
282 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 17, NO. 2, APRIL 2013

Evolving Team Compositions by Agent Swapping
Paweł Lichocki, Member, IEEE, Steffen Wischmann, Laurent Keller, and Dario Floreano, Senior Member, IEEE

Abstract—Optimizing collective behavior in multiagent systems
requires algorithms to find not only appropriate individual
behaviors but also a suitable composition of agents within a team.
Over the last two decades, evolutionary methods have emerged
as a promising approach for the design of agents and their
compositions into teams. The choice of a crossover operator that
facilitates the evolution of optimal team composition is recognized
to be crucial, but so far, it has never been thoroughly quantified.
Here, we highlight the limitations of two different crossover
operators that exchange entire agents between teams: restricted
agent swapping (RAS) that exchanges only corresponding agents
between teams and free agent swapping (FAS) that allows an
arbitrary exchange of agents. Our results show that RAS suffers
from premature convergence, whereas FAS entails insufficient
convergence. Consequently, in both cases, the exploration and
exploitation aspects of the evolutionary algorithm are not well
balanced resulting in the evolution of suboptimal team composi-
tions. To overcome this problem, we propose combining the two
methods. Our approach first applies FAS to explore the search
space and then RAS to exploit it. This mixed approach is a much
more efficient strategy for the evolution of team compositions
compared to either strategy on its own. Our results suggest
that such a mixed agent-swapping algorithm should always be
preferred whenever the optimal composition of individuals in a
multiagent system is unknown.

Index Terms—Cooperation, crossover, evolutionary computa-
tion, multiagent systems, team composition, team optimization.

I. Introduction

THE OPTIMIZATION of collective behavior displayed by
teams of agents plays a crucial role in an increasing

number of applications [1], [2], spanning from software agents
[3]–[5] to robotics [6]–[8]. Evolutionary computation has
been advocated as an effective and promising strategy in this
domain [9], [10]. An important question that arises has to
do with the composition of the teams of agents. All agents
from one team may either use the same control algorithm
(genetically homogenous teams) or employ different ones

Manuscript received October 21, 2011; revised February 3, 2012; accepted
March 4, 2012. Date of publication March 19, 2012; date of current version
March 27, 2013. This work was supported by the Swiss National Science
Foundation under Grant K-23K0-117914. The review of this paper was
coordinated by H. Abbass.

P. Lichocki and D. Floreano are with the Laboratory of Intelligent Systems,
École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
(e-mail: pawel.lichocki@epfl.ch; dario.floreano@epfl.ch).

S. Wischmann is with the Laboratory of Intelligent Systems, École Poly-
technique Fédérale de Lausanne, Lausanne 1015, Switzerland, and also with
the Department of Ecology and Evolution, Biophore, University of Lausanne,
Lausanne 1015, Switzerland (e-mail: steffen.wischmann@epfl.ch).

L. Keller is with the Department of Ecology and Evolution, Bio-
phore, University of Lausanne, Lausanne 1015, Switzerland (e-mail: laurent.
keller@unil.ch).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2012.2191292

(genetically heterogenous teams) [11]–[13]. Evolving homoge-
nous teams does not differ conceptually from evolving single
agents because in both cases, only one control algorithm is
discovered [14]. In contrast, with heterogeneous teams, a set of
distinct control algorithms must be optimized simultaneously.
Consequently, the challenge is to find not only the optimal
agents but also the optimal composition of agents within a
team [13]. Heterogenous teams are of growing interest in the
evolutionary community because they are expected to perform
better than homogeneous teams in problems that require task
specialization [12], [13], [15].

In heterogeneous team evolution, two genetic encodings
can be used: 1) individual encoding, where a genome rep-
resents one agent, and 2) team encoding, where a genome
represents a whole team. Consequently, there are differences
in the evolutionary algorithm used with individual and team
encoding [Fig. 1]. With individual encoding, one must decide
on a method of grouping agents into temporary teams for
the purpose of performance evaluation [Fig. 1(a)]. With team
encoding, one must choose a crossover operator that exchanges
genetic material not only between agents but also between
teams (i.e., swap agents) [Fig. 1(b)]. Both issues are facets of
the same challenge: how to (re)compose agents in teams, in
order to facilitate the evolutionary search. This question has
already been studied for individual encoding [Table I, (A)–
(C)] but scarcely addressed for team encoding, although the
body of work using team encoding is rich [Table I, (D)–(G)].

In team encoding, a single genotype encodes the entire team,
which makes it decomposable into parts corresponding to the
agents. Thus, a crossover operator may exchange genetic ma-
terial on two levels [14]. First, the crossover can recombine the
genetic material between agents from the parenting teams. We
refer to this process as agent recombination [Table I, (D), (E)
and Fig. 2 (top row)]. Second, the crossover can swap entire
agents between the parenting teams. We refer to this process
as agent swapping [Table I, (F), (G) and Fig. 2 (bottom row)].
In contrast to agent recombination, agent swapping does not
exchange genetic material between the agents. Consequently,
the purpose of agent recombination is to discover good agents
and the purpose of agent swapping is to discover good team
compositions. In addition, one may consider a team to be an
ordered sequence of agents. In such a case, the crossover may
be restricted to act only on agents on corresponding positions
in the parenting teams [Table I, (D) and (F) and Fig. 2 (left)].
Or, it may be free to act on any agents from the parenting
teams [Table I, (E) and (G) and Fig. 2 (right)].

In contrast to agent recombination [16]–[18], no attempts
have been made to quantify the efficiency of agent swapping
in the evolution of teams [12]. In particular, it has not been

1089-778X/$31.00 c© 2012 IEEE

LICHOCKI et al.: EVOLVING TEAM COMPOSITIONS BY AGENT SWAPPING 283

TABLE I

Sample of Approaches in the Evolution of Heterogeneous

Teams Using Individual Encoding and Team Encoding

Individual Encoding
Agent Grouping References
(A) One team [70]–[80]

(B) Many teams [13], [18], [24]–[27], [81], [82]

(C) Subpopulations [11], [25], [83]–[87]

Team Encoding
Crossover References

[11], [14]–[18], [20]–[23], [27],
(D) Restricted agent recombination [32], [70], [88]

(E) Free agent recombination [16]–[18], [20], [89]
(F) RAS [22], [23]
(G) FAS –

tested if and why using agent swapping leads or does not
lead to the evolution of optimal team compositions. Here, we
experimentally compare restricted agent swapping (RAS) and
free agent swapping (FAS) in a problem focused on finding the
optimal team composition. We consider multiple agents that
need to divide the labor in order to achieve top performance,
i.e., the optimal team is composed of distinct groups of
genetically identical agents. We focus on team encoding,
which assumes team level of selection [Fig. 1] that has been
advocated as an efficient strategy in the optimization of teams
[13]. Consequently, agent interactions and their impact on
individual selection pressures are out of scope of this paper.
Also, we focus on the evolution of team compositions and
not on the evolution of agents themselves. Thus, we mainly
consider large teams of agents having small genomes, i.e.,
a valid single agent is relatively easy to evolve. We further
elaborate on these assumptions in Section V.

We highlight the limitations of both RAS and FAS and
explain the conditions under which they fail to evolve teams
displaying the optimal composition. These limitations are
opposite to each other. With RAS, the evolutionary algorithm
suffers from premature convergence of the population, whereas
with FAS, it suffers from insufficient convergence of the
population. Consequently, in both cases, the exploration and
exploitation aspects of the evolutionary algorithm are not
well balanced. To overcome this problem, we propose to
combine the two methods, i.e., first use FAS to explore the
search space and then use RAS to exploit it. This mixed
approach proves to be a more efficient strategy in the evolution
of team compositions than RAS or FAS alone. Finally, we
also validated RAS and FAS on a problem of optimizing
decentralized controllers for task allocation and discussed our
results in the context of other real-life applications.

II. Background

The differentiation into individual and team encoding re-
sembles an old discussion on evolving rule-based systems
[19]. In the approach taken by De Jong, dubbed “the Pitt

approach,” a single individual encoded the entire rule set.
In contrast, in the approach taken by Holland, dubbed “the
Michigan approach,” a single individual encoded just a single
decision rule and the entire population corresponded to the
rule set (see [19] and references therein).

The approaches using individual encoding can be classified
into three categories, according to how the agents are grouped
into teams for the purpose of performance evaluation. With the
“one team” approach, all agents from the population are evalu-
ated together, i.e., they compose one team [Table I, (A)]. This
method is often used with a continuously updated gene-pool,
i.e., steady-state evolution. With the “many teams” approach,
the agents are randomly grouped into many teams [Table I,
(B)]. This method is often used with separate gene-pools for
subsequent generations, i.e., generational evolution. With the
“subpopulations” approach, there are separate subpopulations
of agents [Table I, (C)]. An individual is evaluated by teaming
it up with individuals from other subpopulations. This method
is known as cooperative coevolution.

In individual encoding, the teams are created ad hoc for the
purpose of performance evaluation. Consequently, there are no
genetic operators applied at the team level. In contrast, in team
encoding, we distinguish four qualitatively different types of
crossover operators that exchange genetic material between
the teams [Fig. 2]. The crossover either recombines the agents
from the parenting teams [Table I, (D) and (E)] or it swaps
entire agents between the parenting teams [Table I, (F) and
(G)]. In addition, the crossover is either restricted to act only
on agents on corresponding positions in the parenting teams
[Table I, (D) and (F)] or it is free to act on any agents from
the parenting teams [Table I, (E) and (G)]. Note that agent
swapping is in fact a special case of agent recombination,
where the recombination points are always chosen at the
beginning (or at the end) of the two genotypes’ parts that
encode the parenting agents.

The concept of restricted (also called fixed in [18]) and
free (also called unfixed in [18] and interpositional in [20])
agent recombination was introduced independently by Luke
and Spector [16] and by Haynes and Sen [21]. Agent re-
combination was called inner crossover in [14]. RAS, called
team transformation in [22], was introduced by Luke et al.
[23] and by Andre and Teller [22]. FAS has not been studied
directly yet [Table I, (G)]. Note that evolutionary algorithms
with individual encoding, random grouping of agents into
many teams, and global reward, yield high resemblance to
team encoding with FAS [Fig. 1]. This includes some of
the work referenced in [Table I, (B)], i.e., [13], [18], [24]–
[27].

