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THESIS ABSTRACT 

This thesis project was aimed at studying the molecular mechanisms underlying learning and 

memory formation, in particular as they relate to the metabolic coupling between astrocytes 

and neurons. For that, changes in the metabolic activity of different mice brain regions after 1 

or 9 days of training in an eight-arm radial maze were assessed by (
14

C) 2-deoxyglucose 

(2DG) autoradiography. Significant differences in the areas engaged during the behavioral 

task at day 1 (when animals are confronted for the first time to the learning task) and at day 9 

(when animals are highly performing) have been identified. These areas include the 

hippocampus, the fornix, the parietal cortex, the laterodorsal thalamic nucleus and the 

mammillary bodies at day 1; and the anterior cingulate, the retrosplenial cortex and the dorsal 

striatum at day 9. Two of these cerebral regions (those presenting the greatest changes at day 

1 and day 9: the hippocampus and the retrosplenial cortex, respectively) were microdissected 

by laser capture microscopy and selected genes related to neuron-glia metabolic coupling, 

glucose metabolism and synaptic plasticity were analyzed by RT-PCR. 2DG and gene 

expression analysis were performed at three different times: 1) immediately after the end of 

the behavioral paradigm, 2) 45 minutes and 3) 6 hours after training. The main goal of this 

study was the identification of the metabolic adaptations following the learning task. Gene 

expression results demonstrate that the learning task profoundly modulates the pattern of gene 

expression in time, meaning that these two cerebral regions with high 2DG signal 

(hippocampus and retrosplenial cortex) have adapted their metabolic molecular machinery in 

consequence. Almost all studied genes show a higher expression in the hippocampus at day 1 

compared to day 9, while an increased expression was found in the retrosplenial cortex at day 

9. We can observe these molecular adaptations with a short delay of 45 minutes after the end 

of the task. However, 6 hours after training a high gene expression was found at day 9 

(compared to day 1) in both regions, suggesting that only one day of training is not sufficient 

to detect transcriptional modifications several hours after the task. Thus, gene expression data 

match 2DG results indicating a transfer of information in time (from day 1 to day 9) and in 

space (from the hippocampus to the retrosplenial cortex), and this at a cellular and a 

molecular level. Moreover, learning seems to modify the neuron-glia metabolic coupling, 

since several genes involved in this coupling are induced. These results also suggest a role of 

glia in neuronal plasticity. 
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RESUME DU TRAVAIL DE THESE 

Ce projet de thèse a eu pour but l’étude des mécanismes moléculaires qui sont impliqués 

dans l’apprentissage et la mémoire et, en particulier, à les mettre en rapport avec le couplage 

métabolique existant entre les astrocytes et les neurones. Pour cela, des changements de l'activité 

métabolique dans différentes régions du cerveau des souris après 1 ou 9 jours d’entraînement dans 

un labyrinthe radial à huit-bras ont été évalués par autoradiographie au 2-désoxyglucose (2DG). 

Des différences significatives dans les régions engagées pendant la tâche comportementale au jour 

1 (quand les animaux sont confrontés pour la première fois à la tâche) et au jour 9 (quand les 

animaux ont déjà appris) ont été identifiés. Ces régions incluent, au jour 1, l’hippocampe, le 

fornix, le cortex pariétal, le noyau thalamic laterodorsal et les corps mamillaires; et, au jour 9, le 

cingulaire antérieur, le cortex retrosplenial et le striatum dorsal. Deux de ces régions cérébrales 

(celles présentant les plus grands changements à jour 1 et à jour 9: l’hippocampe et le cortex 

retrosplenial, respectivement) ont été découpées par microdissection au laser et quelques gènes 

liés au couplage métabolique neurone-glie, au métabolisme du glucose et à la plasticité synaptique 

ont été analysées par RT-PCR. L’étude 2DG et l’analyse de l’expression de gènes ont été exécutés 

à trois temps différents: 1) juste après entraînement, 2) 45 minutes et 3) 6 heures après la fin de la 

tâche. L'objectif principal de cette étude était l'identification des adaptations métaboliques suivant 

la tâche d’apprentissage. Les résultats de l’expression de gènes démontrent que la tâche 

d’apprentissage module profondément le profile d’expression des gènes dans le temps, signifiant 

que ces deux régions cérébrales avec un signal 2DG élevé (l’hippocampe et le cortex 

retrosplenial) ont adapté leurs « machines moléculaires » en conséquence. Presque tous les gènes 

étudiés montrent une expression plus élevée dans l’hippocampe au jour 1 comparé au jour 9, alors 

qu'une expression accrue a été trouvée dans le cortex retrosplenial au jour 9. Nous pouvons 

observer ces adaptations moléculaires avec un retard court de 45 minutes après la fin de la tâche. 

Cependant, 6 heures après l’entraînement, une expression de gènes élevée a été trouvée au jour 9 

(comparé à jour 1) dans les deux régions, suggérant que seulement un jour d’entraînement ne 

suffit pas pour détecter des modifications transcriptionelles plusieurs heures après la tâche. Ainsi, 

les données d'expression de gènes corroborent les résultats 2DG indiquant un transfert 

d'information dans le temps (de jour 1 à jour 9) et dans l'espace (de l’hippocampe au cortex 

retrosplenial), et ceci à un niveau cellulaire et moléculaire. D'ailleurs, la tâche d’apprentissage 

semble modifier le couplage métabolique neurone-glie, puisque de nombreux gènes impliqués 

dans ce couplage sont induits. Ces observations suggèrent un rôle important de la glie dans les 

mécanismes de plasticité du système nerveux. 
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LIST OF ABBREVIATIONS 

2DG: 
14

C-2-deoxyglucose 

AC: active control 

ACC: anterior cingulate cortex 

ADP: adenosine diphosphate 

Aldo: aldolase 

AMP: adenosine monophosphate 

AMPA receptor: amino-3-hydroxy-5-methyl-4-isoxazolpropionic acid receptor 

ANLSH: astrocyte–neuron lactate shuttle hypothesis 

ANOVA: analysis of variance 

Arc: Activity regulated cytoskeletal-associated protein 

ATP1a2: Na
+
/K

+
-ATPase alpha 2 subunit 

ATP: adenosine triphosphate 

BDNF: brain-derived neurotrophic factor 

BOLD: blood oxygenation level dependent effect 

14
C-DG-6-P: 

14
C-2-deoxyglucose-6-phosphate 

CA: CornuAmmonis 

CaMKII: Ca
2+

/calmodulin-dependent protein kinase II 

cDNA: complementary deoxyribonucleic acid 

C/EBP: CCAAT-enhancer binding protein 

CMRGlu: cerebral metabolic rate for glucose 

CNS: central nervous system 

CREB: cAMP-response element binding 

DG: dentate gyrus 

DNA: deoxyribonucleic acid 

Egr1: early growth response 1 (= Zif268) 

eIF: eukaryotic initiation factor 

Eno: enolase 

F6P: fructose-6-phosphate 

FADH2: flavin adenine dinucleotide, reduced 

fMRI: functional magnetic resonance imaging 

fx: fornix 

G6pdh: glucose-6-phosphate dehydrogenase 
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GABA: gamma aminobutyric acid 

