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A B S T R A C T   

The transition towards Electric Vehicles (EVs) is connecting previously unrelated technologies. We combine an 
approach to transitions with economic geography, to explore how colocation can support the emergence of 
coevolution between EV-related sectors. We study technological and geographical relatedness between electric 
vehicle, battery, smart grid, and combustion engine inventions between 1980 and 2020. Geographical colocation 
of related technologies can signal coevolution between firms and inventors, that is specifically visible in some 
classes of cities that we identify. Finally, we fit a multiple regression to estimate the impact of cities’ patenting in 
related technologies on EV patents. Results show increased relatedness inside cities and growth of colocation in 
time between electric vehicle, battery, and smart grid patents, demonstrating that relatedness is dynamically 
evolving during transitions. We also find that combustion engine capabilities are still relevant to support this 
transition, suggesting path interdependence between cities’ innovative sectors.   

1. Introduction 

Contemporary transitions such as the one towards Electric Vehicles 
(EVs), involve interactions and complementarities among different 
technologies, including renewable energy generation, grid manage
ment, and vehicle recharge (Markard, 2018). Such complementarities 
are evident at the diffusion phase but also exist in invention and pro
duction (Malhotra et al., 2021). The creation and exchange of knowl
edge to invent and produce EVs is likely favored by geographical 
proximity between inventors and the applicant firms that employ them 
(Boschma, 2005). Therefore, the EV transition can be accompanied by 
new geographical centralities of invention: cities and regions that are 
better endowed with EV-related knowledge, or more capable to acquire 
it, might lead the way while those where incumbent technologies are 
prevalent could experience job losses and the challenge of converting 
their production base (Rodríguez-Pose & Bartalucci, 2023). Revealing 
the multi-sectoral and spatial interdependencies of transitions can help 
evaluate their social consequences and design improved multi-level 
policies to support them (Tödtling et al., 2022). 

Evolutionary economic geographers and transition scholars have 
asked for more integration between both literatures in the investigation 
of regional diversification (Boschma et al., 2017). We pick up this 
invitation and propose an original coevolutionary perspective on 

transitions, which explores how the colocation of EV-related technolo
gies in cities evolves in time as different sectors become increasingly 
connected. We integrate insights from the multi-sectoral perspective 
(Andersen et al., 2020), and the geography of transitions (Binz et al., 
2020), to frame transitions as geographically emergent processes that 
involve interactions between previously disconnected technologies. By 
doing so, we advance our understanding of the geography of 
multi-sectoral recombinations in transitions, and we contribute to eco
nomic geography by exploring a dynamic perspective on relatedness. 

In this article we provide empirical evidence at the world scale from 
1980 to 2020 on the coevolution of EV patents with battery, smart grid, 
and combustion engine technologies, in the concerned cities that are 
defined in a comparable way. By this approach, we expand upon Ferloni 
(2022) by including all patents drawn from the most important global 
jurisdictions, thus providing a wider overview that is not only explor
ative but also amenable to the application of quantitative methods to 
measure coevolution of technologies linked to EV in all the cities of the 
world. In fact, we examine technological and geographical relatedness 
between these patent codes, before classifying cities in four different 
groups according to their patent scores. By doing so, we can discuss how 
cities differ in their relative technological specializations and the extent 
to which they could support coevolutionary interactions. Finally, we 
build a multiple regression model to estimate the impact of related 
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technologies on EV patenting. 

2. Theoretical framework 

The main theoretical issues in developing a coevolutionary 
perspective on the emergence of innovations in transitions, consist in 
introducing the link between our empirical case and the literature on 
multi-sectoral interactions (2.1) and in wondering how the concept of 
relatedness from economic geography can be used to better understand 
the geography of transitions (2.2). Then, we elaborate on technological 
complementarities and geographical coevolution in 2.3, before sum
marizing the argument and raising three research questions in section 
2.4. 

2.1. Multi-sectoral interactions and the transition to electric vehicles 

Innovation involves combining existing technologies in new ways 
(Arthur, 2009). During transitions, the combinatorial process that leads 
to regime-changing innovations is facilitated by landscape changes 
(Geels, 2002), such as the environmental crisis, which make some 
technological solutions become more desirable and likely to emerge, 
thus growing related, and others less so, becoming unrelated. If we apply 
this reasoning to EVs, we see that at the end of the 19th century electric 
cars were more diffused than fuel ones, in many European and US cities 
(Larminie & Lowry, 2012). Back then, electric engines and batteries 
were more related to cars than combustion engines. However, when oil 
allowed vehicles to travel long distances, cars became more related to 
combustion engines and less to batteries and electric motors. During the 
20th century, alternatives to fuel cars were developed, including hybrid, 
fuel cell and battery-powered vehicles. Following cycles of hype and 
disillusion (Dijk et al., 2016), relatedness between vehicle technologies 
and various types of propulsion systems has also evolved in time 
following the ups and downs of different acceptable solutions. 

Individual technologies are arranged into a modular and hierarchical 
architecture made of several levels, in which many sectors interact. For 
example, an Electric Vehicle is a technology composed of many indi
vidual technologies acting together (battery, electric motor, control 
unit). EVs are produced by the automotive sector which is “an aggre
gation of actors having similar production competences and outputs” 
(Stephan et al., 2017, p. 711), which interacts with the chemical, elec
tronics, and textile sectors to receive components such as e.g., software, 
batteries, leather, plastics (Golembiewski et al., 2015; Markard, 2018). 
Thus, studying transitions involves considering the complementarities 
that form around a main technology, and the intersectoral connections 
that these imply. 

Research on transitions has mostly focused on single technologies 
and sectors (Rosenbloom, 2020). Exceptions include the work of Raven 
& Verbong (2007), who focused on interactions between the natural gas 
and electricity sectors, or Papachristos et al. (2013) that discussed the 
case of functional foods as combination of food and pharmaceutical. 
Previous work had developed a typology of technological interactions 
that can be complementary but also in competition (Pistorius & Utter
back, 1997). Recent contributions applied this approach to investigate 
interactions between different powertrain technologies including com
bustion, hydrogen, or battery (Mirzadeh Phirouzabadi et al., 2020). 
Transition scholars are increasingly aware of the importance of tech
nological interrelatedness and complementarities (Markard & Hoff
mann, 2016), and that making sense of this complexity calls for novel 
methods and approaches including modeling and simulations (Papach
ristos, 2014). This recognition has resulted in a coherent multi-sectoral 
perspective which aims to identify mechanisms of complementarity 
formation across technologies and domains of applications, such as the 
electricity sector (Andersen & Markard, 2020) or coastal shipping 
(Mäkitie et al., 2022). 

New technological complementarities can result in the emergence of 
cross-sectoral knowledge and competences, which could benefit from 

geographical proximity. Recent studies have shown that increased 
relatedness between EV and batteries at the diffusion phase influenced 
the focus of battery inventions, which became more tailored to EV ne
cessities (Malhotra et al., 2021). It follows that EV inventors might also 
find it increasingly necessary to integrate knowledge of battery, 
recharge, and smart grid, to be innovative. Following this reasoning, 
growing technological complementarity is likely to be accompanied by 
some degree of geographical proximity between inventors and firms in 
different sectors, to facilitate the creation of new multi-sectoral knowl
edge. The advantages of localization economies and knowledge spill
overs are known to provide positive feedback to co-located agents, that 
could become increasingly embedded in local networks and institutions. 
In other words, it is important to understand to what extent geograph
ical concentration can favor the creation of new complementarities 
during transitions. 

2.2. Relatedness and the geography of transitions 

A literature on the geography of transitions has emerged in recent 
years to remedy the lack of spatial sensitivity of earlier studies (Binz & 
Truffer, 2017; Binz et al., 2020). This literature focuses on the speci
ficities of cities and developing countries (Köhler et al., 2019), but it also 
inquires into the role of local resources, production systems and in
stitutions in enabling transitions, and of the involvement of different 
geographical scales in this process. This approach to transitions can 
benefit from the insights of economic geography on how different forms 
of proximity promote innovation, on the interplay between “local buzz 
and global pipelines” (Bathelt et al., 2004), and on the role of relatedness 
in regional diversification (Boschma, 2017). 