Haynes and Sen [21] noted that RAS may be implemented
as uniform crossover (i.e., swapping bits on corresponding
positions between two genotypes with some probability), with
the difference that instead of bits it swaps entire agents.
Here, we analogously note that FAS may be implemented
as shuffle-uniform crossover (i.e., swapping bits on shuffled
positions between two genotypes with some probability), with
the difference that instead of bits, it swaps entire agents. The
family of uniform crossovers was introduced by Syswerda
[28] and analytically studied by Eshelman et al. [29] and

284 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 17, NO. 2, APRIL 2013

Fig. 1. Evolutionary algorithm cycle in the evolution of heterogenous teams using (A) individual encoding and (B) team encoding. (A) Individual encoding:
the evolutionary algorithm operates on a population of genotypes, each encoding one agent (depicted as squares). (A1) The agents are grouped into teams and
their performance is evaluated together. Each agent must be assigned a fitness value (the credit assignment problem [12], [13], [90]). A straightforward way
of addressing this problem is to distribute the team’s performance score equally among the team members (top two teams in A1). This is known as global
reward [12] or team-level selection [13]. Alternatively, the agents can be assigned with different fitness values, proportional to their personal contribution
toward the team’s performance score (bottom two teams in A1). This is known as local reward [12] or individual-level selection [13]. For simplicity, global
and local rewards are illustrated together in one population, but typically only one kind of reward is used with all teams from the population. Next, (A2) the
algorithm proceeds with the selection of the agents according to their fitness values. In (A1), a darker color denotes higher fitness values, which translates
into more copies of fitter agents (A2). Afterward, in (A3) the agents’ genotypes are recombined or mutated. Finally, in (A4) the agents are grouped into new
teams before the performance evaluation and the algorithm starts over with (A1). (B) Team encoding: the evolutionary algorithm operates on a population of
genotypes, each encoding one entire team (a square depicts a part of the team’s genome corresponding to one agent). Consequently, there is no need for an
extra step of grouping agents into teams and the algorithm begins at once with (B1) the evaluation of the teams’ performance. There is no credit assignment
problem, because team encoding implies that all agents in the team share the same fitness. Next, in (B2) the teams are selected according to their fitness values.
In (B1), a darker color denotes higher fitness values, which translates into more copies of fitter teams (B2). Then, in (B3) the team’s genotypes are subject
to mutation or agent recombination. Finally, in (B4) entire agents may be swapped between the teams. This concludes the cycle and the algorithm starts over
with (B1). Note that swapping agents between teams in team encoding conceptually corresponds to grouping of agents into teams in individual encoding.

De Jong and Spears [30], but not in the context of team
evolution. In addition, Miconi [14] and Nakashima et al. [31]
used a simple 1-point or 2-point crossover to recombine the
teams’ genotypes. This approach lends itself to the category
of restricted crossovers. During the crossover, it usually swaps
entire agents between teams, with the exception of the agents
that happen to be placed on the crossover cutting points. The
1-point and 2-point crossovers, and generally n-point
crossover, have been shown to have less exploratory power
than uniform crossover [29].

A few attempts have been made to quantify the efficiency of
agent recombination for the evolution of teams, but the studies
are inconclusive [12]. Some authors advocate using restricted
agent recombination [16], [17] and some are proponents of
free agent recombination [20]. The problem of evolving team
compositions has been addressed only for genetic program-
ming by Hara and Nagao with automatically defined groups
[32] and by Bongard with the Legion system [15]. In these
two approaches, both the agents and their partitioning into
separate subteams are evolved together. These approaches are
promising, but designed for the tree representation typical for
genetic programming. In addition, the authors considered only

Fig. 2. Applying four crossover operators on the genotype of two teams of
four agents each. Black and white segments of teams’ genotypes correspond
to agents taking part in the crossover. Gray segments of teams’ genotypes
correspond to agents not taking part in the crossover. The crossover can either
recombine the genetic material from two agents from parenting teams (top
row) or swap entire agents between parenting teams (bottom row). In addition,
the crossover may be restricted to act only on agents on corresponding
positions in parenting teams (left column) or it may be free to act on any
agents from parenting teams (right column).

a small number of evolving subteams (maximum number of
subteams: six in [32] and three in [15]). Importantly, there is
no study that quantifies the efficiency of agent swapping for
the evolution of teams.

Operators similar to RAS and FAS have been proposed in
different fields of evolutionary computation. Agent swapping

LICHOCKI et al.: EVOLVING TEAM COMPOSITIONS BY AGENT SWAPPING 285

is equivalent to root crossover in genetic programming, which
swaps whole trees instead of subtrees [23]. Also in genetic
programming, Koza studied operators altering the architecture
of a multipart program, which he used with automatic defined
functions [33]. These operators included branch duplication
and deletion, which, in the context of evolving team compo-
sition, would translate into agent deletion and duplication, re-
spectively. In gene expression programming, Ferreira proposed
gene recombination and gene transposition [34]. Gene recom-
bination swaps entire genes between the parenting genotypes,
and thus is equivalent to RAS. Gene transposition overwrites
one gene with a copy of another gene, and thus is equivalent
to agent deletion and duplication performed jointly. Finally,
in the field of evolutionary strategies, Sebag and Schoenauer
proposed mutation by imitation [35]. With imitation, the
probability of an allele’s mutation depends on whether the
allele is the same or different from the corresponding alleles
in some of the best or worst individuals in the population.
Consequently, mutation by imitation might be considered a
sort of restricted recombination.

III. Experimental Method

A. RAS and FAS

We evolve teams of agents using team encoding and study
RAS [Fig. 3(a)] and FAS [Fig. 3(b)]. We implement RAS
as a uniform crossover [28], which exchanges the ith agent
from the first team with the ith agent from the second
team, with probability p for each agent. In an additional
experiment, we tested RAS implemented as a 1-point and
2-point crossover (see Appendix A).

We implement FAS as a shuffle-uniform crossover [28],
which exchanges the ith agent from the first team with the
S(i)th agent from the second team, with probability p for each
agent. S is a random permutation of integers from 1 to M,
where M is the number of agents in the team. RAS may be
considered a specific case of FAS where the sequence S is
set to 1, 2, . . . , M. For the sake of simplicity, we consider a
situation with only two parenting teams, but the operators can
scale to any number of parenting teams.

In addition, we theoretically investigate the connections
between RAS, FAS, and other operators that alter the team
composition inspired by architecture-changing operators [33]
used in genetic programming and gene expression program-
ming (see Appendix H).

B. Problem Formulation

We experimentally compare RAS and FAS in the evolution
of agent teams facing the problem of finding the optimal
team composition (i.e., the division of a team into groups of
identical agents). Our aim is to mimic a situation when a team
needs to display a certain composition of agents in order to
achieve top performance [36]. For example, multiple robots
may be more efficient if they compose distinct groups, each
focusing on a different task [37]. In biology, this process is
known as division of labor (see [38]–[40] for comprehensive
reviews). For example, in many species of honey bees and

Fig. 3. RAS (left) and FAS (right) applied on two teams of eight agents. In
the presented example, the probability of agent swapping was p = 0.5; black
lines denote the exchanged agents and the gray lines denote the agents that
happen to be kept in their original team. The random permutation used to
reshuffle the agents before the swap in (b) is (3, 1, 4, 8, 2, 5, 7, 6).

ants, some workers forage for food, others care for the brood,
and others perform maintenance work in the nest [41]–[44].

We consider a team consisting of M agents. There are D

distinct types of agents. Thus, there are overall DM different
teams possible. We assume that the optimal team contains
K distinct agents, each repeating R times (for simplicity, we
assume M = K·R). Thus, the optimal composition of a team is
defined as K groups of R agents, where the agents between the
groups are different and the agents within a group are identical.
The optimal team is homogeneous for K = 1 and R = M, the
optimal team is heterogeneous for K = M and R = 1, and the
optimal team is hybrid [12] (also called partially heterogenous
[13]) for 1 < K < M and 1 < R < M.

For a real-life problem, the optimal team composition and,
consequently, the values of K and R are unknown. They
are discovered by means of artificial evolution, driven by
a fitness function F that measures team performance for a
given problem. It should be expected that team performance
is correlated with the composition of the team. Thus, we set K

and R a priori and we define a fitness function f that directly
depends on the proportion of proper agents in each of the
K groups f =

∑K
j=1 min(R

M
, xj). The value xj is the fraction

of agents from a team that belong to the jth group and operator
min(a, b) takes a value a if a < b, and b otherwise.

For example, consider three agents: A, B, and C. Let
(x, y, z) denote the number of agents A, B, and C, respectively,
in a team. The team size is set to six (i.e., x + y + z = 6), and
the optimal team consists of three agents A and three agents
B (i.e., (3, 3, 0)). Exactly one team (0, 0, 6) has the lowest
performance f = 0. Exactly one team (3, 3, 0) has the maximal
performance f = 1. For instance, teams (1, 1, 4), (0, 2, 4),
and (2, 0, 4) all have performance f = 0.33. Teams (6, 0, 0),
(3, 0, 3), and (1, 2, 3) all have performance f = 0.5. Teams
(2, 2, 2), (1, 5, 0), and (1, 3, 2) all have performance f = 0.67.

The fitness function f , although not directly applicable
to real-life problems, lets us test the efficiency of RAS and
FAS in the evolution of team composition under controlled
conditions. The advantage of our approach is the ease of
generating instances of various complexities and sizes. This
enables us to perform systematic studies and thus draw statis-
tically significant conclusions. We believe that the presented
formulation provides a good abstraction of the core properties

286 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 17, NO. 2, APRIL 2013

of many problems, in which one needs to optimize the team
composition in a multiagent system. We further elaborate on
this issue in Section V. In addition, we show the applicability
of our results by validating the efficiency of RAS and FAS in
the evolution of decentralized controllers in a task-allocation
problem (see Appendix G).

C. Evolutionary Experiments

We evolve teams of agents in three treatments: 1) using
RAS for all generations of the evolutionary algorithm; 2) using
FAS for all generations of the evolutionary algorithm; and
3) using FAS for the first half and RAS for the second
half, of all generations of the evolutionary algorithm. We also
investigated alternative ways of combining FAS and RAS (see
Appendix F).

We compare RAS and FAS under three conditions, where
the optimal team is composed of 1000, 100, and 10 groups
of 1, 10, and 100 identical agents, respectively, (K ∈
{1000, 100, 10} and R ∈ {1, 10, 100}). Overall, this makes a
total of nine experimental lines (3 treatments × 3 conditions).
Each experimental line is replicated ten times. In all numerical
experiments, we use populations of 1000 teams of M = 1000
agents each. Population size and team sizes are kept constant
across generations. The number of all distinct types of agents
is set to D = 10 000. Each evolutionary run lasts for 1000 gen-
erations, with the exception of an additional experiment, where
the number of generations is set to 2000 (see Appendix G).

The software testbed has been implemented with the help
of ECJ framework [45]. The numerical experiments have been
run on the Pleiades cluster at École Polytechnique Fédérale de
Lausanne, Lausanne.

