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Abstract
Genetic alterations of neurofibromatosis type 2 (NF2) gene lead to the development of schwannomas,
meningiomas, and ependymomas. Mutations of NF2 gene were also found in thyroid cancer,
mesothelioma, and melanoma, suggesting that it functions as a tumor suppressor in a wide spectrum
of cells. The product of NF2 gene is merlin (moesinezrin-radixin-like protein), a member of the Band
4.1 superfamily proteins. Merlin shares significant sequence homology with the ERM (Ezrin-
Radixin-Moesin) family proteins and serves as a linker between transmembrane proteins and the
actin-cytoskeleton. Merlin is a multifunctional protein and involved in integrating and regulating the
extracellular cues and intracellular signaling pathways that control cell fate, shape, proliferation,
survival, and motility. Recent studies showed that merlin regulates the cell-cell and cell-matrix
adhesions and functions of the cell surface adhesion/extracellular matrix receptors including CD44
and that merlin and CD44 antagonize each other's function and work upstream of the mammalian
Hippo signaling pathway. Furthermore, merlin plays important roles in stabilizing the contact
inhibition of proliferation and in regulating activities of several receptor tyrosine kinases.
Accumulating data also suggested an emerging role of merlin as a negative regulator of growth and
progression of several non-NF2 associated cancer types. Together, these recent advances have
improved our basic understanding about merlin function, its regulation, and the major signaling
pathways regulated by merlin and provided the foundation for future translation of these findings
into the clinic for patients bearing the cancers in which merlin function and/or its downstream
signaling pathways are impaired or altered.
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INTRODUCTION
Merlin is the product of neurofibromatosis type 2 (NF2) gene and a member of the Band 4.1
superfamily proteins. It serves as a linker between transmembrane proteins and the actin-
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cytoskeleton. Mutations and deletions of merlin cause NF2, which is characterized by the
development of schwannomas, meningiomas, and ependymomas. Mutations of the NF2 gene
have also been found in other cancers, suggesting that merlin regulates a variety of cancer
types. Increasing amount of evidence indicated that merlin regulates the functions and activities
of cell surface receptor tyrosine kinases (RTKs) and adhesion/extracellular matrix (ECM)
receptors and serves as a key regulator of several important signaling pathways that regulate
cell motility, proliferation, and survival. These important discoveries and recent advances are
summarized in the following sections.

MERLIN ACTS AS A TUMOR SUPPRESSOR IN THE NF2 ASSOCIATED
TUMORS AND MERLIN MUTANTS PROMOTE TUMORIGENESIS

Neurofibromatosis type 2 (NF2) familial cancer syndrome is a dominantly inherited autosomal
disease characterized by the development of NF2-associated tumors including schwannomas,
meningiomas and ependymomas in the central and peripheral nervous system [1-9]. The
NF2 gene is located on human chromosome 22q12 [10] and alterations of the gene have been
detected in the germline of NF2 patients and in sporadic NF2-associated tumors [11]. It has
been well established that mutations and deletions of the NF2 gene lead to development of
NF2-associated tumors and that loss of heterozygosity (LOH) of the gene is associated with
sporadic schwannomas, ependymomas, and meningiomas [12-14]. The NF2 gene mutations
have also been found in thyroid cancer, mesotheliomas, and melanoma albeit less frequently
[15]. The NF2 gene product is merlin (Moesin-Ezrin-Radixin Like Protein), also known as
schwannomin, which belongs to the Band 4.1 protein family [13,14] and shares significant
sequence homology with the ERM proteins, namely ezrin [16], radixin [17] and moesin [18]
Fig. (1). Merlin has a conserved tri-lobe NH2-terminal Four point one, Ezrin, Radixin, Moesin
(FERM) domain, a central alpha-helical region, and a COOH-terminal tail [19,20] Fig. (1).

