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Abstract
Motivation: Large-scale clinical proteomics datasets of infectious pathogens, combined with antimicrobial resistance outcomes, have recently
opened the door for machine learning models which aim to improve clinical treatment by predicting resistance early. However, existing predic-
tion frameworks typically train a separate model for each antimicrobial and species in order to predict a pathogen’s resistance outcome, resulting
in missed opportunities for chemical knowledge transfer and generalizability.

Results: We demonstrate the effectiveness of multimodal learning over proteomic and chemical features by exploring two clinically relevant
tasks for our proposed deep learning models: drug recommendation and generalized resistance prediction. By adopting this multi-view represen-
tation of the pathogenic samples and leveraging the scale of the available datasets, our models outperformed the previous single-drug and
single-species predictive models by statistically significant margins. We extensively validated the multi-drug setting, highlighting the challenges
in generalizing beyond the training data distribution, and quantitatively demonstrate how suitable representations of antimicrobial drugs
constitute a crucial tool in the development of clinically relevant predictive models.

Availability and implementation: The code used to produce the results presented in this article is available at https://github.com/
BorgwardtLab/MultimodalAMR.

1 Introduction

Antimicrobial resistance (AMR) poses a significant threat to
human health worldwide. Based on recently published predic-
tive statistical models, an estimated 4.95 million (3.62–6.57)
deaths were associated with bacterial AMR in 2019, includ-
ing 1.27 million (95% UI 0.911–1.71) deaths attributable to
bacterial AMR (Murray et al. 2022). Effective prevention
strategies are urgently needed to stall AMR emergence and
dissemination.

With a detailed understanding of the potential resistance
mechanisms of the pathogen, clinicians can select specific anti-
microbials with a higher chance of success. In this regard,
disk-diffusion and microdilution antibiograms are still the
references for determining AMR (Benkova et al. 2020). While
effective, these approaches are too cumbersome and time-

consuming to enable the rapid selection of an adequate tar-
geted antimicrobial treatment (Barlam et al. 2016, Arena
et al. 2017, Feucherolles et al. 2022).

The emergence of matrix-assisted laser desorption/ioniza-
tion time-of-flight mass spectrometry (MALDI-TOF MS)
provides a fast and cost-effective method for analysing bacte-
rial strains. This technology is predominantly used as an ana-
lytical tool to identify and understand the structure of
unknown biomolecules (Bookstaver et al. 2017, Mangioni
et al. 2019, Han et al. 2021), and it has been used as an
AMR detection tool in the clinic (De Carolis et al. 2014).
However, the usefulness of MALDI-TOF as a data source for
machine learning (ML) AMR detection has only recently gar-
nered interest in research (Weis et al. 2020, Goodswen et al.
2021, Kim et al. 2022). These studies have mainly focussed
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on creating models for specific combinations of antimicro-
bials and pathogens.

Many state-of-the-art (SOTA) tools such as CARD-RGI
(Jia et al. 2016), AMRFinder (Feldgarden et al. 2019), and
SARGFAM (Yin et al. 2018) use variants of alignment-based
methods like BLAST (Altschul et al. 1990). More recently,
deep learning-based techniques have shown SOTA perfor-
mance. Using similarity features to compare the query se-
quence to existing antimicrobial resistance gene (ARG)
databases, DeepARG (Arango-Argoty et al. 2018) was devel-
oped by building on a multi-layer perceptron model. Li et al.
(2021) proposed a multitask deep learning framework called
HMD-ARG that first predicts whether the input sequence is
an ARG and then predicts the resistant antimicrobial family,
resistance mechanism, and gene mobility. Many published
studies used pathogens such as Staphylococcus aureus and the
b-lactam antimicrobial family (Sogawa et al. 2017, Wang
et al. 2018, Tang et al. 2019). Other relevant clinical patho-
gens, such as quinolones and macrolides, were studied in
Sabença et al. (2020) and Sousa et al. (2020). Feucherolles
et al. (2022) show that MALDI-TOF MS combined with ML
provides a useful tool for AMR screening in the case of
Campylobacter coli and C.jejuni.

In 2022, Weis et al. (2022) developed a large (over 700 000
resistance labels and 300 000 MALDI-TOF spectra)
‘Database of Resistance Information on Antimicrobials and
MALDI-TOF Mass Spectra (DRIAMS)’ and utilized ML
models to predict the resistance of significant pathogens like
S.aureus, Escherichia coli, and Klebsiella pneumoniae. The
study concluded that focussing on predicting resistance for
specific species–drug pairs improved classifier accuracy, likely
due to the complexity of resistance mechanisms.