The concept of relatedness refers to the observation that products, 
economic sectors, or technologies can have varying degrees of comple
mentarity with each other, or of similarity in the inputs that are required 
to generate them (Jaffe, 1986; Hidalgo et al., 2018; Farinha et al., 2019). 
Inputs can be tangible (raw materials, machinery) or intangible 
(knowledge, skills), and they are typically not available everywhere. 
Relatedness is a staple in smart specialization approaches that postulate 
that regions should concentrate policy efforts in promoting innovative 
sectors that are related to existing ones (Balland et al., 2019). Related
ness has become a key methodological tool to measure local economic 
development and identify diversification opportunities, but several is
sues about its definition and measurement remain unresolved (Boschma, 
2017). Among them, we focus on how relatedness can dynamically 
evolve: what happens when unrelated technologies become related over 
time (Castaldi et al., 2015)? 

Economic geographers have usually seen relatedness as static, but 
recent contributions are beginning to challenge this view (Juhász et al., 
2021). The literature on socio-technical transitions allows to contextu
alize technological change as being constantly influenced by landscape 
trends (Geels, 2002) such as e.g., the environmental crisis or geopolitical 
conflicts that promote the emergence of certain combinations over 
others. As such, it provides a suitable background to understand how 
changes in relatedness between technologies can shift the whole foun
dations and goals of innovative activities. This article mobilizes the 
concept and methodologies of relatedness from economic geography, to 
understand how multi-sectoral complementarities emerge in space 
during the EV transition. We do so, using a coevolutionary perspective. 

2.3. Complementarities, coevolution, and path dependence 

Coevolution can be used in two main ways: to indicate specific in
teractions between technologies, economic actors, or other entities, or to 
designate wider system-level influences (Schamp, 2010; Gong & Has
sink, 2018). We broadly define coevolution as a process of “coupled, 
deforming landscapes where the adaptive moves of each entity alter the 
landscape of its neighbors in the ecology or technological economy” 
(Kauffman & Macready, 1995:27). This definition states that for 
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coevolution to occur we need distinct populations of actors whose in
dependent actions affect each other, but it remains agnostic as to what 
research objects it should be applied to, and at which level of 
aggregation. 

We consider technological and geographical relatedness as two 
different dynamics (Fig. 1). On the one hand, during transitions, previ
ously disconnected technologies become increasingly related, when they 
are combined through new multi-sectoral applications (upper part of the 
figure). On the other hand, technologies can become co-located in the 
same urban regions, so that their geographical relatedness increases 
(bottom part of the figure). This could be because two technologies 
become complementary, or because they both benefit from being co- 
located with a third technology, or for different forms of local re
sources or synergies. Yet when growing technological relatedness is 
accompanied by an increase in technological colocation, as in Fig. 1, we 
have a stronger indication that specific coevolutionary interactions 
might be emerging locally between inventors, firms, and institutions in 
the form of business networking, knowledge exchange and policy ini
tiatives. We are aware that to identify coevolution, we would need to 
show specific interactions between urban actors (Murmann, 2013). 
However, we believe that colocation trends in time can be a reasonable 
proxy for it, especially when considering many cities simultaneously 
alongside technological relatedness trends. 

The advantage of our coevolutionary framework is that it permits to 
combine a multi-sectoral perspective with a geographical one, to study 
which technological complementarities are forming during transitions, 
and where the interactions that support them are emerging. By focusing 
on the spatial embeddedness of socio-technical change, we must 
consider how existing specializations in incumbent sectors can support 
or hinder the development of new ones. For example, in Fig. 1 we can see 
that region 1 has retained the presence of a main sector but is not able to 
attract new sectors or technologies. Region 2 has diversified its tech
nology base, but the existing sector has declined and a new one has not 
formed yet. Region 3 is the only one that has maintained an existing 
specialization, attracted a new sector, and diversified its technologies. A 
coevolutionary perspective acknowledges that productive paths can 
persist, disappear, or emerge, and illuminates the role of path interde
pendence between different technological trajectories (MacKinnon et al., 
2019; Chlebna et al., 2022). 

Our article only studies technologies, but this framework can be used 
to investigate coevolution across institutions, policies, discourses, and 
many more socio-technical dimensions. Once we know that a new 

structure of technological or geographical connections is emerging, we 
might focus on how different socio-technical dimensions enable or 
hinder them. For example, we could explore institutional support to EVs 
and compare policies across urban regions. Then, we might select some 
locations and conduct a detailed analysis of the specific coevolutionary 
interactions that are involved. The geography of transitions involves 
complex multi-sectoral linkages. A coevolutionary approach can help 
understand how these complementarities are spatially contingent and 
the extent to which they benefit of geographical concentration. 

2.4. Conceptualization and research questions 

We apply this coevolutionary approach to four technologies: Electric 
Vehicle, battery, smart grid, and Internal Combustion Engine (ICE). 
These technologies are interdependent: EVs require batteries, and smart 
grid systems can use EVs for vehicle-to-grid arrangements to stabilize 
loads. Yet they are also independent, because batteries are used for 
many other applications (e.g., e-bicycles, laptops, toothbrushes) and 
smart grid devices can be used to integrate renewable energy sources. 
Thus, these four technologies can be assumed as developing along 
separate trajectories and becoming increasingly related. A coevolu
tionary dynamic between them is apparent at the diffusion phase, where 
interfaces such as recharge stations involve EVs along with many 
different artifacts including chargers, plugs, transformers, grid connec
tions, and photovoltaic panels among others. While we acknowledge 
that diffusion dynamics can feed back to invention (Malhotra et al., 
2021), we limit ourselves to the invention phase. We use patent data to 
measure technological and geographical relatedness:  

– Patent co-classification, or the presence of two patent codes in the 
same document provides a measure of technological relatedness  

– Patent colocation, or the presence of two patent codes in the same 
urban region, indicates geographical relatedness. 

Increased technological and geographical relatedness are taken as 
proxies for the existence of technological complementarities and spatial 
coevolution. The goal of this paper is to gain insights on the dynamics of 
coevolution of EV-related technologies and their geographical emer
gence. Accordingly, we formulate the following research questions: 

Fig. 1. A coevolutionary framework to explore technological relatedness and colocation. Sectors are aggregations of actors with similar or complementary com
petences. Identical shapes suggest similarities between technologies, and association to a main sector. 
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1. To what extent is technological complementarity between EV, bat
tery, smart grid, and ICE technologies, accompanied by geographical 
coevolution?  

2. What do technology colocation patterns across different groups of 
cities suggest about EV coevolution with other sectors?  

3. Does patenting in battery, smart grid, or ICE influence EV patenting, 
and does path dependence play a role? 

We expect to find increased technological and spatial relatedness 
between these EV, battery, and smart grid, but we expect ICE patents to 
become less related to EV ones, as fully electric capabilities became 
more important than hybrid ones. We also anticipate that these tech
nologies are not evenly localized, but that some urban regions — 
particularly those with long-lasting automotive capabilities — will 
display relevant EV patenting skills. As a result, we expect path depen
dence, particularly with respect to ICE capabilities, to play a significant 
role in EV patenting. Furthermore, we expect battery, smart grid, and 
ICE patenting to positively influence EV invention. 

