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This paper is concerned with the mathematical analysis of a coupled elliptic–parabolic
system modeling the interaction between the propagation of electric potential and

subsequent deformation of the cardiac tissue. The problem consists in a reaction–
diffusion system governing the dynamics of ionic quantities, intra- and extra-cellular
potentials, and the linearized elasticity equations are adopted to describe the motion
of an incompressible material. The coupling between muscle contraction, biochemi-
cal reactions and electric activity is introduced with a so-called active strain decom-
position framework, where the material gradient of deformation is split into an
active (electrophysiology-dependent) part and an elastic (passive) one. Under the
assumption of linearized elastic behavior and a truncation of the updated nonlinear
diffusivities, we prove existence of weak solutions to the underlying coupled reaction–
diffusion system and uniqueness of regular solutions. The proof of existence is based
on a combination of parabolic regularization, the Faedo–Galerkin method, and the
monotonicity-compactness method of Lions. A finite element formulation is also intro-
duced, for which we establish existence of discrete solutions and show convergence to a
weak solution of the original problem. We close with a numerical example illustrating
the convergence of the method and some features of the model.

Keywords: Electromechanical coupling; bidomain equations; active deformation; weak
solutions; weak compactness method; weak–strong uniqueness; finite element approxi-
mation; convergence of approximations.

AMS Subject Classification: 74F99, 35K57, 92C10, 65M60

1. Introduction

We are interested in the mathematical study of the interaction between the propa-
gation of the electrical potential through the cardiac tissue, on the one side, and the
related elastic mechanical response, on the other side. These distinctive processes
in the cardiac function are intimately connected by several complex processes tak-
ing place at different spatio-temporal scales. In terms of macroscopic continuum-
mechanics, the propagation of the electrical potential through the heart can be
described by the so-called bidomain equations (see e.g. Ref. 45). These are obtained
by writing the conservation of electrical fluxes between the extra- and intra-cellular
domains separated by a membrane acting as a capacitor. Within these domains, the
conductivities are of different magnitudes, and they also change depending on the
particular orientation of the cardiac tissue fibers. Homogenization arguments yield
a multicontinuum description of the heart where at each material point both con-
stituents (intra- and extra-cellular material) coexist. Still at the macroscopic level,
muscle deformation can be described by the equations of motion for a hyperelas-
tic material, written in the reference configuration. The medium itself is active, in
the sense that it is able to contract without the need of external loads, but rather
influenced by intrinsic mechanisms taking place essentially at the microscale. In
order to incorporate these effects one can follow different approaches. For instance,
it is commonly assumed that stresses are additively decomposed into active and
passive parts, leading to the so-called active stress formulation (see applications of
such a formalism in e.g. Refs. 11, 19, 24, 31, 32 and 47). Alternatively, one can
adopt the active strain formulation,13,30 for which a factorization of the deforma-
tion gradient into an active and a passive factors is assumed. Such a decomposition
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implies, in particular, that the fiber contraction driven by the depolarization of the
cardiomyocytes rewrites in the mechanical balance of forces as a prescribed active
deformation, rather than as an additive contribution to the stress. Moreover, this
approach directly incorporates the micro-level information on the fiber contraction
and fiber directions in the kinematics (through the active part of the deformation
gradient), without the intermediate transcription of their role in terms of stress.3

These mechanisms essentially translate into a dependence of the strain energy func-
tion on auxiliary internal state variables, which represent the level of mechanical
tissue activation passed across scales.39 Here we follow the latter alternative, but
we refer to Refs. 4 and 40 for comparisons between the two approaches in terms of
numerical implementation, constitutive issues, and stability.

The mathematical analysis of macroscopic cardiac models has been mainly
related with the study of solutions to the bidomain equations coupled with phe-
nomenological or physiologically-based ionic models. A variational approach was
first introduced in Ref. 15 and later extended in different directions including degen-
eration of conductivity tensors,8 the coupling with the electrical conduction in the
torso,11,45 incorporation of the specialized fast conduction system,10 analyzing the
coupled system using a semigroup approach,12 deriving global classical solutions,27

and including more involved ionic models.49 On the other hand, existence theorems
of general nonlinear elasticity can be found in Refs. 14 and 6, whereas applica-
tions of those theories to the particular case of hyperelastic materials and cardiac
mechanics and their discretizations include e.g. Refs. 31, 22, 20, 40, 46 and 7. How-
ever, even if the literature related to numerical methods and models for cardiac
electromechanics is quite large (see, for instance, Refs. 19, 24, 32, 34 and 47), rigor-
ous studies about solvability and stability of solutions are still not well established.
To the authors’ knowledge, the only available existence results devoted specifically
to cardiac electromechanics correspond to those by Pathmanathan et al.,35,36 who
analyzed a general model where the activation depends on the local stretch rate,
and derived constraints on the initial data. In this work we also assume linearized
elasticity equations, but we follow a different activation model (our active-strain-
based description depends only on ionic quantities and we do not consider viscous
effects) and employ the bidomain equations coupled with a different ionic model.

In this paper the electromechanical coupling is achieved by considering that the
evolution of the electrical potentials governed by the bidomain equations depend
on the deformation gradient, which enters into the bidomain equations after a
transformation of coordinates from Eulerian to Lagrangian, and by virtue of the
Piola identity. The coupling in the opposite direction is modeled by assuming that
the active part of the deformation incorporates the influence of the calcium kinetics
(or in its absence, a calcium-like scalar field) into the balance equations for the
structural mechanics, which are here restricted to the linear regime.

We establish existence of weak solutions to a simplified version of the fully cou-
pled cardiac electromechanical problem by means of the Faedo–Galerkin method
combined with compactness arguments. The fully discrete counterpart of the
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proposed simplified system consists in a finite element family of piecewise quadratic
elements for the approximation of deformations and piecewise linear approximations
of solid pressure, electric potentials, and activation field (local strain), whereas a
first-order backward Euler method is applied for the discretization in time. A lin-
earized version of the coupled system is introduced to analyze the numerical scheme,
however such a linearization turns the convergence proof more delicately than in
the continuous case (see Secs. 3 and 5). We also prove a uniqueness result for
the continuous problem in a weak–strong comparison setting. While some classi-
cal estimates and arguments are sketched, we concentrate on the main analytical
aspects of the proofs. In the remainder of our presentation, modeling, numerical
and implementation details will be reduced as much as possible, and the interested
reader is referred to Refs. 33, 40 and 39 for further specifications and related mod-
els with higher complexity. We stress that our goal is to set a baseline theoretical
framework for the study of more complex coupled multiphysics cardiac problems,
and we believe that the present simplified electromechanical system can already
exhibit some key resemblances with more involved and physiologically relevant
models.

We have organized the contents of this paper as follows. Section 2 collects the
main aspects of the cardiac electromechanical model we analyze, presenting the
equations of passive nonlinear mechanics, the bidomain system, and the active-
strain-based coupling strategy. We also list the basic assumptions of the model and
provide a definition of weak solution. In Sec. 3 we state and prove the solvability of
the continuous problem employing Galerkin approximations and classical compact-
ness theory. Then, in Sec. 4 we develop a strong–weak uniqueness argument and
briefly discuss regularity of solutions needed to apply it. The fully discrete linearized
finite element formulation, along with additional analytic arguments developed for
the proof of convergence, and two numerical tests are presented in Sec. 5. We close
with some remarks and discussion of future directions in Sec. 6.

2. Governing Equations for the Electromechanical Coupling

2.1. A general nonlinear elasticity problem

Let us consider a homogeneous continuous material occupying in the initial unde-
formed configuration a bounded domain Ω ⊂ R

d (d = 3) with Lipschitz continuous
boundary ∂Ω. We look for the deformation field u : Ω → R

d that maps a material
particle that originally occupied the position x to its current position x̂(x) = u.
The tensor gradient of deformation is Du, where D denotes the gradient oper-
ator with respect to the material coordinates x. The cardiac tissue is assumed
hyperelastic, and there exists a strain stored energy function W = W(Du) from
which constitutive relations between strain and stresses are obtained. We further
assume incompressibility of the material, that is, the total elastic energy is mini-
mized subject to the usual local constraint det(Du) = 1, which is enforced via a
scalar Lagrange multiplier p, interpreted as pressure. As a measure of stresses we
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use the first Piola–Kirchhoff tensor obtained from W by direct differentiation:

P =
∂W

∂(Du)
− p Cof(Du),

where Cof(·) is the cofactor matrix. The balance equations for deformations and
pressure read as: find u, p such that:

∇ · P(Du, p) + f = 0 in Ω,

det(Du) = 1 in Ω,
(2.1)

completed with the Robin boundary data

Pn = αu on ∂Ω, (2.2)

where f is a prescribed body force, n stands for the unit outward normal vector
to ∂Ω, and α > 0 is a constant parameter. Boundary data as (2.2) can be tuned to
mimic the global motion of the cardiac muscle,39 without resorting to unphysiologi-
cal boundary treatment typically found in the literature, as excessively rigid bound-
ary conditions, or fixing the atrioventricular plane, or leaving the tissue completely
free to move. Evidently, the precise form of the first equation in (2.1) depends on
the particular constitutive relation defining W . For sake of clarity we restrict our-
selves to the case of neo-Hookean materials, that is, W = 1

2µ tr[(Du)2 − I], which
gives P = µDu − p Cof(Du), where µ is an elastic modulus. Even if simplified,
such a description of the passive response of the muscle already features a nonlin-
ear strain–stress relationship arising from the incompressibility constraint and, as
will be discussed later on, anisotropy inherited from the active strain incorporation.
More involved models can be found in e.g. Refs. 31, 40 and 39.