Drug recommendation is another ML application that has
been gaining significant interest, particularly in cancer re-
search. Various solutions have emerged, including the
Kernelized Bayesian Multi-Task Learning (Gönen and
Margolin 2014), which learns the relationships between dif-
ferent drugs during training. This algorithm, along with ran-
dom forest, was the best-performing approach in a challenge-
based competition on a breast cancer dataset (Costello et al.
2014). Another promising approach is Kernelized Rank
Learning (He et al. 2018), which focusses on providing a
ranked list of drugs instead of exact sensitivity values and was
specifically designed to handle sparse training datasets. Along
these lines, recommendation models could assist in

maintaining or enhancing infection coverage rates while
employing fewer broad-spectrum antimicrobials than current
practices (Corbin et al. 2022).

Although previous works show promising results, the cur-
rent SOTA AMR prediction methods based on proteomics do
not integrate multiple relevant data sources, such as the chem-
ical composition of antimicrobials alongside MALDI-TOF
spectra obtained from pathogenic samples. Instead, a separate
model is trained for each antimicrobial and pathogen species
combination, limiting the potential for knowledge transfer,
generalizability to new drugs, and deciphering the underlying
resistance mechanisms. Developing such general-purpose
models could enhance patient care in a robust and highly
adaptable way.

To address this problem, our work focusses on incorporat-
ing chemical data into AMR prediction using mass spectrome-
try pathogen profiles (Fig. 1). This learning framework has
been successfully applied in predicting cell line response to
cancer drugs, with some models proving successful (Chiu
et al. 2019, Baptista et al. 2021). We propose several predic-
tion and evaluation settings for AMR where chemical infor-
mation can be utilized and demonstrate increased prediction
performance and generalizability compared to single-drug
models. Furthermore, we define direct drug recommendation
models to predict drugs with a high chance of sensitivity or re-
sistance for unseen spectra and thoroughly evaluate their fea-
sibility and performance.

2 Materials and methods

Using the DRIAMS dataset (Section 2.1.1) and molecular fin-
gerprinting (Section 2.1.2), we explore two major prediction
settings which leverage chemical information: drug recom-
mendation (Section 2.2) and resistance prediction (Section
2.3). Through these settings, we test whether chemical infor-
mation can be used to improve resistance prediction SOTA
and propose new model development avenues. These work-
flows are illustrated in Fig. 1.

2.1 Dataset
2.1.1 MALDI-TOF mass spectra dataset
This study utilized the publicly accessible DRIAMS dataset
(Weis et al. 2021), a comprehensive resource comprising
MALDI-TOF mass spectra obtained from hospital patients
across four Swiss diagnostic labs during the period spanning

Figure 1. Description of antimicrobial resistance prediction tasks. The dataset consists of MALDI-TOF mass spectra for bacterial samples of hospital

patients treated for infection. For each sample, a set of compounds is annotated as inducing a sensitive or resistant outcome in the bacterial sample (left

panel). From this data, we construct two new tasks extending the previous setting (middle panel) where each compound gives rise to a single binary

classification task of resistance versus sensitivity for a given spectrum s. In this work, we introduce two tasks (right panel), which are to ‘predict

resistance’ given a drug–spectrum pair and to ‘recommend’ antimicrobials for a given observed spectrum.
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2016–2018. The dataset encompasses 303 195 mass spectra
and 768 300 AMR labels, covering 803 different bacterial
and fungal pathogen species. The dataset has been meticu-
lously organized into four distinct subcollections, each repre-
senting different hospital sites. Each data point contains a
mass spectrum from a patient sample, complemented by
annotations denoting its susceptibility or resistance to as
many as 71 antimicrobials. In our analysis, we harnessed the
6000D binned mass spectra vector representation, aligning
with the methodology proposed by Weis et al. (2022).

2.1.2 Chemical feature extraction
Molecular fingerprinting (Willett et al. 1998, Bajorath 2001)
is a popular method for encoding chemical information into
numerical features for ML models. It represents a molecule as
a series of bits that encode the presence or absence of certain
substructures. This technique captures important information
about the molecular structure, including topological, physio-
chemical, and structural properties. The use of molecular fin-
gerprints is prevalent in chemical informatics and drug discov-
ery and has been shown to be effective in many applications
(David et al. 2020).