Gap43: growth associated protein 43 

GAP: glyceraldehydes-3-phosphate 

Gapdh: glyceraldehydes-3-phosphate dehydrogenase 

GLUTs: glucose transporters 

GSH: glutathione 

GTFs: general transcription factors 

GTP: guanosine triphosphate 

Gyg: glycogenin 

Gys: glycogen synthase 

Hk: hexokinase 

HP: hippocampus 

IHC: immunohistochemistry 

IRES: internal ribosomal entry sites 

ISH: in situ hybridization 

ITK: national library of medicine insight segmentation and registration toolkit 

LCM: laser capture microdissection 

LD: laterodorsal nucleus of the thalamus 

LDA: low density array 

Ldh: lactate dehydrogenase 

LMPC: laser microdissection and pressure catapulting 

LTP: long-term potentiation 

MAPK: mitogen-activated protein kinase 

MB: mammillary bodies 

MCTs: monocarboxylate transporters 

mRNA: messenger ribonucleic acid 

NA: noradrenaline 

NADH: nicotinamide adenine dinucleotide, reduced 

NADPH: nicotinamide adenine dinucleotide phosphate, reduced 

NMDA receptor: N-methyl-D-aspartate receptor 

OD: optical density 

OLP: on-line processing 

PCR: polymerase chain reaction 

Pcx: pyruvate carboxylase 
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Pdk: pyruvate dehydrogenase kinase 

PET: positron emission tomography 

Pfk: phosphofructokinase 

Pk: pyruvate kinase 

PKA: protein kinase A 

PKC: protein kinase C 

PP1: phosphatase protein 1 

PP: post-processing 

PPd: post-processing delayed 

PSD95: post synaptic density 95 (= Dlg4) 

PTG: protein targeting to glycogen 

PTLp: posterior parietal cortex 

Pygb: glycogen phosphorylase, brain 

QC: quiet control 

RAM: eight-arm radial maze 

rCBF: regional cerebral blood flow 

RNA: ribonucleic acid 

rRNA: ribosomal ribonucleic acid 

ROI: regions of interest 

RS: retrosplenial cortex 

RT-PCR: real time-polymerase chain reaction 

s.e.m: standard error of the mean 

Taldo :transaldolase 

TCA cycle: tricarboxylic acid cycle 

TE buffer: Tris-EDTA buffer 

Tkt: transketolase 

tRNA: transfer ribonucleic acid 

VIP: vasoactive intestinal peptide 
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1 INTRODUCTION 
 

The study of the learning and memory processes has occupied a large part of the 

neuroscientific community during the last decades. Rodents are maybe the favorite laboratory 

animals for behavioural studies due to the low cost, easy handling and similar genome to the 

one of human being, allowing researchers to study the neurobiological mechanisms of 

learning and memory from a cellular, metabolic and genetic point of view. A large battery of 

tests has been developed to assess different aspects and kinds of learning in rodents.  

1.1 BEHAVIORAL PARADIGMS FOR SPATIAL LEARNING 
 

A high variety of behavioural paradigms (as radial arm maze, water maze, T-maze, Y-

maze and Barnes maze) have been used to study spatial cognition and exploration in rodents. 

From all of them, I will focus on the radial arm maze (RAM). The RAM was introduced by 

David Olton and Robert Samuelson in 1976 (Olton and Samuelson, 1976). The original 

apparatus was designed with eight radial arms and was thought to study spatial learning in 

rats. Later, the same device but adapted for mice was developed (Pick and Yanai, 1983). The 

number of arms can differ enormously from one study to another, researchers using maze 

paradigms ranging from 3 to 48 arms. Cole and Chappell-Stephenson tried to establish the 

limits of spatial performance in rats, starting from an eight-arm radial maze and adding sets of 

eight arms to get 16, 24, 32, 40 and finally 48 arms(Cole and Chappell-Stephenson, 2003). 

They concluded that the limit of spatial learning in their multiple behavioural paradigms was 

between 16 and 24 food locations, even though they said that the arrangement of arms, 

meaning the separation between adjacent arms, was more important for rat performance than 

the number of arms. 

 

RAM has been used to study a broad range of issues as natural behaviour, short- and long-

term memory, spatial and non spatial memory, working and reference memory, strain and 

species differences in spatial competence, drug effects on behaviour and ageing effects, 

among others (Foreman and Ermakova, 1998). Indeed, mouse strain differences exist for 

behavioural traits being the C57 inbred strains of mice (including C57BL/6, C57BL/10, 

C57BR, and C57L) one of the best strains for behavioral tasks as open field locomotion, 

Morris water maze, contextual fear conditioning and eight-arm radial maze (Crawley et al., 

1997). Animal behavior studies can be correlated with human performance results, at least at 
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the level of the hippocampal formation which is one of the most important brain regions 

implicated in spatial learning and memory formation (Kesner and Hopkins, 2006). 

 

Now, only a few words to briefly describe the other devices used to assess spatial learning 

and memory: 

Morris water maze 

The Morris water maze was developed by Richard G. Morris in 1981(Morris, 1981). The 

original paradigm consists in a circular pool containing warm and opaque water. The pool was 

divided in four equal quadrants. In one of them, the target quadrant, an escape platform is 

hidden under the water level, being invisible for animals. What is measured in this type of 

maze is the “latency”, the time the animal needs to reach the escape platform after has been 

immersed in the water (Morris, 1984; Paul et al., 2009). 

T maze 

This device consists in a maze in the form of “T”. Animals are placed at the base of the T 

and allowed to explore the maze and to choose one of the arms. This behavioral paradigm 

shows that rodents prefer the arm that they have not visited before, so they remember which 

was the last arm visited (Deacon and Rawlins, 2006; Paul et al., 2009). 

Y maze 

The Y maze could be considered as a variant of the T maze. Three identical arms are 

disposed as a “Y”. The animal starts in one of the arms and can explore the rest of the maze. 

Novelty vs familiarity choices were assessed (Paul et al., 2009). 

Barnes maze 

It consists in an elevated, open and circular platform containing 18-20 holes around the 

platform. The animal is placed in the center of the device and an aversive stimulus, as a loud 

noise or an intense light, is turned on. The animal must find the escape hole and the 

experimenter measures the latency and the number of errors (Paul et al., 2009). 

 

1.2 SPATIAL LEARNING, MEMORY AND BRAIN ANATOMY 
 

It is known that the hippocampal formation is essential for spatial learning, but this 

process involves a large number of regions. Spatial learning and memory depends probably 

upon the coordinated action of different brain structures constituting a functionally integrated 

neural network. Interconnection of different brain regions may form memory systems that 
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operate independently but, at the same time, in association with other memory systems. Thus, 

the various brain memory systems operate in parallel to support behaviour (Squire, 2004). 