3. Methods 

Despite their notorious limitations, patents are well-established in
dicators to measure innovation (Griliches, 1990). Patent codes can 
disclose relevant information to identify technological capabilities and 
track their evolution and recombination in time (Strumsky et al., 2012). 
We studied all patents classes, but among them, we specifically focused 
on four Cooperative Patent Classification (CPC) codes, at the four-digit 
level, to identify the technologies of Electric Vehicle (EV), battery, 
smart grid, and Internal Combustion Engine (ICE). These technology 
codes are (EPO, 2022):  

– For EV, Code B60L: “Propulsion of electrically propelled vehicles”.  
– For battery, code H01M: “Processes or means, e.g., batteries, for the 

direct conversion of chemical energy into electrical energy”.  
– For Smart Grid, the tag Y04S was considered, that refers to “Systems 

integrating technologies related to power network operation, 
communication or information technologies […], i.e., smart grids”. 

– For Internal Combustion Engine (ICE), code F02B: “Internal-Com
bustion piston engines; combustion engines in general.” 

It should be noted that there is not a precise one-to-one correspon
dence between these codes and the technologies they aim to measure. 
Also, codes are at a rather aggregate level of the CPC classification (the 
subclass, which comprises 656 codes that appear across all our periods) 
and as such they include more inventions than those we were interested 
in. However, they were recurrently identified as central, both in the 
literature (Golembiewski et al., 2015; Borgstedt et al., 2017) and in our 
first explorative analyses. Including many codes, or choosing a more 
detailed level (more than four digits), would have provided an accurate 
identification but it would have raised issues of representativeness 
(which and how many codes to choose to define a technology) and 
escalated the number of combinations between them. The choice of this 
level of aggregation was backed by similar studies in which the analysis 
of IPC/CPC knowledge networks is often conducted at the four or even 
three-digit level (Kogler et al., 2013; Leydesdorff et al., 2017; Yan & Luo, 
2017; Song et al., 2019; Li & Rigby, 2022;). 

3.1. Patents and geo-localization 

We use the REGPAT patent database (OECD, 2022; Maraut et al., 
2008), that includes information about the geographical location of 
inventors and applicants at the regional level, for patents submitted to 
the European Patent Office (EPO) and internationally via the Patent 
Co-operation Treaty (PCT-WIPO), from 1980 to 2020. The address of 
inventors is used to geolocate patents, as it is usually considered the 
most reliable indicator to this end (OECD, 2009). While data for 

European regions are precise at the NUTS 3 level, and US data are 
identified at the County level, the OECD defines regions in other coun
tries such as China and India at a higher level of aggregation.1 To 
mitigate this uneven delineation, we account for the fact that inventors 
gravitate around major metropolitan areas by aggregating smaller urban 
locations into LURs or Large Urban Regions (Rozenblat, 2020). LURs are 
defined all over the world on the notion of Mega-city region (Hall & 
Pain, 2009), and describe the fact that economic dynamics transcend 
municipal administrative boundaries forming large regional systems of 
workers and firms around urban agglomerations. 

OECD regional codes have been matched to LURs in different ways. 
European and US data have been matched by NUTS and County, using a 
correspondence table with LURs (Rozenblat, 2020). In some cases, 
multiple NUTS or counties have been aggregated into LURs, which are 
usually larger units. Conversely, for countries such as China, India or 
Japan, several LURs could be present for one OECD code. In these cases, 
we attributed manually patents to the most representative LUR.2 Finally, 
few patents (less than 2 %) were not regionalized in the REGPAT data
base and therefore were not attributed to LURs (Table 1). 

3.2. Relatedness and specialization 

We use patents to construct a technology space, or network of 
technological relatedness between any two codes i and j, which mea
sures the strength of the connection, or the proximity between tech
nologies. There are different ways to measure technological proximity 
(Engelsman & van Raan, 1994; Yan & Luo, 2017): co-classification 
measures how often two codes appear together in a patent, while cita
tion indicators measure when codes cite each other or are cited together 
(co-citations). Furthermore, colocation measures consider that two 
codes are related if they appear together in the same spatial unit (here 
LURs). Studies on technological relatedness have applied alternatively 
measures of co-classification (Balland et al., 2019; Balland & Boschma, 
2021), colocation (Boschma et al., 2015) or citation (Rigby, 2015). 

In this paper, we calculate and compare measures of co-classification 
and colocation, conceptualizing them as technological relatedness and 
geographical relatedness respectively. The comparison between these two 
forms of relatedness is the background against which we contextualize 
technology coevolution and urban specialization. Accordingly, we 
construct two square matrices of 656 CPC codes, across four non- 
overlapping periods of 10 years from 1980 to 2020, and we calculate 
the frequency of two patent codes i and j appearing together in the same 
patent (technological relatedness), or of two patent codes being located in 
the same LURs (geographical relatedness). Then, we normalize these 
scores using the well-established cosine similarity index (Yan & Luo, 
2017). The cosine formula equals the ratio between the number of times 
when codes i and j appear together and the geometric mean of the 
number of times each code is observed, and it takes values between 
0 (two technologies are never together) and 1 (they are always 
together): 

cos(i, j) =

∑

p∈P
1i(p)1j(p)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
∑

p∈P
1i(p)

)(
∑

p∈P
1j(p)

)√
√
√
√

, (1)  

1 As a comparison, EU countries such as Italy or France have each 111 and 
102 regional units identified, while China has 36 and India 37.  

2 These are usually the capital cities of states or provinces. For example, for 
the OECD region of Rajasthan (India), patents were attributed to Jaipur, which 
is the capital and largest city of the state. Other LURs are present in Rajasthan 
such as Jodhpur, Udaipur, or Kota, but address data from REGPAT were not 
precise enough to attribute patents to these LURs in the absence of a sub- 
regional code. 
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where P is the set of all patents, and 1i(p) is equal to 1 if patent p has code 
i and 0 otherwise. Following Balland & Boschma (2021), we calculated 
the concentration of patent codes in LURs, to check the extent to which a 
city’s inventive activity is specialized. Hence, we calculate patent 
counts, and we measured the RTA or Revealed Technological Advantage 
(Soete & Wyatt, 1983) for each technology i, in region r, at time t (r = 1, 
…, n; i = 1, …, k). RTAt

r,i is expressed as the ratio between the share of 
technology i in the patent production of LUR r, and the share of tech
nology i in the patent production of all LURs (patent jurisdictions in 
Table 1). If a LUR has RTAt

r,i> 1 it can be considered as specialized in i at 
time t: 

RTAt
r,i =

Nt
r,i

/
Σj∈T Nt

r,j

Σr∈RNt
r,i

/
Σr∈RΣj∈T Nt

r,j

(2)  

where Nt
r,i is the number of patents of technology i, produced in LUR r at 

time t, T is the set of all technologies and R the set of all LURs. Given the 
RTA, we also calculate a diversity index to measure the extent to which a 
LUR is capable to invent in several different technology fields. The di
versity of LUR r is measured as the sum of technologies i in which r is 
specialized (RTAt

r,i>1): 

Diversityt
r =

⃒
⃒
⃒

{
i ∈ T|RTAt

r,i > 1
} ⃒
⃒
⃒ (3)  

3.3. City classifications and the role of related specializations 

To analyze patent trends and differences across LURs, we applied 
correspondence analysis (Sanders, 1989), that allows to simplify vari
ability and identify similarities across observations. Applied on temporal 
data, it allows to cluster the LURs’ trajectories (Pumain et al., 2015). 
LURs are grouped into different clusters according to similarities in the 
trajectories of their absolute patents scores in EV, battery, smart grid, 
and combustion engine technologies patents. Correspondence analysis 
allows to appreciate the extent to which each group of cities produce 
inventions in a specific technology or a combination of them. City 
groups are also used to account for average specialization paths by group 
and technology. 

