible
ithout loss of generality. 

Eq. (1) can be parameterized in two different ways for estimating
he distribution of relaxation times. The conventional approach is to
ollapse the discrete spectrum intensities and the bin widths into a single

arameter, i.e., 𝑤 𝑗 = 𝑃 ( 
𝑇 
𝑗 

2 + 𝑇 
𝑗+1 
2 

2 )( 𝑇 𝑗+1 2 − 𝑇 
𝑗 

2 ) , in which case the resulting
ystem of linear equations can be written in matrix form as 𝐬 = 𝐇𝐰 + 𝐞 ,
here 𝐬 is the k x1 vector of measured data for k different TEs, 𝐇 is

he k x N dictionary of synthetic MRI signals for the specified T 2 grid, 𝐞
enotes the random noise, and 𝐰 = { 𝑤 𝑗 } is the N x1 vector of weights
o be estimated quantifying the area under the curve of the discrete
pectrum. 

The weights �̂� are commonly estimated through the following regu-
arized non-negative least square (NNLS) problem: 

̂
 (λ) = arg min 

𝐰 ≥ 0 ‖𝐬 − 𝐇𝐰 ‖2 2 + λ‖𝐋𝐰 ‖2 2 
= arg min 

𝐰 ≥ 0 
‖‖‖‖‖‖
[ 
𝐬 
𝟎 𝑁 

] 
− 

[ 

𝐇 √
λ𝐋 

] 

𝐰 

‖‖‖‖‖‖
2 

2 

, (2) 

here L is the N x N regularization matrix introduced to stabilize the es-
imation by injecting prior information about the expected spectrum’s
hape, e.g., smoothness, and 0 N denotes an N x1 vector of zeros. The
stimated solution �̂� depends on the chosen matrix L and the regular-
zation parameter 𝜆. The family of solutions defined by these choices
an be estimated efficiently by the Lawson-Hanson active set algo-
ithm ( Lawson and Hanson, 1995 ). Note that for λ = 0 we get the non-
egularized NNLS solution. 

Eq. (2) is usually solved using 𝐋 = 𝐈 , where 𝐈 is the identity matrix
 Mackay et al., 1994 ; Whittall et al., 1997 ; Whittall and MacKay, 1989 ).
his choice promotes solutions where the square of the area under the
pectrum is minimal: 

𝐈𝐰 ‖2 2 = 

∑𝑁 

𝑗=1 
𝑤 

2 
𝑗 
= 

∑𝑁 

𝑗=1 

[ 

𝑃 

( 

𝑇 
𝑗+1 
2 + 𝑇 

𝑗 

2 
2 

) (
𝑇 
𝑗+1 
2 − 𝑇 

𝑗 

2 

)] 2 

. (3)

s the T 2 grid is conventionally selected using logarithmically spaced
 2 values, the last elements with bigger bin widths 𝑇 𝑗+1 2 − 𝑇 

𝑗 

2 are more
enalized than the first elements. Consequently, the resulting spectra are
moother around the portion of the spectra with long T 2 components.
n this study, we will refer to this choice as the standard regularization
orm. 

Alternatively, the bin widths 𝑇 𝑗+1 2 − 𝑇 
𝑗 

2 can be collapsed with 𝐻 in
q. (1) , leading to the system of linear eqs. 𝐬 = 𝐊𝐱 + 𝐞 , where 𝐱 = { 𝑥 𝑗 =

 ( 
𝑇 
𝑗 

2 + 𝑇 
𝑗+1 
2 

2 ) , 𝑗 = 1 , ...𝑁} is the vector of weights to be estimated quan-
ifying the discrete spectrum intensities, K = HD , and D is a diagonal
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 x N matrix formed by the bin widths, 𝐃 𝑗,𝑗 = 𝑇 
𝑗+1 
2 − 𝑇 

𝑗 

2 . In this case, the
eights �̂� are estimated using regularized NNLS as follows: 

̂
 (λ) = arg min 

𝐱≥ 0 ‖𝐬 − 𝐊𝐱 ‖2 2 + λ‖𝐋𝐱 ‖2 2 . (4)

ote that for 𝐋 = 𝐈 , the penalty term only depends on the spectrum in-
ensities but not on the area of the different subintervals: 

𝐈𝐱 ‖2 2 = 

∑𝑁 

𝑗=1 
𝑥 2 
𝑗 
= 

∑𝑁 

𝑗=1 

[ 

𝑃 

( 

𝑇 
𝑗+1 
2 + 𝑇 

𝑗 

2 
2 

) ] 2 

. (5)

otably, Eq. (4) can be rewritten in terms of 𝐇 and 𝐰 (assuming 𝐋 = 𝐈
nd noting that 𝐊𝐱 = 𝐇𝐰 and ‖𝐈𝐱 ‖2 2 = ‖𝐃 

−1 𝐰 ‖2 2 ) as 

̂
 (λ) = arg min 

𝐰 ≥ 0 ‖𝐬 − 𝐇𝐰 ‖2 2 + λ‖‖‖𝐃 

−1 𝐰 

‖‖‖2 2 , (6)

here 𝐃 

−1 is the inverse of 𝐃 , i.e., a diagonal matrix with elements
 

−1 
𝑗,𝑗 

= ( 𝑇 𝑗+1 2 − 𝑇 
𝑗 

2 ) 
−1 . Interestingly, this formulation is identical to that

roposed in ( Guo et al., 2013 ) based on solving Eq. (2) with 𝐋 = 𝐃 

−1 .
e will call this variant the alternative regularization form due to its

ess widespread use. 
It is important to note how the use of these two parameterization

orms leads to two different solutions. Both regularization strategies are
ompared in this work. 

The conventional method in T 2 relaxometry for estimating 𝜆 is based
n the X 

2 residual fitting criterion ( Graham et al., 1996 ; Whittall and
acKay, 1989 ), which can be rewritten as the following optimization

roblem ( Canales-Rodríguez et al., 2021 ): 

= arg min 
𝜆≥ 0 

||||||1 − 

‖𝐬 − 𝐇 ̂𝐰 (λ) ‖2 2 
𝑐 ‖𝐬 − 𝐇 ̂𝐰 (λ = 0) ‖2 2 

||||||, (7)

here �̂� ( λ = 0 ) is the solution of Eq. (2) for 𝜆= 0 and c is a constant
onventionally fixed at c = 1.02 ( Laule et al., 2006 ). This method pro-
ides robust fits in the presence of noise ( Whittall and MacKay, 1989 )
ecause it reduces the overfitting by accepting a regularized solution
hose mean squared error is 2% higher than the non-regularized one
 MacKay et al., 2006 ). 

Another well-known regularization approach is the L -curve method
ansen (1992) , which plots the log-log graph of the curve given by
 log ||𝐬 − 𝐇 ̂𝐰 ( 𝜆) ||2 2 , log ||𝐋 ̂𝐰 ( 𝜆) ||2 2 ) for many values of 𝜆. The point lo-
ated at the corner of the resulting "L-curve" is chosen as the optimal
. This method was applied in previous multi-component T 2 relaxome-
ry studies, e.g., see ( Kumar et al., 2012 ) and ( Canales-Rodríguez et al.,
021 ). 

As algorithms based on the Bayesian theory usually provide compet-
tive performance, a new Bayesian method for the optimal selection of
is introduced in this work. 

.2. Bayesian regularization 

Using the standard framework of likelihood, prior and posterior as
roposed in MacKay (1992) , we define the following probabilities. 