 

1.2.1 SPATIAL LEARNING AND THE HIPPOCAMPUS 
 

The medial temporal lobe, especially the hippocampus, is required for declarative episodic 

learning and memory (Eichenbaum, 2000; Squire, 2004; Squire et al., 2004), see figure 1-1 

for the different memory systems. Furthermore, a bidirectional dialogue between the 

hippocampus and the cortex is at the basis of memory formation and consolidation 

(Eichenbaum, 2000; Remondes and Schuman, 2004; Frankland and Bontempi, 2005). 

 

The hippocampal formation or hippocampal system includes the hippocampus and some 

other adjacent regions. However, there is no consensus about how many and which regions 

form this hippocampal formation. Amaral and Lavenex define the hippocampal formation as 

the following 6 regions: dentate gyrus, hippocampus proper, subiculum, presubiculum, 

parasubiculum and entorhinal cortex, being the hippocampus formed by only the Cornu 

Ammonis (CA) subregions: CA1, CA2 and CA3 (Amaral and Lavenex, 2006). Other authors 

consider the hippocampus as a large region including the CA subregions, the dentate gyrus 

and the subicular complex, then the entorhinal, perirhinal and postrhinal cortices complete the 

hippocampal system (Zola-Morgan and Squire, 1993; Squire et al., 2004). 

 

The principal cell type of the dentate gyrus (DG) is the granule cell. DG is formed by 3 

layers: 1) the polymorphic layer, containing the initial segments of the axons; 2) the granule 

layer, containing the cell bodies of granule cells and 3) the molecular layer formed by the 

dendrites. The major type cell of CA is the pyramidal neuron. CA regions present also 

different layers: 1) the alveus, containing the axons of pyramidal cells; 2) the stratum oriens 

formed by basal dendrites; 3) the stratum pyramidale which contains the cell bodies; 4) the 

stratum radiatum formed by the proximal segments of apical dendrites and 5) the stratum 

lacunosum/moleculare containing the distal segments of apical dendrites (O'Keefe and Nadel, 

1978). 

 

Spatial information processing in the hippocampus occurs through different stages as 

pattern separation, pattern association and pattern completion. Pattern separation is the ability 

to encode and separate events in space and time. Pattern association is to form associations 
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between events and items. And pattern completion is the capacity of retrieve well-established 

information based of partial or incomplete inputs (Kesner and Hopkins, 2006). 

 

1.2.2 MEMORY CLASSIFICATION 
 

Memory is the brain capacity to classify, encode, retain and recall a wide diversity of 

information and experiences throughout the life (Dunning and During, 2003). Memory can be 

classified, according to the duration, in short-term (from seconds to hours) and long-term 

memory (from hours to years) (McGaugh, 2000); and according to the kind of information to 

be process, in declarative and non-declarative memory (figure 1-1). Declarative memory is an 

explicit and conscious form of memory, whereas non-declarative memory is an implicit and 

unconscious one. Two types of declarative memory are well-established: episodic and 

semantic memory. Episodic memory refers to autobiographical events that occur in a 

particular spatial and temporal context and semantic memory to general knowledge (Squire et 

al., 1993; Squire, 2004). 

 

In the context of a spatial learning paradigm, we can talk about two more types of 

memory: working and reference memory. Working memory is defined as the information that 

must be retained during a single trial, and reference memory as the information that must be 

maintained from trial to trial, and day to day, allowing performance to improve across the 

training days (Foreman and Ermakova, 1998). For example, in the learning paradigm used in 

this study (RAM with 3 arms baited with food) the reference memory is used to remember 

which are the three baited arms from day to day, the working memory is used to remember 

which arms have already been visited on the current trial. Some authors consider working 

memory and short-term memory as synonymous. 
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1.2.3 LEARNING AND MEMORY-RELATED BRAIN REGIONS 
 

The processes of learning and memory involve several brain regions and circuits 

(D'Hooge and De Deyn, 2001; van Groen et al., 2002; Maguire et al., 2003; Maviel et al., 

2004; Sommer et al., 2005; Conejo et al., 2007; Lopez et al., 2009), and even distinct 

subregion activations within the same brain region during the different phases of memory 

namely, encoding, consolidation and retrieval (Lepage et al., 1998; Moser and Moser, 1998a; 

Greicius et al., 2003; Pothuizen et al., 2004; Ros et al., 2006). The medial temporal lobe, 

formed by the hippocampal region in the broad sense (CA, DG, subiculum, perirhinal, 

entorhinal and parahippocampal cortices) and the medial diencephalon, formed by the 

thalamus and hypothalamus, are the major brain systems related to anterograde amnesia 

(Aggleton and Saunders, 1997; Squire, 2004; Squire et al., 2004). 

 

The hippocampus projects to the anterior thalamic nuclei (formed by the anterodorsal, the 

anteromedial and the anteroventral nucleus) and the mammillary bodies through the fornix, 

thus if this region is cut and anterograde tracers are placed in the subiculum no label is found 

neither in the mammillary bodies nor in the anterior thalamic nucleus (Aggleton et al., 1986). 

Subicular projections are also found in the laterodorsal nucleus of the thalamus (LD), but in 

Figure 1-1: Memory systems and the corresponding brain regions 

Modified from Squire, 2004. 



 

- 24 - 

 

this case not all afferents pass through the fornix but rather use another parallel temporal route 

via the pulvinar (Aggleton and Saunders, 1997). Mammillary bodies project to the anterior 

thalamic nuclei via the mammillothalamic tract (Aggleton et al., 2010). In turn, the anterior 

thalamic nuclei establish connections with the neocortex in such a way that the anteromedial 

nucleus projects to deep layers of the anterior cingulated and retrosplenial cortex, whereas the 

anterodorsal and anteroventral nuclei mainly project to superficial layers of the retrosplenial 

cortex (Shibata, 1993). 

 

The striatum is the major input station to the basal ganglia. Basal ganglia include the 

caudate nucleus, the putamen, the nucleus accumbens, the globus pallidus, the substantia 

nigra, the ventral tegmental area and the subthalamic nucleus. Anatomically, the so-called 

(dorsal) striatum corresponds to the caudate nucleus and the putamen. Major afferent 

projections to the striatum come from different regions of the cortex and the thalamus; Then, 

caudate and putamen send most of their outputs to the globus pallidus and subtantia nigra 

which, in turn, project to the thalamus sending them back to the cortex, forming a “cortico-

basal ganglia-thalamic” loop (Haber, 2003; Haber and Calzavara, 2009). 