D. Genetic Architecture, Selection, and Reproduction

A team’s genotype consists of 1000 alleles (one allele per
agent), which are integers from 1 to 10 000. At the first
generation of each evolutionary run, each of the 1000 × 1000
alleles is independently set to a random integer value between
1 and 10 000 with uniform distribution. Teams are evaluated in
the collaborative task (i.e., how similar the team’s composition
and the optimal composition are) and assigned a performance
(see Section III-B). To construct the 1000 teams of the
following generation, we select 500 times two teams. Each
parent is independently selected from the current population
using tournament selection with tournament size set to 2, with
the exception of an additional experiment, where tournament
size is set to 7 (see Appendix D). The two selected teams are
reorganized with FAS or RAS, which results in two new teams
that are added to the next generation’s population. We use RAS
and FAS with the probability of exchanging the agents between
two teams set to p = 0.5 for each position in a team, with the
exception of an additional experiment, where p = 0.2 is used
(see Appendix B). Note that p = 0.5 is the highest possible
value, because swapping agents between teams A and B, with
probability 0.5 < p ≤ 1, is equivalent to swapping agents
between teams B and A with probability 1 − p. The newly
added teams are not subject to mutation, with the exception
of an additional experiment, where each allele is independently

Fig. 4. Box and Whisker plots showing the mean performance of 1000 teams
evolved with (a) RAS and (b) FAS (ten replicates). Teams consisted of 1000
agents, which needed to display three different compositions (1000, 100, and
10 groups of identical agents) in order for the team to achieve the optimal
performance.

set to a random integer value between 1 and 10 000 (uniform
distribution) with a probability 0.001 (see Appendix C). We
do not use mutations in the main experiments for two reasons.
First, our intention is to investigate the evolutionary dynamics
of RAS and FAS. Thus, to get clearer results on the effects
of agent swapping, we do not use the mutation. Second,
with 10 000 different agents, the population of 1000 × 1000
agents already contains each agent on average 100 times.
Thus, the introduction of the innovative genetic material during
evolution should not be necessary, if the agent swapping does
efficiently compose optimal teams. Finally, one of the 1000
new teams of the following generation is randomly chosen,
discarded, and replaced by an exact copy of the best team
from the current generation (i.e., elitism of size 1).

E. Statistical Analysis

To compare the teams evolved with RAS and FAS, we
average, for each experimental line and replicate, team per-
formance over 1000 teams (ten replicates) at generation 1000.
We also report the best team performance from 1000 teams
(ten replicates) (see Appendix E). We explain the differences
in team performance in terms of variation between teams that
RAS and FAS introduced into the population. To this aim,
we calculated the standard deviation of teams’ performance
in a population for each of the 1000 generations. In partic-
ular, we compared the convergence time (i.e., the number
of generations until the measured standard deviation reached
zero) and the final variation level between the teams (i.e.,
the value of the measured standard deviation at generation
1000). To explain the differences in variation between teams,
we compared the proportion of corresponding positions that
in all teams contained only agents that could not become
members of the optimal team, and we compared the proportion
of agents in teams that could become members of the optimal
team, averaged over 1000 teams. The last two characteristics
were calculated every 25 generations, due to high demand
for resources of these calculations (i.e., CPU and disk space).
Statistical significance within multiple experimental lines was
determined with the Kruskal–Wallis test (nonparametric one-
way analysis of variance). Statistical significance between a
pair of experimental lines was determined with the Wilcoxon
test (rank sum test for equal medians).

LICHOCKI et al.: EVOLVING TEAM COMPOSITIONS BY AGENT SWAPPING 287

Fig. 5. Mean variation [± standard deviation (s.d.) in gray] between the 1000
teams in a population (ten replicates), measured for all 1000 generations. The
variation between the teams was quantified with the standard deviation of
teams’ performance in a population for (a) RAS and (b) FAS, in each of the
three conditions (10, 100, and 1000 groups of identical agents in the optimal
composition).

IV. Results

We analyze the first two treatments (RAS and FAS) in
Sections IV-A and IV-B and the third treatment (mixed
FAS/RAS) in Section IV-C.

A. RAS and FAS

There were important differences in team performance
between the three conditions (1000, 100, and 10 groups) at
the 1000th generation for both treatments [RAS: Fig. 4(a),
Kruskal–Wallis test, df = 2, p < 0.001; FAS: Fig. 4(b),
Kruskall–Wallis test, df = 2, p < 0.001]. With RAS, the
highest team performance was for 1000 groups (100 groups:
−27.4%; 10 groups: −69.8%; three pairwise Wilcoxon tests
df = 9, p < 0.001). In contrast, with FAS, the highest
team performance was for ten groups (100 groups: −9%;
1000 groups: −35.4%; three pairwise Wilcoxon tests df = 9,
p < 0.001).

The performance difference between conditions in treat-
ments with RAS and FAS was caused by convergence issues,
which were different for each of the two treatments. With
RAS, the performance difference was associated with the
convergence time, i.e., the number of generations until the
standard deviation of team performance in the population
reached zero [Fig. 5(a), mean ±s.d. generations for 1000
groups: 334.3 ± 14.6; 100 groups: 294.2 ± 36.7; 10 groups:
113.5 ± 3.1; Kruskal–Wallis test, df = 2, p < 0.001; three
pairwise Wilcoxon tests df = 9, p < 0.01]. Therefore,
the evolutionary algorithm using RAS suffered from premature
convergence. In contrast, with FAS, the performance difference
was associated with the variation between the evolved teams,
i.e., the value of the standard deviation of team performance in
the population at generation 1000 [Fig. 5(b); Kruskal–Wallis
test, df = 2, p < 0.001; three pairwise Wilcoxon tests df = 9,
p < 0.001]. Therefore, the evolutionary algorithm using FAS
suffered from insufficient convergence.

With RAS, premature convergence was detrimental to team
performance because it leads to the disappearance of agents
required in the optimal team on corresponding positions in
teams across the entire population [Fig. 6(a), top row]. This
was not the case for treatments with FAS [Fig. 6(b), top row].
Consequently, in treatments with RAS, the teams contained

Fig. 6. (Top) Mean proportion (±s.d. in gray) of corresponding positions
that contained in all 1000 teams only the agents that could not become
members of the optimal team. (Bottom) Mean proportion (±s.d. in gray) of
agents in a team that could become members of the optimal team, averaged
over 1000 teams. The populations were analyzed every 25 generations over
ten replicates for (a) RAS and (b) FAS, in each of the three conditions (10,
100, and 1000 groups of identical agents in the optimal composition).

agents that could not become members of the optimal team
[Fig. 6(a), bottom row]. With FAS, insufficient convergence
was detrimental to team performance because it prevented
the formation of the optimal composition. This is supported
by the fact that team performance stayed low, even though
the teams contained only the agents required in the optimal
team [Fig. 6(b), bottom row]. We illustrate this process with a
simple thought experiment. Consider a population consisting
of two identical teams each containing agents A and B (in
that order). In such conditions, RAS may swap agent A with
agent A only, and agent B with agent B only. This does not
change team compositions in the population and thus does
not affect the teams’ performance. In contrast, FAS may at
some point swap agent A with B, which would result in one
team containing both agents A and the second team containing
both agents B. Consequently, FAS may destroy favorable
team compositions, even when entire population contains only
optimal teams.

We performed a sensitivity analysis to see how our results
were affected by lower probability of agent swapping, by
mutations, and by higher selection pressure. Lower probability
of agent swapping had a small detrimental effect on team
performance in both treatments and was more marked for RAS
(see Appendix B). In treatments with RAS, using the muta-
tion counterbalanced, to some extent, premature convergence
[compare Figs. 5 and 17], which led to an increase in team per-
formance. In contrast, with FAS, the mutation introduced addi-
tional undesirable variation between the teams and thus had a
weak detrimental effect on the performance (see Appendix C).
In treatments with RAS, stronger selection increased the detri-
mental effect of premature convergence on team performance.
With FAS, stronger selection did not overcome the problem of
insufficient convergence and had no effect on the performance
of the evolved teams (see Appendix D).

288 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 17, NO. 2, APRIL 2013

Fig. 7. Box and Whisker plots showing the mean performance of 1000 teams
evolved with (a) RAS and (b) FAS (ten replicates). Teams consisted of 1000
agents, which needed to display three different compositions (10, 100, and
1000 groups of identical agents) in order for the team to achieve the optimal
performance. The populations were initialized randomly with a bias. For
each of the three conditions and for both treatments, the initial population
always contained on average 10% of agents that could become members of
the optimal team.

We tested alternative implementations of RAS, i.e.,
1-point and 2-point crossover. The results indicate that uniform
crossover is better suited for RAS than n-point crossover (see
Appendix A). Here, we presented the mean team performance
in the population (see Figs. 4 and 7). We also report the
best team performance in the population (averaged over ten
replicates), which shows not to be qualitatively different from
the mean team performance (see Appendix E).

B. RAS and FAS: Disparities in the Initial Population

In the previous experiments, the agents in the teams were
initialized randomly with uniform distribution (i.e., each ini-
tialized agent was set to be one of the 10 000 possible agents
with probability 0.0001). Consequently, the proportion of
agents in the initial population that could become members
of the optimal team varied between conditions. In the first
condition with 1000 groups, the initial population contained
on average 10% of agents that could become members of
the optimal team. In the second condition with 100 groups,
the initial population contained 1% of such agents. In the
third condition with 10 groups, the initial population contained
only 0.1% of such agents. We tested if these disparities in
the initial population influenced the difference in team perfor-
mance between conditions for both treatments. To this aim,
we performed a control experiment in which the populations
were initialized randomly with a bias. For each of the three
conditions, the initial population always contained on average
10% of agents that could become members of the optimal
team.

In treatments with RAS and without disparities in the initial
population, there was an important increase in team perfor-
mance for conditions with 10 and 100 groups in the optimal
composition [compare Figs. 4(a) and 7(a); two Wilcoxon tests,
df = 9, p < 0.001]. By contrast, there was no significant
change over the 1000 generations for 1000 groups [compare
Figs. 4(a) and 7(a); Wilcoxon test df = 9, p = 0.47]. This
suggests that with RAS team, performance primarily depended
on the number of agents that could become members of the
optimal team. The performance of the evolved teams was
higher with more such agents in the initial population.

Fig. 8. Mean performance (±s.d. in gray) of 1000 teams evolved with
(a) RAS, (b) FAS, and (c) mixed FAS/RAS (10 replicates). In (c), the teams
were evolved with FAS in generations from 1 to 500 (inclusive) and with RAS
in generations from 501 to 1000. The black solid vertical line at generation
500 marks the transition from using FAS to using RAS. Teams consisted of
1000 agents, which needed to display three different compositions (10, 100,
and 1000 groups of identical agents) in order for the team to achieve the
optimal performance.

In treatments with FAS, in contrast to RAS, there were
no important differences in performance of teams evolved
with and without disparities in the initial population for each
of the three conditions [compare Figs. 4(b) and 7(b), three
pairwise Wilcoxon tests df = 9, p > 0.3]. This suggests
that with FAS team performance primarily depended on the
optimal composition. The performance of the evolved teams
was higher with a lower number of groups in the optimal team.

C. Combining FAS and RAS

In the treatments with RAS and FAS, the exploration and
exploitation aspects of the evolutionary algorithm were not
well balanced. With RAS, the evolutionary algorithm suffered
from premature convergence, whereas with FAS, it suffered
from insufficient convergence. Consequently, in both cases,
only suboptimal solutions have evolved [Fig. 8(a) and (b)].
In order to overcome the limitations of both RAS and FAS,
we combined the two swapping methods in a complementary
way: for the first 500 generations, FAS was used and for the
next 500, generations RAS was used. We expected this would
allow us to efficiently explore the search space first and then
to exploit it. We tested the efficiency of the mixed approach
in the evolution of team composition for the three conditions
(1000, 100, and 10 groups in the optimal composition).