2.2. The bidomain equations

The description of the electrophysiology in the cardiac tissue is incorporated in the
model in the form of the so-called bidomain equations.48 The quantities of interest
are the intra- and extra-cellular electric potentials (vi = vi(x, t), ve = ve(x, t)
respectively), the transmembrane potential v = v(x, t) := vi − ve, and the so-called
gating or recovery variable w = w(x, t) at (x, t) ∈ ΩT := Ω × (0, T ), where T is
the final time instant. The electrical conductivity of the tissue is represented by the
orthotropic tensors

Kk(x) = σl
kdl ⊗ dl + σt

kdt ⊗ dt + σn
kdn ⊗ dn, k ∈ {e, i},

where σs
k =σs

k(x)∈C1(R3), k ∈ {e, i}, s ∈ {l, t, n}, are the intra- and extra-cellular
conductivities along, transversal, and normal to the direction of the fibers, respec-
tively. The fibers direction being a local quantity, we have ds = ds(x), s ∈ {l, t, n}.
The stimulation current externally applied to the intra- and extra-cellular spaces is
represented by the functions Ii

app, Ie
app. The system corresponds to

χcm∂tv −∇ · (Ki∇vi) + χIion(v, w) = Ii
app,
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χcm∂tv + ∇ · (Ke∇ve) + χIion(v, w) = Ie
app,

∂tw − H(v, w) = 0, (x, t) ∈ ΩT ,

(2.3)

where we recall that v = vi − ve. Here cm and χ are model parameters. Problem
(2.3) is provided with homogeneous Neumann boundary conditions for all fields.
The choice of the membrane model to be used is reflected in the functions H(v, w)
and Iion(v, w). For a phenomenological description of the action potential, it suffices
to consider the FitzHugh–Nagumo model,18,29 given as in assumption (E.6) below.

2.3. The active strain model for the coupling of

elasticity and bidomain equations

In the so-called active strain model for cardiac modeling,13 the deformation gradient
Du is factorized into a passive part acting at a macroscale (tissue level), and an
active factor operating at the microscale (cellular level), Du = FpFa. This implies
that an intermediate configuration exists between the reference and the current
frames. In that configuration, we rewrite the strain energy in such a way that the
stress tensor is given by

P = µDuC−1
a − p Cof(Du),

where C−1
a := det(Fa)F−1

a F−T
a (see also Refs. 3 and 33). In order to cover the

electrical-to-mechanical coupling, the active deformation is assumed to depend
directly on the electrophysiology through the relation

Fa = I + γldl ⊗ dl + γtdt ⊗ dt + γndn ⊗ dn,

where for s = l, t, n, γs are quantities whose evolution depends, nonlocally in time,
on the electrophysiology equations. Notice that the onset of mechanical activation
is mainly influenced by intra-cellular calcium release,34,36,45 and in particular, the
dynamics of local strain follow closely those of calcium release rather than those
from the transmembrane potential, as reported in Ref. 9. In the absence of calcium
concentration in the FitzHugh–Nagumo model, the aforementioned fact suggests
that it is w (the slow wave) that better approximates the spatio-temporal structure
of calcium. More physiologically involved activation models require a dependence of
γs not only on calcium, but also on local stretch, local stretch rate, sliding velocity
of crossbridges, and on other force-length experimental relations,36,39,43 but for
sake of simplicity we restrict ourselves to a phenomenological description of local
activation in terms of the gating variable w.

The scalar fields γl, γt and γn can be written as functions of a parameter γ:

γl,t,n = γl,t,n(γ), (2.4)

where γl,t,n : R �→ [−Γl,t,n, 0] are Lipschitz continuous monotone functions. The
values Γl,t,n should be small enough, so that to ensure that detFa stays uniformly
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far from zero, for γ ∈ R. The scalar field γ is the solution of the following ODE
associated to the solution (vi, ve, w) of the bidomain system (2.3):

∂tγ − G(γ, w) = 0, (x, t) ∈ ΩT ,

where G(γ, w) = β(η1w − η2γ), for positive parameters β, η1, η2 (see Ref. 42). It
remains to fix the form of the functions γl,t,n, which we assume to be

γl,t,n = −Γl,t,n
2
π

arctan(γ+/γR), where γR is a reference value.

The form of the active strain and (2.4) yields the following expression for the total
stress (where a “purely passive” and an “active” part of the stress can be readily
identified),

P = µDu− p Cof(Du) − µ
∑

s∈{l,t,n}

γs(γs + 2)
(1 + γs)2

ds ⊗ ds.

After assuming transverse isotropy (which translates into γt = γn) and incompress-
ibility at the fiber level (i.e. detFa = 1), the previous expression reduces to

P = µDu − p Cof(Du) + µγDu− µγl

(
1 +

γl + 2
(1 + γl)2

)
dl ⊗ dl.

Details can be found in e.g. Refs. 23 and 43.
The mechanical-to-electrical coupling is achieved by pulling back the bidomain

equations to the reference configuration, which, by virtue of the Piola identity, leads
to a conduction term depending on the deformation gradient Du.

Summarizing, the active strain formulation for the electromechanical activity in
the heart is written as follows33:

−∇ · (a(x, γ,Du, p)) = f in Ω,

χcm∂tv −∇ · (Me(Du)∇ve) + χIion = Ie
app in ΩT ,

χcm∂tv + ∇ · (Mi(Du)∇vi) + χIion = Ii
app in ΩT ,

vi − ve = v in ΩT ,

∂tw − H(v, w) = 0 in ΩT ,

∂tγ − G(γ, w) = 0 in ΩT .

(2.5)

Here, according to the above discussion, we should take

a(x, γ,Du, p) := µDuC−1
a (x, γ) − p Cof(Du), (2.6)

and

Mk(Du) := (Du)−1Kk(Du)−T , k ∈ {i, e}. (2.7)

Moreover, we have the incompressibility constraint under the form

det(Du) = 1 in Ω, for a.e. t ∈ (0, T ). (2.8)

The system (2.5) has to be completed with suitable initial data for v, w, γ and with
boundary data on vi,e and on the elastic flux a(·, ·, ·, ·).
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2.4. Linearizing the elasticity equations

In the remaining part of this paper, for the sake of simplicity of both numerical and
mathematical analysis of the problem we introduce two modifications into (2.5),
(2.7), (2.8). Firstly, noting that ∂Du det(Du) = detDu∇· u, we can incorporate a
linearized incompressibility constraint by imposing

∇ · u = 0 in Ω, for a.e. t ∈ (0, T ), (2.9)

we also linearize the flux in (2.6) with respect to Du by replacing it with

a(x, γ,Du, p) := µDuC−1
a (x, γ) − pI. (2.10)

Introducing the notation σ(x, γ) for µC−1
a (x, γ), we rewrite the first equation of

(2.5) as

−∇ · (σ(x, γ)Du) + ∇p = f .

The linearization results, however, in the fact that the matrices Mk, k = i, e in
(2.7) may become ill-defined, since the linearized incompressibility constraint does
not guarantee invertibility of Du. We proceed to a linearization and to a truncation,
so that to ensure the boundedness and coercivity (see (E.3) below) of Mi,Me:

Mk(Du) := Kk − Tδ(∆k(Du) + ∆k(Du)T ),

where ∆k(Du) := (Du− I)Kk, k ∈ {i, e}, (2.11)

and Tδ is a suitable truncation function that coincides with the identity map in a
neighborhood of the origin. For the sake of being definite, we set

Tδ(M) :=


M, ‖M‖ ≤ δ,

M
δ

‖M‖ , ‖M‖ ≥ δ,

with some δ < 1.

Remark 2.1. The amplitude of contractions in the heart tissue is rather large,
which makes the validity of the linearized model questionable, so we cannot claim
that in its present form it is able to represent physiological regimes. However, we
consider the subsequent analysis as a baseline for future developments including
more accurate and more general models. In any case, we will briefly address the
influence of the linearization and of the truncation on the solutions of (2.5) from a
numerical viewpoint, in Sec. 5.

2.5. The problem to be solved and its weak formulation

Let us consider the following class of problems:

−∇ · (σ(x, γ)Du) + ∇p = f , ∇ · u = 0 in Ω, for a.e. t ∈ (0, T ), (2.12)

cmχ∂tv −∇ · (Mi(x,Du)∇vi) + χIion(v, w) = Ii
app(t,x) in ΩT , (2.13)

cmχ∂tv + ∇ · (Me(x,Du)∇ve) + χIion(v, w) = Ie
app(t,x) in ΩT , (2.14)
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v = vi − ve in ΩT , (2.15)

∂tw − H(v, w) = 0 in ΩT , (2.16)

∂tγ − G(γ, w) = 0 in ΩT . (2.17)

Equations (2.12)–(2.14) are complemented with the boundary data (including the
linearization of (2.2)):

σ(x, γ)Dun− pn = αu on ∂Ω, for a.e. t ∈ (0, T ), (2.18)

for some α > 0 and

(Mk(x,Du)∇vk) · n = 0 on (0, T )× ∂Ω, k = i, e (2.19)

(different boundary conditions can be imposed on vi,e; the choice of Neumann condi-
tions (2.19) results in the compatibility constraint (2.23) below). The initial data
are:

v(0, ·) = v0, w(0, ·) = w0, γ(0, ·) = γ0 in Ω. (2.20)

The following properties of the model (2.12)–(2.17) and (2.18)–(2.20) are instru-
mental for the subsequent analysis:

(E.1) (σ(x, γ))x∈Ω,γ∈R is a family of symmetric tensors, uniformly bounded and
positive definite:

∃ c > 0: for a.e. x ∈ Ω, ∀ γ ∈ R ∀M ∈ M3×3,

1
c
|M|2 ≤ (σ(x, γ)M) : M ≤ c|M|2;

(E.2) the map γ �→ σ(·, γ) is uniformly Lipschitz continuous;
(E.3) (Mi,e(x,M))x∈Ω,M∈M3×3 is a family of symmetric matrices, uniformly

bounded and positive definite:

∃ c > 0: for a.e. x ∈ Ω, ∀M ∈ M3×3 ∀ ξ ∈ R
3,

1
c
|ξ|2 ≤ (Mi,e(x,M)ξ) · ξ ≤ c|ξ|2;

(E.4) the maps M �→ Mi,e(·,M) are uniformly Lipschitz continuous;
(E.5) the function G is given by G(γ, w) = η1(βw − η2γ) with β, η1, η2 > 0;
(E.6) the functions H and Iion are given by the FitzHugh–Nagumo kinetics

H(v, w) = Av − Bw, Iion(v, w) = j(v) + Cw,

where j ∈ C1(R) and A, B, C are positive parameters. Moreover, we assume
that there exist constants A1, A2, A3 > 0 such that:

j(0) = 0,
j(v1) − j(v2)

v1 − v2
> −A1, ∀ v1 �= v2,

0 < A2 ≤ lim inf
|v|→∞

j(v)
v3

≤ lim sup
|v|→∞

j(v)
v3

≤ A3.