 

Figure 1-2: Schematic representation of some learning-related brain regions 

Representation of some of the learning and memory-related brain regions described above 

and their interconnections. AC: anterior commisure; ATN: anterior thalamic nuclei; 

HYPOTH: hypothalamus; LC: locus coeruleus; LD: laterodorsal nucleus of the thalamus; 

MB: mammillary bodies; MTT: mammillothalamic tract; RE: nucleus reuniens; SUM: 

supramammillary nucleus. Taken from Aggleton et al., 2010. 
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1.3 14C-2-DEOXYGLUCOSE TECHNIQUE (2DG) 
 

The use of oxygen and glucose by the brain allow us to estimate the level of functional 

activity in different cerebral regions during normal state, during activity (for example, 

learning) or even during pathological conditions. In other words, establishing the brain energy 

metabolism, by measuring the oxygen and/or glucose consumption, give us an idea about 

functional activity in the brain as a whole or in a part of the brain. That leads to the 

development of several techniques based on the utilization of radioactive tracers to determine 

cerebral blood flow and metabolism, as described by Kety in the 60’s (Kety, 1967). These 

first “autoradiographic” techniques had some inconvenient as the radioisotopes for oxygen 

and glucose were too rapidly metabolized to carbon dioxide and cleared from tissues, making 

the energetic metabolism measurement complicated. This was solved when Sokoloff 

developed the 
14

C-2-deoxyglucose (2DG) technique (Sokoloff et al., 1977). 

 

2DG is a 
14

C-labelled molecule which is transported in the same way as glucose to the 

brain. Its degradation is stopped after the first step of the glycolysis, the conversion in 
14

C-2-

deoxyglucose-6-phosphate (
14

C-2-DG-6-P), because of a chemical difference on the second 

carbon atom of the molecule. This molecule (
14

C-2-DG-6-P) remains in tissues time enough 

to measure and quantify radioactivity in the regions where glucose is being consumed (figure 

1-3). 

 

 

 

 

Figure 1-3: 2DG molecule structure and metabolism 

2DG molecule is characterized by the replacement of the hydroxyl group on the second carbon atom by a hydrogen 

atom. 2DG and glucose are transported between blood and brain tissues by the same saturable carrier and, in tissues 

they compete for the enzyme hexokinase, which phosphorylates both substrates to their respective hexose-6-

phosphate. 2-deoxyglucose-6-phosphate cannot be isomerized to fructose-6-phosphate (because of the lack of OH); 

so its metabolism ceases at this point of the metabolic pathway. 
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The 2DG technique is a well-established and very appropriate method to map brain 

glucose utilization in small animals; it has been used in several studies aimed at mapping the 

brain regions engaged in learning and memory (Bontempi et al., 1996; Bontempi et al., 1999; 

Ros et al., 2006), or activated by administration of specific drugs (Li et al., 1998; Brett et al., 

2001) as well as in pathological conditions (Mori et al., 1995; Dodart et al., 1999) among 

others. Moreover, the spatial resolution of autoradiography is higher than the more recent 

developed microPET (Positron Emission Tomography) technology (Rice et al., 2006; 

Sokoloff, 2008). 

 

The same basic principle of the 2DG technique is shared by the PET and fMRI (functional 

magnetic resonance imaging) techniques (Poeppel and Krause, 2008). Neuronal activity leads 

to an increase in oxygen and glucose consumption. The local physiological response is an 

increase in blood flow to cerebral regions with high neural activity. Changes in regional 

cerebral blood flow (rCBF) leads to changes in the relative concentrations of oxyhaemoglobin 

and deoxyhaemoglobin as well as to changes in the regional cerebral blood volume. The fMRI 

technique measures changes in blood oxygenation taking in consideration the different 

magnetic properties of oxygenated and deoxygenated blood that alter the MR signal. It is 

based on the BOLD (blood oxygenation level dependent) effect. The PET technique measures 

directly rCBF and also distribution of neurotransmitters and neuroreceptors thanks to certain 

radioactive-labeled substances. For instance, 
15

O-water and 
18

F-deoxyglucose are being used 

to study blood flow and glucose metabolism respectively (Kennedy et al., 2001), 
18

F-dopa for 

dopamine metabolism (Elkashef et al., 2000; Otonkoski et al., 2006), 
11

C-raclopride for the 

study of the distribution and quantities of D2 dopamine receptors (Brooks, 2003; Thobois et 

al., 2003; Steeves et al., 2009) and 
11

C-flumazenil for benzodiazepines and GABA receptors 

(Galldiks et al., 2008; Salmi et al., 2008). All radioisotopes for PET technology have a short 

half-life: 2 minutes for 
15

O, 20 minutes for 
11

C and 2 hours for 
18

F(Miller et al., 2008), 

compared to classical 2DG (5700 years for 
14

C). Thus, 2DG autoradiography is an appropriate 

method for long research projects and studies in small laboratory animals. 

 

1.4 BRAIN ENERGY METABOLISM 
 

The brain has very high energetic demands: it represents only 2% of the body weight but 

it consumes about 20% of the energy produced by the organism (Magistretti, 2006, 2008). At 

least 80% of these energy demands are related to neuronal electrochemical signaling 
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processes, in particular those mediated by glutamate (Magistretti, 2009). Neurons are the only 

nerve cells that transmit nerve impulses; they communicate by synapses that can occur 

between neurons or between a neuron and a muscular cell or a gland. The majority of 

synapses in the nervous system are excitatory (about 85%), they cause a depolarization on the 

postsynaptic neuronal membrane, and the major neurotransmitter released is glutamate (see 

figure 1-4). There are also inhibitory synapses which represent a more little percentage and 

cause a postsynaptic membrane hyperpolarization. The more important inhibitory 

neurotransmitter is the gamma aminobutyric acid (GABA). 

 

 

 

When some kind of information must be transmitted throughout the nervous system, an 

action potential is generated due to a transient alteration in the permeability to ions of the 

axonal membrane. The arrival of the action potential to the presynaptic termination increases 

the intracellular concentration of Ca
2+

, making possible the fusion between the synaptic 

vesicles (containing neurotransmitters) and the membrane. In this way, neurotransmitters are 

released to the synaptic cleft where they remain for a little time until be taken by specific 

receptors localized on the membrane of the postsynaptic cell. Rapid clearance of 

neurotransmitters from the synaptic cleft is important to permit the transmission of another 

Figure 1-4: Scheme representing a neuron and an excitatory chemical synapse 

Although there are many types of neurons, a typical one is formed by a cell body or soma containing the nucleus 

(with DNA), and by different types of prolongations. Many shorts ramifications take and bring information to 

the cell body: the dendrites. A long prolongation is responsible for transmission of nerve signals: the axon. This 

part of the neuron is coated by myelin which makes synaptic transmission faster. During synapses, 

neurotransmitters, as glutamate, contained in vesicles localized on the presynaptic terminal are released on the 

synaptic cleft and taken by specific receptors localized on the membrane of the postsynaptic neuron.  
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action potential. All these processes (generation of action potentials as well as release, 

recapture and recycling of neurotransmitters) have a considerable energy cost. 

 

Major energy substrates are oxygen and glucose, both arriving to the brain by blood 

vessels. Glucose oxidation in carbon dioxide (CO2) and water produces a high quantity of 

ATP (adenosine triphosphate), a very rich energy molecule. Complete glucose degradation, 

implicating glycolysis, Krebs cycle and electron transport chain, can generate about 38 ATP 

molecules for each molecule of glucose. Some metabolic pathways related to glucose 

metabolism will be described in more detail below. 