Genetic analysis of NF2 patient samples demonstrated that deletions in the NH2-terminal
FERM domain of merlin occur frequently and are associated with early tumor onset and poor
prognosis [13,21,22]. Overexpression of several merlin mutants causes excessive proliferation
of Drosophila wing epithelial cells through interfering with activity of endogenous wild type
merlin [23]. In addition, loss of merlin is embryonic lethal both in mouse and fly, which implies
broad roles of merlin during key stages of embryonic development [24,25]. Furthermore, the
heterozygous merlin knockout mice (NF2+/-) develop metastatic osteosarcomas,
fibrosarcomas, and hepatocellular carcinomas. Nearly all of these tumors have lost their wild
type NF2 allele [26], suggesting that merlin may serve as a tumor suppressor in a wider
spectrum of cells and that loss of merlin function may play an important role in tumor growth
and progression.

MERLIN HAS CONSERVED STRUCTURE/DOMAIN ORGANIZATION AND ITS
FUNCTION IS REGULATED BY POSTTRANSLATIONAL MODIFICATION AND
PROTEOLYTIC CLEAVAGE

The NF2 gene consists of 17 exons [15]. There are at least 10 known isoforms of human merlin
and the two most common ones are isoform I and II, which differ at their COOH-terminal ends
with the segments, encoded either by exon 16 or 17, respectively [27-32] Fig. (1). Merlin
isoform I contains 595 amino acids whereas isoform II has 590 amino acids with estimated
molecular weights of approximately 65-70 kDa [20]. Similar to the ERM proteins, merlin has
conserved structure and domain organization [33], which consists of a tri-lobe globular NH2-
terminal FERM domain, a central alpha-helical region, and a charged hydrophilic COOH-
terminal tail [9,20,34]. Unlike the ERM proteins, however, merlin lacks the conventional
COOH-terminal actin-binding site but contains an unconventional actin-binding site in its
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NH2-terminus [35]. In addition, merlin can be linked to the actin-cytoskeleton through other
actin-binding proteins such as βII-spectrin or by forming heterodimers with the ERM proteins.

The highest sequence homology between merlin and the ERM proteins is in the conserved tri-
lobe FERM domain Fig. (1). Merlin and the ERM proteins interact with numerous membrane-
associated proteins through their NH2-terminal domains. Merlin can form homodimers with
each other and heterodimers with the ERM family proteins through head-to-tail intra- and inter-
molecular association, which regulates its function [20,34,36]. The conserved residues in the
NH2- and COOH-termini of merlin and the ERM proteins constitute NH2- and COOH-ERM
association domains (N- and C-ERMADs), respectively Fig. (1) which are responsible for
mediating the observed head-to-tail association. Functions of merlin and the ERM proteins are,
respectively, positively and negatively regulated by these intra- and inter-molecular
associations [37,38].

Head-to-tail self-association of merlin results in the “closed” conformation, which is required
for its tumor-suppressor activity [39]. Unlike isoform 1, merlin isoform 2 is believed to be
incapable of forming the head-to-tail association and therefore lacks the tumor suppressor
activity [39,40]. Phosphorylation of merlin at its COOH terminus especially at Ser518
abolishes the head-to-tail self-association and leads to an “open” conformation and loss of
tumor-suppressor activity [20,39,41] Fig. (1). Several kinases including p21-activated kinase
1 and 2 (PAK1/2) and cAMP-dependent protein kinase A (PKA) phosphorylate merlin at
Ser518 [41-46], which leads to the open inactive conformation. PAK1-4 are a group of serine/
threonine kinases that function immediately downstream of Rac [41,42]. Merlin inhibits PAK1
activity through a feedback loop by binding to its PBD domain (Rac/Cdc42 binding domain
of PAK), which results in inhibition of PAK1 recruitment to the focal adhesions [41]. Loss of
merlin results in increased PAK1 activity. In addition, a recent study indicated that erbin
(ERBB2 interacting protein) and merlin complexes bind and inactivate the GTPase-bound
PAK2 in epithelia [47]. Erbin is a PDZ protein that acts as an adaptor for the receptor tyrosine
kinase ERBB2/HER2 [48]. In addition to PAK1, AKT phosphorylates merlin at Thr230 and
Ser315, which promotes merlin degradation by proteasome [49]. Conversely, myosin
phosphatase MYPT1–PP1 dephosphorylates merlin at Ser518, which results in merlin
activation [50,51]. Merlin can also be cleaved by calpain, a calcium-dependent cysteine
protease, in schwannomas and meningomas [52], implying that merlin can be inactivated and
down-regulated by calpain-mediated proteolytic cleavage.