Likelihood: The noise is modeled as a zero-mean Gaussian distribution
ith standard deviation 𝜎. Hence, the probability of the data given the
arameters H , w , and 𝜎 is 

 ( 𝐬 |𝐇 , 𝐰 , β) = 

1 
𝑍 𝑑 (β) 

exp 
( 

− 

β
2 
‖𝐬 − 𝐇𝐰 ‖2 2 ) 

, (8)

here 𝛽 = 1∕ 𝜎2 and 𝑍 𝑑 (β) = ( 2 𝜋∕β) 𝑘 ∕2 . 
Prior: To obtain a solution equivalent to Eq. (2) , the prior must be a

ero-mean truncated Gaussian distribution with standard deviation 𝜎P :

 ( 𝐰 |𝐋 , α) = 

1 
𝑍 𝑤 (α) 

exp 
(
− 

α
2 
‖𝐋𝐰 ‖2 2 )𝑢 ( 𝐰 ) , (9)

here α = 1∕ 𝜎2 
𝑃 

, 𝑢 ( 𝐰 ) is the indicator function guaranteeing the non-
egativity of w , 

 ( 𝐰 ) = 

{ 

1 , 𝑖𝑓𝐰 ≥ 0 
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 

(10)
3 
nd the normalization constant is determined as 

 𝑤 (α) = ∫
∞

0 
exp 

(
− 

α
2 
‖𝐋𝐰 ‖2 2 )𝑑𝐰 (11)

Posterior: According to the Bayes theorem, the posterior distribution
f w given all the other parameters is given by MacKay (1992) 

 ( 𝐰 |𝐬 , 𝐇 , β, 𝐋 , α) = 

𝑃 ( 𝐬 |𝐰 , 𝐇 , β) 𝑃 ( 𝐰 |𝐋 , α) 
𝑃 ( 𝐬 |𝐇 , β, 𝐋 , α) 

. (12)

y plugging Eqs. (8) and (9) into Eq. (12) we get 

 ( 𝐰 |𝐬 , 𝐇 , β, 𝐋 , α) = 

𝑢 ( 𝐰 ) 
𝑍 𝑃 ( β, α) 

exp 
( 

− 

β
2 
‖𝐬 − 𝐇𝐰 ‖2 2 − 

α
2 
‖𝐋𝐰 ‖2 2 ) 

, (13)

here 

1 
𝑍 𝑃 ( β, α) 

= 

1 
𝑃 ( 𝐬 |𝐇 , β, 𝐋 , α) 𝑍 𝑑 (β) 𝑍 𝑤 (α) 

. (14)

This normalization factor can be estimated in practice as 

 𝑃 ( β, α) = ∫
∞

0 
exp 

( 

− 

β
2 
‖𝐬 − 𝐇𝐰 ‖2 2 − 

α
2 
‖𝐋𝐰 ‖2 2 ) 

𝑑𝐰 . (15)

Notably, the vector w that maximizes the posterior probability (i.e.,
q. (13) ) is the solution of Eq. (2) for λ = α∕β. Therefore, the Bayesian
ormulation replicates the regularized NNLS solution and allows us to
etter interpret the regularization parameter in terms of 𝛼 and 𝛽. This
quivalence indicates that the conventional reconstruction given by
q. (2) implicitly assumes a Gaussian noise model and a zero-mean trun-
ated Gaussian prior. Thus, it promotes solutions with many elements
qual to zero and positive smooth lobes. 

.3. Bayesian choice of 𝛼 and 𝛽

The Bayesian theory provides a solid framework to infer the values
f 𝛼 and 𝛽 from the data s and the specified model ( 𝐇 , 𝐋 ) as those max-
mizing the posterior probability distribution MacKay (1992) 

 (α, β|𝐬 , 𝐇 , 𝐋 ) = 

𝑃 ( 𝐬 |𝐇 , β, 𝐋 , α) 𝑃 ( α, β|𝐇 , 𝐋 ) 
𝑃 ( 𝐬 |𝐇 , 𝐋 ) 

. (16)

f it is unknown what value 𝛼 and 𝛽 should have, a flat uninformative
rior is usually assumed for 𝑃 (α, β|𝐇 , 𝐋 ) . Moreover, the normalization
erm 𝑃 ( 𝐬 |𝐇 , 𝐋 ) does not depend on 𝛼 and 𝛽. Therefore, the optimal values
f 𝛼 and 𝛽 can be estimated as those maximizing 𝑃 ( 𝐬 |𝐇 , β, 𝐋 , α) , a term
eferred to as the evidence MacKay (1992) . 

Interestingly, the evidence was introduced in the previous section
nd is determined by 

 ( 𝐬 |𝐇 , β, 𝐋 , α) = 

𝑍 𝑃 ( β, α) 
𝑍 𝑑 (β) 𝑍 𝑤 (α) 

. (17)

e could not find available expressions in the literature for the normal-
zation constants appearing in Eq. (17) for the case where the integration
ariable w vary from [0, ∞]. Therefore, in this study, we estimated these
erms. A step-by-step detailed derivation is presented in the Supplemen-
ary Material and here we summarize the main results. After some alge-
raic manipulations, we found 

 𝑤 (α) = 

1 
det 𝐋 

(
𝜋

2α

)𝑁∕2 
, (18)

nd 

 𝑃 ( β, α) = 

exp ( − 𝑀( ̂𝐰 ) ) 
det 𝐔 

(
𝜋

2 

)𝑁∕2 ∏𝑁 

𝑗=1 

[ 

1 + 𝑒𝑟𝑓 ( 1 √
2 
( 𝐔 ̂𝐰 ) 𝑗 ) 

] 

, (19)

here 𝑀( ̂𝐰 ) = −( 𝛽2 ) ||𝐬 − 𝐇 ̂𝐰 ( 𝜆) ||2 2 − ( 𝛼2 ) ||𝐋 ̂𝐰 ( 𝜆) ||2 2 , U is the upper trian-
ular matrix obtained after applying the Cholesky decomposition to ma-
rix A = 𝛽H 

T H + 𝛼L T L (i.e., A = U 

T U ), det denotes the determinant, and erf
s the error function. 

Substituting Eqs. (18) , (19) , and Z d ( 𝛽) as defined in Eq. (8) into
q. (17) we obtain 
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Table 1 

Seven algorithms were evaluated in this study. All the algorithms are 
based on solving Eq. (2) for different choices of L and 𝜆. 

Method Matrix ( L ) Regularization parameter ( 𝜆) 

NNLS N.A. N.A. 
X 2 -I L = I Eq. (7) , c = 1.02 
L-curve-I L = I L-curve (Ref. ( Castellanos et al., 2002 )) 
BayesReg-I L = I Eqs. (21) and (22) 
X 2 -D − 1 L = D − 1 Eq. (7) , c = 1.02 
L-curve-D − 1 L = D − 1 L-curve (Ref. ( Castellanos et al., 2002 )) 
BayesReg-D − 1 L = D − 1 Eqs. (21) and (22) 

Table 2 

Parameters used to generate the synthetic T 2 spectra. 𝑥 ∼ 𝑈 ( 𝑎, 𝑏 ) 
denotes a random sample from a uniform distribution on the in- 
terval [ 𝑎, 𝑏 ] ; T 2 time is in milliseconds; std: standard deviation. 

Parameters Fast component Slow component 

Water fraction 𝑀𝑊 𝐹 ∼ 𝑈 ( 0 . 05 , 0 . 25 ) 1 − 𝑀𝑊 𝐹

T 2 mean value 𝑇 𝑀 2 ∼ 𝑈 ( 15 , 35 ) 𝑇 𝐼𝐸 2 ∼ 𝑈 ( 60 , 90 ) 
T 2 std 𝑠𝑡𝑑( 𝑇 𝑀 2 ) ∼ 𝑈 ( 1 , 3 ) 𝑠𝑡𝑑( 𝑇 𝐼𝐸 2 ) ∼ 𝑈 ( 6 , 12 ) 
Flip angle 𝐹𝐴 ∼ 𝑈 ( 90 ◦ , 180 ◦) 
Signal to noise ratio Simulation #1: 𝑆𝑁𝑅 ∼ 𝑈 ( 50 , 100 ) 

Simulation #2: 𝑆𝑁𝑅 ∼ 𝑈 ( 100 , 200 ) 
Simulation #3: 𝑆𝑁𝑅 ∼ 𝑈 ( 200 , 400 ) 
Simulation #4: 𝑆𝑁𝑅 ∼ 𝑈 ( 400 , 1000 ) 
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 ( 𝐬 |𝐇 , β, 𝐋 , α) = 

exp ( − 𝑀( ̂𝐰 ) ) 
det 𝐔 

(
𝜋

2 

)𝑁∕2 ( 𝜋

2α

)− 𝑁∕2 
( 

2 𝜋
β

) − 𝑘 ∕2 

× det 𝐋 

∏𝑁 

𝑗=1 

[ 

1 + 𝑒𝑟𝑓 ( 1 √
2 
( 𝐔 ̂𝐰 ) 𝑗 ) 

] 

. (20) 

The optimal values of 𝛼 and 𝛽 are those minimizing 𝐽 =
 log 𝑃 ( 𝐬 |𝐇 , β, 𝐋 , α) : 

 = 𝑀( ̂𝐰 ) + log ( det 𝐔 ) − 

∑𝑁 

𝑗=1 
log 

[ 

1 + 𝑒𝑟𝑓 ( 1 √
2 
( 𝐔 ̂𝐰 ) 𝑗 ) 

] 

− 

𝑁 

2 
log 

(
𝜋

2 

)
+ 

𝑘 

2 
log ( 2 𝜋) − 

𝑘 

2 
log ( β) + 

𝑁 

2 
log ( 𝜋) 

− 

𝑁 

2 
log ( 2α) − log ( det 𝐋 ) . (21) 

n our work, a faster evaluation of Eq. (21) was implemented by assum-
ng that a good estimate for 𝛽 (i.e., the noise) is available, in which case
q. (21) is minimized only for 𝛼. Concretely, 𝛽 was estimated as 

̂ = 

1 
�̂�2 

, ̂𝜎2 = 

( 𝐬 − 𝐇 ̂𝐰 (λ = 0) ) 𝑇 ( 𝐬 − 𝐇 ̂𝐰 (λ = 0) ) 
𝑘 − 𝑝 

, (22)

here �̂� (λ = 0) is the sparse solution provided by the non-regularized
NLS and p is the number of positive elements in the solution. In a
reliminary evaluation, we verified that this approximation provides
n acceptable estimate for the underlying noise level. Alternatively, the
valuation of Eq. (22) can be avoided if an independent estimate for the
oise level is available. 