(2.21)
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In particular,

B : v �→ j(v)/v + A1 (2.22)

is a non-negative function that satisfies, for |v| large enough, 1
2A2|v|2 ≤B(v)≤

2A3|v|2; and the function v �→ vB(v) = j(v) + A1v is monotone increasing;
(E.7) the following condition holds∫

Ω

Ii
app =

∫
Ω

Ie
app and

∫
Ω

ve(x, t)dx = 0 for a.e. t ∈ (0, T ); (2.23)

(E.8) the data v0, w0, γ0 lie in L2(Ω) whereas f ∈ L2(ΩT )3 and Ii,e
app ∈ L2(ΩT ).

Note that, in practice, one starts with an undeformed configuration, i.e. with
γ ≡ 0.

Observe also that the above system (2.5), (2.9) with a(·, ·, ·, ·) and Mi,e(·, ·)
given by (2.10), (2.11) falls within the framework described by (2.12)–(2.20) and
(E.1)–(E.8). Indeed, it is enough to check that assumptions (E.1)–(E.4) are satis-
fied (assumptions (E.5)–(E.8) are already enforced). Let us stress that due to the
assumption (2.4), the properties (E.1), (E.2) hold. Similarly, the definition (2.11)
along with the truncation Tδ, with δ small enough with respect to the eigenvalues
of matrices Kk, guarantees (E.3), (E.4).

Due to the properties (E.1)–(E.8), the following weak formulation makes sense.

Definition 2.1. A weak solution of problem (2.12)–(2.20) is U = (u, p, vi, ve, v,

w, γ) such that we have the following:

(i) u ∈ L2(0, T ; H1(Ω)3), p ∈ L2(ΩT ), vi,e ∈ L2(0, T ; H1(Ω)); v ∈ E := L2(0, T ;
H1(Ω)) ∩L4(ΩT ) with ∂tv ∈ E′ := L2(0, T ; (H1(Ω))′) + L4/3(ΩT ); and γ, w ∈
C1(0, T ; L2(Ω)).

(ii) For a.e. t ∈ (0, T ) for all v ∈ H1(Ω)3 there holds∫
Ω

(σ(x, γ)Du : Dv + Dp · v) =
∫

Ω

f · v +
∫

∂Ω

αu · v (2.24)

(in the last integral, u,v are shortcuts for the traces of u,v on ∂Ω) and more-
over ∇ · u = 0 a.e. in ΩT , which can be expressed as

∀ q ∈ H1
0 (Ω),

∫
Ω

u · ∇q = 0. (2.25)

(iii) The distributional derivative ∂tv can be identified with an element b ∈ E′ such
that for all ξ ∈ E with ξt ∈ L∞(ΩT ) and ξ(0, ·) = 0, there holds∫ T

0

cmχ〈b, ξ〉 +
∫ T

0

∫
Ω

(Mi(x,Du)∇vi · ∇ξ + χIion(v, w)ξ) =
∫ T

0

∫
Ω

Ii
appξ,

(2.26)∫ T

0

cmχ〈b, ξ〉 −
∫ T

0

∫
Ω

(Me(x,Du)∇ve · ∇ξ + χIion(v, w)ξ) =
∫ T

0

∫
Ω

Ie
appξ,

(2.27)
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with ∫ T

0

〈b, ξ〉 = −
∫ T

0

∫
Ω

v∂tξ −
∫

Ω

v0ξ(0, ·) ; (2.28)

in addition, v = vi − ve a.e. on ΩT .
(iv) For a.e. t ∈ (0, T ) Eqs. (2.16), (2.17) are fulfilled in L2(Ω), and w(0, ·) = w0,

γ(0, ·) = γ0 a.e. in Ω.

Here and below, following the formalism of Ref. 2, the duality product between
ξ ∈ E and b ∈ E′ is written as

∫ T

0 〈b(t), ξ(t)〉dt where for ξ0 ∈ H1(Ω) ∩ L4(Ω) and
b0 = b1 + b2, b1 ∈ H1(Ω)′, b2 ∈ L4/3(Ω),

〈b0, ξ0〉 := (b1, ξ0)(H1)′,H1 +
∫

Ω

b2ξ.

Remark 2.2. Although the variational formulation (2.26)–(2.28) is standard in the
context of degenerate parabolic problems, here we face a delicate point. Because
vi,e do not necessarily belong to L4(ΩT ), it is not allowed to take vi as test function
in (2.26) nor ve, for the test function in (2.26). Yet, thanks to the regularization
approach presented in Ref. 5 [Lemma 2.3], it is possible to sum up the weak for-
mulation (2.26) with ξ = vi and the weak formulation (2.26) with ξ = ve. Indeed,
our assumptions include v ∈ L4(ΩT ) and Iion(v, w) ∈ L4/3(ΩT ), thus the term

Iion(v, w)v = Iion(v, w)(vi − ve) = Iion(v, w)vi − Iion(v, w)ve,

belongs to L1(ΩT ) even if the two terms Iion(v, w)vi,e can be nonintegrable.

3. Existence Proof by Convergence of Galerkin Approximations
for a Regularized Problem

In this section, we prove the main existence result of this paper and prepare the
ground for proving convergence of numerical approximations of the system.

Theorem 3.1. Assume that conditions (E.1)–(E.8) hold. If v0, w0, γ0 ∈ L2(Ω)
and f ∈ L2(ΩT )3, Ii,e

app ∈ L2(ΩT ), then there exists a weak solution U = (u, p, vi,

ve, v, w, γ) to (2.12)–(2.17) with the boundary and initial data specified as in (2.18)–
(2.20).

Although the fixed-point techniques are also well suited for the proof of exis-
tence, here we prefer to treat it with the Galerkin method in space. A parabolic
approximation similar to the one proposed in Ref. 8 is used to ensure existence of
approximate solutions. The proof of convergence of the finite element approxima-
tion of Sec. 5 will follow the same guidelines, but the parabolic regularization will
be replaced by the linearized time-implicit discretization. In particular, except for
the L4 bound, all the estimates that we establish in this section on the sequence
of approximate solutions will also be valid for the numerical approximate solutions
constructed in Sec. 5.
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3.1. Construction of approximate solutions

We start by fixing some increasing, as h ↓ 0, families of linear finite-dimensional
subspaces (Vh)h and (V h)h of H1(Ω)3, H1(Ω), respectively, such that

⋃
h>0 Vh is

dense in H1(Ω)3 and
⋃

h>0 V h is dense both in L2(Ω) and in H1(Ω). In view of
the structure of the FitzHugh–Nagumo nonlinearity Iion (see assumption (E.6)),
it is convenient to ask for the inclusion V h ⊂L4(Ω). As usual, we require the
Ladyzhenskaya–Babuška–Brezzi (or inf–sup) condition

∃β > 0: ∀h > 0, min
q∈V h,q �=0

max
v∈Vh,v �=0

∫
Ω q∇ · v

‖q‖L2‖v‖H1
≥ β > 0. (3.1)

Such sequences of finite-dimensional subspaces do exist, see in particular Sec. 5.
Then we look for a discrete solution Uh = (uh, ph, vh

i , vh
e , vh, wh, γh) with

uh ∈ L2(0, T ; Vh) and for ph ∈ L2(0, T ; V h) and vh
i , vh

e , vh, wh, γh ∈ C1(0, T ; V h)
that satisfy the Galerkin formulation of (2.12)–(2.20). This means that each of
the equations of the system is recast into a weak formulation on ΩT where time
derivatives and initial conditions (projected on V h by means of the L2-Hilbertian
projection PV h) are included in a strong sense. For example, the discrete analogue
of (2.26), (2.28) writes:

vh(0) = PV h(v0) and ∀ ξ ∈ V h,

cmχ
d

dt

∫
Ω

vh(t)ξ +
∫

Ω

(Mi(x,Duh(t))∇vh
i (t) · ∇ξ + χIion(vh(t), wh(t))ξ)

=
∫

Ω

Ii
app(t)ξ. (3.2)

If necessary, Ii,e
app can be regularized in time. Further, the discrete analogue of (2.24),

(2.25) reads, pointwise in t,

∀v ∈ Vh,

∫
Ω

σ(x, γh(t))Duh(t) : Dv + Dph(t) · v =
∫

Ω

f(t) · v +
∫

∂Ω

αuh(t) · v,

∀ q ∈ V h,

∫
Ω

uh(t) · ∇q = 0. (3.3)

Notice that after discretization, we have a system of ODEs coupled to a system of
algebraic equations to be solved at every time t. While the ODE part of the system
obeys the conditions of the Cauchy–Lipschitz theorem, because of the coupling
with the algebraic part existence of a discrete solution is not obvious. To prove
existence of Uh, we regularize the Galerkin discretization in the spirit of Ref. 8.
Namely, in the left-hand side of the ODE in (3.2) we add the term ε d

dt

∫
Ω

vh
i (t)ξ

(the term −ε d
dt

∫
Ω

vh
e (t)ξ is added into the analogous equation written for vh

e ) and
we add the term ε d

dt

∫
Ω u

h(t)v into the left-hand side of (3.3). As for Ii,e
app, the

source term f can be regularized in t. The initial data can be fixed to uh,ε(0) = 0,
vε,h

i = PV h(v0)/2, vε,h
e = −PV h(v0)/2. Then the system on the new unknown
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Uh,ε becomes a well-posed ODE problem; solutions are defined globally on [0, T ]
because estimates preclude finite-time explosion. Further, the estimates we establish
in Sec. 3.2 below are actually valid also for ε > 0 and moreover, they are independent
of the parabolic regularization parameter ε. Since our functions take values into a
finite-dimensional space, from these bounds it is easy to deduce strong compactness
of the family (vh,ε, wh,ε, γh,ε)ε in C0([0, T ]; V h)3 and the weak compactness of the
family (vh,ε

i , vh,ε
e , ph,ε)ε in L2(0, T ; V h)3 as well as the weak compactness of (uh,ε)ε

in L2(0, T ; Vh). The strong compactness of (Duh,ε)ε needed to conclude the passage
to the limit in the parabolic regularization of (3.2), as ε → 0, is obtained using the
Minty–Browder argument, as in Sec. 3.3 below. Thus, passing to the limit ε → 0 we
prove existence of Uh solving the Galerkin discretization of problem (2.12)–(2.20).