We tested three standard techniques, namely the Molecular
ACCess Systems keys fingerprints (MACCS) (Durant et al.
2002) (166-bit keyset), the PubChem Fingerprints
(PubChemFP) (Wang et al. 2017) (881-bit long keys), and the
1024 bits long Morgan fingerprints (Morgan 1965). We
obtained the fingerprints for the antimicrobial drugs in the
DRIAMS dataset using RDKit (Landrum et al. 2022), and
PubChemPy (Swain 2014), two open-source Python pack-
ages. Certain treatments present in the dataset consist of mix-
tures of compounds; since it is impossible to associate a
fingerprint representation in such cases, they have been ex-
cluded from our analysis.

2.2 Drug recommendation

We first examine the interaction between clinical proteomics
and chemical features through the task of drug recommenda-
tion. In the ‘recommendation’ setting, a model directly sug-
gests a set or a ranking of potentially suitable drugs for a
query spectrum. To perform this search, we test various ex-
plicit and learned functions of spectrum and chemical similar-
ity for each query spectrum, returning n recommendations.

We evaluate the effectiveness of five personalized treatment
recommendation methods focussing on the impact of incorpo-
rating various levels of information into the drug ranking pro-
cess, including the pathogen species, spectra, and drug
features:

1) Random baseline: randomly select k samples from the
training set for a query sample and return the drugs that
most frequently elicited a sensitive reading among the k
samples.

2) Baseline species: randomly select k samples from the
training set which correspond to the same pathogen spe-
cies as the query and again return the drug which most
frequently results as effective.

3) Spectrum similarity: given a similarity function between
spectra, select the k most similar spectra to the query.
We test multiple measures of similarity between spectra,
namely cosine similarity, correlation, Euclidean,
Manhattan, and Wasserstein distances.

4) Siamese networks: learn joint embeddings of the drugs
and spectra and use logistic regression (LR) on the
embeddings to rank drugs for recommendations based
on the resulting probabilities.
Siamese networks (Chicco 2021) contain two identical
subnetworks with shared weights and work in tandem
on two input vectors composed of the MALDI-TOF mass
spectra and the chemical fingerprints to minimize the dif-
ference between the actual and predicted similarity be-
tween pairs of observations (Supplementary Fig. S1a).

5) ResMLP: train a classification Multi-Layer Perceptron
with Residual Skip-Connections (Szegedy et al. 2017)
network to predict the probability of resistance for drug–
spectrum pairs. Each drug is then ranked according to
the predicted resistance likelihood. This model uses skip-
connections that provide a path for data to reach deeper
layers in the network by skipping some layers
(Supplementary Fig. S1b), generally improving the train-
ing procedure. To account for the different number of
features in the MALDI-TOF mass spectrum and the
chemical fingerprint, the model first projects each to the
same dimension before concatenating the two vector rep-
resentations and using them as input for the feed-
forward network.

We test multiple values of k 2 f1; . . . 100g and study their
impact on performance to determine the optimal threshold.
Then, we use majority voting: among the drugs with known
response values for the test sample, we recommend the drug
that results most often sensitive across the chosen k samples.
If multiple drugs have the highest occurrence, we select all as
recommended treatments. If there are no common drugs be-
tween the drugs tested for a specific sample in the test and the
drugs we recommend, then we do not compute the
performance.

2.2.1 Evaluation
The test set consists of a random selection of 20% of the sam-
ples and all associated tested drugs to ensure that all observa-
tions related to a spectrum are in the same set. Additionally,
we impose a constraint that each spectrum in the testing set
must be associated with at least one resistant and one sensitive
outcome.

We conduct our recommendation analyses on the
DRIAMS-B dataset, with the training set containing 1907
samples and the test set containing 477 samples, and report
multiple measures to evaluate the performance of each ap-
proach derived from the literature on information retrieval,
namely Precision P, Precision at cutoff n P@n, and the mean
Average Precision at cutoff n mAP@n (additional details in
the Supplementary Material).

2.3 Generalized AMR prediction

In the resistance prediction task, each observation corre-
sponds to a biological sample and a drug to which it was ex-
posed. The aim is to associate with each sample–drug pair an
outcome that estimates the likelihood of the sample being re-
sistant to the drug.