MERLIN INTERACTS WITH NUMEROUS TRANSMEMBRANE AND
INTRACELLULAR PROTEINS

Studies have shown that merlin [36,53] binds to numerous transmembrane and intracellular
proteins (for a thorough review see [9]) including the hyaluronic acid (HA) receptor, CD44
[35,54,55], integrin β1 [56], layilin [57], DCC [58], CD43 [59], FAT—a large protocadherin
[60], NHE-RF/EBP50 [61-65], Caspr/paranodin [66], paxillin [67,68], actin [69-71], N-WASP
[72], βII-spectrin [73], microtubules [74,75], EG1/magicin [76], SCHIP1 [77], MYPT-1-
PP1δ [50], RIβ PKA (RIβ subunit of protein kinase A) [78,79], PAK-1/2 [41], calpain [80],
HRS (hepatocyte growth factor-regulated tyrosine kinase substrate) [81], syntenin [82], PIKE-
L [83], Grb2 [84], NGB [85], RalGDS (Ral guanine nucleotide dissociation stimulator) [86],
RhoGDI [87], TRBP (transactivation-responsive RNA-binding protein) [88], eIF3c
(eukaryotic initiation factor subunit c) [89], and CRM1/β exportin [90] (Table 1). These merlin-
binding partners are likely play important roles in exerting the effects of merlin on the signaling
pathways mediated by RTKs, adhesion and extracellular matrix (ECM) receptors, PI3K/AKT/
mTOR, and small GTPases (Table 1).
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MERLIN REGULATES CELL MOTILITY AND INVASION
Like the ERM proteins, merlin serves as a linker between the plasma membrane and the actin
cytoskeleton and regulates cytoskeleton remodeling, cell motility, and cell proliferation in
response to the extracellular signals [91-96]. Accumulating evidence indicates that merlin plays
an essential role in regulating cell morphology and motility [97] and that loss of mer lin results
in dramatic ch anges in actincytoskeleton organization and cell adhesion [19]. Merlin and the
ERM proteins display a similar subcellular localization and they are localized predominantly
in the areas of dynamic cytoskeleton remodeling such as microspikes, membrane ruffles [19,
55,98,99], and the cellular structures that are critical for cell motility and invasion [37,100].
Tumors developed in the heterozygous NF2 knockout mice (NF2+/-) are highly motile and
display metastatic proclivity. Almost all schwannoma cells display disorganized stress fibers,
altered spreading, and increased membrane ruffling [101], which can be reversed by re-
expression of merlin [69]. Studies have shown that merlin inhibits actin assembly induced by
Arp2/3 and Rac [72,102]. Even though a recent study suggested that the tumor-suppression
function of merlin is independent of its role as an organizer of the actin cytoskeleton in Schwann
cells [103], other studies have clearly demonstrated an essential role of merlin in inhibiting
tumor cell motility and invasion [104,105].

As a linker between transmembrane proteins and the actin-cytoskeleton, merlin is uniquely
positioned to regulate cell proliferation in response to the cues/signals derived from their
microenvironment. Contact inhibition of cell proliferation is essential for maintaining tissue
homeostasis. Its loss is a hallmark of transformation and leads to increased tumor cell
proliferation, motility, and invasion [106]. Studies have demonstrated that merlin is
dephosphorylated and activated in confluent cells and that merlin accumulates and stabilizes
at the adherens junctions in keratinocytes and fibroblasts [101,107,108]. Furthermore, merlin
mediates contact inhibition of cell growth through its interaction with CD44 [108,109] or by
blocking recruitment of Rac to the plasma membrane [110]. Accordingly, loss of merlin
destabilizes the cadherin-containing cell-cell junctions, leading to loss of the contact inhibition
[101] and increased Rac activity, lamellipodia formation, and increased cell motility [42]. We
have shown recently that inhibition of the CD44-hyaluronan (HA) interaction by merlin
contributes to the tumor suppressor activity of merlin [54] and that CD44 functions upstream
of merlin [111].