There were important differences in team performance be-
tween the treatments (RAS, FAS, FAS/RAS) at the 1000th
generation for each of the three conditions [Fig. 8, three
Kruskal–Wallis tests, df = 2, p < 0.001]. For each of the
three conditions, the performance was higher with FAS/RAS
than with RAS alone [Fig. 8(a) and (c), three Wilcoxon tests
df = 9, p < 0.001) and with FAS alone [Fig. 8(b) and (c),
three Wilcoxon tests df = 9, p < 0.001). This was because
in treatments with the mixed FAS/RAS approach, using FAS
for the first 500 generations resulted in an abundance of agents
that could become members of the optimal team [Fig. 6(b),
bottom row]. These agents could than be efficiently used
to compose optimal teams using RAS in the following 500
generations. In addition, for the first 500 generations, there
was high variation between the evolving teams typical for FAS,
which was then decreased by applying RAS [Fig. 9]. Overall,

LICHOCKI et al.: EVOLVING TEAM COMPOSITIONS BY AGENT SWAPPING 289

Fig. 9. Mean variation (±s.d. in gray) between the 1000 teams in a pop-
ulation, quantified with the standard deviation of teams’ performance in a
population. The teams were evolved in three different conditions (10, 100,
and 1000 groups of identical agents in the optimal composition) with FAS in
generations from 1 to 500 (inclusive) and with RAS in generations from 501
to 1000 (ten replicates). The black solid vertical line at generation 500 marks
the transition from using FAS to using RAS.

this mixed approach overcame the convergence issues of both
FAS and RAS.

We fixed the moment of switch from FAS to RAS at the
middle of the evolutionary process (500th generation). But,
if needed, one may envision a dynamic switch between the
agent swapping methods, which should be performed as soon
as the variation between teams stabilizes (here around the
250th generation) [Fig. 9]. In addition, we tested alternative
implementations of combining RAS and FAS, by applying
both operators simultaneously but with different and varying
probabilities of agent swapping. The results indicate that RAS
and FAS should be used exclusively in order to balance
the exploration and exploitation aspects of the evolutionary
algorithm (see Appendix F).

V. Discussion

We considered a situation when an optimal team consisted
of equally sized groups of identical agents, but the results
allow us to speculate how the RAS and FAS compare when
groups differ in sizes. In treatments with RAS, team per-
formance depended on the contents of the initial population
and not on the actual optimal composition. Consequently,
limitations and analysis presented in this paper for RAS
should also hold for optimal team composition with groups
of different sizes. This is because no link should be expected
between the number of agents of a specific type in the initial
population and in the optimal composition.

In contrast, with FAS, team performance depended on
the optimal team composition. FAS introduced a variation
between team compositions, which was detrimental to team
performance. The level of this variation depended on the
condition. For example, the variation was the highest and
hence team performance was the lowest, when the optimal
team was composed of many small groups (here 1000 groups
of one agent). This was because, with FAS, it is more probable
for a team to deviate from the optimum when the optimal
composition consists of small groups than when it consists
of big groups. We illustrate this property with a simple
thought experiment. Consider two teams of four agents, both
displaying the same optimal composition that consists of four

groups of one agent. There are 16 possible free agent swaps
between the two teams. Only four of them, the ones that
happen on the corresponding positions, maintain the optimal
composition in the teams. In contrast, consider two teams of
four agents, both displaying the same optimal composition
that consists of two groups of two agents. Again, there are
16 possible free agent swaps between the two teams. But now
there are eight swaps that maintain the optimal composition in
the teams. Therefore, the performance of teams evolved with
FAS depends on the size of groups in the optimal composition.
But it does not depend on if these groups are of equal size or
not. Consequently, limitations and analysis presented in this
paper for FAS should also hold for optimal team composition
with groups of different sizes.

Several general guidelines on applying RAS and FAS to
real-life problems can be drawn. First, we compared RAS
and FAS on a problem of evolving team compositions, whose
formulation was highly general. The part of a team’s genotype
that corresponded to a single agent was rather simplistic,
i.e., a vector of one (main experiments) to a few numbers
(see additional experiments in Appendix G). Consequently,
our results are directly applicable whenever the goal is to
optimize just a few control parameters per agent and not to
create entire controllers for each agent from scratch. This is
the case for many real-life applications, when the problem is
often decomposed into two parts: the one solved manually
and the one solved automatically. For example, in behavioral
robotics, agents perform behaviors that have been implemented
manually [46]–[48]. In bio-inspired scheduling, agents allocate
themselves to tasks which they handle by calling existing rou-
tines [49]–[52]. In real-time strategy games, units perform pre-
defined actions or entire sequences of actions [53], [54]. In ant
colony optimization, the agents traverse the edges of a graph
according to established algorithms [2], [55]. In all these cases,
the agents choose behaviors, tasks, actions, and edges based on
the values of a few control parameters that can be optimized
automatically [56], [57]. In conclusion, our problem’s formu-
lation, although general, conforms very well to practical ap-
plications, as diverse as robotics, task allocation, video games,
and hyperheuristics (i.e., searching in the space of heuristics).

Three implementation issues related to RAS and FAS should
be discussed. First, we considered the agent swapping opera-
tors to work on teams having linear genotypes (in contrast to,
e.g., a tree-based representation popular in genetic program-
ming). Both RAS and FAS can be easily adapted to other
teams’ representations. In principle, FAS requires teams to be
multisets of agents, i.e., sets in which elements may repeat.
Whereas RAS requires teams to be sequences of agents. This
is not much of a limitation because one can always create
a sequence by imposing an ordering on a multiset. Note,
however, that the ordering must remain constant during the
evolution or, at least, it must change in the same way for all
teams in the population. Otherwise, the agents could change
their positions due to variations in the ordering. Consequently,
there would be no restrictions on agents keeping their positions
in teams and using RAS would make little sense.

Second, we evolved teams of constant size and thus we
used genotypes of constant length. Both RAS and FAS could

290 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 17, NO. 2, APRIL 2013

be adapted to variable-length genotypes by restraining the
operators to act only on common parts of the genotypes.
Alternatively, one could use agent deletion and duplication that
alters the team compositions similar to FAS (see Appendix H).

Third, for the mixed FAS/RAS operator, we also consid-
ered alternative implementations. We applied both operators
simultaneously but with different and varying probabilities of
agent swapping. The results discourage such an approach and
suggest that RAS and FAS should be used exclusively. This
is due to the disruptive character of FAS, which is strongly
marked even for low probabilities of agent swapping (see
Appendix F).

We focused on the evolution of team compositions using
team encoding, i.e., when a single genotype encodes all
individuals from one team. Team encoding implicitly assumes
team level of selection (i.e., global reward, see Fig. 1). In
contrast to individual level of selection, team level of selec-
tion omits pathologies caused by competition between team
members (e.g., evolution of cheaters [58]–[60]), which could
decrease the overall team performance. Therefore, team level
of selection and, consequently, team encoding are advocated
when the goal is to optimize the overall team’s performance
[13]. Studying interagent interactions usually requires a game-
theoric perspective and is an interesting subject in itself (e.g.,
[61]), but was not in the scope of this paper.

Nevertheless, our results are also relevant for evolutionary
algorithms using individual encoding (e.g., [13], [18], [24]–
[27]). This is because the converging character of RAS and
the disruptive character of FAS are general properties of these
operators. Thus, premature and insufficient convergence would
be to some extent marked with RAS and FAS, respectively,
regardless of the encoding and the level of selection used.
For example, with individual encoding, in order to assess
performance, the agents are grouped into teams, often at
random (e.g., [26], [62], and [13]). Random grouping in
individual encoding introduces a constant variation between
compositions of evolving teams, similar to FAS in team en-
coding. Consequently, random grouping shares the limitations
of FAS and may hamper the evolutionary process whenever
high level of genetic specialization between agents is required.

It should be noted that the evidence from our paper has
three limitations, which translate into three directions of future
research.

First, we assumed that a single change in team com-
position perfectly translates into a corresponding change in
team performance. It might be desirable to consider epistatic
and noisy fitness functions (e.g., [63]). We expect FAS to
drive the evolution toward optimum even then because of the
highly explorative nature of this method. We supported this
claim by validating agent-swapping operators in a stochastic
and dynamic problem of decentralized task allocation (see
Appendix G). In this practical application, we showed that
the teams evolved with FAS had higher performance than
the teams evolved with RAS, probably due to low level of
agent specialization that was required to solve the problem.
This result is consistent with our previous analyses and
shows that the conclusions are valid also for more complex
problems.

Second, we assumed a situation with no locally optimal
team compositions. In practice, the globally optimal team
composition might be hidden in a part of the landscape
with low average payoff (i.e., deceptive fitness landscape
[64]). Such a fitness landscape could hamper the evolution
of optimal teams, similar to other problems being solved with
evolutionary algorithms [65], [66]. Fortunately, evolutionary
algorithms frequently turn out to be excellent heuristics for
most deceptive fitness landscapes [64].

Third, we focused on teams consisting of agents that did not
evolve themselves. This allowed us to decouple the effects
of agent recombination and agent swapping and to directly
study the evolution of team compositions. We also validated
RAS and FAS including mutations. This did not affect the
conclusions drawn (see Appendixes C and G). Note that
developing the methods that efficiently evolve large teams
of complex genotypes for multiagent systems remains a big
challenge. So far, other authors have focused on the evolution
of complex controllers for small teams of agents (e.g., GP trees
[16], [21] and neural networks [13], [26]) and have overlooked
the evolution of team compositions (with the exception of
[32] and [15], which consider only simple teams of up to
six groups). Consequently, our investigation of evolving team
compositions fills the gap and hopefully will help to address
other challenging questions on optimizing multiple agents.

VI. Conclusion

In this paper, we were able to quantify for the first time
the efficiency of RAS and FAS in the evolution of team
compositions using team encoding. The analysis and compar-
ison between RAS and FAS revealed the limitations of both
approaches. Our paper highlights and explains the convergence
issues, which were detrimental to team performance. Using
RAS resulted in an efficient evolution of team compositions,
only if the population contained enough agents that could
become members of the optimal team (but regardless of the
optimal composition). In contrast, using FAS resulted in an ef-
ficient evolution of team compositions, only if optimal compo-
sition imposed a low requirement on genetic specialization of
the agents (but regardless of the contents of initial population).
In order to overcome these limitations, the results strongly
suggested using a combination of the two methods of agent
swapping, which were so far only used in isolation. The mixed
approach balanced the exploration and exploitation aspects of
the evolutionary algorithm and experimentally proved to be a
superior strategy in the evolution of team compositions.