3.2. A priori estimates

Assuming that there exists a solution to the above problems, we derive estimates
that are uniform in h > 0 (addition of a parabolic penalization with ε > 0 in the
equations for uh, vh

i , vh
e leads to the same estimates, provided uh(0), vh

i (0), vh
e (0)

remain bounded).
First, according to the definition of Galerkin approximations we are authorized

to take uh and ph for the test functions in the weak formulations of the first and
the second equations of (2.12), respectively. Summing up the resulting identities,
we deduce that∫ T

0

∫
Ω

(σ(x, γh)Duh) : Duh =
∫ T

0

∫
Ω

f · uh +
∫ T

0

∫
∂Ω

αuh · uh.

By the Cauchy–Schwarz and Poincaré inequalities, we deduce the uniform bound

‖uh‖L2(0,T ;H1(Ω)3) ≤ C,

here and until the end of the proof, C is a generic constant that may possibly
depend on the L2-norms of the initial data and source terms of the system and
on the constants appearing in assumptions (E.1)–(E.6), but not on h. Then, from
the Galerkin formulation and the inf–sup condition (3.1) we derive the uniform L2

estimate on ph:

‖ph‖L2(ΩT ) ≤ C.

Next, we impose the relation (2.15): vh = vh
e −vh

i , and we look at the part (2.14),
(2.13), (2.16) of the system. Due to the assumption V h ⊂ L4(Ω) we are allowed to
take vh

e for the test function in (2.14) and vh
i for the test function in (2.13) and

make the difference; to this, we add (2.16) with the test function χC/Awh. Notice
that due to the time-regularity of vh

i,e and wh, we do have (∂tv
h)vh = ∂t(vh)2/2,

(∂tw
h)wh = ∂t(wh)2/2. In time, we integrate the equations on (0, s) for every s < T ,
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which yields the equality∫ s

0

∫
Ω

(
χ

(
j(vh)vh +

BC

A
(wh)2

)
+ (Me(x,Duh)∇vh

e ) · ∇vh
e

+ (Mi(x,Duh)∇vh
i ) · ∇vh

i

)
+
∫

Ω

(
cmχ

2
(vh)2(s, ·) +

χC

2A
(wh)2(s, ·)

)
=
∫

Ω

(
cmχ

2
(vh

0 )2 +
χC

2A
(wh

0 )2
)

+
∫ s

0

∫
Ω

Ii
appvh

i − Ie
appvh

e . (3.4)

Observe that the properties (2.21) of j lead to the lower bound

vj(v) ≥ A′
2v

4 − A′
1v

2,

for some positive constants A′
1, A

′
2. Hence the Gronwall lemma and Poincaré

inequality (see, e.g. Ref. 8) applied on (3.4) yields the following uniform in h esti-
mates:

‖vh
i,e‖L2(0,T ;H1(Ω)) + ‖vh‖L4(ΩT ) + ‖wh‖L2(ΩT ) ≤ C.

Finally, from the L2 estimate on vh and from the Galerkin approximation of
Eq. (2.17) satisfied by γh we deduce a uniform L2(ΩT ) estimate on γh, by taking
γh as a test function and by using the Hölder and the Gronwall inequalities.

Further, we introduce the time translates (T τvh)(t, ·) := vh(t + τ, ·) − vh(t, ·),
(T τwh)(t, ·) := wh(t + τ, ·) − wh(t, ·) and (T τγh)(t, ·) := γh(t + τ, ·) − γh(t, ·);
observe that for all t ∈ [0, T − τ ] these functions take values in V h, therefore they
can be used as test functions in the Galerkin formulations. The previously proved
uniform in h bounds on wh, γh, ∇vh in L2(ΩT ) and on vh in L4(ΩT ) readily yield
analogous bounds for the translates T τwh, T τγh, ∇T τvh and T τvh, respectively, in
the corresponding L2 or L4 spaces on (0, T −τ)×Ω. Following the time compactness
technique of Ref. 2, we integrate the Galerkin approximations of (2.14), (2.16),
(2.17), respectively, with respect to the time parameter s ∈ [t, t + τ ] (with 0 < τ <

T ) and in the resulting equations, we take for the test functions the corresponding
translates T τvh, T τwh and T τγh, respectively. Keeping in mind the growth bound
|j(v)| ≤ C(1 + |v|4) for the FitzHugh–Nagumo nonlinearity and the uniform upper
bound assumed in (E.3), we apply the Hölder inequality (with p = 4, p′ = 4/3
in the ionic current term and with p = p′ = 2 in the other ones). Finally we use
the Fubini theorem to interchange the integrals in t and in s and upper bound the
resulting terms using the above-mentioned L2 and L4 bounds and keeping in mind
that

∫ t+τ

t
ds = τ =

∫ s

s−τ
dt. In this way, we get the uniform in h bound:∫ T−τ

0

∫
Ω

(|vh(t + τ, ·) − vh(t, ·)|2 + |wh(t + τ, ·) − wh(t, ·)|2

+ |γh(t + τ, ·) − γh(t, ·)|2) ≤ Cτ.
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In addition, we get a uniform estimate of space translates of wh and of γh from
the uniform L2 estimate of ∇vh. Indeed, notice that Eqs. (2.16), (2.17) are lin-
ear and x is merely a parameter of the ODEs with respect to t. The Galerkin
approximations of (2.16), (2.17) take the following form: given vh : t → V h,
vh(t, x) =

∑Nh

i=1 ah
i (t)φi(x) find wh =

∑Nh

i=1 bh
i (t)φi(x), γh =

∑Nh

i=1 ch
i (t)φi(x) such

that

∂t

∫
Ω

whzh −
∫

Ω

H(vh, wh)zh = 0,

∂t

∫
Ω

γhzh −
∫

Ω

G(γh, wh)zh = 0 for all zh ∈ Vh.

It is readily seen that the linear ODE system

∂tb
h(t) = H(ah(t), bh(t)), ∂tc

h(t) = G(ch(t), bh(t)) for all t ∈ [0, T ],

with the appropriate initial data provides the solutions to the above-Galerkin for-
mulation. It follows that the equations

∂tw
h − H(vh, wh) = 0, ∂tγ

h − G(γh, wh) = 0 (3.5)

are satisfied pointwise in [0, T ]×Ω. Therefore, we inherit ODEs analogous to (3.5),
also satisfied pointwise in [0, T ]×Ω, on the space translates (Jrwh)(·,x) = wh(·,
x+ r) −wh(·,x) and (Jrγh)(·,x) = γh(·,x+ r)− γh(·,x) (the term vh should be
replaced by (Jrvh)(·,x) = vh(·,x+ r) − vh(·,x)):

∂t(Jrwh) − H(Jrvh, Jrwh) = 0, ∂t(Jrγh) − G(Jrγh, Jrwh) = 0. (3.6)

This system is satisfied pointwise; therefore we can multiply the equations by Jrwh

and Jrγh, respectively, and integrate in x ∈ Ω and in t ∈ [0, T ]. Observe that the
L2(0, T ; H1(Ω)) estimate of vh we readily get the bound

∫ T

0

∫
Ωr

|Jrvh|2 ≤ C|r|2
(here r ∈ R

3 and Ωr := {x ∈ Ω |x− r ∈ Ω}). Hence the application of the Young
inequality leads to the estimate

sup
0<|r|≤δ

∫ T

0

∫
Ωr

(|Jrwh|2 + |Jrγh|2)

≤ C|r|2 + T sup
0<|r|≤δ

∫
Ωr

(|Jrwh
0 |2 + |Jrγh

0 |2), (3.7)

whose right-hand side vanishes as |r| → 0, uniformly in h.

3.3. Compactness properties and passage to the limit

The above estimates imply strong compactness of (vh, wh, γh)h in L2((0, T )×Ω) for
all τ > 0 and the weak compactness of (vh, vh

i , vh
e ,uh) in L2(0, T ; H1(Ω)). Moreover,

the L4 estimate of vh and the growth assumption on j contained in (2.21) imply
weak compactness of (j(vh))h in the space L4/3(ΩT ) dual to L4(ΩT ). We proceed
by extracting countably many subsequences, assuming that all the above sequences
converge to some limits, in the respective strong or weak sense.
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Passage to the limit in the Galerkin formulation for Uh is a mere assemblage
of classical arguments used separately on the elliptic elasticity equation and then
on the bidomain model. Indeed, the electromechanical transmission is ensured via
variables γh, wh which behavior is governed by a linear system ODEs, with straight-
forward passage to the limit. Moreover, due to the convergence (up to extraction
of a subsequence) of (γh)h in the strong L2 topology, in a first step we can isolate
the passage to the limit in the mechanical part of the system from the behavior of
its electrical part. While it is easy to pass to the limit in the linear with respect
to u elasticity equations, let us stress that we also recover from this argument the
strong L2 convergence of the gradients (Duh)h. Then in a second step, the latter
convergence permits to address the passage to the limit in the electrical part of
the system, following closely the analysis of Refs. 8 and 5; the only delicate issue
here is to identify the weak limit of the nonlinear ionic current term. Observe that
the latter issue is addressed in detail in Sec. 5.2 below, in the much more delicate
context of semi-implicit in time full discretization of the ionic current term.

Let us give a step-by-step sequence of arguments used for the proof, highlighting
the role of the assumptions made in Sec. 2.5.