.4. Metrics derived from the T 2 spectrum 

Although the primary aim of this work is on determining MWF, we
lso computed three additional metrics derived from the T 2 spectrum
hich are of potential interest for clinical applications, including the

otal water content (TWC), IE water fraction (IEWF), and T 2 of the IE
ater ( 𝑇 𝐼𝐸 2 ). For this, cutoff T 2 values that separate the spectrum into

egions corresponding to distinct tissue compartments were defined. The
utoff values for the myelin water 𝑇 𝑚 2 and IE water 𝑇 𝑖 2 were fixed to
tandard values previously reported ( MacKay and Laule, 2016 ): 𝑇 𝑚 2 =
0 𝑚𝑠 and 𝑇 𝑖 2 = 200 𝑚𝑠 . 

MWF was calculated as the area under the curve for T 2 times smaller
han the myelin water cutoff 𝑇 𝑚 2 , normalized by TWC: 

𝑊 𝐹 = 

1 
𝑇 𝑊 𝐶 

∑𝑚 

𝑗=1 
�̂� 𝑗 , (23)

here m is the index of the predefined T 2 grid that matches the defined
utoff 𝑇 𝑚 2 and TWC (i.e., the predicted signal for TE = 0) was estimated
y calculating the total area under the T 2 spectrum ( Meyers et al., 2017 )

 𝑊 𝐶 = 

∑𝑁 

𝑗=1 
�̂� 𝑗 , (24)

Similarly, IEWF was estimated as the area under the curve in the
ange 𝑇 𝑚 +1 2 − 𝑇 𝑖 2 , normalized by TWC 

𝐸𝑊 𝐹 = 

1 
𝑇 𝑊 𝐶 

∑𝑖 

𝑗= 𝑚 +1 
�̂� 𝑗 , (25)

here i is the index of the T 2 grid corresponding to the cutoff 𝑇 𝑖 2 for the

E compartment and 𝑇 𝑚 +1 2 is the T 2 time for the grid point with index
 + 1. Finally, 𝑇 𝐼𝐸 2 is computed as the geometric mean of the spectrum

n the range 𝑇 𝑚 +1 2 − 𝑇 𝑖 2 Bjarnason (2011) : 

 

𝐼𝐸 
2 = exp 

(∑𝑖 

𝑗= 𝑚 +1 
�̂� 𝑗 log ( 𝑇 

𝑗 

2 ) ∕ 
∑𝑖 

𝑗= 𝑚 +1 
�̂� 𝑗 

)
. (26)

.5. Implemented algorithms 

We compared the conventional X 

2 residual fitting and L -curve
riteria with the proposed Bayesian Regularization approach, named
ayesReg. Specifically, Eqs. (7) and (21) were minimized using Brent’s
4 
ethod ( Brent, 1971 ) included in the SciPy python package (i.e., fmin-
ound function) ( Virtanen et al., 2020 ). The L -curve was evaluated for
0 logarithmically spaced regularization values ranging from 1e-8 to
0 and the optimal 𝜆 was selected as described in ( Castellanos et al.,
002 ). It is important to note that each regularization criterion was im-
lemented for both the standard and alternative regularization forms
i.e., 𝐋 = 𝐈 and 𝐋 = 𝐃 

−1 ), resulting in seven estimation algorithms,
hich were named based on the resulting combinations: X 

2 -I, L -
urve-I, BayesReg-I, X 

2 - D 

− 1 , L -curve- D 

− 1 , BayesReg-D 

− 1 , and the non-
egularized NNLS. For more details see Table 1 . 

.6. Experimental data 

.6.1. Numerical simulations and evaluation metrics 
The implemented algorithms were compared across a range of sim-

lated T 2 spectra and SNRs. In particular, several T 2 spectra consisting
f a mixture of two Gaussians with different mean values and standard
eviations were generated, along with their corresponding synthetic sig-
als. Various MWFs, T 2 s, flip angles (FAs), and SNRs were considered to
imulate the heterogeneity observed in the WM of real brain data. For
ore details see Table 2 . 

Each simulated T 2 spectrum was discretized into 1000 equidistant
oints in the range of 1–300 ms. The EPG model was used to create
he signals for each T 2 and TEs. The simulated signal 𝑆 𝑑 ( 𝑇 𝐸 ) was cal-
ulated by taking the sum of all signals with different T 2 , weighted by
he intensities of the T 2 discrete spectrum. The resulting signals were
ontaminated with MRI Rician noise as follows: 

( 𝑇 𝐸) = 

√ 

( 𝑆 𝑑 ( 𝑇 𝐸) + 𝜀 1 ) 2 + 𝜀 2 
2 (27)

here 𝜀 1 and 𝜀 2 are two different noise realizations from a Gaussian
istribution with zero-mean value and standard deviation 𝜎, which
as adjusted for each predefined SNR according to the relationship
𝑁𝑅 = 𝑆 𝑑 ( 𝑇 𝐸 min )∕ 𝜎, where 𝑇 𝐸 min denotes the minimum TE employed

n the in vivo human brain acquisition sequence ( 𝑇 𝐸 min = 10.68 ms). Four
ndependent datasets were generated using the following SNR ranges:
) 50–100, 2) 100–200, 3) 200–400 and 4) 400–1000. Each dataset con-
isted of N = 10,000 independent voxels for a total of 40,000 simulated
oxels. 

To facilitate the comparison of the evaluated algorithms, the es-
imated MWFs were compared with the ground-truth values employ-
ng six different metrics: the Mean Absolute Error (MAE), Root-Mean-
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M  
quare Error (RMSE), Uncertainty with a 95% confidence level (U95)
ueymard (2014) , Pearson correlation coefficient (R); moreover, RMSE
as decomposed into its two contributing terms: the centered RMSE

i.e., RMSE after removing the mean of both samples) and the Mean Bias
rror (MBE) Taylor (2001) . Additionally, two statistics were employed
o compare the estimated and ground-truth T 2 distributions: the Mean
ensen-Shannon Distance (MJSD-S) ( Endres and Schindelin, 2003 ) and
he Mean Wasserstein Distance (MWD-S) ( Vaserstein, 1969 ) between
he estimated and actual spectra. Additionally, we created Cumming es-
imation plots ( Cumming, 2014 ; Ho et al., 2019 ) summarizing the sta-
istical comparison among all methods for two of these metrics: 1) the
bsolute error (AE, defined as the absolute value of the pairwise differ-
nce between the ground-truth and estimated MWF for each simulated
oxel), and 2) the Jensen-Shannon Distance (JSD) between the ground-
ruth and the estimated T 2 distribution. We then compared all methods
gainst the best method, i.e., the method that produced the smallest
ean value for each metric under study (i.e., AE or JSD) and each SNR

evel. However, given the enormous sample size ( N = 10,000 for each
NR), all methods would yield statistically significantly worse metrics
han the best method, despite most differences would be minuscule and
eaningless in a practical sense ( Lin et al., 2013 ). Therefore, to pro-

ide useful statistical tests, we instead assessed whether the metrics of
he methods were > 10% worse than the metrics of the best method. We
sed one-tailed t-tests (after verifying the normality of the data distribu-
ion) corrected for multiple comparisons using the Bonferroni method
 Bland and Altman, 1995 ). 