The task can be formalized as learning a mapping
f : X � C ! ½0;1�, where X is the space of bacterial samples
and C is the space of chemical compounds. Each instance is
represented by the measured MALDI-TOF spectrum, while
the chosen molecular fingerprints represent the antimicrobial
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drugs. With this formalism, we model the output f ðxi; cjÞ as
the probability that the sample corresponding to the mass
spectrum xi is resistant to the antimicrobial drug represented
by cj. This formalism generalizes the original prediction set-
ting introduced in Weis et al. (2022), which learns one predic-
tor for each compound and only uses the spectrum as input.

We compared three ML-based approaches to model the re-
sistance prediction function:

1) Baseline: principal component analysis (PCA) with LR.
As the dimensions of the mass spectra and the chemical
fingerprints are of different scales, applying PCA projects
them to lower and comparable dimensions while pre-
serving 95% of the variance of the original variables.
These embeddings were then concatenated and used as
input for the LR model.

2) Siamese networks: similarly to the drug recommendation
case, we use the learnt joint representations from the
Siamese networks as input to LR to yield the resistance
predictions.

3) ResMLP: train a classification ResMLP to predict the
probability of resistance (we use the same configuration
as the recommendation task; see Section 2.2).

We designed three data splits to reflect different data-
generating processes to examine the prediction capabilities of
the previously described ML models.

1) Random split: the observations in each DRIAMS dataset
are randomly sampled to create training, validation, and
test sets with a partitioning of 70%, 10%, and 20%, re-
spectively. This data split corresponds to the i.i.d. setting,
where all the sets are drawn from the same joint
distribution.

2) Species-drug zero-shot split: the test set contains novel
‘pairs’ of species and drugs. Given the finite size of the
datasets, we used a heuristic to randomly select species–
drug combinations that account for approximately 20%
of the data and ensured that the species s and the drug d
are not present in any observations of the training set.
The remaining data are randomly split into training and
validation sets that contain approximately 70% and
10% of the dataset, respectively.

3) Drug zero-shot split: we hold out as a test set all the
observations corresponding to the target drug d and test
how accurate the predicted resistances are for a com-
pound that the model has never seen in training.

We report three standard classification metrics for imbal-
anced data: area under the precision-recall curve (AUPRC),
balanced accuracy, and Matthews Correlation Coefficient
(MCC). To analyse the importance of chemical features in the
AMR prediction task, we employed SHAP (Lundberg and Lee
2017), a framework rooted in game theory that is among the
most popular post hoc interpretation methodologies (addi-
tional details in the Supplementary Material).

3 Results

In this section, we ask whether (i) the drug recommendation
setting using DRIAMS contains useful and nontrivial

spectrum–drug associations (Sections 3.1 and 3.2) and (ii)
whether generalized AMR prediction models are able to use
chemical information to significantly outperform SOTA
single-drug models (Sections 3.3, 3.4, and 3.5).

3.1 Model-free approaches offer strong baselines

for recommending AMR drugs

We first analyse the use of three model-free recommendation
approaches to select drugs suitable for treating clinical
patients (Section 2.2). The ‘random baseline’, ‘baseline spe-
cies’, and ‘spectrum similarity’ methodologies rely on similari-
ties between a test sample and samples from the training set.
In these set-ups, we select the top-k similar samples and rec-
ommend the drugs that result as effective most often in the se-
lected set.

For all three methods, the test precision quickly increases
up to 15 � k � 30, then stabilizing or showing small
changes (Fig. 2a). Therefore, selecting a high k is preferred
over including only a few samples. Based on these results, in
the following analyses, we used k ¼ 30.

The performance based on the ‘random baseline’ set-up is
the lowest among the three methods. This indicates that the
other two methods incorporate additional information be-
yond recommending drugs based on the highest occurrence
across samples. The ‘spectrum similarity’ approach led to
comparable performance to the ‘baseline species’ method,
suggesting that spectra similarity is insufficient to capture sig-
nificant additional information compared to the species. In
the ‘baseline species’, the performance is only computed when
more than k available samples correspond to the same species
in the training set. This could introduce a bias when k
increases if the number of species in the training set is not ran-
dom but can be accounted for by external variables or proper-
ties. For instance, the performance could be deflated if the
drug sensitivity is more homogeneous for species that only ap-
pear a few times in the dataset.