Appendix A

1-Point and 2-Point Crossover

Miconi [14] and Nakashima et al. [31] used 1-point and
2-point crossover to recombine the teams’ genotypes. The n-
point crossover might be considered a competitive way to
implement RAS. It has been shown that n-point crossover
has lower exploratory power than uniform crossover [29],
[30]. Also, teams are sets of agents (formally multisets) and
not sequences of agents, thus the disruptive nature of the

LICHOCKI et al.: EVOLVING TEAM COMPOSITIONS BY AGENT SWAPPING 291

Fig. 10. Box and Whisker plots showing the mean performance of 1000
teams evolved with (a) 1-point crossover and (b) 2-point crossover (ten
replicates). Teams consisted of 1000 agents, which needed to display three
different compositions (10, 100, and 1000 groups of identical agents) in order
for the team to achieve the optimal performance.

uniform crossover (i.e., breaking the schemata) [30] is not
necessarily an undesirable feature. These two facts suggest
that uniform crossover [21], [28] is a better choice than n-
point crossover in the implementation of RAS. We found
support for this claim, and we showed that in treatments
with RAS implemented as 1-point and 2-point crossover team
performance was lower [Fig. 10] than in treatments with RAS
implemented as uniform crossover. This performance drop was
associated with faster convergence [Fig. 11] with 1-point and
2-point than uniform crossover. Consequently, the proportion
of corresponding positions that in all teams contained only
agents that could not become members of the optimal team
was higher [Fig. 12, top row] with 1-point and 2-point than
with uniform crossover. The proportion of agents in teams
that could become members of the optimal team was lower
[Fig. 12, bottom row] with 1-point and 2-point than with
uniform crossover.

In treatments with 1-point and 2-point crossovers, to con-
struct the 1000 teams of the following generation, we selected,
500 times, two teams (tournament size was set to 2). Then,
instead of reorganizing the two teams with uniform crossover,
the teams’ genotypes were crossed over with 1-point or
2-point crossovers. With 1-point crossover, one random locus
1 ≤ L ≤ 1000 was chosen and the parenting teams exchanged
all agents on positions from 1 to L. With 2-point crossover,
two random loci 1 ≤ L1 ≤ L2 ≤ 1000 were chosen and the
parenting teams exchanged all agents on positions from L1 to
L2. Other settings were the same as in Section III.

Appendix B

Effects of Agent Swapping With Probability p = 0.2

To test the sensitivity of the results to different probability
of swapping the agents between the parenting teams, we
performed an additional experiment with this probability set to
0.2. Other settings were the same as in Section III. We found
that the control experiment is in reasonably good agreement
with the previously reported results with respect to team
performance [Fig. 13], the variation between teams [Fig. 14],
the proportion of corresponding positions that in all teams
contained only agents that could not become members of the
optimal team [Fig. 15, top row], and the proportion of agents

Fig. 11. Mean variation (±s.d. in gray) between the 1000 teams in a popula-
tion (ten replicates), measured for all 1000 generations. The variation between
the teams was quantified with the standard deviation of teams’ performance
in a population for (a) 1-point crossover and (b) 2-point crossover, in each
of the three conditions (10, 100, and 1000 groups of identical agents in the
optimal composition).

Fig. 12. (Top) Mean proportion (±s.d. in gray) of corresponding positions
that contained, in all 1000 teams, only the agents that could not become
members of the optimal team. (Bottom) Mean proportion (±s.d. in gray) of
agents in a team that could become members of the optimal team, averaged
over 1000 teams. The populations were analyzed every 25 generations over
ten replicates for (a) 1-point crossover and (b) 2-point crossover, in each of the
three conditions (10, 100, and 1000 groups of identical agents in the optimal
composition).

in teams that could become members of the optimal team
[Fig. 15, bottom row].

Appendix C

Effects of Mutation

With RAS, the evolutionary algorithm suffered from pre-
mature convergence. Therefore, using mutation with RAS
should have a positive effect on the exploration aspect of the
evolutionary algorithm and, thus, translate into an increase in
team performance. In contrast, with FAS, the evolutionary al-
gorithm suffered from insufficient convergence. Consequently,
using mutation with FAS should have a negative effect on the
exploitation aspect of the evolutionary algorithm and, thus,
translate into a decrease in team performance. We found
support for both these claims in an additional experiment
where the teams’ genotypes were subject to mutation, i.e.,

292 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 17, NO. 2, APRIL 2013

Fig. 13. Box and Whisker plots showing the mean performance of 1000
teams evolved with (a) RAS and (b) FAS (ten replicates). Teams consisted of
1000 agents, which needed to display three different compositions (10, 100,
and 1000 groups of identical agents) in order for the team to achieve the
optimal performance. For both treatments (RAS and FAS), the agents were
swapped with probability 0.2.

Fig. 14. Mean variation (±s.d. in gray) between the 1000 teams in a
population (ten replicates), measured for all 1000 generations. The variation
between the teams was quantified with the standard deviation of teams’
performance in a population for (a) RAS and (b) FAS, in each of the three
conditions (10, 100, and 1000 groups of identical agents in the optimal
composition). For both treatments (RAS and FAS), the agents were swapped
with probability 0.2.

each allele of the newly added teams to the population was
randomly set to a value between 1 and 10 000 with a proba-
bility 0.001. Other settings were the same as in Section III.

In treatments with RAS, using the mutation counterbal-
anced, to some extent, premature convergence [Fig. 17(a)]
and its negative effect on team compositions, with respect
to the proportion of corresponding positions that contained,
in all teams, only agents that could not become members of
the optimal team [Fig. 18(a), top row] and to the propor-
tion of agents in teams that could become members of the
optimal team [Fig. 18(a), bottom row]. This translated into
a higher team performance [Fig. 16(a)] than in treatments
with RAS without mutation. In contrast, in treatments with
FAS, the mutation increased the variation between the teams
[Fig. 17(b)], which had a detrimental effect on evolving team
compositions [Fig. 18(b), top row and Fig. 18(b), bottom row]
and, consequently, on team performance [Fig. 16(b)].

Appendix D

Effects of Selection Pressure

We performed a sensitivity analysis and investigated how
our results were affected by increasing the selection pressure.
To this aim, we used a tournament size set to 7. Other

Fig. 15. (Top) Mean proportion (±s.d. in gray) of corresponding positions
that contained in all 1000 teams only the agents that could not become
members of the optimal team. (Bottom) Mean proportion (±s.d. in gray) of
agents in a team that could become members of the optimal team, averaged
over 1000 teams. The populations were analyzed every 25 generations over
ten replicates for (a) RAS and (b) FAS, in each of the three conditions (10,
100, and 1000 groups of identical agents in the optimal composition). For
both treatments (RAS and FAS), the agents were swapped with probability
0.2.

Fig. 16. Box and Whisker plots showing the mean performance of 1000
teams evolved with (a) RAS and (b) FAS (ten replicates). Teams consisted of
1000 agents, which needed to display three different compositions (10, 100,
and 1000 groups of identical agents) in order for the team to achieve the
optimal performance. For both treatments (RAS and FAS), each allele in a
team’s genotype was mutated with probability 0.001.

settings were the same as in Section III. We found that
with RAS, stronger selection increased premature convergence
[Fig. 20(a)], which translated into lower team performance
[Fig. 19(a)] than in treatments with tournament size set to 2
(see Section IV). This was because the increased premature
convergence led to higher proportion of corresponding posi-
tions that in all teams contained only agents that could not
become members of the optimal team [Fig. 21(a), top row] and
to a lower proportion of agents in teams that could become
members of the optimal team [Fig. 21(a), bottom row].

In contrast, with FAS, stronger selection had no effect on
the performance of the evolved teams [Fig. 19(b)] because
it did not overcome the problem of insufficient convergence
[Fig. 20(b)]. Consequently, the results for treatments with FAS

LICHOCKI et al.: EVOLVING TEAM COMPOSITIONS BY AGENT SWAPPING 293

Fig. 17. Mean variation (±s.d. in gray) between the 1000 teams in a
population (ten replicates), measured for all 1000 generations. The variation
between the teams was quantified with the standard deviation of teams’
performance in a population for (a) RAS and (b) FAS, in each of the three
conditions (10, 100, and 1000 groups of identical agents in the optimal
composition). For both treatments (RAS and FAS), each allele in a team’s
genotype was mutated with probability 0.001.

Fig. 18. (Top) Mean proportion (±s.d. in gray) of corresponding positions
that contained in all 1000 teams only the agents that could not become
members of the optimal team. (Bottom) Mean proportion (±s.d. in gray) of
agents in a team that could become members of the optimal team, averaged
over 1000 teams. The populations were analyzed every 25 generations over
ten replicates for (a) RAS and (b) FAS, in each of the three conditions (10,
100, and 1000 groups of identical agents in the optimal composition). For both
treatments (RAS and FAS), each allele in a team’s genotype was mutated with
probability 0.001.

Fig. 19. Box and Whisker plots showing the mean performance of 1000
teams evolved with (a) RAS and (b) FAS (ten replicates). Teams consisted of
1000 agents, which needed to display three different compositions (10, 100,
and 1000 groups of identical agents) in order for the team to achieve the
optimal performance. For both treatments (RAS and FAS), the tournament
size in the tournament selection was set to 7.

Fig. 20. Mean variation (±s.d. in gray) between the 1000 teams in a
population (ten replicates), measured for all 1000 generations. The variation
between the teams was quantified with the standard deviation of teams’
performance in a population for (a) RAS and (b) FAS, in each of the three
conditions (10, 100, and 1000 groups of identical agents in the optimal
composition). For both treatments (RAS and FAS), the tournament size in
the tournament selection was set to 7.

Fig. 21. (Top) Mean proportion (±s.d. in gray) of corresponding positions
that contained in all 1000 teams only the agents that could not become
members of the optimal team. (Bottom) Mean proportion (±s.d. in gray) of
agents in a team that could become members of the optimal team, averaged
over 1000 teams. The populations were analyzed every 25 generations over
ten replicates for (a) RAS and (b) FAS, in each of the three conditions (10,
100, and 1000 groups of identical agents in the optimal composition). For both
treatments, RAS and FAS, the tournament size in the tournament selection
was set to 7.

with the two strengths of selection pressure are in agreement
with respect to the proportion of corresponding positions that
in all teams contained agents that could not become members
of the optimal team [Fig. 21(b), top row] and the proportion
of agents in a team that could become members of the optimal
team [Fig. 21(b), bottom row].

Appendix E

Best Team Performance in the Population

We report here the performance of the best team at gen-
eration 1000th over ten replicates [Fig. 22] and compare it
with mean team performance. To this aim, we calculated over
ten replicates the mean ±s.d. ratio r between the value of
mean performance in the population and the value of the best

294 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 17, NO. 2, APRIL 2013

Fig. 22. Box and Whisker plots showing the best performance from 1000
teams evolved with (a) RAS and (b) FAS (ten replicates). Teams consisted of
1000 agents, which needed to display three different compositions (10, 100,
and 1000 groups of identical agents) in order for the team to achieve the
optimal performance.

performance. There were no differences between mean and
best team performance for treatments with RAS (r = 1±0 for
all three conditions). There were small differences between
mean and best team performance for treatments with FAS (r
for 1000 groups: 0.931 ± 0.004; 100 groups: 0.955 ± 0.003;
10 groups: 0.971 ± 0.001). These differences between mean
and best team performance correspond well to the variation
between teams at the 1000th generation (0 for RAS, and
approximately 0.01 for FAS, see Fig. 5).