.6.2. Human brain data and repeatability metrics 
Human brain MET 2 data were acquired from ten healthy volun-

eers (five men, age range = 23–33 years old) at 3T (MAGNETOM
risma, Siemens Healthcare, Erlangen, Germany) using a standard 64-
hannel head/neck coil. The data were collected using a prototype
igh-resolution 3D multi-echo gradient and spin-echo (GRASE) se-
uence accelerated with CAIPIRINHA ( Piredda et al., 2021 ). Each sub-
ect was scanned twice, over two consecutive scanning sessions us-
ng the following parameters: matrix-size = 144 × 126 × 134; voxel-
ize = 1.6 × 1.6 × 1.6 mm 

3 ; minimum TE = 10.68 ms; N-echoes = 32;
TE = 10.68 ms; TR = 1 s; prescribed FA = 180 0 ; number-of-slices = 84;
cceleration factor = 3 × 2; number of averages = 1; acquisition
ime = 10:30 min. Two subjects were excluded from the study due to
otion artifacts. Figure S1 in the supplementary material shows the raw
ata for one representative subject for various TEs. 

The repeatability of the reconstructions was evaluated through a
can-rescan analysis in which the MWFs computed from the two scans
ere compared. In a first step, the MWF images from both scanning

essions were non-linearly registered to the ICBM-DTI-81 white-matter
ract labels atlas ( Mori et al., 2008 ; Oishi et al., 2008 ) using the ANTs
oftware ( Avants et al., 2008 ). For each subject, a single deformation
eld was estimated by registering the MET 2 data to the reference T2w

mage included in the ICBM-DTI-81 atlas. The registration was per-
ormed by identifying the 3D volume from the 4D MET 2 data having
 contrast similar to that of the T2w image (i.e., n = 10, TE = 106.8 ms).
he estimated deformation field was applied then to the MWF maps esti-
ated by all methods. After visually inspecting the images, we removed

mall ROIs affected by registration errors and kept 44 tract labels show-
ng a good anatomical agreement between the atlas and subject native
paces. Finally, for each region of interest (ROI), the mean MWF was es-
imated. The linear dependence and agreement between the scan-rescan
stimates were evaluated by computing the slope and intercept of the
inear regression line, Pearson’s correlation, and a Bland-Altman analy-
is from which the standard deviation of the difference and MBE were
ssessed. 

Additionally, we investigated how much the use of different cutoffs
 

𝑚 
2 can influence the estimated MWF values. Specifically, we computed
he mean MWF in the WM for the following three cutoffs, 𝑇 𝑚 2 = 37.5,
0, and 42.5 ms. The relative MWF change (estimated as the difference
5 
etween the MWFs for the longest and shortest cutoffs, 42.5 ms and
7.5 ms, divided by the MWF from the standard cutoff, 40 ms) was used
s a measure of robustness against miscalibration (or non-optimality) of
he standard cutoff 𝑇 𝑚 2 . 

The study was approved by the local ethics committee and written
nformed consent was obtained from the participants. 

.6.3. Ex vivo data and histology 
Multi-echo spin-echo T2 data previously acquired from a cervical

og spinal cord and the myelin volume fraction (MVF) obtained from
istology were employed as described in ( Vuong et al., 2017 ). These
atasets are available at the White Matter Microscopy Database ( Cohen-
dad et al., 2018 ; Stikov et al., 2015 ). The acquisition was carried out on
n Agilent 7T animal scanner equipped with 600 mT/m gradients using
he following acquisition parameters: field-of-view = 9 × 9 × 2 mm 

3 ;
atrix-size = 64 × 64; voxel-size = 0.14 × 0.14 × 2 mm 

3 ; minimum
E = 10 ms; ΔTE/N-echoes/TR = 10 ms/32/3 s; number-of-slices = 1;
umber-of-averages = 8. The total acquisition time was 25 min. 

The sample (post-fixed paraformaldehyde 4%) was extracted and
ashed in phosphate-buffered saline (PBS) solution five days before

he scanning session. After the MRI acquisition, the spinal cord spec-
men was osmified (2% OsO4 for 2 h), embedded in EMbed 812
esin, cut using a microtome, and polished. A scanning electron mi-
roscope (JEOL 7600F, Low-angle backscattered electron mode) was
sed to image an entire slice of the spinal cord at a resolution of
.26 μm/pixel. MVF at each pixel was determined by segmenting
he slice using the axon and myelin segmentation tool ’AxonDeepSeg’
https://github.com/neuropoly/axondeepseg) based on convolutional
euronal networks ( Zaimi et al., 2018 ). 

.7. Preprocessing and estimation 

The human brain MRI and the ex vivo datasets were filtered us-
ng a 3D total variation algorithm before fitting (i.e., using the de-
oise_tv_chambolle function in the scikit-image python toolbox). Previous
tudies showed that spatial filtering is effective for decreasing the vari-
bility of the estimated MWF maps, e.g., see ( Bouhrara et al., 2018 ;
oes et al., 2019 ; Jones et al., 2003 ). In detail, the noise standard devi-
tion 𝜎 for each human brain 3D volume and 2D spinal cord slice was
stimated by employing a robust wavelet-based estimator ( Donoho and
ohnstone, 1994 ) (i.e., using the estimate_sigma function in scikit-image )
nd each volume/slice was then denoised with a weight = 2 𝜎, respec-
ively. This denoising weight was found empirically for our data. In Fig.
2 of the supplementary material the estimated maps resulting from dif-
erent denoising algorithms are presented. 

T 2 spectra were estimated in two steps, as conventionally done. First,
he refocusing FA value for each voxel was determined. Then, the intra-
oxel T 2 spectrum was computed by using the dictionary 𝐇 generated
or the estimated FA and the inversion was carried out by employing
he algorithms described in Table 1 . 

Estimating the optimal FA involves various steps. First, different ma-
rices 𝐇 were generated using the EPG model ( Prasloski et al., 2012a ),
ach one corresponding to a fixed refocusing FA value selected from a
iscrete set of 15 equally spaced values between 90° and 180° A fixed T 2 
ange from 10 ms to 2000 ms ( Prasloski et al., 2012b ) with N = 60 T 2 
ogarithmically spaced points was employed for the human brain data,
nd a shorter T 2 range from 10 ms to 1000 ms was used for the ex vivo
ata. We verified that the water fractions estimated for higher T 2 s were
egligible in this case. It is important to note that T 2 times of the ex
ivo and in vivo samples might not be equal due to several factors, in-
luding the study of different animal species, anatomical regions, cell
ypes, chemical environments, temperature ( Birkl et al., 2016 ) (i.e., dog
pinal cord vs human brain, living vs non-living tissue with chemical fix-
tion), and the use of MRI scanners with different field strengths (i.e.,
T vs 3T). Subsequently, we created a smoothed copy of the acquired
ET data by using a Gaussian kernel (i.e., FWMH of 4.8 mm) as sug-
2 
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Table 3 

Statistical indicators for the evaluated models for different SNR ranges: 50–100, 100–200, 200–400, and 400–
1000. Two sets of metrics were considered, one to characterize the estimated myelin water fraction (MWF), and 
another for the estimated spectrum. Bold values show the two most accurate models regarding each indicator. 

SNR = 50–100 Quality metrics for MWF Quality metrics for the whole 
distribution 

MAE RMSE cRMSE MBE U95 R MJSD-S MWD-S 

NNLS 0.075 0.0963 0.0923 − 0.0272 0.2614 0.4354 0.5973 0.0148 
X 2 -I 0.0588 0.0731 0.0638 − 0.0355 0.1901 0.621 0.4076 0.0099 
L-curve-I 0.0547 0.0668 0.0651 − 0.015 0.1829 0.6538 0.4465 0.0129 
BayesReg-I 0.0573 0.0703 0.0621 − 0.033 0.184 0.656 0.4303 0.0114 
X 2 -D − 1 0.0533 0.067 0.06 − 0.0298 0.1762 0.6284 0.3652 0.0082 

L-curve-D − 1 0.0449 0.0556 0.0537 − 0.0144 0.1514 0.6624 0.397 0.0109 
BayesReg-D − 1 0.05 0.0621 0.0564 − 0.0261 0.1645 0.6731 0.376 0.0097 

SNR = 100–200 Quality metrics for MWF Quality metrics for the whole 
distribution 

MAE RMSE cRMSE MBE U95 R MJSD-S MWD-S 

NNLS 0.0577 0.0768 0.0759 − 0.0117 0.2115 0.5759 0.5648 0.0143 
X 2 -I 0.0484 0.0611 0.0475 − 0.0384 0.1516 0.7415 0.3627 0.0083 
L-curve-I 0.0519 0.0622 0.0476 − 0.04 0.1535 0.7645 0.4119 0.0109 
BayesReg-I 0.0519 0.0634 0.0454 − 0.0442 0.1528 0.7613 0.3879 0.0096 
X 2 -D − 1 0.0425 0.0543 0.0457 − 0.0293 0.1391 0.7604 0.3246 0.007 