MERLIN FUNCTIONS UPSTREAM OF THE HIPPO SIGNALING PATHWAY
THAT CONTROLS CELL PROLIFERATION AND SURVIVAL AND EXERTS
MERLIN'S INHIBITORY EFFECT ON CANCER GROWTH AND PROGRESSION

The Hippo signaling pathway plays an essential role in regulating cell proliferation and survival
[112] and recent results placed merlin upstream of Drosophila Hippo signaling pathway
[113-116]. There are two FERM domain-containing proteins in Drosophila, merlin (mer) and
expanded (ex), that negatively regulate cell growth [113,114,117]. Inactivation mutations of
mer or ex result in reduced apoptosis and increased cell proliferation [113,114]. Analyses of
mer and ex double mutants indicate that they function in at least a partially redundant manner
upstream of the Hippo (Hpo)/Salvador (Sav)/Warts (Wts)/Mats signaling pathway [113]. In
Drosophila, expanded was recruited by a protocadherin, Fat, to the plasma membrane [60,
118]. Hpo and Wts are Thr/Ser kinases of Ste20 and NDR (nuclear Dbf2-related), respectively,
whereas Sav and Mats (Mob1 as a tumor suppressor) are scaffold proteins. In Drosophila, Hpo
phosphorylates and activates Wts, which in turn phosphorylates and inhibits Yorkie (Yki), a
transcriptional co-activator [119]. Inactivation of Hpo/Wts signaling results in up-regulation
and activation of Yki, which in turn up-regulates cyclin E and Drosophila Inhibitor of Apoptosis
Protein 1 (DIAP1), resulting in increased proliferation and survival [117,119]. Mammalian
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homologs of Drosophila mer, Hpo, Wts, Yki, and DIAP are mammalian merlin [117],
Mammalian Sterile Twenty-like (MST) kinase1 and 2 (MST1/2)[112,120,121], Large tumor
suppressor 1 and 2 (LATS1/2) [122-124], YAP (Yes-Associated Protein) [125,126], and
cIAP1/2 (cellular inhibitor of apoptosis 1 and 2) [127]. In general, merlin, MST1/2, and
LATS1/2 function as tumor suppressors and regulate the activity of downstream
protooncogenes, YAP and TAZ (Transcriptional co-activator with PDZ-binding motif),
through phosphorylation of their conserved HXRXXS motif. There are two isoforms of YAP,
YAP1 and YAP2, which contain one or two WW protein interaction domains, respectively
[128].

LATS kinases interact with their co-activator hMOB1 (human Mps-one binder one), which is
required for their efficient autophosphorylation [129], whereas full activation of LATS1/2 is
mediated through their phosphorylation by MST1/2 [130,131]. MST1/2-activated LATS1/2 in
turn phosphorylates YAP, which leads to cytoplasmic retention and inactivation of YAP
[132-134]. MST1/2 form complexes with a scaffold protein, human Salvador (hSAV or
hWW45 for human WW domain-containing protein with a predicted molecular mass of
approximately 45 kDa), which is the mammalian ortholog of Drosophila Salvador [135]. hSAV
is required for activation of MST1 and heterozygous hSAV knockout mice are prone to tumor
development, suggesting that it functions as a tumor suppressor [135,136].

Like MST1/2, LATS1/2 genes encode serine/threonine kinases that display anti-tumor activity
[137,138]. MST1/2 kinases are down regulated in human colorectal cancer and sarcomas
[139,140] and LATS1/2 are down regulated in human astrocytomas, sarcomas, acute
lymphoblastic leukemia, and breast cancer as a result of promoter hypermethylation [112,
141]. Loss of LATS1 causes predisposition to soft-tissue sarcomas and ovarian tumors in mice
[142]. Mouse embryonic fibroblasts (MEFs) derived from the LATS2-null mice, acquire a
growth advantage and display a profound defect in the contact inhibition of growth [143]. By
contrast, overexpression of LATS1 induces G2/M arrest and subsequent apoptosis [137]
whereas LATS2 inhibits G1/S transition and suppresses RasV12-induced transformation of
NIH 3T3 cells [138]. Furthermore, overexpression of LATS1 suppresses YAP-mediated
cellular transformation, epithelialmesenchymal transition (EMT), and tumorigenesis [137,
144,145]. Together, these results suggest that MST1/2 and LATS1/2 serve as tumor
suppressors in a variety of human cancers. MST1/2 kinases also play important roles in
regulating the cellular stress response [146].