Appendix F

Alternative Methods of Combining RAS and FAS

Earlier, we combined FAS with RAS by applying them from
generation 1 to 500 and from generation 501 to 1000, re-
spectively. Here, we investigated two alternative methods that
apply both operators together, but with different probabilities
of agent swapping [Fig. 23, top row]. With the first method,
the probability of agent swapping with FAS (pFAS) was set
to = 0.5 at generation 1 and decreased with a constant rate
to 0 at generation 1000. With the second method, the pFAS

was set to 0.5 from generation 1 to 250, then it decreased
with a constant rate to 0 until generation 750 and was fixed
to 0 until generation 1000. In both methods, the probability
of agent swapping with RAS (pRAS) was set to 0.5 − pFAS.
Other settings were the same as in Section III.

The results for both alternative methods were discouraging
[Fig. 23, middle row] because the disruptive character of
FAS was strongly marked even for low probabilities of agent
swapping. Consequently, the first alternative method did not
converge [Fig. 23(a), bottom row] and the second alternative
method started converging only after pFAS decreased to 0
[Fig. 23(b), bottom row]. Therefore, in order to balance well
the exploration and exploitation aspects in the evolution of
team compositions, one should use FAS and RAS exclusively.

Appendix G

Application of RAS and FAS to the Evolution of

Decentralized Controllers for Task Allocation

Methods: We validated the agent-swapping operators (RAS
and FAS) in a complex problem of evolving decentralized

Fig. 23. (Top row) The probabilities of agent swapping with two alternative
methods of combining (a) RAS and (b) FAS. (Middle row) Mean performance
(±s.d. in gray) of 1000 teams. Teams consisted of 1000 agents, which needed
to display three different compositions (10, 100, and 1000 groups of identical
agents) in order for the team to achieve the optimal performance. (Bottom row)
Mean variation (±s.d. in gray) between the 1000 teams. The variation between
the teams was quantified with the standard deviation of teams’ performance
in a population. Both the mean performance and the mean variation were
measured for all 1000 generations (ten replicates).

controllers for task allocation. We considered a team composed
of 1000 agents that allocated themselves to two distinct tasks
using thresholds-based models [49]–[52]. Agents receive in-
formation of the team’s needs via commonly perceived stimuli.
Then, agents respond to team’s needs based on the values of
their internal thresholds. Here, we optimized two different ver-
sions of the response thresholds models. First, with determin-
istic response threshold model (DTM) [67], [68], every agent
had two thresholds corresponding to each of the two tasks. An
agent performed the task with the highest positive difference
between the stimulus and its own corresponding response
threshold or remained idle if both of its thresholds were higher
than the stimuli. If the difference between the stimulus and the
agent’s corresponding response thresholds was the same for all
tasks, one of them was randomly chosen and performed by the
agent. Second, with the extended response threshold model
(ETM) [57], every agent had two thresholds corresponding
to each of the two tasks and two weights corresponding to
each of the two stimuli. An agent performed the task with the
highest positive difference between the weighted stimulus and
its own corresponding response threshold or remained idle if
both of its thresholds were higher than the weighted stimuli. If
the difference between the weighted stimulus and the agent’s
corresponding response threshold was the same for all tasks,
one of them was randomly chosen and performed by the agent.

To quantify the teams’ efficiency in task allocation, we used
a stochastic agent-based simulation to model a situation in
which agents had to perform two distinct tasks [57], [69]. Our

LICHOCKI et al.: EVOLVING TEAM COMPOSITIONS BY AGENT SWAPPING 295

aim was to mimic situations with two vital tasks such as forag-
ing and regulation. A team consisted of 1000 agents placed in
an environment with an infinite number of two types of items:
foraging and regulatory. The team’s lifespan was divided into
100 time-steps. At the beginning of each time-step, an agent
was presented with two task stimuli, one for the foraging items
and the other for the regulatory items. If there were no items
in the base, the corresponding stimulus was set to its maximal
intensity, which was 1. Otherwise, the intensity of the stimulus
for each task was inversely proportional to the number of
corresponding items in the base. The foraging stimulus at time-
step t was equal to 1 − 10−4 · aF (t − 1), where aF (t − 1) is
the number of foraging items accumulated in the base at time
step t − 1. The regulatory stimulus at time-step t was equal to
1−5·10−3·aR(t−1), where aR(t−1) is the number of regulatory
items accumulated in the base at time step t −1. At each time
step, every agent performed the chosen task (or stayed idle) ac-
cording to the task allocation mechanism (DTM, ETM) consid-
ered in the experiment. At each time step, an agent had a prob-
ability of 0.1 to successfully collect one item corresponding to
the task performed. At each time-step, the number of foraged
items in the base were depleted by ten items if they were not
depleted in the previous time-step, otherwise they were de-
pleted by ten items with the probability of 1

2 . The same proce-
dure was applied to independently deplete the regulatory items.

The team performance directly depended on the number
of collected foraging items, but these were counted only
when the number of regulatory items in the base was within
predefined bounds (140–160 items). At the first time-step of a
simulation, there were no items of the foraging and regulatory
tasks in the base. The team performance f was calculated
by adding the partial performance obtained at each time-
step, with f =

∑100
t=1 f (t), where the team performance at

each time-step (f (t)) was quantified as the number of items of
the foraging task collected when the number of items of the
regulatory task present in the base was between 140 and 160:
f (t) = b(t) · gF (t), where b(t) = 1 if 140 ≤ gR(i) ≤ 160
and b(t) = 0 otherwise, gF (t) represents the number of
items foraged at time-step t and gR(t) the number of items
being regulated within the base at time-step t. Thus, if teams
performed well in only one of the two tasks, their fitness was
low. We normalized the resulting fitness values by 10 000,
which is the expected amount of foraging items collected if
all 1000 agents were foraging for all 100 time-steps with the
probability of success equal to 0.1.

In experiments with DTM and ETM, each team had a
genome consisting of 1000 parts, which corresponded to
the agents. With DTM, each of these 1000 genome’s parts
consisted of two thresholds, both ranging from −1 to +1
(8-bit encoding, 256 possible values with a resolution of 1

128).
With ETM, each of the 1000 genome’s parts consisted of two
thresholds and two weights, all ranging from −1 to +1 (8-bit
encoding, 256 possible values with a resolution of 1

128).
We performed 2000 generations of artificial selection in

30 independent replicates for each of the two models (DTM
and ETM), for two treatments (RAS and FAS), and in two
conditions (without and with mutations). Overall, there were
2 × 2 × 2 = 8 experimental lines. In the experiments with

Fig. 24. Mean performance (±s.d. in gray) of 1000 teams evolved with RAS
and FAS for two treatments: (a) deterministic response threshold model and
(b) extended response threshold model (30 replicates). Teams consisted of
1000 agents, which needed to dynamically self-allocate to two different tasks
in order for the team to achieve the optimal performance.

mutations, each allele of the newly added teams to the popu-
lation was randomly set to a value between −1 to +1 (8-bit
encoding, 256 possible values with a resolution of 1

128) with
a probability 0.001. Other settings were the same as in
Section III.

Results: There were important differences in team perfor-
mance between the two treatments (RAS and FAS), under both
conditions (without and with mutations) and for both models
(DTM and ETM). The team performance was higher with FAS
than with RAS for both models, when mutations were not used
[Fig. 24, top row; mean performance ±s.d. at generation 2000
with DTM and without mutations, FAS: (7438±6)·10−4, RAS:
(6698 ± 141) · 10−4; with ETM and without mutations, FAS:
(9161 ± 9) · 10−4, RAS: (6695 ± 225) · 10−4; both Wilcoxon
tests, df = 29, p < 0.001]. With DTM and with mutations,
there was a significant difference in performance between
the two treatments, however, it was very small [Fig. 24(a),
bottom row; mean performance ±s.d. at generation 2000, FAS:
(7304±7) ·10−4, RAS: (7298±10) ·10−4; Wilcoxon test, df =
29, p < 0.01]. With ETM and with mutations, the performance
was higher with FAS than with RAS [Fig. 24(a), bottom row;
mean performance ±s.d. at generation 2000, FAS: (8966 ±
17) · 10−4, RAS: (8672 ± 22) · 10−4; Wilcoxon test, df = 29,
p < 0.001]. The results confirm our observations that using
mutations with RAS may to some extent overcome premature
convergence (see Appendix C). Nevertheless, for the evolution
of more complex agents (here ETM), FAS remained superior
to RAS. Moreover, in all cases, FAS led to a faster evolution
of teams displaying the highest performance [Fig. 24]. Note
that the performance differences between the DTM and ETM
are due to limitations in task switching implicitly present in
the formulation of the DTM (see [57] for more details).

We chose this setup because it has been used previously
[57], [69]. We are aware that every specific problem has it
own constraints and limitations. For example, in the scenario

296 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 17, NO. 2, APRIL 2013

used here, there are two tasks; thus, the optimal team consists
probably of a few large groups of agents of the same type,
e.g., regulators and foragers. This explains the observed higher
performance in treatments with FAS than with RAS (in the
main experiment, we showed that using FAS is a more efficient
strategy of evolving team compositions when the optimal
team has a rather low level of agent heterogeneity). Thus, we
believe that the results presented in this Appendix support our
earlier conclusions and show that they are also valid for more
complex problems.

Appendix H

Family of Operators Altering Team Composition

Interesting connections between RAS, FAS, and other team
composition altering operators exist. First, note that FAS swaps
agents on permuted positions, in contrast to RAS which swaps
agents on corresponding positions. Consequently, one can
implement FAS as a composition of RAS and an operator
that permutes the agents’ order in a team, i.e., samples agents
without repetitions.

A natural next step is to consider a situation when the agents
in a team are sampled with repetitions because this allows
for a more straightforward implementation of the agents’
sampling operator. Let a parenting team have M agents. In
order to construct an offspring team, the agent sampling with
repetition (ASWR) picks uniformly at random M agents with
repetitions from the parenting team and puts them in the
offspring team. Consider agent A in the parenting team. The
number of its copies in the offspring team follows a binomial
distribution with M trials and the probability of success being
1
M

. Thus, if the size of a team is sufficiently large (M > 20)
one can approximate the binomial distribution by Poisson
distribution with the coefficient λ = 1. Consequently, after
applying ASWR on a parenting team, each agent will be
present in the offspring team k times with probability 1

e·k! ,
where k = 0, 1, 2, . . . , M. Thus, ASWR implements a sort
of simultaneous agents’ deletion and duplication (or rather
multiplication).