After classifying cities, we constructed two regression models to es
timate the effect of specialization in battery, smart grid, or combustion 
engine on specialization in EVs. We included data for 175 urban regions 
(LURs) across four ten-year periods, for a total of 700 observations. We 
removed LURs with a score of 0 in all technologies, and we added 1 to 
technology scores to avoid issues when calculating logarithms, ending 
up with a total of 655 observations (Table 2). We added patent counts to 
control for the effect of big LURs’ diverse environments and sheer 

patenting size. 
Then, we fit the following model using OLS: 

log
(
Nt,r,EV + 1

)
=αt + βBA,tlog

(
Nt,r,BA + 1

)
+ βSG,tlog

(
Nt,r,SG + 1

)

+ βICE,tlog
(
Nt,r,ICE + 1

)
+ βDiv,tlog(Diversityt,r)

+ βt,r,ALLlog
(
Nt,r,ALL

)
+ εt,r

(4) 

For the second model, we use a quasi-Poisson specification, to con
trol for possible heteroskedasticity in the OLS model (Santos Silva & 
Tenreyro, 2006). Thus, we have: 

E
[
Nt,r,EV

]
=exp

(
At + βBA,tlog

(
Nt,r,BA + 1

)
+ βSG,tlog

(
Nt,r,SG + 1

)

+ βICE,tlog
(
Nt,r,ICE + 1

)
+ βDiv,tlog(Diversityt,r)

+ βt,r,ALLlog
(
Nt,r,ALL

) )
(5)  

where Nt,r,EV ,Nt,r,BA,Nt,r,SG,Nt,r,ICE,Nt,r,ALL are the number of patents in 
EV, battery, smart grid, combustion engine and total patents produced 
by each LUR at each time period t. 

Furthermore, we estimated a second model in which we calculated 
the effect of battery, smart grid and ICE patents at period t, on EV 
specialization at period t + 1. We fitted a logistic regression to estimate 
the probability of a certain LUR to specialize (entry model) or lose its 
specialization (exit model) in EV in period t + 1 given its patent scores in 
battery and smart grid in period t. We added again LURs’ diversity and 
size in terms of patents. The entry model writes: 

log

(
P
(
RTAEV,(t+1) > 1|RTAEV,t ≤ 1

)

1 − P
(
RTAEV,(t+1) > 1|RTAEV,t ≤ 1

)

)

= αt + βBA,tlog
(
Nt,r,BA + 1

)

+ βSG,tlog
(
Nt,r,SG + 1

)
+ βICE,tlog

(
Nt,r,ICE + 1

)
+ βDiv,tlog(Diversityt,r)

+ βt,r,ALLlog
(
Nt,r,ALL

)
+ εt,r

(6) 

The exit model writes: 

log

(
P
(
RTAEV,(t+1) ≤ 1|RTAEV,t > 1

)

1 − P
(
RTAEV,(t+1) ≤ 1|RTAEV,t > 1

)

)

= − αt − βBA,tlog
(
Nt,r,BA + 1

)

− βSG,tlog
(
Nt,r,SG + 1

)
− βICE,tlog

(
Nt,r,ICE + 1

)
− βDiv,tlog(Diversityt,r)

− βt,r,ALLlog
(
Nt,r,ALL

)
− εt,r

(7) 

We adopt the sign convention in Eq. (7) to have a consistent way of 
interpreting the sign of the coefficients across the different equations. 
Using this convention, positive coefficients in (7) are associated with a 
higher probability for LURs to preserve their specialization in EV. By 
estimating the contemporaneous and the lagged models, we can make 
sense of two dynamics: models 4 and 5 show simultaneous technological 
coevolution, as the effects of related specializations operate within each 
10-year period. Instead, models 6 and 7 show path dependence, or the 
effect of previous specializations on subsequent EV specialization. By 
combining them we can have insights about coevolution in different 
periods and as a path-dependent process. 

Table 1 
Patent locations in Large Urban Regions (LURs), (1980–2020).   

NUTS (EUþEFTA) USA Japan South Korea China India Hong Kong Taiwan Total 

Total patents 
(EPO + WIPO) 

2,297,426 1,680,753 1,033,510 251,283 413,028 66,271 12,763 35,066 5,790,100 

Patents matched to LURs 2,256,249 1,646,715 1,014,356 250,187 410,660 65,284 12,763 35,066 5,691,280 
% Of patents matched to LURs 98.2 98.0 98.1 99.6 99.4 98.5 100 100 98.3 
Distinct LURs 329 113 29 9 31 28 1 1 541  

Table 2 
Summary statistics for regression models.  

Statistic N Mean St. Dev. Min Max 

EV score  655 50.6 209  1 3791 
Battery score  655 146.6 611.4  1 10,930 
Smart grid score  655 21.7 67.3  1 1222 
ICE score  655 43.3 113.4  1 1678 
Diversity  655 196.0 59.2  5 381 
Tot. patents LUR  655 18,895.144 44,487.2  7 748,291  
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4. Results 

4.1. The evolution of technological and geographical relatedness to EVs 

The first question we asked was to what extent technological 
complementarity between EV, smart grid, battery, and ICE was accom
panied by geographical coevolution. We examine here relatedness to 
EVs, and we assess the evolution of both measures separately, before 
comparing their dynamics. 

4.1.1. Technological relatedness 
Fig. 2 shows the evolution of technological relatedness in the past 

four decades through the ego-networks3 constructed around EV tech
nology within the whole space of all technologies. The red-encircled 
nodes represent the four studied technologies, while the colors inside 
the nodes indicate the general patent sections to which codes belong. 
Nodes’ sizes are proportional to the share of a code on total patents, 
while link size denotes the intensity of technological relatedness. 

This figure shows that the relative weight of machine and engine- 
related patents drops constantly in time, as smaller node sizes indicate 
a decreasing proportion on total patents. Besides, this group of codes is 
becoming increasingly peripheral, as shown by weaker tie strength and 
fewer connections to sections other than the F one (machines, engines). 
Conversely, battery and smart grid codes become connected to many 
other technology codes from the B (transporting vehicles), H (electric 
elements) and G (measuring/digital data). The growing importance of 
these sections, particularly the electric elements and digital technologies 
ones, is apparent in the growing number of different codes and their size 
in terms of patents.4 In the evolution of this knowledge space, it is 
interesting to note the role of recharge technologies.5 This category of 
technologies is very related to smart grid and battery since the first 
periods, and in the last period it becomes the most related technology to 
EVs. Recharge technologies arguably play a strategic role of interfaces 
that enable complementarities between technologies and infrastructure 
(electric grid, local energy generation, batteries, appliances). 

4.1.2. Geographical relatedness 
Fig. 3 shows the evolution of the EV ego-network for geographic 

relatedness, or the extent to which two technologies appear in the same 
cities.6 Smart grid patents are absent from this graph because they are 
not enough related to EV, and battery patents appear only in the third 
period. Contrary to Fig. 2, we don’t see a clear growth of the G 
(measuring/digital data) and H (electric elements) sections, but they are 
stable or decreasing in time (particularly the former). Engine and 
machine-related patents of the F section increase in relative importance 
(size) and connections, instead of declining as in Fig. 2. Overall, 
geographical relatedness is more evenly distributed than technological 

one, so that tie strength is more homogeneous than the technological 
relatedness. Also, the network of geographical relatedness is more stable 
because the technological capabilities that are located in some large 
urban regions in the activities of inventors and their applicant firms, 
have a certain degree of geographical stickiness and inertia. Considering 
this, the presence of engine-related patents until the final period sug
gests that the LURs where motor-related patents are invented are also 
the places where EV-related inventions are created. 

4.1.3. Does geographical relatedness reflect technological one? 
We can now combine the evolution of technological and geographic 

relatedness for 152 technology codes that are the most related to EVs 
(Fig. 4). Codes have been clustered into five groups that display similar 
trends, using a k-means algorithm, to provide a clearer visualization, 
and Table 3 summarizes their composition and main technology codes. 
Then, we compared the average relatedness to EVs of these five groups 
of technologies with that of battery, smart grid, and combustion engine 
technologies. 