L-curve-D − 1 0.0419 0.0508 0.0435 − 0.0263 0.131 0.7766 0.3717 0.0097 
BayesReg-D − 1 0.0431 0.0539 0.0433 − 0.0321 0.1355 0.7881 0.3342 0.0079 

SNR = 200–400 Quality metrics for MWF Quality metrics for the whole 
distribution 

MAE RMSE cRMSE MBE U95 R MJSD-S MWD-S 

NNLS 0.0491 0.0671 0.067 − 0.0008 0.1859 0.6562 0.5413 0.0137 
X 2 -I 0.0399 0.0516 0.0394 − 0.0333 0.1272 0.8081 0.3159 0.0069 
L-curve-I 0.0498 0.0593 0.0368 − 0.0464 0.1368 0.8245 0.3734 0.0092 
BayesReg-I 0.0455 0.0559 0.0357 − 0.043 0.1301 0.828 0.3388 0.008 
X 2 -D − 1 0.0346 0.0452 0.0382 − 0.0241 0.1159 0.8275 0.2876 0.006 

L-curve-D − 1 0.0392 0.0479 0.0362 − 0.0314 0.1177 0.8426 0.3378 0.0083 
BayesReg-D − 1 0.0362 0.0464 0.035 − 0.0305 0.114 0.8476 0.2963 0.0066 

SNR = 400–1000 Quality metrics for MWF Quality metrics for the whole 
distribution 

MAE RMSE cRMSE MBE U95 R MJSD-S MWD-S 

NNLS 0.0407 0.056 0.0542 0.0139 0.1527 0.7453 0.515 0.0134 
X 2 -I 0.0291 0.0395 0.0324 − 0.0227 0.1001 0.8648 0.2557 0.0055 
L-curve-I 0.0413 0.0506 0.0304 − 0.0405 0.1158 0.8664 0.305 0.0072 
BayesReg-I 0.0324 0.0426 0.0295 − 0.0307 0.1015 0.8778 0.2631 0.006 
X 2 -D − 1 0.0256 0.0348 0.0331 − 0.0109 0.0942 0.8727 0.2509 0.005 

L-curve-D − 1 0.0341 0.0437 0.0317 − 0.0301 0.1058 0.8718 0.2956 0.0068 
BayesReg-D − 1 0.0265 0.0362 0.0299 − 0.0205 0.0921 0.8863 0.2499 0.0053 
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ested in ( Drenthen et al., 2019 ). Afterward, the non-regularized NNLS
lgorithm was used to fit the smoothed data for each matrix 𝐇 , and the
esulting mean square errors were interpolated using cubic B-splines
 Prasloski et al., 2012a ). Next, the optimal FA was selected at the global
inima of the resulting interpolated curve. Finally, a new matrix 𝐇 was

enerated using the estimated FA, which was used then for estimating
he T 2 spectrum ( Prasloski et al., 2012a ). It is important to note that the
 2 spectrum and derived maps were computed from the TV-denoised
ata, and not from the Gaussian-filtered copy, thus preserving the high
patial resolution of our acquisitions. To accelerate the estimation, in-
tead of generating a new matrix 𝐇 for each estimated FA, we loaded
he optimal 𝐇 from a set of precomputed matrices which were created
n a high-resolution grid of FA values from 90° to 180° with a step-size
f 0.33° The optimal 𝐇 was selected by identifying the FA grid point
losest to the interpolated FA. 

. Results 

.1. Numerical simulations 

Table 3 shows the evaluation metrics for the four SNR ranges con-
idered. For the two lowest SNR ranges (i.e., 50–100 and 100–200) L -
6 
urve-D 

− 1 was the optimal method for estimating MWF, followed by
ayesReg-D 

− 1 . On the other hand, X 

2 -D 

− 1 and BayesReg-D 

− 1 produced
 2 distributions closer to the ground-truth spectrums. For the two high-
st SNR ranges (i.e., 200–400 and 400–1000), X 

2 -D 

− 1 and BayesReg-D 

− 1 

gree best with the ground-truth, both in terms of MWF and the whole
 2 distribution. Of the poorer performing methods, NNLS has the low-
st correlations, and the highest MAEs and RMSEs, demonstrating how
mportant regularization is. Overall, the implementations using the al-
ernative regularization form (i.e., 𝐋 = 𝐃 

−1 ) showed better metrics than
hose using the standard form (i.e., 𝐋 = 𝐈 ). In order to summarize how
table each method was, we computed the number of times ( n ) each
ethod was among the two best methods for each one of the eight met-

ics considered for all the SNR ranges (see Table 3 ). The methods show-
ng more stable reconstructions were BayesReg-D 

− 1 (i.e., it was selected
 = 27 times), followed by X 

2 -D 

− 1 ( n = 17) and L -curve-D 

− 1 ( n = 13). 
Results of the quantitative statistical comparison among models are

hown in Fig. 1 and the supplementary Figure S3. Fig. 1 depicts Cum-
ing estimation plots comparing all methods in terms of their absolute

rrors. For the SNR ranges 50–100 and 100–200, L -curve-D 

− 1 was the
eference method, while X 

2 -D 

− 1 was the reference at the lowest noise
evels (i.e., SNR = 200–400 and 400–1000). BayesReg-D 

− 1 was not sig-
ificantly different from the best method at each SNR at the predefined
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Fig. 1. Cumming estimation plot for the absolute error 
metric. Results from each SNR range are shown in a differ- 
ent panel. The upper figure of each panel depicts the ab- 
solute errors from the simulated voxels (for each method) 
as a swarmplot, which orders each point to display the un- 
derlying distribution. For each method, summary measure- 
ments (mean ± standard deviation) are drawn as gapped 
lines. The accompanying figure below shows the differ- 
ences among each method and the reference method, se- 
lected as the best method for each SNR. All methods were 
ordered and displayed from left to right based on their per- 
formance. The filled curves on the differences axis show the 
distributions of the mean inter-group differences, where 
the 95% confidence intervals are illustrated by black ver- 
tical lines. Methods that were not statistically significant 
from the reference method at the predefined tolerance 
level (i.e., 10%) are signaled (i.e., ns). Conversely, methods 
that produced errors significantly higher than the tolerance 
level (i.e., indicating a relative increase > 10% compared to 
the reference method) were not annotated. The statistical 
significance level was defined for p -values < 0.05, corrected 
for multiple comparisons using the Bonferroni method. 

7 
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Fig. 2. T 2 distributions estimated by the seven evaluated algorithms for N = 50 noisy simulated voxels with random SNRs in the range of 400–1000 and random 

FAs (see Table 2 ). The same ground-truth T 2 distribution was simulated for each voxel as a mixture of two Gaussians. The mean value and standard deviation of the 
dominant Gaussian (simulating the IE water compartment) with a signal fraction of 0.9 were 70 ms and 9 ms, respectively. The non-dominant Gaussian with a signal 
fraction of 0.1 (simulating the myelin water compartment) had a mean value of 20 ms and a standard deviation of 2 ms. The x-axis of each panel shows the T 2 time 
in logarithm scale in the range of 10–200 ms, and the y-axis encodes the intensity of the distributions. 
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olerance level (i.e., 10%). All the other methods produced absolute
rrors larger than 10% compared to the reference, except X 

2 -D 

− 1 for
NR = 100–200. Results for the Jensen-Shannon Distance are depicted in
igure S3, where X 

2 -D 

− 1 and BayesReg-D 

− 1 were the reference methods.
Fig. 2 shows an example of the ground-truth and estimated T 2 distri-

utions for 50 voxels. These signals were corrupted with different noise
evels in the range SNR = 400–1000. Similar results are reported in Fig-
res S4, S5, and S6 of the supplementary material for the SNR ranges
0–100, 100–200, and 200–400, respectively. Note that for the highest
8 
evel of noise (i.e., SNR = 50–100, Fig. S4), it was extremely difficult to
ccurately recover the simulated T 2 distributions. The parameter show-
ng more uncertainty was the location of the non-dominant lobe (i.e.,
yelin water): while NNLS recovered it at almost random locations, the

egularized algorithms estimated it around the minimum possible T 2 .
i.e., 10 ms). This larger uncertainty is expected to increase the MWF
stimation error and is in line with results in Table 3 , where the MAE
or the SNR range 50–100 is around two times higher than for SNR = 400–
000. 
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Table 4 

Statistical indicators of the scan-rescan analysis for the evaluated 
methods in real data. The following quality metrics were estimated 
for each one of the six subjects: Pearson’s Correlation (C), Slope (S) 
and Intercept (I) of the regression line, Mean Bias Error (MBE), and 
Standard Deviation of the difference (STD) for all ROIs. The table 
reports the mean value for all ROIs of all subjects. Bold values show 

the two most reproducible methods for each indicator. 