We evaluated the effect of increasing the number of top
similar samples on the number of recommended drugs.
Indeed, if multiple drugs have the same highest occurrence
across the top-similar samples, it leads to the recommendation
of several drugs. We found that as the number of samples
used for the majority vote increases, the likelihood of obtain-
ing a ranking with no similar occurrence also increases
(Supplementary Fig. S11a). The ‘baseline species’ set-up
resulted in the highest number of recommendations (ranging
from 12 drugs with k ¼ 1 to 2 drugs with k ¼ 100) while the
‘random baseline’ set-up had the lowest number of recom-
mendations (ranging from six drugs with k ¼ 1 to one drug
with k ¼ 100).

3.2 Beyond sensitivity: the challenge of targeting

resistance in drug recommendation systems

After examining the model-free baselines, we tested their per-
formance against the Siamese network and ResMLP models
by producing ranked recommendations. The recommenda-
tions targeted both sensitivity and resistance. They were eval-
uated with precision at cutoff n and the mean average
precision at cutoff n. In this context, sensitivity and resistance
refer to the pathogen’s response to the effects of a drug, either
by being susceptible to its therapeutic action or by having
mechanisms to withstand its impact.
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Figure 2b illustrates the precision at cut-offs 1–5 for both
sensitivity and resistance. For the ‘baseline species’ set-up, we
also consider the additional option of setting k to the maxi-
mum number of samples available in the training set that cor-
respond to the same species that the sample investigated in the
testing set (baseline species option 2). With this approach, k
changes from one test sample to another. In the sensitivity rec-
ommendation setting, the performance of the ‘random base-
line’ is again the lowest, with the other methods yielding
comparable performance. The ‘spectrum similarity’ approach
already achieves a very high mean precision (0.97).

Overall, integrating drug fingerprints in the models pro-
duced results similar to those from the baseline species
approaches for the recommendation task. A limitation of the
approaches based on the top-k neighbours (including the
‘baseline species’ set-up) is that we cannot evaluate the preci-
sion for drugs not tested in the top-k neighbours. The preci-
sion decreases when the drug cut-off increases for all methods
in the resistance setting. This is likely due to the low numbers
of drugs to which samples in the testing set are resistant (3.2
on average versus 12.3 for sensitivity).

In general, the precision at cut-offs 1–5 of the drug sensitiv-
ity recommendation (dashed lines) is overall higher than the
corresponding precision for the drug resistance recommenda-
tion. However, this could be due to the metric used to evalu-
ate the recommendation system. Indeed, the resistance
precision at cut-off n may decrease due to the test sample be-
ing resistant to very few drugs.

To address this, we also evaluated the truncated version of
precision at cut-off n (Supplementary Fig. S12), confirming
that resistance is more challenging than sensitivity as a recom-
mendation target.

Finally, we determined the mean average precision at cutoff
n, which considers not only the number of correct predictions
but also the associated ranking (Fig. 2c). For the identification
of the sensitivity, the ‘random baseline’ and the ‘random base-
line option 1’ still lead to the lowest performance. The other
methods give very close results. However, for the

identification of the resistance, from cutoff n ¼ 2, the
‘ResMLP’ model performs better than all the other
approaches. Hence, while most approaches are able to recom-
mend a sufficient number of sensitive drugs, the ‘ResMLP’
model demonstrates greater consistency in identifying the
most resistant drugs, leading to the highest mAP@n overall.
This result highlights the value of using the ‘ResMLP’ model
and, more generally, the inclusion of the drug chemical fea-
tures in the resistance prediction task. Overall, Fig. 2b and c
and Supplementary Fig. S12 show that precise drug recom-
mendation offers promising opportunities but also highlights
the complexity of the task. These analyses motivate further re-
search on the methodological developments of MALDI-TOF
mass spectra and drug molecular fingerprinting for antimicro-
bial recommendation.

3.3 Joint modelling of chemical and proteomics

information outperforms single-species single-drug

classifiers

To evaluate the effectiveness of joint multimodal learning, we
compared our deep learning model to the more restricted ML-
based approaches proposed in Weis et al. (2022), where a sin-
gle model is trained for each drug/species combination.

We selected the same drug–species combinations described
in the article and adopted a 5-fold validation scheme to esti-
mate the test performance using AUROC and AUPRC as met-
rics. For each combination, the corresponding samples are
held out from the DRIAMS A set and split into 5 folds. A
ResMLP is trained on all the remaining DRIAMS A samples,
using the same configuration adopted for the resistance pre-
diction experiments 3.4, to obtain a pretrained network.
Finally, for each of the five test splits, the remaining four splits
for the target combination are used to fine-tune the model for
a further 20 epochs with a reduced learning rate before out-
putting the predictions for the test fold.