While clusters 1, 2 and 3 feature very diverse patent codes and 
technologies, the most related clusters to EV technology are 4 and 5. 
Cluster 4 includes codes that have to do with electricity distribution/ 
recharge, and cluster 5 comprises technologies related to vehicle pro
pulsion/assembly. Smart grid and battery patents are among the most 
related technologies to EVs, both in technological and geographical 
terms, and this trend increases in time. Most other patent codes are 
much less related to EVs, particularly technologically, and only patents 
in groups 4 and 5 score equally high. On the other hand, combustion 
engine patents become less related to EVs technologically, but more 
related geographically. 

The trajectory of battery and smart grid patents is coherent with our 
coevolutionary hypothesis that increased technological proximity might 
be reflected by growing colocation. In contrast, combustion engine 
technologies become increasingly co-located with EVs despite their 
decreasing technological relatedness, and this could be explained by 
path dependence: traditional automotive producers are mostly respon
sible for innovating in ICE, but they also participate more and more in 
EV innovation so even though patent documents show decreasing 
proximity between EV and ICE, they continue to be invented in the same 
urban regions. 

To sum up, the evolution of technological relatedness to EVs has 
indicated that combustion engine technologies have lost importance 
while electric and digital technologies have taken center stage, partic
ularly those related to recharge. The comparison of technological and 
geographical relatedness has nuanced this by showing that ICE patents 
are less related technologically but more co-located with EV ones. We 
can answer the first research question saying that for battery and smart 
grid, growing complementarity is accompanied by coevolution, but not 
for ICE. This suggests that, despite a general common trend, dis
tinguishing these two forms of relatedness helps to disclose insightful 
exceptions. 

4.2. City specialization clusters: technological trajectories and spatial 
proximities 

After providing a general context on relatedness dynamics, we now 
want to know if the analysis of patent locations can suggest the existence 
of different coevolution patterns across groups of cities. We performed a 
correspondence analysis on cities according to their specialization in the 
four technologies during the four periods. It yielded four groups of cities 
according to their relative proximity to each technology in time. Based 
on this, we could map the trajectories with respect to the four technol
ogies in Fig. 5, one for each city — LUR (gray arrows) and the average 
trajectory by group (colored arrows). Red triangles show the position of 
the four technologies, or the average of cities’ specialization during the 
whole period. Thus, the proximity of each group trajectory to the red 
triangles indicates how much their patent output is specialized in the 

3 The ego-networks for technological relatedness are built by selecting from 
the whole knowledge space, the top 25 % most (technologically) related tech
nologies to EVs, and the links between them. For the sake of clarity, only links 
involving EV, battery, smart grid or ICE codes have been included.  

4 A general description of patent codes and their rankings in terms of node 
size (code counts on total counts) can be found in the supplementary material, 
for both technological and geographic relatedness.  

5 This code is H02J and is defined as: “Circuit arrangements or systems for 
supplying or distributing electric power” (EPO, 2022).  

6 The ego-networks for geographic relatedness are built by selecting the top 5 
% most geographically related codes to EV. Unlikely technological relatedness, 
geographical one is much more evenly distributed. Therefore, we had to pro
ceed to an extra filtering: we used the top 5 % most related codes to select links 
that contained them in the whole network. For each code, we selected the top 5 
% of their most related links. Finally, we select from the resulting network only 
the ego-network of EV patents, which includes the connections of EV and their 
links. Only links to EV, battery, smart grid, or combustion engine codes have 
been included. 
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four technologies under study. 
Cities’ trajectories show a generalized distancing from internal 

combustion patents, towards EV, battery, and smart grid ones. Groups 1 
and 2 are close to battery inventions and group 3 to smart grid ones, 
while group 4 is the closest to ICE patents. This figure permits to visu
alize the overall patent trajectories of city clusters and to situate them 
with respect to technologies. Before analyzing the composition of these 
cities’ groups more in detail in Table 4, we can already announce their 
general characteristics: cluster 1 is composed of emerging innovation 
hubs, most of them located in Asian countries. Cluster 2 includes major 
global cities, while cluster 3 reunites several leaders in new technolo
gies. Finally, cluster 4 contains established automotive cities. We now 
analyze the specialization patterns of these groups of cities more in 
detail. 

In Fig. 6 we see the evolution of group specialization in EV, battery, 
smart grid, and ICE. While we used absolute patent scores in our four 
technologies to build Fig. 5, here we use RTA scores. Thus, these tra
jectories are relativized according not only to the four technology groups 
of patents, but to the overall patents’ production of each city (averaged 
by cluster) and by global patent outputs for each technology (see Eq. 2). 
The most specialized groups in EV are numbers 1 and 4. However, group 
1 displays a dramatic growth of specialization in time, while the latter 
remains stable. About ICE specialization, cities in group 4 are the only 
ones to be set on an increasing path while all others decrease. Besides, 
cities in group 1 are rather specialized in battery and smart grid, while 
those in group 4 are not, and they do not grow in these technologies. 
Group 3 appears particularly specialized in smart grid, while group 2 
mostly shows an unspecialized dynamic across technologies. 

Table 4 shows the most relevant cities, in terms of patent numbers, 
for each cluster. Group 1 features several Asian cities, some of which 

experienced strong economic growth in recent decades (Shenzhen, 
Shanghai, Taipei). Apart from Tokyo, all of them including to some 
extent European cities such as Brussels and Grenoble, can be considered 
as emerging innovation hubs. Conversely, cities in group 4 such as Paris, 
Nagoya, Stuttgart, or Detroit are established automotive centers. This 
suggests that automotive cities have a significant specialization in EVs 
because of their experience in traditional automotive production, and 
this is confirmed by the fact that their specialization in ICE patents 
grows more than that in EVs. Conversely, cities in cluster 1 are not at all 
specialized in ICE, their specialization in EVs is growing and this dy
namic is accompanied by growth in the related sectors of battery and 
smart grid. Cities in cluster 2 are major global centers that do not display 
significant specialization trends, while cities in cluster 3 are techno
logical leaders such as S. Francisco, S. Diego, Seattle or Dallas and their 
increasing specialization in smart grid is matched by growing EV 
specialization in the most recent period. 

Accordingly, we answer the second question by saying that EV 
coevolution is most likely in emerging innovation hub cities of cluster 1 
that, despite not having a strong automotive heritage, are those where 
the related technologies of battery and smart grid are growing the most. 
Automotive cities are likely to retain their innovative capabilities for 
some time, but the fact that their specialization in related technologies is 
stagnating puts their capability to maintain an innovative edge into 
question. Global and unspecialized urban areas such as New York or 
Frankfurt are not expected to be significant coevolutionary milieus, but 
rather global platforms in support of technological diversity and finan
cial networking. Finally, technological leaders such as San Francisco 
could become important hubs of EV innovation and coevolution, but 
that will depend on the relative importance of digital technologies in 
general, and smart grid ones in particular, to EV innovation. 

Fig. 2. the evolution of technological relatedness to EVs.  
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Fig. 3. the evolution of geographical relatedness to EVs (1980–2020).  

Fig. 4. The evolution of technological and geographic relatedness to EVs (1980–2020).  
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4.3. The effect of related technologies on EV patenting 

The third question asked if being inventive in battery, smart grid or 
ICE impacted EV invention, and whether path dependence played a role 
in this. To answer, we show the results of multiple regressions where we 
consider the effect of battery, smart grid, and internal combustion en
gine patenting on EV invention. We add a measure of the total number of 
inventions and a measure of diversity, to account for the role of large 
cities and of possessing diversified innovative capabilities. The models 
show the results of multiple cross-sectional regressions calculated for 
every time period. The first model is a simple OLS regression, while the 
second one uses a quasi-Poisson distribution which provides an 
heteroskedasticity-robust fitting (Santos Silva & Tenreyro, 2006). 

Results indicate that:  

• In the PPML model, coefficients for each period are significant and 
increasing, starting from period 2 (1990–1999), and show a trend of 
increasing specialization in EVs in time. 

• Battery patents are significant and increasing across periods, sug
gesting increased coevolution between battery and EV technologies.  