Method C S I MBE STD 

NNLS 0.807 0.727 0.019 0.017 0.030 
X 2 -I 0.864 0.821 0.013 0.008 0.025 
L-curve-I 0.892 0.860 0.013 0.009 0.02283 
BayesReg-I 0.884 0.849 0.0124 0.007 0.024 
X 2 -D − 1 0.865 0.820 0.013 0.009 0.024 
L-curve-D − 1 0.862 0.857 0.013 0.0079 0.021 

BayesReg-D − 1 0.883 0.855 0.0117 0.0076 0.0228 
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Fig. 3. Metrics derived from the estimated T 2 spectra in brain data, includ- 
ing the myelin water fraction (MWF), intra- and extra-cellular water fraction 
(IEWF), its mean relaxation time 𝑇 𝐼𝐸 2 (in milliseconds), and the total water con- 
tent (TWC, arbitrary units). The rows show the estimated maps for the seven 
evaluated algorithms in one representative axial slice. 
.2. Human brain data 

Results of the scan-rescan analysis using in vivo MET 2 data are
hown in Table 4 , and Figs. 3 and 4 . Table 4 lists the average metrics es-
imated for all methods from the studied subjects. While L -curve-I and
ayesReg-I produced the highest mean linear correlation, BayesReg-I
nd BayesReg-D 

− 1 had the lowest mean bias error and intercept. Both
lgorithms using L -curve provided mean slopes that were the closest to
ne. L -curve-D 

− 1 showed the smallest standard deviation of the scan-
escan differences, followed by BayesReg-D 

− 1 . Once again, NNLS was
he worst method for all the evaluated metrics. Overall, none of the
egularization forms (i.e., 𝐋 = 𝐈 or 𝐋 = 𝐃 

−1 ) was superior to the other.
ayesReg and L -curve (i.e., using both the standard and the alternative
egularization forms) were more reproducible: BayesReg was among the
wo best methods for each one of the five evaluated metrics n = 6 times,
nd L -curve n = 4 times. 

Fig. 3 depicts brain images of four descriptors derived from the T 2 
pectra for one representative subject. Relevant differences among the
mages resulting from different methods can be noted. The frontal part
f the brain is the region where the estimation of MWF is more diffi-
ult for NNLS, where no myelin water was detected in several voxels.
his shortcoming is partially overcome by using any of the regularized
ethods (X 

2 , L -curve, or BayesReg). Overall, all methods using the alter-
ative regularization form showed a clearer contrast between the white
nd gray matter tissue in frontal brain regions of the MWF and IEWF
mages, in comparison to methods using the standard form. In contrast,
e do not perceive differences in the TWC maps. 

Additional slices of the estimated myelin maps are illustrated in
ig. 4 (panel A), which also shows the relative difference in MWF be-
ween each method and X 

2 -I (panel B), which was taken as a reference
ere due to its widespread use. As can be noted, the two methods show-
ng larger relative differences are NNLS (the blue color in white matter
ndicates an underestimation in MWF in relation to X 

2 -I) and L -curve-
 

− 1 (the red color in gray matter and some white matter regions in the
rontal lobe indicates an overestimation in MWF in comparison to X 

2 -I).
 

2 -I and BayesReg-I are the two most similar methods, and the resulting
ifference maps from L -curve-I and BayesReg-D 

− 1 are in between those
rom BayesReg-I and L -curve-D 

− 1 . 
Fig. 5 shows the T 2 spectra estimated for one representative slice of

ne subject. The spectra computed with NNLS and X 

2 are sharper than
hose based on BayesReg and L -curve, the latter producing the smoothest
stimates. The individual spectra estimated by X 

2 have multiple lobes
ith well-separated peaks as reported by ( Whittall et al., 1997 ), while

hose estimated by L -curve are blurred like those reported by ( Guo et al.,
013 ). When comparing methods using the standard regularization form
ersus the alternative form, the impact of the different priors on the es-
imated spectra can be noted. While the standard form tends to produce
pectra with sharper shapes in the portion of the spectrum correspond-
9 
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Fig. 4. Panel A) shows the myelin water fraction (MWF) maps estimated by the methods evaluated in this study for a representative subject and six brain slices. The 
relative difference between each MWF map and a reference map (MWF_ref) is shown in panel B. To simplify the visualization, the same reference map was used for 
all cases: we selected the MWF estimated by the X 2 -I method. According to the used color scale, red, white, and blue colors correspond to voxels where the MWF 
values are higher, equal, or lower than those from the reference map, respectively. 

Table 5 

Mean myelin water fraction in the white matter across subjects estimated for three different myelin T 2 cutoffs: 
37.5, 40, and 42.5 ms. The last column reports the relative change between the cutoffs 42.5 ms and 37.5 ms 
in relation to the default cutoff, 40 ms. Bold values show the two methods with the smallest relative change. 

Method MWF 1 ( 𝑇 
𝑚 
2 = 37 . 5 𝑚𝑠 ) MWF 2 ( 𝑇 

𝑚 
2 = 40 𝑚𝑠 ) MWF 3 ( 𝑇 

𝑚 
2 = 42 . 5 𝑚𝑠 ) 

Relative change: 
100% 

∗ (MWF 3 - 
MWF 1 )/MWF 2 

NNLS 0.0886 0.0949 0.1015 13.54 

X 2 -I 0.0703 0.0850 0.1029 37.81 
L-curve-I 0.0763 0.1018 0.1314 53.78 
BayesReg-I 0.0664 0.0845 0.1069 47.14 
X 2 -D − 1 0.0796 0.0925 0.1076 29.86 

L-curve-D − 1 0.0936 0.1164 0.1420 41.24 
BayesReg-D − 1 0.0780 0.0942 0.1132 36.91 
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ng to the myelin water (i.e., T 2 < 40 ms) and smoother segments for
onger T 2 s, the alternative form produces smoother spectra around the
yelin water region and sharper segments in the tail of the distribution.

Results showing how the use of different 𝑇 𝑚 2 cutoffs influenced the
stimated MWF values are reported in Table 5 . NNLS and X 

2 -D 

− 1 were
he methods with the smallest relative MWF change: 14% and 30% re-
pectively, while L -curve-I had the worst performance, about 54%. The
ethods using the alternative regularization form showed reduced rel-

tive changes in comparison to the standard form. 
10 
.3. Ex vivo data 

Results from the validation study using histological and ex vivo MRI
ata from a dog spinal cord are illustrated in Fig. 6 and Table 6 ,
hich reports the Pearson’s Correlation coefficient between the esti-
ated MWF values and the myelin content derived from histology in
M, GM, and both tissue types, respectively. The corresponding corre-

ation plots are shown in Figure S7 in the supplementary material. It
s important to note that the predefined regularization parameters used
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Fig. 5. T 2 spectra estimated by the seven evaluated algorithms from the real MRI data for one representative subject. Each panel shows the T 2 spectra estimated 
for all the voxels ( ∼3000) within a white matter (WM) mask (in red). The x-axis depicts the T 2 times in logarithmic scale in the range of 10–2000 ms and the y-axis 
quantifies the intensity of the spectra. To facilitate the visualization of the spectrum’s portion corresponding to the myelin water, the T 2 range 10–50 ms is zoomed. 
The vertical dashed black line located at T 2 = 40 ms indicates the T 2 cutoff used to estimate MWF. The black spectrum is the average T 2 spectrum obtained after 
computing the point-by-point mean intensity for all spectra. 

Table 6 

Pearson’s Correlation among the estimated 
myelin water fraction maps and the myelin 
content. Bold values show the most correlated 
methods for each evaluated mask delineating 
the white matter (WM), gray matter (GM), and 
both tissue types (WM + GM). 

Method WM GM WM + GM 

NNLS 0.516 0.848 0.933 
X 2 -I 0.553 0.858 0.938 

L-curve-I 0.502 0.866 0.934 
BayesReg-I 0.536 0.861 0.937 
X 2 -D − 1 0.54 0.869 0.938 

L-curve-D − 1 0.526 0.868 0.938 

BayesReg-D − 1 0.53 0.869 0.938 
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or X 

2 (i.e., k = 1.02) and l -curve (i.e., 𝜆 = [1e-8, 10]) were suboptimal
n this data, producing over-smoothed spectra. As a result, all metrics
eported for both methods here were obtained by modifying these cri-
eria for improving the performance. Specifically, we used k = 1.01 for
 

2 and the interval 𝜆 = [1e-8, 1e-2] for l -curve. Moreover, the myelin
ater 𝑇 𝑚 2 cutoff was reduced from 40 ms to 35 ms, as a better sepa-

ation between the myelin and the intra/extra-cellular water lobes was
bserved for this value, for all methods. 