This procedure involves a considerably larger amount of
data than the models from Weis et al. (2022), which were
trained using only samples for the target combination. The

Figure 2. (a) Recommendation performance from the top-k similar samples, with 95% confidence intervals: the top-kmost similar samples to the new

observation are selected. Drugs are ranked according to the number of similar samples sensitive to the drugs. The drug that exhibits the highest

frequency of sensitivity is identified. If multiple drugs show comparable sensitivity properties across similar samples, we include them all. The precision

obtained from these drugs for the new sample is reported. Three approaches to assess the similarity between samples are compared: ‘random’,

‘Baseline Species Option 1’, and ‘Spectrum Similarity’ (details in Section 2.2). Precision (b) and mean average precision (c) at multiple cut-offs n across all

samples in the test set for the different recommendation methods. For the ‘random baseline’, ‘baseline species’, and ‘spectrum similarity option 1’

approaches, the number of top neighbours k is set to 30. In the ‘spectrum similarity option 2’ set-up, k is the maximum number of samples available in

the training set that correspond to the same species that the sample investigated in the testing set. The dashed lines in (b) and (c) represent

recommendations that aim to assign high ranks to drugs to which the sample is sensitive, while the continuous lines aim to rank the drugs to which the

sample is resistant.
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results in Fig. 3 highlight how our multi-drug model signifi-
cantly outperforms the baseline models on most prediction
tasks.

Over the 12 drug–species pairings featured in Weis et al.,
ResMLP attains an average increase in AUROC of
þ0:12ðSD ¼ 0:09Þ and AUPRC of þ0:25ðSD ¼ 0:18Þ when
compared to the LightGBM baseline and comparable results
against the MLP baseline (þ0:12ðSD ¼ 0:08Þ and
þ0:24ðSD ¼ 0:18Þ, respectively). A Wilcoxon signed-rank
test between the metrics for the ResMLP model and the base-
lines yields P-values of .003 (LightGBM) and 0.001 (MLP)
for the AUROC comparison and values 0.002 (LightGBM)
and 0.001 (MLP) for the AUPRC comparison. With a thresh-
old of 0.05, the improvements brought by the ResMLP model
result as statistically significant, even after adjusting for multi-
ple hypothesis testing with the Bonferroni correction.

Overall, the performance displayed by large-scale deep
learning models on AMR datasets offers exciting opportuni-
ties to leverage the information in the MALDI-TOF spectra,
paving the way for future potential applications in a clinical
setting. Moreover, it is important to emphasize that whereas
we compare against a classical ML method in this case, we
use the best available model from Weis et al. (2022), which
tested MLP architectures as well. This highlights the benefits

of multimodal learning over a larger dataset rather than mere
architectural advantages from a larger network. Moreover,
we note that previous SOTA results, which we have outper-
formed, had already demonstrated improvements in retro-
spective clinical analysis, suggesting these generalized models
could have a significant real-world impact.

3.4 Deep learning enables accurate predictions of

AMR in the i.i.d. setting

The performance of AMR prediction models can vary signifi-
cantly depending on the data-generating process of the target
prediction task.

We performed a set of experiments to analyse the predictive
performance of our models in the three data splits described
in Section 2. The ‘random’, ‘species-drug zero-shot’, and
‘drugs zero-shot’ splits correspond to the i.i.d. setting, the gen-
eralization to novel species–drug combination, and the gener-
alization to new drugs, respectively.

The best results obtained by each model, shown in Table 1
for the dataset DRIAMS B and in Supplementary Table S2 for
all collection sites, reveal several interesting aspects of the
AMR resistance prediction task. The i.i.d. setting of the ‘ran-
dom split’ allows the models to produce the best possible

Figure 3. Comparison with the best-performing model from the SOTA reported in Weis et al. (2022) for the drug–species combinations for the ResMLP

model shows the largest improvements. The full set of ROC and PR curves and the reproduction of Fig. 2 from Weis et al. (2022) using our model can be

found in the Supplementary Material.
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results, while the out-of-distribution splits pose a considerable
challenge for obtaining accurate predictions.

The ResMLP model outperformed the other approaches in
several prediction settings by significant margins. This model
represents the largest of the methods tested, with �8:9M
trainable parameters in the final configuration adopted, and
required a much higher computational cost with training that
included up to several hundred epochs of optimization (with a
certain amount of variability due to the use of early stopping).
This result suggests that the AMR prediction task benefits
from using large-scale deep learning models, whose success is
predicated on collecting large quantities of data.