 

1.4.1 GLYCOLYSIS 
 

Glucose degradation is the major pathway for the generation of energy (ATP), and 

glycolytic intermediates also serve as precursors for biosynthesis of other cellular 

constituents, highlighting the importance of this metabolic pathway. Glycolysis consists in 10 

metabolic reactions taking place in the cytosol and during which one molecule of glucose 

produce two molecules of pyruvate. All reactions for this pathway are summarized in the 

figure 1-5. The overall reaction produces 2 molecules of pyruvate, 2 nicotinamide adenine 

dinucleotide (NADH) and 2 ATP. 
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The reactions 1, 3 and 10, catalyzed by hexokinase, phosphofructokinase and pyruvate 

kinase respectively, are the key steps for the regulation of this pathway. Hexokinase (Hk) 

catalyzes the phosphorylation of hexoses, being the most common glucose but it can 

phosphorylates also 2-deoxyglucose (as shown in figure 1-3) and others (as fructose, sorbitol 

and glucosamine) (Michal, 1999) to hexoses-6-phosphate. Four different isoforms have been 

identified: Type I, Type II, Type III and Type IV, the last one also called glucokinase 

(Wilson, 2003) presenting some differences in term of affinity for glucose and of sensitivity to 

inhibition by the product, glucose-6-phosphate. Phosphofructokinase (Pfk) is the more 

important regulating enzyme and catalyzes the conversion of fructose-6-phosphate to 

fructose-1,6-bisphosphate. During this step, a new phosphate coming from ATP is added to 

the fructose-6-phosphate molecule. Phosphofructokinase (Pfk) is modulated by the energy 

Figure 1-5: Glycolysis 

The three underlined enzymes (hexokinase, 

phosphofructokinase and pyruvate kinase) are the 

regulation key steps of this pathway. 
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status of the cell. Thus it is activated by AMP, ADP and inorganic phosphate and inhibited by 

ATP, citrate and fatty acids. High ATP levels decrease Pfk activity as they signal sufficient 

energy availability. There are 3 different isoforms of phosphofructokinase: pfkl (liver), pfkm 

(muscle) and Pfkp (platelet). Pyruvate kinase (Pk) catalyzes the last step of glycolysis. It is 

responsible for the transfer of a phosphate group, coming from phosphoenolpyruvate, to an 

ADP molecule. End products of this reaction are pyruvate and ATP. Pk is activated by its 

substrate (phosphoenolpyruvate) and also by fructose-1,6-bisphosphate, and inhibited by 

ATP, as did Pfk. 

 

1.4.2 PYRUVATE METABOLISM 
 

The final product of the glycolysis, pyruvate, has different fates, one of them being the 

conversion to Acetyl-CoA which enters the Krebs cycle. This conversion is catalyzed by the 

pyruvate dehydrogenase complex and takes place in the mithocondria. The pyruvate 

dehydrogenase kinase (Pdk) inhibits the pyruvate dehydrogenase complex by phosphorylating 

it. This is reversed by the pyruvate dehydrogenase phosphatase that removes the phosphate 

from the pyruvate dehydrogenase, a process that renders it active. 

 

Pyruvate can also be converted in oxaloacetate. This is done by the pyruvate carboxylase 

(Pcx), an enzyme that it is considered astrocytic-specific (Shank et al., 1985; Shank et al., 

1993; Jitrapakdee et al., 2008; Teixeira et al., 2008). The function of this metabolic reaction is 

to replenish the Krebs cycle in carbons, in a process known as the anaplerotic (meaning 

replenishing) cycle. The overall stoichiometry of the Krebs cycle, also called citric acid cycle 

or tricarboxylic acid cycle (TCA cycle) is 3 NADH, 1 GTP and 1 FADH2. Krebs cycle is 

always followed by the electron transport chain during which the protons and electrons 

obtained from these cofactor molecules create an electrochemical gradient that activate the 

ATP synthase, producing ATP molecules in the following way: 

 

Electron transport system 

Cofactors ATP moleculesyield 

1 NADH 3 ATP 

1 GTP 1 ATP 
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When oxygen is absent or in a short supply (for example, during exercise), pyruvate is 

converted in lactate by the lactate dehydrogenase (LDH) consuming an NADH molecule. This 

reaction presents a feedback regulation since high concentrations of the product, lactate, 

inhibit the activity of the enzyme. There is an isoform of this enzyme specific for astrocytes 

(LDH5, formed by 4 LDHA molecules) and other isozyme specific for neurons (LDH1, 

formed by 4 LDHB molecules) (Laughton et al., 2000; Pellerin and Magistretti, 2004). 

Lactate dehydrogenase takes part of the astrocyte-neuron lactate shuttle that will be described 

below. 

 

1.4.3 PENTOSE PHOSPHATE PATHWAY 
 

The pentose phosphate pathway is divided in two phases: oxidative and non-oxidative. 

The oxidative phase leads to the production of NADPH (nicotinamide adenine dinucleotide 

phosphate, reduced) and pentoses. The importance of NADPH production comes from the 

fact that it is required for biosynthetic processes (as fatty acids, cholesterol, neurotransmitters 

and nucleotides biosynthesis) and to control the redox potential, by regenerating glutathione 

(GSH) pool, necessary to protect cells and tissues against oxidative stress (Kirsch and De 

Groot, 2001; Biagiotti et al., 2003). The key enzyme of this first part of the pathway is the 

glucose-6-phosphate dehydrogenase (G6pdh), which catalyze the conversion of glucose-6-

phosphate to 6-phosphoglucono-δ-lactone. 

 

During the non-oxidative phase, several reactions implicating the transfer of carbon units 

between molecules lead to the formation of fructose-6-phosphate (F6P) and glyceraldehyde-3-

phosphate (GAP) from the pentose molecules generated during the oxidative part. These 

interconversions are catalyzed by transketolase (Tkt), which is responsible for the transfer of 

2 carbon atoms, and transaldolase (Taldo), which is responsible for the transfer of 3 carbon 

atoms. These two enzymes represent the link between the pentose phosphate pathway and the 

1 FADH2 2 ATP 

Table 1: ATP production from glucose oxydation 

Molecules of ATP obtained during the electron 

transport chain from cofactors generated during 

glycolysis and Krebs cycle. 
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glycolysis, since both products (F6P and GAP) are intermediate metabolites of the glycolytic 

pathway. 