Interestingly, operators that delete and duplicate parts of
genomes have been already proposed. In genetic programming,
there is branch deletion and duplication [33], and in gene
expression programming, there is gene transfer [34]. Gene
transfer is equivalent to branch substitution, i.e., having two
branches A and B, delete A and duplicate B in place of A. In
the context of evolving team compositions, an analogous agent
transfer operator might be proposed. It should have a similar
impact on the evolutionary dynamics as FAS. This is because
agent transfer would be in essence similar to agent sampling,
which, in turn, is a subcomponent of FAS. Note, however, that
agent duplication, deletion, and transfer are applied to a single
parenting team. Consequently, they should be considered as
mutations rather than crossover.

Acknowledgment

The authors would like to thank A. Maesani, P. Ramdya,
and K. Krawiec for their useful comments on this paper.

References

[1] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From
Natural to Artificial Systems. New York: Oxford Univ. Press, 1999.

[2] E. Bonabeau, M. Dorigo, and G. Theraulaz, “Inspiration for optimization
from social insect behaviour,” Nature, vol. 406, no. 6791, pp. 39–42,
2000.

[3] C. Reynolds, “An evolved, vision-based behavioral model of coordinated
group motion,” in Proc. 2nd Int. Conf. Simulat. Adap. Behavior, 1993,
pp. 384–392.

[4] W. Xiang and H. Lee, “Ant colony intelligence in multi-agent dynamic
manufacturing scheduling,” Eng. Applicat. Artif. Intell., vol. 21, no. 1,
pp. 73–85, 2008.

[5] G. Mathews, H. Durrant-Whyte, and M. Prokopenko, “Decentralised
decision making in heterogeneous teams using anonymous optimi-
sation,” Robot. Autonomous Syst., vol. 57, no. 3, pp. 310–320,
2009.

[6] M. Quinn, L. Smith, G. Mayley, and P. Husbands, “Evolving controllers
for a homogeneous system of physical robots: Structured cooperation
with minimal sensors,” Philosophic. Trans. Royal Soc. London. Se-
ries A: Math., Phys. Eng. Sci., vol. 361, no. 1811, pp. 2321–2343,
2003.

[7] M. Dorigo, V. Trianni, E. Şahin, R. Grob, T. Labella, G. Baldassarre,
S. Nolfi, J. Deneubourg, F. Mondada, D. Floreano, L. M. Gambardella,
“Evolving self-organizing behaviors for a swarm-bot,” Autonomous
Robots, vol. 17, no. 2, pp. 223–245, 2004.

[8] C. Parker and H. Zhang, “Cooperative decision-making in decentralized
multiple-robot systems: The best-of-n problem,” IEEE/ASME Trans.
Mech., vol. 14, no. 2, pp. 240–251, Apr. 2009.

[9] G. Baldassarre, S. Nolfi, and D. Parisi, “Evolving mobile robots able
to display collective behaviors,” Artif. Life, vol. 9, no. 3, pp. 255–267,
2003.

[10] S. Nolfi and D. Floreano, Evolutionary Robotics: The Biology, Intelli-
gence, and Technology. Cambridge, MA: MIT Press, 2000.

[11] H. Iba, “Emergent cooperation for multiple agents using genetic pro-
gramming,” in Proc. 4th Int. Conf. Parallel Problem Solv. Nat., 1996,
pp. 32–41.

[12] L. Panait and S. Luke, “Cooperative multi-agent learning: The state of
the art,” Autonomous Agents Multi-Agent Syst., vol. 11, no. 3, pp. 387–
434, 2005.

[13] M. Waibel, L. Keller, and D. Floreano, “Genetic team composition and
level of selection in the evolution of cooperation,” IEEE Trans. Evol.
Computat., vol. 13, no. 3, pp. 648–660, Jun. 2009.

[14] T. Miconi, “When evolving populations is better than coevolving indi-
viduals: The blind mice problem,” in Proc. 18th Int. Joint Conf. Artif.
Intell., 2003, pp. 647–652.

[15] J. Bongard, “The legion system: A novel approach to evolving hetero-
geneity for collective problem solving,” in Proc. EuroGP, 2000, pp.
16–28.

[16] S. Luke and L. Spector, “Evolving teamwork and coordination with
genetic programming,” in Proc. 1st Annu. Conf. Genet. Program., 1996,
pp. 150–156.

[17] T. Haynes and S. Sen, “Crossover operators for evolving a team,” in
Proc. 2nd Annu. Conf. Genet. Program., 1997, pp. 162–167.

[18] Y. Suzuki and T. Arita, “A comprehensive evaluation of the methods
for evolving a cooperative team,” Artif. Life Robot., vol. 10, no. 2, pp.
157–161, 2006.

[19] K. De Jong, “Learning with genetic algorithms: An overview,” Mach.
Learn., vol. 3, nos. 2–3, pp. 121–138, 1988.

[20] M. Brameier and W. Banzhaf, “Evolving teams of predictors with linear
genetic programming,” Genet. Program. Evol. Mach., vol. 2, no. 4, pp.
381–407, 2001.

[21] T. Haynes and S. Sen, “Co-adaptation in a team,” Int. J. Computat. Intell.
Organiz., vol. 1, no. 4, pp. 1–20, 1996.

[22] D. Andre and A. Teller, “Evolving team Darwin united,” in Proc.
RoboCup-98: Robot Soccer World Cup II, 1999, pp. 346–351.

[23] S. Luke, C. Hohn, J. Farris, G. Jackson, and J. Hendler, “Co-evolving
soccer softbot team coordination with genetic programming,” in Proc.
RoboCup-97: Robot Soccer World Cup I, 1998, pp. 398–411.

[24] L. Bull, “Evolutionary computing in multi-agent environments: Opera-
tors,” in Proc. 7th Int. Conf. EP, 1998, pp. 370–377.

[25] A. Eiben, G. Nitschke, and M. Schut, “Collective specialization for
evolutionary design of a multi-robot system,” in Proc. Swarm Robot.,
2007, pp. 189–205.

[26] D. Floreano, S. Mitri, S. Magnenat, and L. Keller, “Evolutionary
conditions for the emergence of communication in robots,” Curr. Biol.,
vol. 17, no. 6, pp. 514–519, 2007.

LICHOCKI et al.: EVOLVING TEAM COMPOSITIONS BY AGENT SWAPPING 297

[27] T. Soule and R. Heckendorn, “Improving performance and cooperation
in multi-agent systems,” in Proc. Genet. Program. Theory Practice V,
2008, pp. 221–237.

[28] G. Syswerda, “Uniform crossover in genetic algorithms,” in Proc. 3rd
ICGA, 1989, pp. 2–9.

[29] L. Eshelman, R. Caruana, and J. Schaffer, “Biases in the crossover
landscape,” in Proc. 3rd ICGA, 1989, pp. 10–19.

[30] K. De Jong and W. Spears, “A formal analysis of the role of multi-point
crossover in genetic algorithms,” Ann. Math. Artif. Intell., vol. 5, no. 1,
pp. 1–26, 1992.

[31] T. Nakashima, M. Takatani, M. Udo, H. Ishibuchi, and M. Nii, “Per-
formance evaluation of an evolutionary method for robocup soccer
strategies,” in Proc. RoboCup 2005: Robot Soccer World Cup IX, 2006,
pp. 616–623.

[32] A. Hara and T. Nagao, “Emergence of cooperative behavior using ADG:
Automatically Defined Groups,” in Proc. GECCO, 1999, pp. 1038–1046.

[33] J. Koza, “Evolving the architecture of a multi-part program in genetic
programming using architecture-altering operations,” in Proc. 4th Annu.
Conf. Evol. Program., 1995, pp. 695–718.

[34] C. Ferreira, “Gene expression programming: A new adaptive algorithm
for solving problems,” Complex Syst., vol. 13, no. 2, pp. 87–129,
2001.

[35] M. Sebag and M. Schoenauer, “Mutation by imitation in boolean
evolution strategies,” in Proc. 4th Conf. PPSN, 1996, pp. 356–365.

[36] S. Berman, A. Halasz, M. Hsieh, and V. Kumar, “Optimized stochastic
policies for task allocation in swarms of robots,” IEEE Trans. Robot.,
vol. 25, no. 4, pp. 927–937, Aug. 2009.

[37] T. Dahl, M. Matarić, and G. Sukhatme, “Multi-robot task allocation
through vacancy chain scheduling,” Robot. Autonomous Syst., vol. 57,
nos. 6–7, pp. 674–687, 2009.

[38] S. Beshers and J. Fewell, “Models of division of labor in social insects,”
Annu. Rev. Entomol., vol. 46, no. 1, pp. 413–440, 2001.

[39] C. Smith, A. Toth, A. Suarez, and G. Robinson, “Genetic and genomic
analyses of the division of labour in insect societies,” Nat. Rev. Genet.,
vol. 9, no. 10, pp. 735–748, 2008.

[40] A. Duarte, F. Weissing, I. Pen, and L. Keller, “An evolutionary perspec-
tive on self-organized division of labor in social insects,” Annu. Rev.
Ecol., Evol. System., vol. 42, pp. 91–110, Dec. 2011.

[41] G. Robinson, “Regulation of division of labor in insect societies,” Annu.
Rev. Entomol., vol. 37, no. 1, pp. 637–665, 1992.

[42] D. Gordon, “The organization of work in social insect colonies,” Nature,
vol. 380, no. 6570, pp. 121–124, 1996.

[43] J. Fewell, “Social insect networks,” Science, vol. 301, no. 5641, p. 1867,
2003.

[44] E. Robinson, O. Feinerman, and N. Franks, “Flexible task allocation and
the organization of work in ants,” Proc. Royal Soc. B: Biol. Sci., vol.
276, no. 1677, p. 4373, 2009.

[45] S. Luke. (2010). A User Manual for the ECJ Evolutionary Com-
putation Library [Online]. Available: http://www.cs.gmu.edu/∼eclab/
projects/ecj/docs/manual/manual.pdf

[46] R. Brooks, “New approaches to robotics,” Science, vol. 253, no. 5025,
p. 1227, 1991.

[47] R. Brooks, “Intelligence without representation,” Artif. Intell., vol. 47,
nos. 1–3, pp. 139–159, 1991.

[48] T. Balch and R. Arkin, “Behavior-based formation control for multirobot
teams,” IEEE Trans. Robot. Automat., vol. 14, no. 6, pp. 926–939, Dec.
1998.

[49] M. Campos, E. Bonabeau, G. Theraulaz, and J. Deneubourg, “Dynamic
scheduling and division of labor in social insects,” Adap. Behavior,
vol. 8, no. 2, pp. 83–95, 2000.

[50] C. Jones and M. Mataric, “Adaptive division of labor in large-scale
minimalist multi-robot systems,” in Proc. IEEE/RSJ Int. Conf. IROS,
Oct. 2003, vol. 2, pp. 1969–1974.

[51] M. Matarić, G. Sukhatme, and E. Østergaard, “Multi-robot task alloca-
tion in uncertain environments,” Autonomous Robots, vol. 14, no. 2, pp.
255–263, 2003.