• The passage to the (weak) limit in the ODEs governing the evolution of γh, wh

is straightforward, since they are linear, see assumptions (E.5), (E.6).
• The strong L2 convergence on (0, T − τ)×Ω (up to extraction of a subsequence)

of γh implies the strong a.e. convergence of the uniformly bounded family of
tensors σ(x, γh), due to assumptions (E.1), (E.2).

• With this information, using Lebesgue dominated convergence theorem to deal
with the contribution of σ(x, γh) we readily pass to the (weak) limit in the
Galerkin formulation of (2.24).

• In addition, because the limit u solves the limit equation (2.12), using the Minty–
Browder trick (see, e.g. Refs. 2 and 26)a we are able to assert that Duh actually
converges to Du strongly in L2(ΩT ).

• Due to assumptions (E.1), (E.2), the strong convergence of Duh implies strong
a.e. convergence of Mi,e(x,Duh) to the limit Mi,e(x,Du); hence we can use
again the dominated convergence argument for the diffusivity tensors involved in
the bidomain equations.

• At this point, it is a standard matter to pass to the limit in the variational for-
mulation (2.26), (2.27) of the bidomain equations following the general approach
of Ref. 2 (the analogy between the setting of Ref. 2 and the bidomain system was
highlighted in Ref. 5, see also Ref. 8). Here, the chain rule in time (cf. Ref. 2)
is used in the context of identities (2.26), (2.27) to deal with the contribution
of ∂tv; the L4/3 –L4 duality is essential to deal with the contribution of the
product j(vh)vh, moreover, the FitzHugh–Nagumo assumption (2.21) in (E.6) is
exploited, implying that the nonlinearity j is monotone up to a linear term.

aWe can also use the technique of Young measures, see Ref. 21 and Sec. 5.
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4. Weak–Strong Comparison and Uniqueness of Regular Solutions

The strategy for proving uniqueness relies on straightforward estimates on the dif-
ference U − Û , in particular, the Lipschitz continuity properties (E.2), (E.4) are
instrumental. However, in order to obtain exploitable estimates on U − Û , higher
regularity solutions should be considered.

4.1. Strong–weak uniqueness argument

Let us first introduce a suitable notion of strong solution, in relation with the
uniqueness argument developed in Theorem 4.1.

Definition 4.1. We will say that U = (u, p, vi, ve, v, w, γ) is a bounded-gradient
weak solutionb of problem (2.12)–(2.20) if it is a weak solution in the sense of
Definition 2.1 and moreover, one has the following regularity:

Du ∈ L∞(ΩT )3×3, ∇vi,e ∈ L∞(ΩT )3.

Such regularity of weak solutions is not possible without additional assumptions
on the data; clearly, the minimal assumptions include regularity in x of the families
of tensors involved in assumptions (E.1), (E.3), regularity of source terms in t and
in x, and H1 regularity of initial data. We refer to Ref. 8 for a result on regularity
of bidomain systems; however, the use of its strategy requires at least L1(ΩT )
estimates of ∂tDu. The latter can be obtained via elliptic regularity and parameter
dependence techniques, provided suitable time and space regularity is proved for
γ; in turn, the regularity of γ requires that of v. We see that simple decoupling
strategies cannot be used for justification of L∞ bounds on Du, ∇vi,e. Yet we
think that the following weak–strong uniqueness and continuous dependence result
contributes to assess good analytical properties of the model considered herein.

Theorem 4.1. Assume that U = (u, p, vi, ve, v, w, γ) is a bounded-gradient weak
solution of problem (2.12)–(2.20) in the sense of the above definition, and Û =
(û, p̂, v̂i, v̂e, v̂, ŵ, γ̂) is a weak solution in the sense of Definition 2.1 corresponding

to the data f̂ , Îi
app, Îe

app, v̂0, ŵ0, γ̂0. Then there exists K = K(‖Du‖∞, ‖∇vi,e‖∞)
(depending also on T and on the different constants involved in assumptions
(E.1)–(E.6) and on the initial and source data for both U and Û) such that

‖(v, w, γ) − (v̂, ŵ, γ̂)‖L∞(0,T ;L2(Ω))3

+ ‖u− û‖L2(0,T ;H1(Ω)3) + ‖p− p̂‖L2(ΩT ) + ‖(vi, ve) − (v̂i, v̂e)‖L2(0,T ;H1(Ω))2

≤ K(‖Du‖∞, ‖∇vi,e‖∞)(‖f − f̂‖L2(ΩT )3 + ‖(Ii
app, I

e
app) − (Îi

app, Îe
app)‖L2(ΩT )2

+ ‖(v0, w0, γ0) − (v̂0, ŵ0, γ̂0)‖L2(Ω)3).

In particular, if a bounded-gradient weak solution exists for data f , Ii
app, Ie

app,

v0, w0, γ0, then it is a unique weak solution to the problem.

bA related concept of bounded-gradient solutions can be found in e.g. Ref. 25.
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Proof. Consider Eq. (2.24) written for u and û; using u− û as test function, we
obtain

(σ(x, γ)Du− σ(x, γ̂)Dû) : (Du− Dû)

= (σ(x, γ̂)(Du− Dû)) : (Du− Dû) + ((σ(x, γ) − σ(x, γ̂))Du) : (Du− Dû).

(4.1)

Then, thanks to Young inequality, the coercivity assumption (E.1), and the Lips-
chitz continuity (E.2), we obtain for all t ∈ (0, T ),∫

∂Ω

α

2
|u− û|2(t) +

∫
Ω

1
2c

|Du− Dû|2(t)

≤ C
(∫

Ω

|f − f̂ |2(t) + ‖Du‖L∞(ΩT )

∫
Ω

|γ − γ̂|2(t)
)

. (4.2)

Here and in the sequel, C is a generic constant depending on the data of both
systems (for U and Û) and on the constants in (E.1)–(E.6). Similarly, we use the
ODEs (2.17) for both γ and γ̂ with test function γ − γ̂ and deduce∫

Ω

|γ − γ̂|2(t) ≤ C
(∫

Ω

|γ0 − γ̂0|2 +
∫ t

0

∫
Ω

|w − ŵ|2(s)ds

)
. (4.3)

Finally, we combine Eqs. (2.13)–(2.16) written for U and Û in the same way as
for the proof of (3.4); we use Lemma 2.3 in Ref. 5 in order to justify the possibility
to take test functions vi,e− v̂i,e in (2.13), (2.14), respectively. Rearranging the terms
as in (4.1), using in addition the fact that

(vB(v) − v̂B(v̂))(v − v̂) ≥ 0,

where B is defined as in (2.22), we find for a.e. t ∈ (0, T ) the following bound:∫
Ω

(
cmχ

2
|v − v̂|2(t) +

BC

A
|w − ŵ|2(t)

)
+

1
2c

∫ t

0

∫
Ω

(|∇vi −∇v̂i|2(s) + |∇ve −∇v̂e|2(s)ds)

≤ C
(∫

Ω

(‖v0 − v̂0|2 + |w0 − ŵ0|2) +
∫ t

0

∫
Ω

|(Ii
app, Ie

app) − (Îi
app, Îe

app)|2(s)ds

+ ‖(∇vi,∇ve)‖L∞(ΩT )2×3

∫ t

0

∫
Ω

|Du − Dû|2(s)ds

+
∫ t

0

∫
Ω

(|v − v̂|2(s) + |w − ŵ|2(s))ds

)
. (4.4)

Then it is straightforward to combine (4.2)–(4.4) and obtain a Gronwall-type
inequality that bounds U − Û in the way stated in the theorem. Indeed, we can set:

E(t) := ‖Du− Dû‖2
L2(Ω)3×3(t), Γ(t) := ‖γ − γ̂‖2

L2(Ω)(t),

W (t) :=
cmχ

2
‖v − v̂‖2

L2(Ω)(t) +
BC

A
‖w − ŵ‖2

L2(Ω)(t),
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D(t) := ‖f − f̂‖2
L2(Ω)3(t) + ‖(Ii

app, Ie
app) − (Îi

app, Îe
app)‖2

L2(Ω)2(t),

D0 := ‖(v0, w0, γ0) − (v̂0, ŵ0, γ̂0)‖2
L2(Ω)3 .

Dropping non-negative terms, from (4.2), (4.3) and (4.4) we infer:

E(t) ≤ K(D(t) + Γ(t)),

Γ(t) ≤ K
(

D0 +
∫ t

0

W (s)ds

)
,

W (t) ≤ K
(

D0 +
∫ t

0

D(s)ds +
∫ t

0

E(s)ds +
∫ t

0

W (s)ds

)
,

with a generic constant K depending on the different constants, data and solu-
tions as indicated in the statement of the theorem. Hence, substituting the second
inequality in the first one, then substituting the resulting inequality into the third
one and applying the Fubini theorem in the double integral

∫ t

0

∫ s

0
W (τ)dτds that

appears from this calculation, we find

W (t) ≤ K
(

D0 +
∫ t

0

D(s)ds +
∫ t

0

(1 + (t − s))W (s)ds

)
, W (0) ≤ CD0.

Then we can apply the Gronwall lemma (see, e.g. Ref. 37); this permits to bound
‖(v, w) − (v̂, ŵ)‖L2(Ω)2(t) as claimed in Theorem 4.1. Then, with the help of (4.3)
we also bound ‖γ − γ̂‖L2(Ω)(t). Next, with (4.2) we bound ‖Du − Dû‖L2(Ω)3×3(t)
and ‖u − û‖L2(∂Ω)3(t), which implies the H1(Ω)3 bound on (u − û)(t), thanks to
Poincaré inequality. Now, the bound on ‖p− p̂‖L2(Ω)(t) follows from (2.12) written
for u(t) and û(t), using a test function v ∈ H1(Ω) such that ∇ · v = p(t) − p̂(t).
Such a function can be constructed for each t by taking v = ∇θ using the auxiliary
Dirichlet problem −∆θ = (p − p̂) in Ω̃, θ = 0 on ∂Ω̃, where Ω̃ is a regular domain
containing Ω; we have θ ∈ H2(Ω̃) by the classical elliptic regularity results. Finally,
with (4.4) we also achieve the desired bounds on ‖∇vi,e −∇v̂i,e‖L2(Ω)(t).