• Smart grid patents are important in periods 1 and 2 (1980–1999), 
their effect decreases in period 3 (2000–2009) before recovering in 
period 4 (2010–2020). This suggests that smart grid played a role in 
the first generations of EV patenting and that this role is again 
important in recent years.  

• The effect of ICE patents is increasing until period 3 (2000–2009) for 
both models, before decreasing its effect in period 4 (2010–2020). 
This suggests that specializing in combustion engine technologies is 
important to EV patenting, but that its effect is decreasing. 

Table 3 
Size of technology clusters and their main technologies.  

Cluster Number of 
codes 

Main technologies  

1  32 Vehicles, railway, aircraft, domestic cleaning.  

2  42 
Digital data, transmission of information, medical 
preparations.  

3  64 
Semiconductor devices, measuring variables, vehicle 
components.  

4  8 Distributing electric power, dynamos, converters.  

5  2 Mounting propulsion units in vehicles. Control of 
vehicle subunits.  

Fig. 5. the trajectories of city clusters with respect to technologies (1980–2020).  

Table 4 
Most patenting cities (LURs) by cluster.  

Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Tokyo Osaka S. Francisco Paris 
Seoul New York S. Diego Nagoya 
Shenzhen Boston Eindhoven Stuttgart 
Guangzhou Frankfurt Nuremberg Munich 
Shanghai Los Angeles Seattle London 
Cincinnati Philadelphia Basel Chicago 
Taipei Houston Washington Düsseldorf 
Brussels Milano Berlin Zurich 
Grenoble Copenhagen Dallas Detroit 
Münster Geneva Helsinki Stockholm 
N ¼ 39 N ¼ 40 N ¼ 43 N ¼ 53  
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• Diversity appears to have no effect on EV patents.  
• LUR size is not significant. Only in period 3 for the PPML model, it 

has a significant negative effect on EV patents. 

4.3.1. Acquiring or losing EV specialization: an exploration 
After estimating the effect of related specializations on EV within 

each period, we explore the effect of patenting in battery, smart grid, or 
ICE in period t, on developing a specialization in EV in period t + 1. 
Thus, we keep only three time periods because we check for effects of 
independent variables on subsequent periods. We then fit a logit and 
probit model for each period, and we do this exercise for entry 
(acquiring a specialization that is new to the region) and exit (losing a 
specialization that was once present). For entry and exit, the dependent 
variable is 0 when regions do not develop EV specialization or lose it 
respectively. It is 1, when regions become specialized in EV, or they 
maintain EV specialization respectively. 

The results of the entry model suggest that ICE patents have a posi
tive effect on developing a specialization in EV, for the first two periods, 
while in the third period this is no longer the case. On the other hand, 
battery patents are not significant, while smart grid ones have a signif
icant and negative effect in the second period. Contrary to the previous 
models, diversity appears to have a positive effect on developing a 
specialization in EVs, and this effect grows in the latest period. Inter
estingly, this effect appears unrelated to city size, because the overall 
patent output affects EV specialization negatively, especially in the last 
period. 

For the exit models, we find that ICE patenting across periods has a 
positive effect on retaining an existing specialization in EV. In the last 
period, however, this effect decreases. This could mean that as EV 

innovation became more diffused and important, LURs with automotive 
competences were finding it easier to retain it. Some form of path 
dependence could provide an advantage in EV patenting to automotive 
regions, but the coefficient declines in the last period, which suggests 
that in the future this might not be the case anymore.7 

To answer the third research question, we can say that the quanti
tative models support our coevolutionary hypothesis by showing that 
battery, smart grid, and combustion engine patents have a strong effect 
on EV patent scores, when they are considered within the same 10-year 
periods. However, when the effects of patenting in these technologies 
are assessed on the development of EV specializations in the following 
10 years, we found no role for battery and a negative role for smart grid. 
Instead, we found that diversity played an increasingly relevant role in 
the emergence of EV technology. Besides, being specialized in ICE pat
ents can help to develop a new EV specialization or not to lose an 
existing one, even though the effect is decreasing in the last period. 

5. Discussion: increased EV coevolution, but not everywhere 

This article set out to explore to what extent growing technological 
complementarities during transitions are linked to geographical colo
cation. We found that battery and smart grid patents are some of the 
technologies that are most related to EVs, while ICE and machine- 
related patents decreased their importance. However, EV patents are 
increasingly co-located with ICE inventions, despite being less related 
technologically. These discrepancies between measures can disclose 
significant insights and contribute to the debate on different relatedness 
indicators and their application (Farinha et al., 2019). 

When analyzing city groups, we found that the experience of urban 
inventors and firms in ICE technologies, is an important factor in 

Fig. 6. The evolution of specializations of city clusters by technology.  

7 This result should be interpreted with caution given the small number of 
observations for the exit model, compared to the entry one, resulting from the 
limited number of EV-specialized regions. 
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producing EV patents, but only for traditional automotive cities that 
were already specialized in both ICE and EV patents. In fact, cities that 
have recently acquired a specialization in EV patents have done so while 
increasing or stabilizing their smart grid and battery specializations and 
decreasing ICE one. This leads to question whether automotive firms 
will be capable of retaining their leadership on EV inventions, or if firms 
with competences in digital technologies, electronics or other sectors 
will become the main innovators in EVs, relegating automakers to a role 
of assemblers (Alochet et al., 2022; Ferloni, 2022). 

The econometric analysis has shown that battery, smart grid, and EV 

patents are increasingly found in the same urban regions at the same 
time. However, battery and smart grid patents do not appear to support 
the development of a new EV specialization, or the conservation of an 
existing one, but this effect might become more apparent in the future, 
as coevolutionary interactions among these technologies become 
stronger. ICE patents have a relevant effect on EV ones, but this effect 
decreases in the most recent period. Finally, the economic diversity of 
cities has a significant positive effect in promoting EV specialization, 
particularly in the last period. Results suggest that coevolutionary in
teractions around EV technology are increasingly likely, but more 
research is needed to identify them in detail. 

These findings contribute to economic geography in several ways. 
First, they suggest that relatedness changes in time, so debates on 
regional diversification and smart specialization should be framed 
within an evolutionary perspective. Second, technological relatedness 
and colocation are not the same thing: we need to further refine our tools 
for measuring these two kinds of relatedness. Third, by focusing on 
transitions, economic geographers can conceptually distinguish groups 
of related innovations according to the processes of socio-technical 
change in which they are bundled up together. This means embracing 
geographical path interdependence (MacKinnon et al., 2019) and 
considering not only the emergence of a main technology of interest, in 
our case Electric Vehicles, but also those that could be coevolving with 
it. If we had focused only on EV patent scores, we would have found 
mainly that traditional automotive cities retain a key role. Instead, we 
could highlight another group of emerging urban regions that experi
enced a rapid growth in EV patents and smart grid, but which also 
specialized in batteries, while at the same time abandoning ICE 
inventions. 

This research also contributes to transition studies. First, by con
firming that we need more research on the geography of socio-technical 
change: even though the EV transition has a global reach and impact, it 
is a selective process that involves specific technologies and emerges 
differently across cities. Regional economies can experience path 
dependence, path creation, or path destruction: today, the competences 
of incumbent actors — in our case automotive producers — appear 
crucial to support transitions, but their dependence on ICE technologies 
might slow down the growth of battery and electric technologies in 
traditional motor regions. Conversely, regions that are less dependent on 
an automotive heritage might be freer to create the kind of disruptive 
innovations that might be at the core of the EV transition or even of a 
post-automobile paradigm. Second, but related to the previous point, 
transitions also imply path destruction, or the phasing out of entire 
sectors that sustain some regional economies: this can have heavy social 
consequences, heighten competition between territories and fuel 
discontent (Rodríguez-Pose & Bartalucci, 2023). A multi-sectoral 
perspective can help address these issues by allowing to trace the 
relatedness potential between incumbent and emergent sectors across 
value chains (Andersen & Gulbrandsen, 2020). Showing how these 
complementarities are organized in space would add much explanatory 
power, and it could be achieved with a more systematic engagement 
with economic geographic insights. Third, this paper illustrates the in
terest of a mixed methodological stance combining explorative and 
quantitative methods. Transition studies could take advantage of formal 
modeling approaches (Papachristos, 2014), and economic geographers 
might engage more in appreciative studies. We believe that our meth
odological proposal centered around networks is a step in this direction. 