Similar to Drosophila Yki, YAP rescues pupal lethality caused by overexpression of hpo or
wts in Drosophila [119]. The human orthologs of hpo and wts also rescue their corresponding
Drosophila mutants [147-149]. YAP, a mammalian ortholog of Yki, and TAZ [150], a homolog
of YAP, are overexpressed in human malignancies, including liver, prostate, lung, ovarian,
colon, pancreatic, and nervous system cancers [112] and display oncogenic activity [125,
126,132,134,151-153]. Overexpression of YAP or TAZ leads to loss of contact inhibition and
anchorage-independent growth, and to EMT [125,134,144,145,154], whereas knockdown of
either molecule inhibits tumorigenicity [126,132,152]. As a transcriptional co-activator, YAP
promotes proliferation and inhibits apoptosis by up-regulating expression of cyclin E and
cIAP1/2, respectively. In contrast to a vast majority of results that demonstrate the pro-tumor
activity of YAP and the tight negative regulation of YAP localization/activity by upstream
mammalian Hippo signaling components, one report provided evidence suggesting loss or
reduction of YAP expression in human breast tumors and that MST2/LATS1 positively
regulates YAP activity [155]. This apparent discrepancy needs to be resolved in the future.

Until recently, it was unknown whether the Drosophila Hpo—Wts—Yki signaling pathway
is conserved as a tumor-suppressor pathway in mammalian cells. Recent studies have suggested
that the Hippo signaling pathway is conserved in mammalian cells and plays important roles
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in regulating the progression of human glioma and response of glioma to a variety of stresses
including the one resulted from a chemotherapeutic agent [104,111,134,152,153]. We showed
that merlin is absent or down regulated in high-grade gliomas and that increased expression of
merlin inhibits glioma cell motility and invasiveness and sensitizes their response to
chemotherapy and irradiation. Re-expression of merlin dramatically inhibits subcutaneous and
intracranial growth of human gliomas whereas merlin depletion promotes glioma growth in
vivo. Furthermore, we established that re-expression of merlin in human glioma cells up
regulates expression and activity of Lats2, inhibits activity of YAP, and reduces cIAP1/2
expression suggesting that merlin inhibits glioma growth and progression by regulating the
activity of mammalian Hippo signaling pathway [104]. Very recently, we showed that CD44
functions upstream of mammalian Hippo signaling pathway and attenuates the stress- induced
activation of the hippo signaling pathway [111] Fig. (2). Together, these results indicate that
mammalian Hippo signaling pathway plays important roles in regulating cancer progression
and the responses of cancer cells to therapeutic treatments and suggest that components and
regulators of this emerging signaling pathway can be used as therapeutic targets for a variety
of cancer types.

MERLIN AND CD44 IN CANCER STEM CELLS
Both merlin and the ERM proteins interact with the cytoplasmic tail of CD44 [59,92]. CD44
is a major cell surface receptor for hyaluronan (HA), an abundant ECM component, and
composed of an extracellular domain that contains an HA-binding domain and a membrane-
proximal region, a transmembrane domain, and a COOH-terminal cytoplasmic tail.
Functionally, CD44 mediates the cell-cell and cell-matrix adhesion, cell migration, and
signaling [156-158]. CD44 is often up regulated in malignant tumors, serves as a predictor of
poor prognosis in several cancer types, and promotes tumor progression and metastasis
[156-159]. A study showed that treatment of confluent tumor cells with HA leads to
dephosphorylation/activation of merlin, which mediates contact inhibition of cell growth
through its interaction with CD44 [108]. In contrast, we have shown that increased expression
of wild type merlin in schwannoma cells inhibits CD44-HA binding and subcutaneous
schwannoma growth in vivo whereas a merlin deletion mutant that lacks CD44-binding domain
but not other NH2-terminal deletion mutants of merlin is incapable of inhibiting the tumor
growth. Together, these results demonstrated that merlin exerts its tumor suppressor function,
at least in part, by negatively regulating CD44 function [54].