5. Numerical Approximation

Here, we present the finite element method for approximation of the problem studied
in the previous section, the associated numerical results and a critical analysis of
validity of the approximations made in Sec. 2.4. Other discretization techniques can
certainly be employed, following e.g. Refs. 16, 17, 19 and 44.

5.1. A finite element method

Let Th be a regular partition of Ω into tetrahedra K with boundary ∂K and diame-
ter hK . We define the mesh parameter h = maxK∈Th

{hK} and the associated finite
element spaces V h (respectively, Vh), for the approximation of pressure, electri-
cal potentials and ionic variables (respectively, of displacements). In order to sat-
isfy the discrete Ladyzhenskaya–Babuška–Brezzi stability condition (3.1), piecewise
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quadratic finite elements are used to approximate the displacements field, while for
pressure, electrical potentials and ionic variables, we use piecewise linear elements.
That is, the involved spaces are defined as

V h = {s ∈ C0(Ω̄) : v|K ∈ P1(K) for all K ∈ Th},

Vh = {v ∈ C0(Ω̄) : v|K ∈ P2(K)3 for all K ∈ Th}.

In order to lighten the notation, in this section we put χ = cm = 1 (the general
case is completely analogous). The semi-discrete Galerkin finite element formu-
lation used in Sec. 3.1 then reads: for t > 0, find uh ∈ Vh, vh

i (t), vh
e (t), vh(t),

wh(t), γh(t), ph(t) ∈ V h such that (with the standard finite element notation for L2

scalar products) one has:

(σ(x, γh(t))Duh(t),Dψh)Ω − (ph(t),∇ · ψh)Ω = (fh,ψh)Ω + (αuh(t),ψh)∂Ω,

(uh(t),∇φh)Ω = 0,

d

dt
(vh(t), φh)Ω + (Mi(x,Duh(t))∇vh

i (t),∇φh)Ω = (Ii
app − Iion(vh(t), wh(t)), φh)Ω,

d

dt
(vh(t), φh)Ω − (Me(x,Duh(t))∇vh

e (t),∇φh)Ω = (Ie
app − Iion(vh(t), wh(t)), φh)Ω,

d

dt
(wh(t), φh)Ω = (H(vh(t), wh(t)), φh)Ω,

d

dt
(γh(t), φh)Ω = (G(γh(t), wh(t)), φh)Ω,

(5.1)

for all ψh ∈Vh and all φh ∈V h; one also sets vh(0)= PV h(v0) (analogous initial-
ization is used for wh and γh). A classical backward Euler integration method is
employed for the time discretization of (5.1) with time step δt = T/N , moreover,
we linearize and decouple the resulting time-implicit scheme by employing γh,n−1

(respectively, Duh,n−1) in the equation on uh,n (respectively, in the equations on
vh,n

i,e ) and by linearizing Iion with the help of the new function

I lin
ion : (v, ṽ, w) �→ vB(ṽ) − A1v + Cw where B : z �→ j(z)

z
+ A1 ≥ 0.

This results in the following fully discrete method: find vh
i (t), vh

e (t), vh(t), wh(t),
γh(t), ph(t) ∈ V h and uh ∈ Vh such that:

uh(t,x) =
N∑

n=1

uh,n(x)1((n−1)δt,nδt](t),

(vh
i , v

h
e, v

h, wh, γh, ph)(t,x) =
N∑

n=1

(vh,n
i , vh,n

e , vh,n, wh,n, γh,n, ph,n)(x)1((n−1)δt,nδt](t),
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satisfy the algebraic system of equations:

(σ(x, γh,n−1)Duh,n,Dψh)Ω + (ph,n,∇ · ψh)Ω = (fh,n,ψh)Ω + (αuh,n,ψh)∂Ω,

(uh,n,∇φh)Ω = 0,(
vh,n−vh,n−1

δt
, φh

)
Ω

+ (Mi(x,Duh,n−1)∇vh,n
i ,∇φh)Ω

= (Ii
app− I lin

ion(vh,n, vh,n−1, wh,n), φh)Ω,(
vh,n−vh,n−1

δt
, φh

)
Ω

− (Me(x,Duh,n−1)∇vh,n
e ,∇φh)Ω

= (Ie
app− I lin

ion(vh,n, vh,n−1, wh,n), φh)Ω,(
wh,n−wh,n−1

δt
, φh

)
Ω

= (H(vh,n, wh,n), φh)Ω,

(
γh,n−γh,n−1

δt
, φh

)
Ω

= (G(γh,n, wh,n), φh)Ω,

for all ψh ∈ Vh, φh ∈ V h and for all n ∈ {1, . . . , N}; the initial condition takes the
form

(vh,0, wh,0, γh,0) = (PV h(v0), PV h(w0), PV h(γ0)).

Here Ii,h
app(·), Ie,h

app(·) are time averages over [(n−1)δt, nδt] of Ii
app, Ie

app, respectively.

5.2. A glimpse into the convergence proof

Consider solutions to the fully discrete system, and let us indicate some milestones
of its convergence analysis. The proof of stability estimates closely follows the one
presented in Sec. 3.2 above for semi-discrete Galerkin approximations. Namely, we
use the same kind of test functions in the same combination of equations; instead
of the chain rule for time derivatives used in the continuous setting, the convexity
inequality

(an − an−1)an ≥ (an)2

2
− (an−1)2

2
is used to deal with the finite differences in time. In this way, we obtain uniform in
h and δt estimates on the discrete solutions:

‖uh‖L2(0,T ;H1(Ω)3) + ‖ph‖L2(ΩT ) + ‖vh
i,e‖L2(0,T ;H1(Ω)) + ‖(vh, wh, γh)‖L2(ΩT ) ≤ C,

(5.2)

and also the following uniform in h estimate related to linearization of the nonlin-
earity Iion,

N∑
n=1

δt

∫
Ω

|vh,n|2B(vh,n−1) ≤ C. (5.3)
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The latter estimate replaces, in a weaker sense, the L4(ΩT ) estimate of vh obtained
in the semi-discrete Galerkin context. The details of these estimates, including the
latter one, are also very close to those given in Ref. 5 where a linearized implicit
finite volume scheme of bidomain equation is analyzed. Estimate (5.2) implies in
particular the invertibility of the matrix of the discrete system that is solved on
each time step.

Now, similarly to Sec. 3.2 we get space and time translation estimates on (wh)h

and on (γh)h. For the time estimates, we introduce, e.g. w̄h the piecewise affine in
t function in W 1,∞([0, T ]; V h) interpolating the states (wh,n)n=0···N ⊂ V h at the
points (nδt)n=0···N . Then we have w̄h

t = H(vh, wh), and due to the linearity of H ,
with the notation introduced in Sec. 3.2 we also have

(T τ w̄h)t = H(T τvh, T τwh).

We can use test function (T τwh)(t, ·) in this equation to obtain time translation
estimates on (w̄h)h using Fubini theorem and the bounds (5.2). Further, the esti-
mates of space translates (Jrwh)h are obtained in the same way as (3.7), hence
analogous estimate on (Jrw̄h)h follows because for t ∈ ((n− 1)δt, nδt], w̄h(t, ·) is a
convex combination of wh,n−1(·) and wh,n(·). By the Fréchet–Kolmogorov theorem
we deduce strong L2(ΩT ) compactness of (w̄h)h. Further, it is easily seen from the
definition of w̄h, from the equation

wh,n − wh,n−1

δt
= H(vh,n, wh,n),

and estimates (5.2) that

‖w̄h − wh‖2
L2(ΩT ) ≤

N∑
n=1

δt‖wh,n−1 − wh,n‖2
L2(Ω) ≤ Cδt → 0 as δt → 0.

Finally, we conclude that (wh)h is strongly compact in L2(ΩT ). The same argument
applies to (γh)h. Unfortunately, the lack of L4(ΩT ) estimate on (vh)h precludes us
from getting the analogous time translation estimate and compactness property on
(vh)h, but we circumvent this difficulty using the Young measures’ representation
of weakly convergent sequences, in the spirit of Ref. 21.

Indeed, extracting convergent subsequences corresponding to the above argu-
ments, firstly we pass to the limit in the linear ODEs and in the elliptic equa-
tion on uh; as in Sec. 3.3, we get strong convergence of Duh to Du from the
Minty–Browder argument. Now, we pass to the limit in the equations on vh

i,e; the
delicate point is the passage to the limit in the nonlinearity I lin

ion(vh, ṽh, wh), where
ṽh(t,x) = vh(t − δt,x) with the convention that vh(t,x) = vh,0(x) for t ≤ 0. More
precisely, we have to pass to the limit in the term vhB(ṽh). Here we exploit esti-
mate (5.3) to get an equi-integrability estimate on this term. As in Ref. 5, using the
Sobolev embedding of L2(0, T ; H1(Ω)) into L2(0, T ; L6(Ω)) and the space inter-
polation with L∞(0, T ; L2(Ω)), we find a uniform L10/3(ΩT ) bound on vh. Such
a bound yields equi-integrability of |ṽh|2 on ΩT , thus from the weighted Young
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inequality

|vB(ṽ)| ≤ δ|v|2B(ṽ) +
1
δ
B(ṽ),

using the growth assumption on j(·) that implies that B(ṽ) ≤ C(1+ |ṽ|2), we derive
a uniform L1(ΩT ) bound and, moreover, the equi-integrability on ΩT for the family
(vhB(ṽh))h. Therefore up to extraction of a further subsequence, vhB(ṽh) converges
weakly in L1(ΩT ) to a limit that we denote by Ψ. Further, multiplying the discrete
equation for vh,n by 1

2 (vh,n+vh,n−1) and summing in n from the previously obtained
estimates one deduces the uniform in h estimate∣∣∣∣∣

N∑
n=1

δt

∫
Ω

vh,nvh,n−1B(vh,n−1)

∣∣∣∣∣ ≤ C. (5.4)

Finally, multiplying the same equation for vh,n by (vh,n − vh,n−1) and summing
in n, using in particular (5.4), we get

N∑
n=1

δt

∫
Ω

|vh,n − vh,n−1|2 → 0 as δt → 0.