This research is not exempt from limitations. First, we identified 
some representative patent codes, but several others could be used to 
delimit each technology more in detail. Second, we have used patent 
data to infer coevolution at an aggregate level, but we could not trace 
specific interactions between agents. Future research may study in
terdependencies of innovative actors at the micro level to confirm our 
findings. Third, we only addressed the phase of invention, but coevo
lution takes place also in production and diffusion, with feedbacks 
across these phases. The analysis of coevolution could be widened to 

Table 5 
Ordinary Least Squared and Poisson Pseudo Maximum Likelihood models for 
estimating the effects of the independent variables on EV patent scores of cities 
(1980–2020).  

Dependent variable: EV patent scores 

Independent Variables OLS PPML 

Intercept — period 1 (1980–1989)  -0.054  -0.33667   
(0.493)  (0.84518) 

Intercept — period 2 (1990–1999)  -1.202  -2.34812*   
(0.778)  (1.34857) 

Intercept — period 3 (2000–2009)  -1.444  0.454422***   

(1.157)  (1.67489) 
Intercept — period 4 (2010–2020)  -1.840  2.34922*   

(1.678)  (1.38330) 

Battery scores (1980–1989)  0.131** 

(0.066)  
0.15885** 

(0.07452) 
Battery scores (1990–1999)  0.225***  0.25127***   

(0.067)  (0.09914) 

Battery scores (2000–2009)  
0.306*** 

(0.064)  
0.63961*** 

(0.08054) 

Battery scores (2010–2020)  0.413*** 

(0.071)  
0.47060*** 

(0.05397) 
Smart Grid scores (1980–1989)  0.285***  0.23965***   

(0.097)  (0.08841) 
Smart Grid scores (1990–1999)  0.253***  0.22877**   

(0.090)  (0.09914) 
Smart Grid scores (2000–2009)  0.055  0.18594**   

(0.070)  (0.08852) 
Smart Grid scores (2010–2020)  0.188** 

(0.081)  
0.20542**   

(0.08045) 
ICE scores (1980–1989)  0.238***  0.39600***   

(0.069)  (0.07241) 
ICE scores (1990–1999)  0.361*** 

(0.064)  
0.44124***   

(0.06816) 
ICE scores (2000–2009)  0.366*** 

(0.057)  
0.67242***   

(0.05986) 
ICE scores (2010–2020)  0.328***  0.45228***   

(0.059)  (0.04568) 
Diversity (1980–1989)  -0.179  -0.16161   

(0.163)  (0.17832) 
Diversity (1990–1999)  0.265  0.30469   

(0.166)  (0.20155) 
Diversity (2000–2009)  0.058  -0.32794   

(0.173)  (0.23951) 
Diversity (2010–2020)  0.326  -0.14750   

(0.200)  (0.16455) 
Tot. patents (1980–1989)  0.097  0.08838   

(0.099)  (0.10663) 
Tot. patents (1990–1999)  -0.044  0.04682   

(0.088)  (0.11538) 
Tot. patents (2000–2009)  0.144  -0.53518***   

(0.097)  (0.13276) 
Tot. patents (2010–2020)  0.049  -0.18198   

(0.133)  (0.11261) 
R2  0.851   
Adj. R2  0.845   
Observations  655  655 

Standard Errors in parentheses (robust estimation for PPML model) 
All dependent variables are log-transformed. 
The independent variable is also log-transformed in the OLS model. 

* p < 0.1; 
** p < 0.05; 
*** p < 0.01 
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other phases and account for these interactions. Fourth, we only studied 
technology, but the social, institutional, organizational dimensions are 
key to the EV transition: future research could use our coevolutionary 
framework to investigate how socio-technical change impacts them. 
Fifth, this research could also be expanded by studying inter-urban in
teractions to account for distant networking. Finally, a full-scale 
replacement of conventional cars is still far. New developments — e. 
g., the hydrogen car, or new battery technologies — might radically 
change technological equilibria, which would require considering 
different sectors and coevolutionary relations altogether. 

6. Conclusion 

As environmental and social challenges become urgent, scholars 
have called for a critical approach to innovation focusing on trans
formative change or on “challenge-oriented innovation systems” (Schot 
& Steinmueller, 2018; Tödtling et al., 2022). This means that we should 
increasingly focus on innovation as a trigger of socio-technical trans
formations beyond its role as engine of economic growth. We identify 
three frontiers of transformative research that a coevolutionary 
approach could help investigate, and we elaborate on the policy 
implications. 

First, a coevolutionary approach can help identifying how specific 
green technologies interact. Economic geographers are bringing 

evidence on the drivers of green innovation (Perruchas et al., 2020; 
Losacker et al., 2022). However, these contributions have largely “green 
boxed” very diverse technologies, juxtaposing them to non-green ones. 
Recent studies are shedding light on the interplay between green and 
brown innovations (Barbieri et al., 2022), but a coevolutionary 
approach could help do justice to the complexity of contemporary 
transitions and to specify which technologies interact around new 
multisectoral domains of application. 

Second, and related to the previous point: coevolution can help 
frame regional diversification opportunities beyond the green/non- 
green dichotomy. The green transition will likely have a negative 
impact on less developed or peripheral regions, and on those where 
“dirty” sectors are dominant (Rodríguez-Pose & Bartalucci, 2023). Yet 
some parts of “dirty” value chains might be related to emerging sectors 
(Andersen & Gulbrandsen, 2020). Besides, peripheral regions might 
realize large jumps in development by acquiring competences in 
emerging sectors for which localized support structures are not yet 
present (Gong et al., 2023). Social networks, political interests, cultural 
or institutional factors could all contribute to leapfrogging, and a 
coevolutionary framework is well positioned to include them into the 
analysis. 

Third, coevolution can help investigate the role of multi-scalar 
configurations into the analysis. In economic geography, the role of 
extra-regional linkages in diversification has received limited treatment 

Table 6 
Logit and probit models for estimating the effect of independent variables, in period t, on entry or exit of cities in or from EV specialization in period t + 1 (1980–2020). 
Coefficients in each period influence entry or exit in the following one. All dependent variables are log-transformed.   

Dependent variable: entry in or exit from EV specialization (binary)  

Logit Probit  

Period 1 (1980–1989) Period 2 
(1990–1999) 

Period 3 (2000–2009) Period 1 
(1980–1989) 

Period 2 
(1990–1999) 

Period 3 
(2000–2009) 

Entry Models 

(Intercept) 
-7.585* 
(4.450) 

-1477 
(2.794) 

-3.181 
(5.409) 

-4.097* 
(2.290) 

-1.022 
(1.553) 

-1.489 
(2.940) 

Battery 0.476 0.490 0.396 0.286 0.243 0.216  
(0.305) (0.393) (0.340) (0.177) (0.210) (0.183) 

Smart grid -0.038 -1.094* 0.391 -0.031 -0.657* 0.192  
(0.469) (0.616) (0.359) (0.275) (0.340) (0.197) 

ICE 0.586* 0.864** 0.164 0.352* 0.445** 0.073  
(0.316) (0.374) (0.325) (0.183) (0.205) (0.181) 

Diversity 1.929** 0.773 2.239** 1.074** 0.409 1.118**  
(0.981) (1.006) (1.086) (0.531) (0.537) (0.557) 

All patents -0.716 -0.819 -1.422*** -0.431* -0.400 -0.741**  
(0.439) (0.531) (0.547) (0.250) (0.281) (0.292) 