Increasing evidence suggests the existence of a small population of specialized cancer cells
that display stem cell properties, commonly referred as cancer stem cells (CSCs). CSCs are
characterized by their ability to self-renew, differentiate into various lineages, and reconstitute
the cellular hierarchy of the original tumors upon serial xenotransplantations [160-162]. CSCs
are highly resistant to chemo- and radio-therapy and are believed to be responsible for tumor
recurrence following therapeutic intervention [160-162]. CD44 has been identified as one of
the consistent markers of CSCs in a variety of malignancies, including leukemia, breast, colon,
ovarian, prostate, pancreatic, and head and neck cancers [156,160-161,163-172]. Studies have
shown that CD44 plays an essential role in engraftment of leukemia stem/initiating cells in the
bone marrow, which is required for leukemia development [163,164], and that CD44 plays the
functional role in colorectal cancer stem cells [172]. These results point toward potentially
important roles of CD44 in the formation, maintenance, and/or function of cancer stem cells,
even though additional studies are required to establish these potential roles of CD44 in CSCs
and to reveal the underlying mechanisms. Recent studies have also demonstrated important
contributions of the components of mammalian Hippo signaling pathway in regulating the stem
cell niche, stem cell self-renewal, maintenance, and differentiation [173-176]. Merlin plays a
critical role in maintaining normal structure and function of the hematopoietic stem cell (HSC)
niche and the NF2-deficient animals display increased stem cell pool size and increased
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mobilization of HSC to the circulation [176]. TAZ, a homolog of YAP, was found to play
important role in regulating mesenchymal stem cell differentiation [173] and controlling human
embryonic stem-cell self-renewal [175] whereas YAP is enriched in embryonic and neural
stem cells [174]. It is conceivable that, as an upstream regulator of mammalian Hippo signaling
pathway [111], CD44 may exert some degree of control over CSC behavior through regulating
the Hippo signaling pathway.

MERLIN REGULATES THE ACTIVITIES OF SEVERAL RECEPTOR TYROSINE
KINASES

Merlin is often enriched in lipid rafts [177], which is required for receptor internalization from
the plasma membrane and regulation of their downstream signaling [178,179]. Recent studies
have demonstrated the important contribution of merlin in regulating the distribution,
aggregation, and availability of several cell surface receptors, especially receptor tyrosine
kinases (RTKs), in the plasma membrane [100,180,181]. In Drosophila, merlin (mer) and
expanded (ex) cooperatively modulate receptor endocytosis and signaling. Loss of mer and
ex up-regulates several growth-factor receptors including Notch, Patched, and epidermal
growth factor receptor (EGFR) due to impaired receptor endocytosis and degradation [182].
This leads to accumulation of these receptors on the cell surface and corresponding activation
of downstream signaling such as Ras-ERK, JNK, Rac, Pak, and FAK that leads to increased
cell proliferation [41,51,105,182,183]. Similar results have been obtained in mammalian cells
with respect to EGFR [184]. However, merlin seems to block the internalization of ligand-
bound EGFR, an event that is necessary for the EGF-EGFR-mediated signaling, and sequester
EGFR into a non-signaling membrane compartment [100,185], which results in reduced cell
proliferation. Merlin might regulate the endocytosis of RTKs through its interaction with
hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) or syntenin [82,184,186].
HRS is an endosomal protein that is required for RTK trafficking from early endosomes to
lysosomes where they are degraded whereas syntenin is a PDZ domain-containing adaptor that
is co-localizes with the PIP2 in early endosomes [187]. Studies have shown that HRS inhibits
RTK signaling and schwannoma cell proliferation and that merlin lost its inhibitory effect on
cell proliferation in HRS-null mouse fibroblasts [81], supporting the possibility that merlin
regulates RTK endocytosis through HRS. This hypothesis needs to be tested in the future
experiments.