Therefore, ṽh − vh converges to zero strongly in L2(ΩT ), in particular, the weak
L2(ΩT ) limit v of vh is also the weak L2(ΩT ) limit of ṽh. Now, in order to prove
strong convergence of (vh)h and to pass to the limit in the nonlinear ionic current
term vhB(ṽh) (we have to prove in particular that Ψ = vB(v)), we introduce the
Young measure (ν(t,x))(t,x)∈ΩT

which is the limit of the selected subsequence of
(vh)h (not relabeled):

v(t,x) =
∫

R

λdν(t,x)(λ) with
∫

R

dν(t,x)(λ) = 1 for a.e. (t,x) ∈ ΩT , moreover,

for all F ∈ C0(R; R) such that (F (vh))h is weakly convergent in L1(ΩT ),

F (vh) ⇀

∫
R

F (λ)dν(·,·)(λ) in L1(ΩT ). (5.5)

Then the convergence proof relies on the following observations.

Lemma 5.1. The Young measure (ν(t,x))(t,x)∈ΩT
has the following properties :

(i) v(t,x) =
∫

R
λdν(t,x)(λ) and Ψ(t,x) =

∫
R

λB(λ)dν(t,x)(λ);
(ii)

∫∫
ΩT

∫
R

λ2B(λ)dν(t,x)(λ)dxdt < ∞ and v ∈ L4(ΩT ), Ψ ∈ L4/3(ΩT );
(iii) for a.e. (t,x) ∈ ΩT ,

∫
R

∫
R
(λ − µ)(λB(λ) − µB(µ))dν(t,x)(λ)dν(t,x)(µ) ≤ 0;

(iv) for a.e. (t,x) ∈ ΩT , ν(t,x)(λ) = δ(λ − v(t,x)); in particular, vh → v and
ṽh → v a.e. on ΩT , and we have Ψ = vB(v) a.e. on ΩT .

Proof. For (i) and (ii) we use the estimates established above, while for (iii), we
use the equations satisfied by vh and by v in a way similar to the Minty trick. The
last point follows by classical properties of Young measures.
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(i) The first claim of (i) is a part of the definition of the Young measure. To prove
the second point, we first observe that ∆h

1 := vhB(ṽh) − vhB(vh) tends to zero
in L1(ΩT ) as h → 0. Indeed, recall that vh, ṽh are bounded in L10/3(ΩT ) due to
interpolation and embedding results; therefore ∆h

1 is bounded in L10/9(ΩT ), and
thus it is equi-integrable. Moreover, extracting a further subsequence we can assume
that vh−ṽh → 0 a.e. on ΩT , so that ∆h

1 → 0 a.e. on ΩT . Then ∆h
1 vanishes in L1(ΩT )

due to the Vitali theorem. Now, we have vhB(ṽh) ⇀ Ψ in L1(ΩT ). Consequently, we
have as well vhB(vh) ⇀ Ψ in L1(ΩT ) as h → 0, and we can apply the representation
formula of (5.5) to Ψ.

(ii) Consider a family of bounded continuous functions (Bn)n on R that increase
towards the limit B pointwise on R, as n → ∞. Then Fn : λ �→ λ2Bn(λ) can be
used in (5.5) because we know that (vh)h is an equi-integrable sequence on ΩT

and bn is bounded for every fixed n. In addition, as in the point (i) we readily
see that ∆h

2 := (vh)2Bn(vh) − (vh)2Bn(ṽh) vanishes in L1(ΩT ) as h → 0, up to a
subsequence. Therefore we find, with the limits taken in the weak L1(ΩT ) sense,
the chain of equalities∫

R

Fn(λ)dν(·,·)(λ) = lim
h→0

Fn(vh) = lim
h→0

(vh)2Bn(ṽh).

In particular, ∫∫
ΩT

∫
R

Fn(λ)dν(t,x)(λ)dtdx ≤ lim
h→0

∫∫
ΩT

(vh)2Bn(ṽh)

≤
∫∫

ΩT

(vh)2B(ṽh)

≤ C,

due to estimate (5.3). Notice that C does not depend on n, therefore using the
monotonicity of (Bn)n we deduce the first claim of (ii) from the monotone conver-
gence theorem. Then, the lower growth bound on B yields

∫
R

λ4dν(·,·)(λ) ∈ L1(ΩT ),
whence by the Jensen inequality for the convex function λ �→ λ4 and the proba-
bility measures ν(t,x) we deduce that v =

∫
R

λdν(·,·)(λ) ∈ L4(ΩT ). Using the upper
growth bound on B we find that Ψ ∈ L3/4(ΩT ).

(iii) Firstly, we prove the inequality

lim sup
h→0

∫∫
ΩT

(T − t)(vh)2B(ṽh) ≤
∫∫

ΩT

(T − t)vΨ, (5.6)

for sufficiently small T (then, after having proved (iv), we can bootstrap the argu-
ment and achieve arbitrarily large time horizon T ).

On the one hand, we proceed in a way analogous to the one followed to obtain
(3.4) (recall that now we have χ = cm = 1). Namely, we combine the equations on
vh,n

i,e (with test function uh,n
i,e ) and on wn,h (with test function (C/A)wh,n), use the
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convexity inequality in the place of chain rule in time, and we end up with∫ s

0

∫
Ω

(
(vh)2B(ṽh) − A1(vh)2 +

BC

A
(wh)2

+ (Me(x,Duh)∇vh
e ) · ∇vh

e + (Mi(x,Duh)∇vh
i ) · ∇vh

i

)
+
∫

Ω

1
2
(vh)2(s, ·)

≤
∫

Ω

1
2
(vh

0 )2 +
∫ s

0

∫
Ω

Ii,h
appvh

i − Ie,h
appvh

e ,

for every s < T . The we integrate in s ∈ [0, T ] and we assume 2A1T ≤ 1; we use
the Fubini theorem to simplify the double time integral, which brings the factor
(T − t) under the integrals. Using the strong convergence of vh,0, wh and Duh in
L2(Ω), L2(ΩT ) and L2(ΩT )3, respectively, using the weak L2(ΩT ) convergence of
vh, of

√
T − tvh, of

√
T − t(Mi,e(x,Duh))1/2∇vh

i,e and the lower semi-continuity of
the L2-norm with respect to weak convergence, at the limit h → 0 (for the selected
subsequence) we find

lim sup
h→0

∫ T

0

∫
Ω

(T − t)(vh)2B(ṽh) +
∫ T

0

∫
Ω

((
1
2
− (T − t)A1

)
v2 +

BC

A
w2

)
+
∫ T

0

∫
Ω

(
(T − t)(Me(x,Du)∇ve) · ∇ve + (Mi(x,Du)∇vi) · ∇vi

)

≤
∫

Ω

T

2
(v0)2 +

∫ T

0

∫
Ω

(T − t)(Ii
appvi − Ie

appve). (5.7)

On the other hand, the following limit equations, as h → 0, are easily obtained
as h → 0:

∂tv −∇ · (Mi(x,Du)∇vi) + Ψ − A1v + Cw = Ii
app in ΩT , (5.8)

∂tv + ∇ · (Me(x,Du)∇ve) + Ψ − A1v + Cw = Ie
app in ΩT , (5.9)

v = vi − ve in ΩT , (5.10)

∂tw − H(v, w) = 0 in ΩT . (5.11)

In order to combine these equations in the same way as what we have done at the
discrete level, we recall that v ∈ L4(ΩT ) and Ψ ∈ (L4(ΩT ))′, so that Lemma 2.3
of Ref. 5 (cf. Remark 2.2 after Definition 2.1) can be used in order to give sense
to multiplication of (5.8), (5.9) by vi, ve, respectively. We obtain, integrating in
t ∈ [0, s] then in s ∈ [0, T ] the following relation:∫ T

0

∫
Ω

(T − t)vΨ +
∫ T

0

∫
Ω

((
1
2
− (T − t)A1

)
v2 +

BC

A
w2

)

+
∫ T

0

∫
Ω

(
(T − t)(Me(x,Du)∇ve) · ∇ve + (Mi(x,Du)∇vi) · ∇vi

)

=
∫

Ω

T

2
(v0)2 +

∫ T

0

∫
Ω

(T − t)(Ii
appvi − Ie

appve). (5.12)

By comparison of (5.12) and (5.7), we deduce the claim (5.6).
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Now, using as in the proof of (ii) an increasing family of functions (Bn)n approx-
imating B, we find for all n,∫∫

ΩT

(T − t)
∫

R

λ2Bn(λ)dν(t,x)(λ)dtdx

= lim
h→0

∫∫
ΩT

(T − t)(vh)2Bn(ṽh) ≤ lim sup
h→0

∫∫
ΩT

(T − t)(vh)2B(ṽh)

≤
∫∫

ΩT

(T − t)vΨ.

Then with the monotone convergence theorem and representation of Ψ and v proved
in (i), we find∫∫

ΩT

(T − t)
∫

R

λ2Bn(λ)dν(t,x)(λ)dtdx

≤
∫∫

ΩT

(T − t)
(∫

R

λdν(t,x)(λ)
)(∫

R

λB(λ)dν(t,x)(λ)
)

dtdx.

Then, rearranging the terms as in Ref. 21, one finds∫ T

0

∫
Ω

(T − t)
∫

R

∫
R

(λ − µ)(λB(λ) − µB(µ))dν(t,x)(λ)dν(t,x)(µ)dtdx ≤ 0.

Now the claim of (iii) follows by monotonicity of the map λ �→ λB(λ).

(iv) Starting from the “div–curl” relation proved in (iii), one deduces the claim (iv)
from the general properties of Young measures (see Ref. 21).

Property (iv) of the previous lemma, along with Eqs. (5.8), (5.9) concludes
the passage to the limit in the scheme. It remains to observe that, if the data of the
problem allow for existence of a bounded-gradient solution defined in Sec. 4, the
extraction of a subsequence is bypassed using the classical argument (the unique
solution is the unique accumulation point), and in this case the finite element
method converges to the unique solution of the system. A priori error estimates
can also be obtained in this case, with arguments similar to those of Sec. 4, but we
restrict ourselves to assess the experimental convergence of the scheme in Sec. 5.3.