AIC 112.719 88.375 116.601 112.892 88.514 116.969 
BIC 128.410 104.299 134.033 128.583 104.438 134.400 
Log Likelihood -50,359 -38.188 -52.300 -50.446 -38.257 -52.484 
Deviance 100.719 76.375 104.601 100.892 76.514 104.969 
Num. obs. 101 105 135 101 105 135 
Exit Models 

(Intercept) 
8.882 
(7.202) 

-0.289 
(7.449) 

9.757 
(10.195) 

5.447 
(4.039) 

-0.681 
(4.099) 

5.609 
(5.908) 

Battery -0.341 -0.456 0.954 -0.223 -0.293 0.577 
(0.384) (0.518) (0.736) (0.233) (0.296) (0.425) 

Smart grid 
0.491 -0.304 -0.105 0.313 -0.136 -0.028 
(0.495) (0.518) (0.554) (0.297) (0.302) (0.323) 

ICE 
0.895* 2.179*** 1.581*** 0.552** 1.238*** 0.938*** 

(0.458) (0.720) (0.555) (0.273) (0.372) (0.302) 

Diversity 
-1.548 0.857 -0.106 -0.956 0.552 0.042 
(1.467) (1.360) (2.207) (0.852) (0.762) (1.257) 

All patents -0.311 -1.128 -1.873 -0.185 -0.616 -1.164* 
(0.735) (0.798) (1.168) (0.444) (0.437) (0.661) 

AIC 65.159 64.758 45.872 65.008 64.864 45.611 
BIC 75.999 76.802 55.853 75.848 76.908 55.592 
Log Likelihood -26.579 -26.379 -16.936 -26.504 -26.432 -16.485 
Deviance 53.159 52.758 33.872 53.008 52.864 33.611 
Num. obs. 45 55 39 45 55 39  

*** p < 0.01; 
** p < 0.05; 
* p < 0.1 
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(Balland & Boschma, 2021). Transition scholars have found that 
external knowledge sources can help anchor unrelated activities in 
developing regions (Binz & Anadon, 2018) and are increasingly studying 
multi-scalar innovation networks (Miörner & Binz, 2021). A coevolu
tionary approach can help include not only institutional and 
socio-technical factors but also to conceptualize multi-sectoral in
teractions across geographical scales. 

Finally, our results can allow to propose some general policy in
dications about innovation and regional diversification. Smart special
ization policies should become more attentive to the challenges and 
opportunities provided by transitions. Related diversification is a rele
vant starting point, but socio-technical change might enable new multi- 
sectoral complementarities. Incumbent sectors are likely to remain 
influential for some time, especially in capital-intensive industries such 
as automotive, but emerging technologies are increasingly crucial. Local 
institutions should therefore maintain a strategic and proactive attitude, 
not only to support the most related sectors today, but to nurture and 
explore more unrelated capabilities for tomorrow. In times of climate 
urgency and uncertainty, we need more studies to understand coevo
lution across the energy, digital, and mobility sectors, to promote public 
debates and better-informed regional innovation policies. 
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(2015). Identifying trends in battery technologies with regard to electric mobility: 
Evidence from patenting activities along and across the battery value chain. Journal 
of Cleaner Production, 87(January), 800–810. https://doi.org/10.1016/j. 
jclepro.2014.10.034 

Gong, Huiwen, & Hassink, Robert (2018). Co-evolution in contemporary economic 
geography: Towards a theoretical framework. Regional Studies, 53(9), 1344–1355. 
https://doi.org/10.1080/00343404.2018.1494824 

Gong, Huiwen, Yu, Zhen, Binz, Christian, & Truffer, Bernhard (2023). Beating the casino: 
Conceptualizing an anchoring-based third route to regional development. Economic 
Geography, (December), 1–31. https://doi.org/10.1080/00130095.2023.2276474 

Griliches, Zvi (1990). Patent Statistics as Economic Indicators: A Survey (p. w3301). 
Cambridge, MA: National Bureau of Economic Research,. https://doi.org/10.3386/ 
w3301 

Hall, Peter, & Pain, Kathy (2009). The Polycentric Metropolis: Learning from Mega-City 
Regions in Europe. Paperback ed. London; Sterling, VA: Earthscan,.  

Hidalgo, C.ésar A., Balland, Pierre-Alexandre, Boschma, Ron, Delgado, Mercedes, 
Feldman, Maryann, Frenken, Koen, Glaeser, Edward, et al. (2018). The Principle of 
Relatedness. In Alfredo J. Morales, Carlos Gershenson, Dan Braha, Ali A. Minai, & 
Yaneer Bar-Yam (Eds.), Unifying Themes in Complex Systems IX, Springer Proceedings in 
Complexity (pp. 451–457). Cham: Springer International Publishing. https://doi.org/ 
10.1007/978-3-319-96661-8_46.  

Jaffe, Adam B. (1986). Technological opportunity and spillovers of R & D: Evidence from 
firms’ patents, profits, and market value. The American Economic Review, 76(5), 
984–1001. 

Juhász, S.ándor, Broekel, Tom, & Boschma, Ron (2021). Explaining the dynamics of 
relatedness: The role of co-location and complexity. Papers in Regional Science, 100 
(1), 3–21. https://doi.org/10.1111/pirs.12567 

Kauffman, Stuart, & Macready, William (1995). Technological evolution and adaptive 
organizations: Ideas from biology may find applications in economics. Complexity, 1 
(2), 26–43. https://doi.org/10.1002/cplx.6130010208 

Kogler, Dieter F., Rigby, David L., & Tucker, Isaac (2013). Mapping knowledge space and 
technological relatedness in US cities. European Planning Studies, 21(9), 1374–1391. 
https://doi.org/10.1080/09654313.2012.755832 
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Maraut, Stéphane, H.élène Dernis, Colin Webb, Vincenzo Spiezia, and Dominique 
Guellec. 2008. “THE OECD REGPAT DATABASE: A PRESENTATION,” 36. 

Markard, Jochen (2018). The next phase of the energy transition and its implications for 
research and policy. Nature Energy, 3(8), 628–633. https://doi.org/10.1038/s41560- 
018-0171-7 

Markard, Jochen, & Hoffmann, Volker H. (2016). Analysis of complementarities: 
Framework and examples from the energy transition. Technological Forecasting and 
Social Change, 111(October), 63–75. https://doi.org/10.1016/j. 
techfore.2016.06.008 

Miörner, Johan, & Binz, Christian (2021). Towards a multi-scalar perspective on 
transition trajectories. Environmental Innovation and Societal Transitions, 40 
(September), 172–188. https://doi.org/10.1016/j.eist.2021.06.004 

Mirzadeh Phirouzabadi, Amir, Savage, David, Blackmore, Karen, & Juniper, James 
(2020). The evolution of dynamic interactions between the knowledge development 
of powertrain systems. Transport Policy, 93(July), 1–16. https://doi.org/10.1016/j. 
tranpol.2020.04.018 

Murmann, Johann Peter. 2013. “The Coevolution of Industries and Important Features of 
Their Environments.” 2013. https://doi.org/10.4337/9781849807630.00024. 

OECD. 2009. OECD Patent Statistics Manual. OECD. https://doi.org/10.1787/9789264 
056442-en. 

OECD. 2022. “REGPAT database, August 2022″. 
Papachristos, George (2014). Towards multi-system sociotechnical transitions: Why 

simulate. Technology Analysis & Strategic Management, 26(9), 1037–1055. https:// 
doi.org/10.1080/09537325.2014.944148 

Papachristos, George, Sofianos, Aristotelis, & Adamides, Emmanuel (2013). System 
interactions in socio-technical transitions: Extending the multi-level perspective. 
Environmental Innovation and Societal Transitions, 7(June), 53–69. https://doi.org/ 
10.1016/j.eist.2013.03.002 

Perruchas, François, Consoli, Davide, & Barbieri, Nicolò (2020). Specialisation, 
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