The ‘species-drug zero-shot’ split leads to a noticeable deg-
radation in performance for all models except the ablation ex-
periment ‘Sp-ResMLP’, suggesting that training the model on
data that captures the interaction between specific pathogenic
samples and antimicrobial drugs is crucial to leverage the in-
formation contained in the MALDI-TOF spectra.

The ‘drug zero-shot’ prediction task was a difficult chal-
lenge for all models, as indicated by the large SDs in the mea-
sured metrics (Table 1).

The high variability in performance can be attributed in
part to the heterogeneous test splits for this task. Unlike the
other two test settings, where the overall class balance from
the dataset can be maintained with stratified splits, the class
imbalance in the test set can vary significantly depending on
the held-out target drug (see Supplementary Fig. S6).
Additionally, we speculated that the test performance for a
held-out drug could depend on its similarity to the remaining
compounds in the training set. However, further analysis in
this direction failed to reveal any such correlation (see
Supplementary Fig. S11).

The full set of plots showcasing the test AUPRC in the drug
zero-shot split is available in Supplementary Fig. S8.

3.5 Ablation experiments and feature importance

show the value of combining MALDI-TOF spectra

with chemical features

We evaluated various configurations and design options for
each model. These included early integration of the MALDI-

TOF and chemical fingerprint, dimensionality reduction with
a single PCA projection, and the use of different chemical fin-
gerprints and classifiers for the PCA and Siamese methods.
However, none of these design choices yielded results that sur-
passed those of the deep learning-based ResMLP model.

To determine the value added by the MALDI-TOF spectra
in predicting AMR compared to considering only the species
of the bacterial samples, we trained a ResMLP model by
replacing the input of the MALDI-TOF spectra with a simple
1-hot encoding of the species. The results, as shown in
Table 1 under the label ‘Sp-ResMLP’, indicated a significant
decline in performance in most test scenarios.

During our experimentation, we tested the use of different
molecular fingerprinting methods. The use of feature impor-
tance analysis revealed the value of using chemical finger-
printing methods. However, no specific fingerprint class
emerged as consistently superior to the others (Supplementary
Table S3 and Fig. S7). Where it is not otherwise specified, we
made use of the 1024D Morgan fingerprints (also known as
ECFP4), which we chose since it is one of the most popular
molecular representations used for small molecule screening,
which has demonstrated robust performance in several tasks.

Finally, we utilized SHAP values (Lundberg and Lee 2017)
to quantify the contributions of the sets of spectral and chemi-
cal features for AMR in a ResMLP model trained using the
MACCS chemical fingerprints. Analysing the feature impor-
tance grouped by data type (Supplementary Fig. S9) and the
most important features (Supplementary Fig. S10) showed
that both the spectrum and the fingerprint features played an
important role in the final prediction, corroborating our de-
sign choices.

Mapping back the highlighted features to the input
MACCS fingerprints uncovered intriguing patterns related to
well-known AMR mechanisms (Leclercq 2002, Worthington
and Melander 2013, Garneau-Tsodikova and Labby 2016).
Specifically, our findings demonstrated that for beta-lactam
antimicrobials, the beta-lactam ring was a critical feature, es-
pecially in penicillins. The top features of aminoglycoside
antimicrobials included amine or alcohol groups from sugar
rings. Chloramphenicol and macrolide antimicrobials also
displayed significant chemical features that align with known
resistance mechanisms. These insights may inform the design
of novel antimicrobials with improved resistance profiles. A
visual representation of these findings can be seen in Fig. 4,
where antimicrobial structures are displayed with highlighted
atoms corresponding to the discussed chemical features.

4 Discussion

This study explored the integration of chemical and proteo-
mics data to predict AMR outcomes. By employing deep
learning models, we examined the benefits of combining pa-
tient MALDI-TOF mass spectra with chemical fingerprints,
which can be collected in a time-sensitive manner, making it
highly relevant for various clinical applications. Our results
indicate that combining information from multiple drugs and
species outperforms existing methods and demonstrates the
potential of transferring chemical knowledge to improve
AMR predictions. Moreover, we showed the generalizability
of our approach by incorporating drug information and eval-
uating its effectiveness on unseen compounds.