5.3. Numerical tests

We now illustrate the performance of the coupled finite element method. The linear
systems arising after Newton linearization of the coupling and reaction terms and
full discretization of the problem are solved with the GMRES method with a toler-
ance of ε̂tol = 10−7. We set a tolerance of ε̃tol = 10−8 for the L2-norm of the residual
of Newton iterates. All the simulations in this section have been performed on four
cluster nodes with two Intel Xeon processors (quad core, 8MB cache, 2.66Ghz
CPU) each.
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First, we assess the convergence rate of the finite element approximation of
deformation, pressure, and electric potentials proposed in Sec. 5.1. We focus on the
spatial convergence of the numerical scheme, and so we analyze the experimental
convergence of the following steady state counterpart of (5.1):

(σ(x, γh)Duh,Dψh)Ω − (ph,∇ · ψh)Ω = (fh,ψh)Ω + (αuh,ψh)∂Ω,

−(∇ · uh, qh)Ω = 0,

(Mi(x,Duh)∇vh
i ,∇φh

i )Ω + (Iion(vh, wh), φh
i )Ω = Ii

app,

−(Me(x,Duh)∇vh
e ,∇φh

e )Ω + (Iion(vh, wh), φh
e )Ω = Ie

app,

for all ψh ∈ Vh, qh, φi
h, φe

h ∈ Vh. Notice that in this specific case, wh, γh can be
obtained by post-processing from vh using the equilibrium equations H(vh, wh) =
G(γh, wh) = 0. We use model parameters as specified in Table 1, and subsequently
Iion = Iion(vh) = (vh)3 + vh. Let us consider the slab of tissue represented by the
unit square Ω = (0, 1)2, where Robin data (with coefficient α = µ) are imposed on
the whole boundary and zero-flux conditions are assumed for the electric potentials.
Fibers and sheet directions are fixed as dl = (0, 1)T and dt = (1, 0)T , respectively.
An exact solution of the problem is given by the following smooth functions:

u =


x

10
+
√

1.001y

− y

10
−

√
1.001x

 , p =
µ

10
x2(x +

√
1.001y),

v = −γR exp(−4[y − 1/2]2), vi = v + xy, ve = xy,

which satisfy both incompressibility constraints detDu = 1 and ∇ · u = 0. The
forcing term f and the applied currents Ii.e

app are manufactured according to these
exact solutions. The slab is partitioned into successively refined meshes with 2n +1,
n = 0, 1, . . . , 8 vertices on each side of the domain and we compute errors and
observed convergence rates defined as

e(u) := ‖u− uh‖H1(Ω), e(s) := ‖s − sh‖H1(Ω),

r(u) :=
log(e(u)/ê(u))

log(h/ĥ)
, r(s) :=

log(e(s)/ê(s))
log(h/ĥ)

,

where s denotes an electric potential or pressure, and e and ê denote errors com-
puted on two consecutive meshes of sizes h and ĥ, respectively. Table 2 reports the
convergence history for the piecewise quadratic approximation of deformations and
piecewise linear approximation of all remaining scalar fields, where we can observe
optimal convergence rates in all cases. The approximate solutions are displayed in
Fig. 1.

Next, we turn to the simulation of the transient linearized coupled cardiac elec-
tromechanical problem (2.12)–(2.20). A human heart geometry and fiber directions
obtained from CT scan data41 have been smoothed, rescaled and meshed using the
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Fig. 1. Approximate solutions of the convergence test displayed on the deformed configuration
(deformation components, pressure, transmembrane potential, intra- and extra-cellular potential).

Fig. 2. Fibers distribution with segmented biventricular geometry (left) and exploded view of
the computational mesh partitioned into 16 nonoverlapping subdomains, each color representing
a different subdomain (right).

VMTK library (http://www.vmtk.org) (see Fig. 2). The resulting idealized biven-
tricular mesh consists of 94590 four-node elements and 23210 vertices. The trans-
membrane potential is initially at rest v = −84 mV and the excitation propagation
is initiated with a stimulus of magnitude 100 mV applied on the septum and apical
zone of left and right ventricles at time t = 10. The forcing term for the elasticity
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equation is zero f = 0. Other model parameters are set as specified in the bottom
row of Table 1. A time step ∆t = 0.01 is employed and an average overall CPU
time spent per Newton step is 12.5 s, for an average iteration count of nine steps
to achieve the desired convergence. We simulate one full heartbeat and report in

Fig. 3. Time evolution over half a heartbeat of the numerical residuals induced by the lineariza-
tion of the elasticity problem.

Fig. 4. Transmembrane potential (top), activation function (middle) and tissue deformation (bot-
tom) at time instants t = 100, 150, 300 (from left to right).
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Fig. 4 snapshots of the spatio-temporal evolution of action potential and tissue
deformation. We have applied several model simplifications for sake of the analy-
sis, including phenomenological FitzHugh–Nagumo membrane kinetics, linearized
mechanical response, and stretch-independent activation. Evidently, some features
of the cardiac function will be difficult to recover within this framework, such as
accurate representations of stresses at high strains. In addition, we can observe that
the following residuals

‖Cof(Du) − I‖L2(Ω), ‖Du‖L∞(Ω), ‖det(Du) − 1‖L2(Ω)

are non-negligible (see the dynamics depicted in Fig. 3, where the spike in the
middle and right plots is due to the electrical stimulus applied at t = 10). In the
fully nonlinear case, performing Newton or Picard iterations (also for the mechanical
problem) up to a fixed tolerance rapidly decreases the first residual, associated with
the nonlinear stress. Nevertheless, the order of magnitude of the second and third
residuals remain unchanged, suggesting that total strains and incompressibility are
well resolved even in the linear case. Moreover, from Fig. 4 we readily observe some
other key features such as the desired delay of the activation γ with respect to
the front of the transmembrane potential, and the subsequent contraction of the
muscle.

6. Concluding Remarks

We have introduced a mathematical model for the study of cardiac electromechani-
cal interactions written in fully Lagrangian form, featuring a linearized description
of the passive elastostatics of cardiac tissue, a linearized incompressibility con-
straint, and a truncated approximation of the inverse Cauchy Green tensor appear-
ing in the updated conductivity term of the bidomain equations. The existence
of weak solutions to the coupled problem has been established by convergence of
Galerkin approximations and regularization. The concept of bounded-gradient weak
solutions has been instrumental in the derivation of uniqueness of weak solutions
in the natural norms, and we have presented some ideas on the analysis of regu-
larity. A finite element method has been introduced for the approximation of the
electromechanical system, and we have provided sketches for its convergence proof.
The experimental convergence of the numerical scheme and the applicability of the
simplified model in the study of cardiac electromechanics have finally addressed via
two numerical examples.

We have taken the FitzHugh–Nagumo kinetics as the simplest example, but
the extension of the present theoretical framework to other linear phenomenolo-
gical ionic models such as the Aliev–Panfilov,1 Rogers–McCulloch,38 or Mitchell–
Schaeffer28 models is straightforward, provided the evolution of the activation
parameter γ is also governed by a linear ODE. However, more involved (typically
physiologically-based) nonlinear ionic models could not be addressed by the same
mathematical techniques put forward in our work. First, a priori estimates for the
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transmembrane potential need to be re-derived from the modified ODE system gov-
erning the ionic activity (cf. the existence results of Ref. 49 for Luo–Rudy I kinetics,
see also Ref. 11 for a regularized Mitchell–Schaeffer model). As a consequence of
such estimates, a convenient duality is established between the functional spaces
for the transmembrane potential and for the ionic current. These features are nat-
ural, because they are related to stability and to the cyclic evolution of solutions
to the pure ODE model neglecting spatial propagation effects. However, the simple
space-translation argument that we employed in Sec. 3.2 is no longer appropriate
if some ODEs governing reactions, including the activation field γ, are nonlinear
(which e.g. would be the case for the Luo–Rudy models). Alternative approaches
may involve theoretical tools for the investigation of stability of solutions to ODEs
(cf. Ref. 49), or differentiation of the ODEs with respect to the space variable x.
While both of these techniques might be helpful for studying existence (using, e.g.
the uniformly parabolic “viscous” approximation of ODEs of finite volume approx-
imations, cf. Ref. 5), the structure of Galerkin and finite element approximations
studied here jeopardizes these strategies of proof. Indeed, except for the linear case,
the equations obtained from finite element approximation of ODEs are not satisfied
pointwise with respect to the space parameter x, but only in some averaged-in-x
sense.

Although we have recently tested numerically more complex and more real-
istic formulations for cardiac electromechanics,23,33,39,42 the model simplifications
applied in the present study were mainly driven by the need of addressing solv-
ability and regularity questions often overlooked in the literature. In addition,
some extensions towards physiological relevance can be readily applied without
changing the core of the theoretical tools employed herein. For instance, the role
of anisotropy is not substantial in our present analysis. In fact, once the acti-
vation is applied to the passive mechanics via the active strain formalism, the
stress tensors (first Piola–Kirchhoff and Cauchy’s) adopt an anisotropic structure
even if their passive forms are isotropic. Moreover, since the elastostatics are lin-
earized, further generalizations to e.g. exponential laws with several fiber families,
as e.g. the Holzapfel–Ogden model,20 could be readily incorporated in the present
framework.

For the fully nonlinear case the situation is more delicate, since coercivity of
the stress (which in the case of finite elasticity is guaranteed by polyconvexity of
the strain energy function6) will depend on the specific material law each case
would need to be analyzed separately. In this regard, the active strain approach
represents a major advantage, since the activation via multiplicative splitting of
the deformation gradient tensor does not modify the stability properties originally
featured by the passive mechanical law.4,33

In conclusion, deeper theoretical insight and numerical experiments are needed
to assess the quality of more realistic cardiac electrophysiological models with non-
linear elastic behavior and nonlinear ionic evolution.
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