 

1.4.4 GLYCOGEN REGULATION 
 

Brain glycogen is localized almost exclusively in astrocytes and constitutes the major 

energy reserve of the brain. Glycogen utilization increases during stimulation, while 

decreased neuronal activity (for example, during hibernation or anesthesia conditions) is 

accompanied by an increase in brain glycogen content, indicating a link between neuronal 

activity and glial glycogen metabolism (Swanson, 1992). Glycogen metabolism is under 

complex regulation involving various allosteric factors as well as covalent modifications and 

compartmentalization of key enzymes (Bollen et al., 1998). Phosphorylation is the key 

covalent mechanism in the regulation of synthesis and degradation of glycogen. This 

regulation is done in a reciprocal way: while phosphorylation activates glycogen 

phosphorylase (the enzyme responsible for glycogen degradation), it inactivates glycogen 

synthase (formation of glycogen). By contrast, dephosphorylation leads to inactivation of 

glycogen phosphorylase and activation of glycogen synthase. Protein kinase A (PKA) is the 

main kinase responsible for phosphorylation. Protein phosphatase-1 (PP-1) is the enzyme 

responsible for dephosphorylation (Bollen et al., 1998; Allaman et al., 2000). 
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Glycogen phosphorylase is allosterically activated by AMP and inhibited by glucose-

6-phosphate. Glycogen synthase is allosterically activated by glucose-6-phosphate. cAMP 

activates PKA which phosphorylates and thereby activates phosphorylase kinase, which in 

turn phosphorylates and activates glycogen phosphorylase, breaking down a molecule of 

glycogen. cAMP also phosphorylates glycogen synthase acting in the contrary way, since the 

phosphorylated form of glycogen synthase is inactive. So, cAMP increase glycogenolysis and 

decrease glycogenesis (Alberts et al., 1994; Bollen et al., 1998; Allaman et al., 2000; Lodish 

et al., 2004). Some hormones and neurotransmitters were also shown to be implicated in the 

regulation of glycogen metabolism is astrocytes. In this way, insulin is responsible for 

increasing glycogen levels in this type of cells, while noradrenaline (NA) and vasoactive 

intestinal peptide (VIP) promotes glycogenolysis by stimulating formation of cAMP (Sorg 

and Magistretti, 1991; Allaman et al., 2000). Interestingly, both neurotransmitters (NA and 

VIP) were found to induce re-synthesis of glycogen several hours after their initial 

glycogenolytic effect (Sorg and Magistretti, 1992), revealing a double function of these 

chemicals in long-term glycogen regulation. 

 

Figure 1-6: Glycogen (hepatic) regulation by enzyme phosphorylation and metabolites 

Taken from Bollen et al, 1998. 
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1.4.5 ASTROCYTE-NEURON LACTATE SHUTTLE 
 

In page 27, a chemical synapse between a presynaptic and a postsynaptic neuron was 

described. Another nerve cell has been identified to play a key role in the brain energetic 

metabolism: the astrocyte. This glial type cell can be added to figure 1-4 to have a more 

complete scheme about the coupling between synaptic activity and glucose utilization, as 

shown is figure 1-7. Indeed, astrocytic processes (terminations) contact, in one hand, neurons 

at the synapse level and, in other hand, endothelial cells from capillaries. In this way, 

astrocytes are particularly well situated to transfer energy substrates from the circulation to 

“activated” neuronal cells. This glial-neuronal operational model was described in 1994 

(Pellerin and Magistretti, 1994) and called some years later astrocyte-neuron lactate shuttle 

hypothesis (ANLSH). 

 

 

As described above in the same chapter and illustrated in figure 1-4, most of synapses in 

the brain are glutamatergic. Glutamate released during the synaptic transmission is taken by 

both post-synaptic neurons and astrocytes from the synaptic cleft. Glutamate entry in 

astrocytes is accompanied by 3 Na
+
 ions, increasing its intracellular concentration. This Na

+
 

entry activates the Na
+
/K

+
-ATPase alpha2 subunit (ATP1a2), which consumes ATP. The 

increase of activity of this astrocytic-specific enzyme triggers glucose uptake and glycolysis 

in this type of glial cell. Na
+
/K

+
-ATPase pumps three Na

+
 ions out of the cell whereas two K

+
 

ions are transported inside, reestablishing the intracellular ionic concentrations altered by the 

glutamate entry.  

Figure 1-7: astrocyte-neuron lactate shuttle 

(modified from Magistretti and Pellerin, 1999) 
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1.5 GENE EXPRESSION 
 

All genetic information of a cell/organism is contained in the DNA (Deoxyribonucleic 

acid), even though the DNA molecule has no proper biological functions. DNA is a double 

strand formed by the association of “single units”: nucleotides. Each nucleotide is formed by a 

sugar (deoxyribose), a phosphate group and a nitrogenous base. Four different nitrogenous 

bases can be found on a DNA molecule: adenine (A), cytosine (C), guanine (G) and thymine 

(T). The stability of the double strand is due to the hydrogen bonds between complementary 

bases: adenine forms a base pair with thymine by 2 hydrogen bonds, and cytosine forms a 

base pair with guanine by 3 hydrogen bonds. 

 

1.5.1 TRANSCRIPTION: from DNA to mRNA 
 

Most of biological activities and functions are carried out by proteins, and the accurate 

synthesis of proteins is crucial to the proper functioning of cells and organisms (Lodish et al., 

2004). Even if all the information for an appropriate protein synthesis is contained in the 

DNA molecule, proteins cannot be synthesized directly from DNA: an intermediate molecule 

is necessary, the mRNA (messenger ribonucleic acid). The process by which DNA is 

converted into mRNA is called transcription (figure 1-8). During this process, not only 

mRNA is generated but also other RNA molecules as ribosomal RNA (rRNA) and transfer 

RNA (tRNA), both necessary for translation. Transcription is made by three different RNA 

polymerases in eukaryotes: RNA polymerase I, responsible for the synthesis of rRNA; RNA 

polymerase II, which produces mRNA, and RNA polymerase III which makes tRNA and 

others non-coding RNAs. 
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Transcription can be divided into three steps: initiation, elongation and termination. 

The key enzyme involved in the initiation and elongation processes in eukaryotic cells is the 

RNA polymerase II. This enzyme can initiate transcription of DNA into RNA by binding to a 

specific start site (the promoter) and unwinding the double strand of DNA (Lee and Young, 

2000; Shilatifard et al., 2003). As the enzyme moves along the DNA it unwinds sequential 

segments of the DNA molecule and adds nucleotides to the growing RNA strand. During this 

process, RNA polymerase II is helped by a large number of proteins called general 

transcription factors (GTFs), being the most common TFIIA, TFIIB, TFIID, TFIIE, TFIIF and 

TFIIH (from Lee and Young, 2000, table 4). Transcription terminates at short DNA sequences 

recognized as termination signals. 

 

Primary transcripts are modified at both 5’ and 3’ ends. 5’ end is capped with a 

methylated guanosine triphosphate and a poly(A) tail is added to the 3’ end. These 

modifications are essential for processing, transport, translation and stability (Lee and Young, 

2000). Moreover, many of the transcripts also undergo splicing, i.e. removal of the introns 

(non-coding sequences) and joining of the exons (coding sequences). 

 

The double DNA strand is being unwinded by the RNA polymerase and the template (antisense 

strand 3’→5’) is being copied to a single RNA strand (5’→3’). The sense DNA strand is 

consider the coding strand because it corresponds to the same sequence of RNA with the only 

exception that thymine (T) is replaced by uracil (U) in the RNA molecule. Taken from the 

National Human Genome Research Institute  (www.genome.gov).  