[52] W. Agassounon and A. Martinoli, “Efficiency and robustness of
threshold-based distributed allocation algorithms in multi-agent sys-
tems,” in Proc. 1st Int. Joint Conf. Autonomous Agents Multiagent Syst.:
Part 3, 2002, pp. 1090–1097.

[53] P. Lichocki, K. Krawiec, and W. Jaśkowski, “Evolving teams of co-
operating agents for real-time strategy game,” in Proc. EvoWorkshops
Applicat. Evol. Comput., 2009, pp. 333–342.

[54] M. Preuss, N. Beume, H. Danielsiek, T. Hein, B. Naujoks, N. Piatkowski,
R. Ster, A. Thom, and S. Wessing, “Towards intelligent team com-
position and maneuvering in real-time strategy games,” IEEE Trans.
Computat. Intell. AI Games, vol. 2, no. 2, pp. 82–98, Jun. 2010.

[55] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE
Computat. Intell. Mag., vol. 1, no. 4, pp. 28–39, Nov. 2006.

[56] T. White, B. Pagurek, and F. Oppacher, “ASGA: Improving the ant
system by integration with genetic algorithms,” in Proc. 3rd Annu. Conf.
Genet. Program., 1998, pp. 610–617.

[57] P. Lichocki, D. Tarapore, L. Keller, and D. Floreano, “Neural networks
as mechanisms to regulate division of labor,” Am. Naturalist, vol. 179,
no. 3, pp. 391–400, 2012.

[58] S. Goings, J. Clune, C. Ofria, and R. Pennock, “Kin selection: The rise
and fall of kin-cheaters,” in Proc. 9th Int. Conf. Simul. Syn. Living Syst.
Artif. Life, 2004, pp. 303–308.

[59] S. Mitri, D. Floreano, and L. Keller, “The evolution of information
suppression in communicating robots with conflicting interests,” Proc.
Nat. Acad. Sci., vol. 106, no. 37, pp. 15786–15790, 2009.

[60] M. Waibel, D. Floreano, and L. Keller, “A quantitative test of Hamilton’s
rule for the evolution of altruism,” PLoS Biol., vol. 9, no. 5, p. e1000615,
2011.

[61] Y. Shoham and K. Leyton-Brown, Multiagent Systems: Algorithmic,
Game-Theoretic, and Logical Foundations. Cambridge, MA: Cambridge
Univ. Press, 2009.

[62] M. Waibel, D. Floreano, S. Magnenat, and L. Keller, “Division of labour
and colony efficiency in social insects: Effects of interactions between
genetic architecture, colony kin structure and rate of perturbations,”
Proc. Royal Soc. B: Biol. Sci., vol. 273, no. 1595, pp. 1815–1823,
2006.

[63] D. Goldberg, K. Deb, and J. Clark, “Genetic algorithms, noise, and
the sizing of populations,” Complex Syst., vol. 6, no. 4, pp. 333–362,
1991.

[64] K. De Jong, “Genetic algorithms are not function optimizers,” in Proc.
2nd Workshop Found. Genet. Algorithms, 1993, pp. 5–17.

[65] L. Whitley, “Fundamental principles of deception in genetic search,”
in Proc. 1st Workshop Found. Genet. Algorithms, 1991, pp. 221–
241.

[66] J. Horn and D. Goldberg, “Genetic algorithm difficulty and the modality
of fitness landscapes,” in Proc. 3rd Workshop Found. Genet. Algorithms,
1994, pp. 243–269.

[67] R. Page, Jr., and S. Mitchell, “Self-organization and the evolution of
division of labor,” Apidologie, vol. 29, nos. 1–2, pp. 171–190, 1998.

[68] E. Bonabeau, G. Theraulaz, and J. Deneubourg, “Quantitative study of
the fixed threshold model for the regulation of division of labour in
insect societies,” Proc. Biol. Sci., vol. 263, no. 1376, pp. 1565–1569,
1996.

[69] D. Tarapore, D. Floreano, and L. Keller, “Task-dependent influence of
genetic architecture and mating frequency on division of labour in social
insect societies,” Behavioral Ecol. Sociobiol., vol. 64, no. 4, pp. 675–
684, 2010.

[70] T. Miconi, “A collective genetic algorithm,” in Proc. GECCO, 2001, pp.
876–883.

[71] G. Werner and M. Dyer, “Evolution of communication in artificial
organisms,” in Proc. 2nd Int. Conf. Artif. Life, 1991, pp. 659–687.

[72] S. Ficici, R. Watson, and J. Pollack, “Embodied evolution: A response to
challenges in evolutionary robotics,” in Proc. 8th Eur. Workshop Learn.
Robots, 1999, pp. 14–22.

[73] K. Stanley, B. Bryant, and R. Miikkulainen, “Real-time neuroevolution
in the nero video game,” IEEE Trans. Evol. Computat., vol. 9, no. 6,
pp. 653–668, Dec. 2005.

[74] R. Watson, S. Ficici, and J. Pollack, “Embodied evolution: Distributing
an evolutionary algorithm in a population of robots,” Robot. Autonomous
Syst., vol. 39, no. 1, pp. 1–18, 2002.

[75] L. Spector, J. Klein, C. Perry, and M. Feinstein, “Emergence of collective
behavior in evolving populations of flying agents,” Genet. Program.
Evol. Mach., vol. 6, no. 1, pp. 111–125, 2005.

[76] C. Ward, F. Gobet, and G. Kendall, “Evolving collective behavior
in an artificial ecology,” Artif. Life, vol. 7, no. 2, pp. 191–209,
2001.

[77] E. Simoes and D. Barone, “Predation: An approach to improving the
evolution of real robots with a distributed evolutionary controller,” in
Proc. IEEE ICRA, Aug. 2002, vol. 1, pp. 664–669.

[78] R. Bianco and S. Nolfi, “Toward open-ended evolutionary robotics:
Evolving elementary robotic units able to self-assemble and self-
reproduce,” Connect. Sci., vol. 16, no. 4, pp. 227–248, 2004.

[79] A. Agah and G. Bekey, “Phylogenetic and ontogenetic learning in a
colony of interacting robots,” Autonomous Robots, vol. 4, no. 1, pp.
85–100, 1997.

[80] A. Cangelosi and D. Parisi, “The emergence of a ‘language’ in an
evolving population of neural networks,” Connect. Sci., vol. 10, no. 2,
pp. 83–97, 1998.

298 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 17, NO. 2, APRIL 2013

[81] M. Quinn, “A comparison of approaches to the evolution of homoge-
neous multi-robot teams,” in Proc. CEC, 2001, vol. 1, pp. 128–135.

[82] A. Agah and K. Tanie, “Robots playing to win: Evolutionary
soccer strategies,” in Proc. IEEE ICRA, Apr. 1997, vol. 1, pp.
632–637.

[83] M. Potter and K. De Jong, “A cooperative coevolutionary approach to
function optimization,” in Proc. 3rd Int. Conf. PPSN, 1994, pp. 249–257.

[84] M. A. Potter and D. V. De Jong, “Cooperative coevolution: An architec-
ture for evolving coadapted subcomponents,” Evol. Computat., vol. 8,
no. 1, pp. 1–29, 2000.

[85] R. Wiegand, W. Liles, and K. De Jong, “An empirical analysis of
collaboration methods in cooperative coevolutionary algorithms,” in
Proc. GECCO, 2001, pp. 1235–1242.

[86] M. Mirolli and D. Parisi, “How can we explain the emergence of a
language that benefits the hearer but not the speaker?” Connect. Sci.,
vol. 17, no. 3, pp. 307–324, 2005.

[87] L. Panait, S. Luke, and R. Wiegand, “Biasing coevolutionary search for
optimal multiagent behaviors,” IEEE Trans. Evol. Computat., vol. 10,
no. 6, pp. 629–645, Dec. 2006.

[88] H. Botee and E. Bonabeau, “Evolving ant colony optimization,” Complex
Syst., vol. 1, no. 2, pp. 149–159, 1998.

[89] A. Agogino, K. Stanley, and R. Miikkulainen, “Online interactive
neuro-evolution,” Neural Process. Lett., vol. 11, no. 1, pp. 29–38,
2000.

[90] J. Grefenstette, “Credit assignment in rule discovery systems based
on genetic algorithms,” Mach. Learn., vol. 3, no. 2, pp. 225–245,
1988.

Paweł Lichocki (M’07) received the B.S. and M.S.
degrees in computer science from the Poznan Uni-
versity of Technology, Poznan, Poland, with special-
ization in intelligent decisions support systems, in
2007 and 2008, respectively. He is currently pursu-
ing the Ph.D. degree in computer, communication,
and information sciences.

He is currently a Doctoral Assistant with the
Laboratory of Intelligent Systems, School of Engi-
neering, École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland. His current research interests

include evolution of natural and artificial societies (social insects, teams of
robots, etc.) and bioinspired control of multiagent systems.

Steffen Wischmann received the M.S. degree in
biology from Saarland University, Saarbrücken, Ger-
many, in 2003, and the Ph.D. degree in theoretical
biology from the University of Bonn, Bonn, Ger-
many, in 2008.

He is currently a joint Post-Doctoral Fellow with
the Laboratory of Intelligent Systems, School of
Engineering, École Polytechnique Fédérale de Lau-
sanne, Lausanne, Switzerland, and with the De-
partment of Ecology and Evolution, University of
Lausanne, Lausanne. His current research interests

include proximate and ultimate mechanisms driving the evolution of intra and
interspecific social behavior, evolutionary robotics, and information theoretic
approaches to understand communication and cooperation.

Laurent Keller received the B.S. and M.S. degrees
in biology and the Ph.D. degree in zoology from
the University of Lausanne, Lausanne, Switzerland,
in 1983, 1985, and 1989, respectively.

He is currently a Professor of Ecology and Evolu-
tion and the Head of the Department of Ecology
and Evolution, Biophore, University of Lausanne.
His current research interests include the principles
governing the evolution of animal societies and the
ecological and evolutionary consequences of social
life. In addition to publishing several research pa-

pers, he has edited two books: the Queen Number and Sociality in Insects, in
1993, and the Levels of Selection in Evolution, in 1999.

Dr. Keller received the E. O. Wilson Naturalist Award in 2005.

Dario Floreano (SM’05) received the M.A. degree
in visual psychophysics from the University of Tri-
este, Trieste, Italy, in 1988, the M.S. degree in neural
computation from the University of Stirling, Stirling,
U.K., in 1992, and the Ph.D. degree in cognitive
systems and robotics from the University of Trieste
in 1995.

He is currently an Associate Professor and the
Director of the Laboratory of Intelligent Sys-
tems, School of Engineering, École Polytechnique
Fédérale de Lausanne, Lausanne, Switzerland. His

current research interests include analysis and synthesis of bioinspired adap-
tive systems, such as biomimetic robotics, neuromorphic engineering, and
artificial evolution. He is the co-author of two books on these topics: the
Evolutionary Robotics (Cambridge, MA: MIT Press, 2000) and the Bio-
Inspired Artificial Intelligence (Cambridge, MA: MIT Press, 2008).