Recent studies also demonstrated that merlin regulates glial cell growth in ErbB2- and Src-
dependent manner [188] and that merlin inhibits schwannoma cell proliferation by promoting
platelet-derived growth factor receptor (PDGFR) degradation [189]. Merlin also reduces cell
surface levels of ErbB2 and ErbB3, which leads to inhibition of their downstream mitogenic
signaling pathways, whereas loss of merlin elevates levels of the ErbB receptors in primary
Schwann cells and levels of insulin-like growth factor 1 receptor and PDGFR in the peripheral
nerves of NF2-mutant mice and in human schwannomas [103]. Furthermore, merlin also
negatively regulates the downstream signaling pathways of PDGFR [183]. In contrast, CD44
is known to serve as a co-receptor of c-Met and ErbB2 and enhances their signaling [111,
190,191]. Together, these results suggest an important role of merlin in regulating the activity
and availability of several RTKs that play essential roles in tumor initiation and progression.
Additional works are required to determine how this type of regulation is achieved.

MERLIN IS INVOLVED IN SEVERAL ADDITIONAL IMPORTANT SIGNALING
TRANSDUCTION PATHWAYS

Tight control of cell proliferation, survival, and motility is critical for maintaining normal tissue
homeostasis. Studies have shown that increased expression of merlin not only inhibits cell
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proliferation and promotes apoptosis, but also impairs cell-cell and cell-matrix adhesion, as
well as cell spreading and motility [21,37,40,101,110], suggesting that merlin is involved in
the signaling pathways that regulate these cellular functions. Merlin has been shown to reverse
Ras-induced transformation [192,193]. The Rho family of small GTPases, Rho, CDC42, and
Rac, are essential downstream effectors of the Ras signaling [194]. Overexpression of merlin
inhibits Rac-mediated anchorage independent growth and cell transformation [42]. One
mechanism whereby merlin mediates contact inhibition of growth is by blocking recruitment
of Rac to the plasma membrane [110]. Another is by inhibiting Ras and Rac activation [183,
195]. Consistent with this notion, loss of merlin function enhances Rac activity [196].
Conversely, Rac1 activation results in merlin phosphorylation and an “open” conformation,
leading to inactivation of its tumor suppressor activity [42]. Merlin and Rac therefore appear
to engage in mutual inhibition. Merlin mutations were also found to increase STAT3 and
STAT5 signaling [197] whereas merlin negatively regulates rapamycin complex 1 (mTORC1)
activity. Loss/knockdown of merlin leads to mTORC1 activation in malignant mesothelioma,
meningioma, and schwannoma and increased meningioma and schwannoma growth [198,
199].

CONCLUSIONS AND PERSPECTIVES
Merlin is a multifunctional protein that is involved in integrating and regulating extracellular
cues and intracellular signaling pathways that control cell fate, shape, motility, proliferation,
and survival. Merlin can achieve these tasks by coordinating with the cell-cell and cell-matrix
adhesion receptors, which help merlin to sense the cell-cell contact and cell-matrix adhesion,
and by regulating the activities of cell surface RTKs. This review summarized the significant
progresses in the following areas: establishment of the contributions of genetic alterations of
NF2 gene to phenotypes of the NF2 associated tumors; determination of the domain and
structure organization of merlin; identification of many merlin binding partners and the
signaling pathways regulated by merlin; establishment of the cellular functions of merlin and
the roles of merlin and merlin mutants in the initiation and progression of several cancer types;
and elucidation of the mechanisms underlying the merlin functions. Furthermore, recent
advances also allowed us to envision several areas of interests for future studies. These studies
will not only improve our basic understanding about merlin function, its regulation, and the
signaling pathways involving merlin, but also help translate the most relevant recent findings
into the clinic for treatment and management of patients bearing the cancers in which merlin
function and its downstream signaling pathways are impaired or altered. These areas include:

1. Identification of Potential Targets for NF2 Cancer Therapy and Beyond
Merlin has many interacting partners, which can be classified into several major signaling
pathways: Hippo, PI3K/AKT/mTOR, RTKs, and small GTPases [5,9,200,201] (Table 1).
Pharmacological inhibitors of some of these signaling pathways are currently available, and it
will be interesting to investigate their efficacy in the mouse models and patients bearing tumors
with dysregulated merlin signaling pathways (Fig. (2)).