 

Figure 1-8: Transcription 

http://www.genome.gov/
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1.5.2 TRANSLATION: from mRNA to protein 
 

The mRNA formed during the transcription process is transported from the nucleus to 

the cytoplasm and there, the information contained in this mRNA molecule is “translated” 

into a specific sequence of amino acids that constitute proteins (see figure 1-9). 

 

 

 

 

The mRNA sequence is “read” by a complex formed by ribosomal RNA (rRNA) and 

proteins, called ribosome. In eukaryotic cells, ribosomes are formed by a small subunit (40S), 

responsible for binding the mRNA molecule, and composed of an aminoacyl (A), peptidyl (P) 

and exit (E) sites, and a large (60S) subunit. The mRNA sequence is “read” by groups of three 

nucleotides, called codons, corresponding each of them to a complementary sequence 

(anticodon) contained in one end of the tRNA molecule. The anticodon sequence determines 

which amino acid must be added to the polypeptide chain. Translation begins at the start 

codon AUG, coding for methionine, and finishes at one of the three stop codons: UAG, UGA 

or UAA. 

 

Translation is divided, as transcription, into three steps: initiation, elongation and 

termination. Initiation, in eukaryotes, is a complex multi-step process involving a large 

number of proteins called initiation factors (eIF). During elongation, aminoacyl tRNAs enter the 

 

Taken from the National Human Genome Research Institute (www.genome.gov). 

Figure 1-9: Translation 

http://www.genome.gov/
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“free” A site on a ribosome already carrying the initiator Met-tRNAi in the P (peptidyl, because it 

is where the polypeptide chain is growing) site. If the correct tRNA is present, the ribosome 

catalyzes the formation of a peptide bond between the existing chain and the new amino acid. 

Then, tRNAs are translocated such that the next codon is moved into the A site, and the process is 

repeated. Termination takes place when a stop codon is encountered and the finished peptide is 

released from the ribosome. In a final stage, recycling, the ribosomal subunits are dissociated, 

releasing the mRNA and deacylated tRNA and setting the stage for another round of initiation, 

often on the same mRNA. As translation continues, the poly-A tail becomes shorter. Below a 

critical length, the mRNA loses its 5’ cap, which protected against exonucleases, and it is 

degraded. 

 

1.6 AIM OF THE PRESENT STUDY 
 

Changes in synaptic structure and function are at the basis of learning and memory. This 

process of synaptic plasticity has been studied in detail with an almost exclusive focus on 

mechanisms that occur in neurons. Thus, the principal aim of this study is to investigate 

whether plasticity mechanisms are also engaged in neuron-glia metabolic coupling. Synaptic 

plasticity, learning and memory are processes which require the synthesis of new protein and 

consequently the induction of gene expression, including the activation of some immediate 

early genes (Stork and Welzl, 1999; Tischmeyer and Grimm, 1999; Bozon et al., 2003b; 

Miyashita et al., 2009). In consideration of the fact that regulation of gene expression reflects 

neural plasticity in the broadest sense, several studies have been conducted over the last few 

years, to determine the profile of gene expression associated with different conditions and 

experimental paradigms such as spatial learning (Cavallaro et al., 2002), cognitive impairment 

in aging animals (Rowe et al., 2007), memory loss in Alzheimer’s disease (Dickey et al., 

2003), the sleep/wake cycle (Cirelli and Tononi, 2004; Harbison et al., 2009), to give a few 

examples. 

 

In order to test the possibility that expression genes involved in neuron-glia metabolic 

coupling could be modulated by learning, we have subjected mice to a 9 days spatial learning 

paradigm, the eight-arm radial maze. Regional brain metabolic activity was determined in 

several brain structures by (
14

C) 2-deoxyglucose (2DG) autoradiography. Two of the brain 

regions showing the most important metabolic activations were microdissected by laser 

capture microscopy. Genes related to neuron-glia metabolic coupling, to glucose metabolism 
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and to synaptic plasticity were analyzed by quantitative RT-PCR.2DG and gene expression 

changes were analyzed at three different times: just after, 45 minutes and 6 hours after the 

spatial learning paradigm. These results indicate that plasticity of neuron-glia metabolic 

coupling is a concomitant of synaptic plasticity underlying learning and memory. 
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2 MATERIALS AND METHODS 
 

2.1 ANIMALS 
 

C57BL/6 male mice (R. Janvier, France) aged of 3 months were used in this project. 

They were housed in groups of four on a 12h light-12h dark cycle (lights on from 7h to 19h). 

To minimize stress they were handled daily during ~2 weeks before the behavioral tests. Two 

days before starting the training protocol animals were food-deprived overnight and 

maintained at 90% of their initial body weight. All procedures described in “Material and 

Methods” were conducted in conformity with the Swiss national institutional guidelines on 

animal experimentation, and approved by the local committee for animal care. 

 

2.2 APPARATUS (RAM) 
 

The eight-arm radial maze (RAM) was the behavioral task we have chosen to assess 

spatial learning. It consists in a circular central platform of 16.5 cm diameter, from which 

radiate eight transparent arms made of Plexiglas (6 x 6 x 50 cm). Two wooden barriers (1.5 x 

1 x 6 cm) are placed in each arm at 0 and 20 cm from the entry to prevent the animal to see 

the bait at the end of the arm and to increase the motivation for a visit. Arms were baited with 

~10 μl of condensed milk diluted 1:1 with water. Arm access can be blocked with automated 

doors to prevent the reentry in an already visited arm (working memory errors). It was a 

home-made apparatus (Department of Physiology from the University of Lausanne), the same 

as described by Jacqueline Ros (Ros et al., 2006). The RAM was located in a room in which 

temperature was at 21-22°C and humidity conditions were between 40%-50%. Extra-maze 

cues as geometric shapes were fixed to the walls of the room. In figure 2-1 we can see a 

picture of our device. 
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2.3 LEARNING PROTOCOL 
 

Two days before starting the learning protocol some pre-training sessions were done, 

in order to familiarize animals with the new context and to minimize stress as much as 

possible. The first day of pre-training animals were allowed to go into the Radial Maze for 

exploration during 10 minutes. All arms were open and there was no food. The second day of 

pre-training was similar; with the only difference that there was food in all arms. The training 

protocol lasted 9 days and animals performed 6 trials/day. A set of 3 baited arms was assigned 

for each experimental group with sequential angles of 135°-90°-135° in order to test the 

reference memory. Each trial started by placing the mouse on the central platform, covering it 

by a transparent lid and opening all the doors. After an arm has been visited, the 

corresponding door was closed. One trial was over either if the animal found the 3 arms baited 

or 5 minutes after the beginning. The rest period between trials was one minute. Spatial 

learning was assessed by calculating the percentage of entries in correct arms out of the total 

number of entries. 