The methods exhibiting the highest correlations with histology were
 

2 -I in WM and BayesReg-D 

− 1 and X 

2 -D 

− 1 in GM. When both tissues
ere analyzed together, the three methods using the alternative reg-
larization form and X 

2 -I had the highest correlations. The estimated
As were in a narrow interval from 150 0 to 155 0 , suggesting that the B1
11 
eld was homogenous across the slice in this sample. MWF values re-
orted from all methods are in the range 0–0.35 in GM, and 0.35–0.5 in
M (see Fig. 6 ), which are much higher than those estimated in human

rains. 

. Discussion 

In this work, we evaluated two alternative regularization forms for
olving the T 2 spectrum imaging inverse problem. Moreover, we de-
eloped a new Bayesian regularized non-negative least squares method
BayesReg’ for selecting the optimal regularization parameter. BayesReg
s based on an established Bayesian formulation MacKay (1992) , which
e extended for the case of non-negative variables, a requirement that

he estimated spectrum must satisfy to have physical meaning. 
Using synthetic data, three methods for determining the optimal reg-

larization parameter were compared (X 

2 , L -curve, and BayesReg) for
arious SNR ranges, encompassing the noise levels expected in real brain
ata. While L -curve-D 

− 1 showed the best performance to estimate MWF
or high levels of noise, X 

2 -D 

− 1 outperformed the former for low noise
evels. Notably, BayesReg-D 

− 1 showed competitive results across all SNR
evels for all the evaluated metrics, including the metrics related to MWF
s well as those metrics comparing the simulated and estimated T 2 dis-
ributions. When compared results from the two evaluated regulariza-
ion matrices, methods using the alternative form 𝐋 = 𝐃 

−1 had an over-
ll superior performance. These results extend and update our previous
ndings ( Canales-Rodríguez et al., 2021 ) where we reported a superior
erformance for L -curve-I and X 

2 -I in comparison to two other regular-
zation Laplacian matrices (i.e., 𝐋 1 and 𝐋 2 ). For more details see Table 3 ,
ig. 1 , and the supplementary Figure S3. A plausible explanation for un-
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Fig. 6. Metrics derived from the estimated T 2 spectra in the ex vivo spinal cord data, including the myelin water fraction (MWF), intra- and extra-cellular water 
fraction (IEWF), its mean relaxation time 𝑇 𝐼𝐸 2 (in milliseconds), and the total water content (TWC, arbitrary units). The upper row shows the first echo image 
(TE = 10 ms), the estimated flip angle (FA, in degrees), and the myelin content (myelin volume fraction, MVF) from the histological analysis, respectively, and the 
rows below show the estimated maps for the seven evaluated algorithms. 
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erstanding the success of the alternative regularization form is related
o the fact that, in contrast to the standard form, the elements of the
iscrete T 2 distribution are not penalized based on their bin widths. As
 result, the estimated spectra (in comparison with those estimated by
he standard form) are smoother around the portion with short T 2 com-
onents and sharper around the long T 2 components. The increased reg-
larization exerted by the alternative form over the spectrum’s segment
orresponding to the myelin water helps to reduce the high variability
n locating this non-dominant component (e.g., see Figures S5 and S6),
nd consequently, the uncertainty of the estimated MWF values. 

As the results from in vivo human brain data cannot be validated
gainst ground truth, we focused on characterizing the reproducibility
f the estimates through a scan-rescan analysis. Our findings suggest
hat BayesReg and L -curve (i.e., using both the standard and the alter-
ative regularization forms) are more reproducible. These results are
xpected if we consider that the SNR of our real data ranged between
0 and 250, and indeed, these two methods showed superior perfor-
ance in the synthetic evaluation for the SNR range 50–200. The visual

nspection of the estimated MWF maps revealed that all the regularized
ethods depicted a better contrast between white and gray matter tis-

ues and were less affected than NNLS in detecting the myelin water in
rontal brain regions. Moreover, the maps resulting from the alternative
egularization form showed a slightly superior image contrast. We noted
hat in a few subjects, there was an asymmetrical pattern of MWF values
n the frontal lobe (e.g., see Fig. 3 ). This was also reported in the pre-
ious study where we introduced the MET 2 sequence employed in this
ork ( Piredda et al., 2021 ). The frontal lobe may be the most problem-
tic white matter region for MWF quantification because, in general, it
hows higher B1 inhomogeneities (for more details see the supplemen-
ary Figure S8), and any residual error in determining the correct flip an-
le could affect the estimation. Although we did our best to minimize flip
ngles errors by using a 3D sequence, residual errors across the whole
rain can exist for 3D sequences, even after EPG modeling. Future work
hould focus on exploring different algorithms for this task and on com-
aring the estimated flip angle maps with acquired B1 inhomogeneity
aps. In previous studies, smaller MWF values in the frontal lobe have

een reported, e.g., ( Lee et al., 2020 ). A reduced myelin volume may
ncrease the water exchange between the myelin and IE compartments,
hich may shift the T 2 lobes corresponding to these water components,

espectively. The closer these lobes are together, the more difficult it is
o estimate them. We have verified that in some frontal lobe voxels, a
ingle T 2 lobe was recovered, partially spreading over the myelin and IE
 2 segments. This result may be in line with other studies: for example,
 Lee et al., 2020 ) found an MWF close to zero in the frontal lobe when
he myelin cutoff T 2 value was reduced from 40 ms to 30 ms, indicating
hat the myelin water lobe is shifted to the right side of the predefined
nterval, and could be partially merged with the IE water lobe. On the
ther hand, the high acceleration factor (i.e., k-space undersampling) re-
uired to collect our high-resolution data in a clinically acceptable time,
roduced ghosting artifacts in the frontal lobe that may have affected
he myelin quantification in this region ( Piredda et al., 2021 ). Recent
ork suggests that MWF measured using a GRASE sequence with TR on

he order of 1 s may experience biases due to fiber-orientation depen-
ence effects and the different T 1 relaxation times of the different water
ompartments. These effects could impact the in vivo results presented
ere. According to that study, a longer TR would reduce the estimated

apparent’ MWF ( Birkl et al., 2021 ). 
The visual assessment of the estimated T 2 spectra in human brain

ata showed interesting results. X 

2 produced spectra with the clearest
ulti-lobular structure whilst those forecasted by L -curve were much

moother. BayesReg produced spectra with smoothness in-between X 

2 

nd L -curve. It seems that for L -curve, a portion of the area under the
pectra assigned to the myelin water is taken from the left side of the
obe assigned to the IE water compartment, and vice-versa, i.e., a frac-
ion of the signal assigned to the myelin is transferred to the IE water
ool. The blurring introduced by L -curve in our real data is not nec-
13 
ssarily a drawback if one is mainly interested in determining MWF.
ccording to our synthetic results, the area under the curve within the
 2 cutoff defining MWF is relatively preserved, despite the blurring in-
roduced by L -curve. Moreover, the estimated MWF values in our real
ata are within the range reported in the literature. Nevertheless, we
on’t fully recommend using L -curve if the main goal of the research is
o estimate the whole spectrum. Our analysis evaluating how much the
stimated MWF is affected by changing the myelin T 2 cutoff revealed
hat the method producing smoothest spectra, L -curve-I, is the most af-
ected, while the method producing sparsest solutions, NNLS, is the least
ffected. The greater stability and reproducibility of the methods pro-
oting smooth solutions is paid for by a greater dependence on the

utoff parameter. Therefore, methods like X 

2 -D 

− 1 and BayesReg-D 

− 1 ,
howing an intermediate behavior between NNLS and l -curve-I, could
e better alternatives. 