2. Integration of Extracellular and Intracellular Signals by Merlin
Results obtained thus far have clearly indicated that merlin serves as an essential linker that
integrates signals from extracellular microenvironment into intracellular signaling pathways
that regulate cell fate, motility, proliferation, and survival. Although the underlying
mechanisms remain to be elucidated, the interactions between merlin and cell surface RTKs
and between merlin and adhesion receptors such as CD44, E-cadherin, and FAT may offer
some clues. Additional works are required to establish clear connections between these
molecules and their corresponding downstream signaling events.
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3. Interplay between Merlin and ERM Proteins During Cancer Development
Merlin is closely related to the ERM proteins and there is evidence to suggest that the ERM
proteins and merlin serve as positive and negative regulators, respectively, in organizing
cortical actin and in regulating cell growth [38,196]. However, compared to merlin, our
understanding of the contribution of the ERM proteins to tumorigenesis and tumor progression
is limited. The major signaling pathways downstream of the ERM proteins and the interplay
between merlin and the ERM proteins that may exist during tumor initiation and progression
are largely unknown. Since merlin and ERM proteins are co-expressed in most cell types with
overlapping sub-cellular localizations, form heterodimers with each other, and share common
binding partners, functional interplays between merlin and the ERM proteins within at least
some of the signaling pathways regulated by merlin are very likely. The functional relationship
and contribution of these interactions to the tumor initiation and progression will be important
to elucidate.

4. The Potential Roles of CD44, Merlin, and the Hippo Signaling Pathway in Cancer Stem Cells
Recent studies have suggested contributions of the components of mammalian Hippo signaling
pathway in regulating the stem cell niche, as well as in stem cell maintenance and differentiation
[173-176]. It will be of great interests to determine whether and how CD44, merlin, and the
mammalian Hippo signaling pathway contribute to these aspects of CSCs.

5. Merlin in Endocytosis: How Merlin Regulates Function of Cell Surface Receptors
Merlin is localized to endocytic vesicles [197,202] and may play an important role in
endocytosis and vesicle trafficking [9,96]. Merlin can silence RTK activity by regulating their
endocytosis [176,185] and merlin is known to regulate the activities of small GTPases, which
play essential roles in endocytosis and exocytosis. However, little is known about how these
events are interrelated and how RTK endocytosis regulated by merlin contributes to tumor
initiation and progression, which should be interesting to explore.
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Fig. (1).
Exon organization and domain structure of merlin isoforms in relation to ezrin–radixin–moesin
(ERM) proteins. A, The NF2 gene consists of 17 exons. Two most common merlin isoforms,
isoform I and II, differ at their COOH-terminal ends with the segments, encoded by either exon
16 or 17, respectively. Merlin isoform I contains 595 amino acids whereas isoform II has 590
amino acids with estimated molecular weights of approximately 65-70 kDa. B, Domain
organization and domain homology between merlin, band 4.1 protein, ezrin, radixin, and
moesin are outlined.
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Fig. (2).
A working model of merlin-mediated signaling events and their potential cross-talks (the
components of Drosophila Hippo signaling pathway are underlined): merlin functions
upstream of the mammalian Hippo (merlin-MST1/2-LATS1/2-YAP) and JNK/p38 signaling
pathways and plays an essential role in regulating the cell response to the stresses and stress-
induced apoptosis as well as to proliferation/survival signals. Merlin antagonizes CD44
function and inhibits activities of RTKs and the RTK-derived growth and survival signals.
CD44 function upstream of mammalian Hippo signaling pathway attenuates the stress induced
activation of the hippo signaling pathway, however, enhances activities of RTKs.
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