The use of deep learning in AMR prediction is not new. In
contrast to other methods that require genetic sequencing

Table 1. Direct AMR prediction results with multi-drug models on the

DRIAMS B dataset.a

Split type Model Cross-validation performance
score—mean (SD)

AUPRC Bal. accuracy MCC

Random PCAþLR 0.64 (0.02) 0.705 (0.007) 0.51 (0.02)
SiameseþLR 0.49 (0.01) 0.76 (0.01) 0.53 (0.02)
Sp-ResMLP 0.35 (0.04) 0.59 (0.03) 0.21 (0.05)
ResMLP 0.87 (0.02) 0.90 (0.01) 0.79 (0.02)

Species-drug
zero-shot

PCAþLR 0.44 (0.04) 0.63 (0.02) 0.30 (0.04)
SiameseþLR 0.42 (0.01) 0.664 (0.004) 0.40 (0.01)
Sp-ResMLP 0.52 (0.04) 0.62 (0.02) 0.30 (0.04)
ResMLP 0.54 (0.04) 0.70 (0.02) 0.39 (0.03)

Drug zero-shot PCAþLR 0.33 (0.25) 0.57 (0.12) 0.12 (0.16)
SiameseþLR 0.18 (0.16) 0.52 (0.05) 0.08 (0.14)
Sp-ResMLP 0.17 (0.16) 0.50 (0.12) 0.01 (0.17)
ResMLP 0.47 (0.31) 0.71 (0.15) 0.35 (0.28)

a The average metrics are reported together with their SD that is
obtained by repeating the analysis over multiple randomization seeds for the
‘Random’ and ‘Species-drug zero-shot’ splits, and for each held-out drug in
the ‘Drug zero-shot split’. In bold, we highlighted the best metric across
models for a specific split.
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(Arango-Argoty et al. 2018), we rely on publicly available in-
formation on drug structure and mass spectrometry data,
which is already a routine for species identification, preceding
cell culture to identify the best antimicrobial treatment (Weis
et al. 2022). We expect that this work will offer new insights
to the AMR community in the direction of unifying knowl-
edge and eventually deciphering the relationship between
pathogen composition and chemical features of treatments.

Exploring further the idea of reasoning over chemical space
for AMR prediction, we proposed recommendation systems
that can robustly predict drugs with a high chance of sensitiv-
ity or resistance for unseen spectra. By reducing the applica-
tion of generic, nonspecific medications in most cases, ML
models could also help prevent antimicrobial overuse.

Proteomics and genomics have both been used in AMR pre-
diction (Yoon and Jeong 2021, Feucherolles et al. 2022, Kim
et al. 2022, Ren et al. 2022). Proteomics, notably MALDI-
TOF MS, offers a rapid and cost-effective diagnostic method
for infectious diseases in clinical settings. It provides real-time
insights into organism responses to antibiotics and functional
information, aiding in tracking adaptive responses and dis-
covering resistance mechanisms. Genomics, on the other
hand, provides stable DNA data for consistent comparisons
and identifies intrinsic resistance mechanisms like gene muta-
tions. Molecular diagnostics like PCR swiftly detect resistance
genes, but often target single genes and lack comprehensive
insight into nongenetically mediated resistance mechanisms.

Although our primary focus is on the application of MLPs
in AMR prediction, there is also potential in multi-label classi-
fication approaches (Tsoumakas et al. 2010). For instance,
ensemble methods (Rokach et al. 2014) could offer a

promising avenue for further investigation. Moreover, the as-
tonishing progress in graph neural networks (GNNs)
(Bongini et al. 2023) makes it attractive to represent com-
pounds as attribute-rich networks, and representation learn-
ing attempts have already shown that these approaches can
successfully generate molecules with specific properties (Lee
and Min 2022). A follow-up in this direction could help in-
crease performance even further by representing drugs more
efficiently. As data collection efforts grow across multiple sites
worldwide, the prospect of training large-scale representation
learning models, akin to foundation models (Bommasani
et al. 2021), for AMR prediction appears increasingly attain-
able. Additionally, evaluating the cross-site generalizability of
our models is paramount to ensure the robustness and appli-
cability of our findings across diverse healthcare settings, ulti-
mately enhancing the potential impact of our research.

Nonetheless, our approach’s integration of previous
species-drug-specific models represents a strong advantage
over the previous SOTA. It constitutes a step towards building
technologies that can leverage as much information as possi-
ble from different relevant modalities. This advancement
holds the promise of significantly enhancing patient care
through more precise and adaptable predictive tools.
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