Results from the ex vivo multi-echo T 2 data revealed a high corre-
ation among the histology estimates and the MWF maps calculated
rom all the evaluated methods, including NNLS (despite the resulting
aps in Fig. 6 are noisier), suggesting that for very low noise levels all
ethods provide similar estimates (see the supplementary Figure S7).

nterestingly, the correlations estimated in this study in WM regions are
igher than those reported in previous studies employing the same MRI
nd histological data, e.g. ( Vuong et al., 2017 ; Yu et al., 2019 ), and
re similar to those reported for our recently proposed model-informed
achine learning approach ( Yu et al., 2021 ), suggesting that our imple-
entations are competitive. X 

2 -I exhibited the highest correlation with
istology in WM, while BayesReg-D 

− 1 and X 

2 -D 

− 1 achieved the highest
orrelations in GM. If we consider that the estimated MWF values in the
M of the dog spinal cord are in the same range as the MWF reported

n the WM of human brains (i.e., 0.05–0.3), then our ex vivo GM results
ay provide a better indicator of the expected performance in human

rain data. 
This work has some limitations. First, the scan-rescan analysis is

ased on ten subjects acquired on the same scanner, of which two were
iscarded due to strong motion artifacts. Future studies should be con-
ucted on larger populations, using different scanners, and employing
ifferent acquisition sequences. This is a requirement to verify if our
ndings can be extrapolated to other imaging sequences using differ-
nt acquisition parameters with different noise levels and k-space sam-
ling approaches, e.g., ( Dvorak et al., 2020 ). From a methodological
oint of view, our formulation may be generalized to consider other
enalty terms (i.e., prior distributions) based on the 𝑙1 -norm ( Canales-
odríguez et al., 2019 ) promoting sparse spectra, e.g., ( Song et al., 2020 ;
immermann et al., 2019 ), as well as Likelihood distributions based on
on-Gaussian noise models, e.g., ( Canales-Rodríguez et al., 2015 ). Nev-
rtheless, for the relatively high SNRs associated with multi-echo T 2 data
i.e., > 50), the Gaussian noise model could provide an adequate approx-
mation, and we don’t expect a significant improvement by considering
ician or Non-central Chi noise models. Indeed, in a preliminary im-
lementation of BayesReg we obtained similar results for Gaussian and
ician likelihood functions (results not shown), but the computation

ime associated with the latter was significantly longer because the es-
imation required the evaluation of special functions and it cannot be
onducted utilizing the NNLS solver ( Canales-Rodríguez et al., 2015 ). 

Additional work should be done to identify the best denoising
ethod. In a preliminary evaluation, we visually inspected the output of

arious algorithms and identified TV as an appropriate method for our
ata. Notably, the Marchenko-Pastur PCA (MP-PCA) denoising method
 Cordero-Grande et al., 2019 ; Does et al., 2019 ; Veraart et al., 2016b ,
016a ), which is a state-of-the-art technique commonly employed for
mproving the quality of diffusion MRI and multi-echo T 2 data, did not
ork properly (see the supplementary Fig. S2). This may be related to
iolations of the assumptions behind this method on our data. Because of
he employed acceleration factor and multi-coil k-space reconstruction
echnique, the noise is correlated in space and time in our acquisitions
i.e., it is not independent in adjacent voxels, and for a given voxel, it is
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ot independent at different echo times). Furthermore, it does not follow
 Gaussian distribution as is assumed by MP-PCA. A similar result was
eported in ( Does et al., 2019 ), where the automatic criterion for select-
ng the number of principal components based on the MP distribution
ailed in real multi-channel data. It was beyond the scope of this work
omparing different denoising algorithms, and our findings may not be
xtrapolated to other datasets acquired using different MRI sequences. 

The correlation analysis in ex vivo data is based on comparing MWF
nd MVF. Although these metrics are correlated, they do not portray the
ame information. Moreover, the slice thickness of the histological data
s thinner than that of the MRI data. Therefore, both datasets do not
haracterize the same tissue volume, although significant differences in
djacent regions along the spinal cord are not expected. Additionally,
espite the fact that histological data is considered as a reference value,
ifferent myelin segmentation algorithms may produce slightly different
esults. Further discrepancies may arise due to the manipulation steps
i.e., chemical fixation and slicing) required for analyzing the sample.
inally, as the estimated MWF values are much higher than those re-
orted in human brain data, and the noise level is much lower due to
he averaging of several repetitions, ex vivo results may correspond to a
est-case scenario. Hence, our findings should not be extrapolated to re-
ults from real data and should not be taken as a definite ranking among
he evaluated methods. 

To establish the best possible MWF estimation methodology, the im-
lemented methods should be compared with other alternative imple-
entations, like those using Monte Carlo ( Yu et al., 2019 ) and multi-

oxel fitting ( Kumar et al., 2018 , 2016 ). It is important to note that our
tudy is limited to voxelwise regularization algorithms and that we did
ot implement spatially regularized approaches, like those introduced
n ( Kumar et al., 2018 , 2016 ). Consequently, our results should be taken
s an indicator of reconstruction quality, and not as a definitive ranking.
uture studies shall be carried out to generalize our implementations by
onsidering 3D spatial correlations. In this line, it should be investigated
hich approach is more effective, whether to remove the noise from the
ata by taking into account the spatial correlations (i.e., like in TV) or
hether to constrain the estimation by taking into account the spatial

nformation (i.e., as in ( Kumar et al., 2018 , 2016 )). Given the signifi-
ant improvements achieved by machine learning algorithms in several
esearch domains, the proposed approaches should be compared with
ecent techniques based on neural networks, e.g., see ( Lee et al., 2020 ;
u et al., 2021 ). 

It is important to note that our findings in synthetic data may not be
ully extrapolated to results from real data because the EPG model used
o construct the kernel-dictionary of synthetic signals only considered
he flip angle errors, but other potential confounding factors that mod-
late the measured signals were not taken into account, including the
ffect of diffusion ( Weigel, 2015 ; Weigel et al., 2010 ) due to internal
radients caused by magnetic susceptibility differences at the tissue-
uid interfaces, water exchange due to cell permeability, magnetiza-
ion transfer effects ( Malik et al., 2018 ), and anisotropic T 2 relaxation
 Gil et al., 2016 ). Future studies should investigate to which extent these
henomena affect the myelin water quantification, and which biophys-
cal model is more appropriate. Another factor affecting the estimation
s the selection of proper cutoff T 2 values for separating the myelin and
E water pools. The optimal cutoff may vary for different brain regions
ith different microstructure properties and in abnormal/damaged tis-

ue. Ideally, the cutoff values may be individually selected for each voxel
y using information about the location, width, and distance between
he T 2 lobes. However, such an approach would be compromised by the
igh variability in the location of the myelin water lobe. 

The total computation time (i.e., including all the involved steps,
rom the preprocessing (i.e., TV denoising and brain extraction) to
he estimation of flip angles, T 2 distributions, derived metrics (e.g.,
yelin map), and creation of quality control plots) for a whole-brain

mage on a personal laptop (Intel Core i7, 7th Gen, 8 CPUs, 2.7 GHz,
6 GB Ram) with parallel processing for NNLS/X 

2 /L-curve/BayesReg
14 
as 8 min/23 min/1:02 h/4:00 h, respectively. The increased compu-
ation time for BayesReg is related to the matrix operations involved in
q. (21) , which are re-estimated within the iterative optimization pro-
ess for different values of the regularization parameter. This makes the
omputation of MWF maps at the scanner not possible during the course
f a standard examination. Therefore, we currently recommend its use
or neuroimaging studies where the MWF maps are not used for an im-
ediate clinical evaluation. There are some strategies for accelerating

he BayesReg estimation process, e.g., by using a computer equipped
ith more CPUs or by reducing the number of T 2 grid-points from N = 60

o 40, as is done in many studies. We verified that the latter option alone
ecreased the BayesReg estimation time by half without reducing its
erformance. Other strategies shall be explored in the future, such as
efining a discrete grid of regularization parameters (i.e., as in l -curve)
nd pre-computing the more costly matrix operations for this grid, us-
ng a more optimized programming language ( Doucette et al., 2020 ),
tilizing a GPU, e.g.,( Blas et al., 2016 ), and training a neural network
or predicting the solutions provided by BayesReg from the measured
ata, e.g., see ( Lee et al., 2020 )." 

Other well-known criteria for estimating the regularization param-
ter, like the Akaike Information Criterion (AIC) and the Bayesian in-
ormation criterion (BIC), were not evaluated. In a preliminary im-
lementation of these techniques, we noted that these criteria pro-
uced inferior results (results not shown), and consequently we did
ot include them in this report. Additionally, a third level for the
ayesian inference framework MacKay (1992) could be implemented
or comparing the solutions obtained from different models and prior
istributions. Further understanding of the capabilities of the imple-
ented methods may be attained by identifying microstructure ab-
ormalities in patients (e.g., see ( Canales-Rodríguez et al., 2013 ))
nd age- and gender-related differences in healthy controls ( Canales-
odríguez, 2021 ). As the proposed BayesReg algorithm is general, it may
e useful in other applications involving the estimation of non-negative
ariables, like in spherical deconvolution of diffusion MRI data ( Canales-
odríguez et al., 2019 ). All the algorithms evaluated in this work were

ncluded in our multi-component T 2 reconstruction toolbox available at
ttps://github.com/ejcanalesr/multicomponent-T2-toolbox. 
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