 

Three experimental conditions were defined as follows: OLP (On-line Processing), PP 

(Post-Processing) and PPd (Post-Processing delayed) to map the different brain regions 

activated not only during the formation of a spatial memory trace (OLP) but also during 

memory consolidation at a short (45 minutes; PP) and a long time (6 hours, PPd) . All of these 

conditions were studied at Day 1 and Day 9 of the training protocol. Two different control 

groups were added to the experiment to ensure that the brain metabolic activation observed 

Figure 2-1: Behavioral paradigm, the eight-arm radial maze (RAM) 
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was caused by the spatial learning process. The first one was the Quiet Control (QC), animals 

that never go to the RAM. And the second one was the Active Control (AC), animals that 

were allowed to explore the maze during the same time as trained animals (1 or 9 days, 6 

trials/day) but with all eight arms baited with food, so no spatial strategy was developed. 

 

2.4 TIME COURSE EXPERIMENT 
 

At Day 1 or Day 9 of the training protocol, mice were injected intraperitoneally with 

14
C-2DG either immediately before (OLP group), or immediately after (PP group) or 6 hours 

after (PPd group) the behavioral task. In all cases, they were sacrificed 45 minutes after the 

14
C-2DG injection and their brains immediately frozen with carbon dioxide ice. Then brains 

were processed for 2DG autoradiography and laser microdissection. This period of time of 45 

minutes in inherent to the kinetics properties of the 2DG to ensure homogeneous distribution 

and sufficient tracer signal in the brain (Sokoloff et al., 1977). Based on these different 2DG 

injection times we have defined 3 experimental groups that are represented in figure 2-2. 

 

 

 

 

 

 

Figure 2-2: Experiment time course 

The figure summarizes the sequence of events in time for the three experimental conditions. 

In the On-Line Processing (OLP) group, the 2DG injection made before the task allows us the 

identification of brain regions activated during learning. These activated regions were then 

microdissected and a gene expression analysis was performed by RT-PCR. For the Post-

Processing (PP) and the Post-Processing delayed (PPd) group, 2DG and gene expression 

analysis took place 45 minutes and 6 hours after the learning task, respectively. 



 

- 46 - 

 

As we can see in the figure 2-2, in the On-Line Processing (OLP) group the 2DG 

injection occurs before the task and animals are sacrificed just at the end of the behavioral 

test. The 2DG mapping of this group represent the cerebral activity during the learning 

process. The Post-Processing (PP) group has been defined with the aim to answer the question 

of what happens in the brain when the animal has finished the training session. To assess that 

animals are injected immediately after the end of the training session and sacrificed 45 

minutes later. A third experimental group was included in the project because of some in vitro 

results obtained in our lab, indicating that changes in the level of expression of certain genes 

involved in energy metabolism (such as glycogen synthase and protein targeting to glycogen) 

are observed within time-windows ranging between 3 and 9 hours after noradrenaline 

stimulation (Allaman et al., 2000; Allaman et al., 2003; Allaman et al., 2004). So, we were 

interested in study how energy metabolism can be affected by learning after a longer delay of 

time and we established this experimental time at 6 hours after the learning task. This is the 

Post-Processing delayed (PPd) group, in which mice are injected 315 minutes after training 

and sacrificed 45 minutes later, meaning 6 hours after performing the Radial Maze. 

 

2.5 14C-2-DEOXYGLUCOSE TECHNIQUE (2DG) 
 

Animals sacrified at day 1 or day 9 received an injection of 
14

C-2-deoxyglucose 

intraperitoneally (0.165 mCi/kg, Sokoloff et al. 1977) either just before (OLP group), just 

after (PP group) or 6 hours after (PPd group) the training session. Control animals were 

injected and either left in their homecages (quiet controls) or released on the radial maze with 

all arms baited (active controls, no spatial memory required). 2DG was purchased from 

Hartmann Analytic. All animals were sacrificed (under pentobarbital anesthesia; 150 mg/kg) 

45 minutes after injection of the tracer, the brains were rapidly frozen in dry ice and stored at -

80°C until cutting at the cryostat. Coronal sections of 20 μm were collected either for 

autoradiography or laser microdissection. Every 2 slides for autoradiography, one slide for 

laser capture microdissection was taken. 

 

The brain sectioning has changed three times during the experiment because of a new 

software we have developed in the lab (see next section in the Materials and Methods 

chapter). In the first one, 4 consecutives coronal sections (20 μm) were collected every 200 

μm. For the 2
nd

 protocol, 2 consecutives coronal sections were taken every 120 μm. And in 

the third one, a single section was collected every 60 μm. Brain sections were put on glass 
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slides and dries on a hotplate at 60°C for some minutes. Then, they were exposed on AGFA 

Mamoray HDR films (Röntgen Bender AG) with a 
14

C-calibrated microscale (Amersham 

Bioscience) during 15 days. Films were developed and brain sections stained with cresyl 

violet. Images of stained brain sections and their corresponding autoradiograms were taken 

using an image densitometry system (MCID, Imaging Research). The regional cerebral 2DG 

uptake was assessed by optical densitometry (OD) of selected brain regions of interest (ROI) 

on the autoradiograms. The OD of ROI was then normalized to the optical density of the 

corpus callosum, see figure 2-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3: Procedure for quantitative analysis of metabolic activity in distinct brain regions 
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2.6 DEVELOPING A NEW SOFTWARE FOR AUTORADIOGRAMS 

ANALYSIS 

 

The 2DG technique has its advantages (as the individual brain analysis for each animal 

allowing us to study the correlation between good or bad individual performance and a given 

pattern of brain metabolic activation), but one inconvenient is the biased analysis we can do 

and the subsequent (possible) omission of some, maybe, important activated regions. We also 

must consider that this type of analysis is time-consuming. To improve that, an alternative 

approach, based on merging and warping of autoradiograms of mice belonging to the same 

group, and aimed at the unbiased identification of regions of interest, has been developed in 

collaboration with the group of Jean-Philippe Thiran at the Signal Processing Institute at 

EPFL. This software has been called JULIDE and it is described below, in the chapter 

“Results”. 

 

2.7 LASER CAPTURE MICRODISSECTION (LCM) 
 

As indicated above, every two slides for autoradiography, one slide for laser capture 

microdissection was taken. Four coronal sections were collected on a special membrane-

covered slide (P.A.L.M Microlaser Technologies GmbH; Carl Zeiss) at -20°C (cryostat) and 

left at room temperature for ~5 seconds to allow sections well fixed to the membrane. Each 

brain section was covered (~50 μl) with RNA later-ICE (Ambion) to preserve the RNA 

quality for a long time at the freezer (-20°C). Just before LCM, sections were stained with 

HistoGene (Arcturus Bioscience), a specific dye for microdissection. Slides were removed 

from the freezer and allowed to thaw for approximately 30 seconds. Then, they were 

immersed in a 75% ethanol bath (30 seconds) followed by a distilled water bath (30 seconds). 

100 µl of HistoGene staining solution was applied directly onto the glass slide covering all the 

brain sections (20 seconds). Slides were rinsed in a distilled water-75%-95%-100% ethanol 

bath for 30 seconds each and then immersed in a xylene bath for 5 minutes. They were 

allowed to dry in the hood for 5 minutes and placed in a slide box containing fresh desiccant. 

 

The PALM MicroLaser System (Carl Zeiss) based on the LMPC (Laser 

Microdissection and Pressure Catapulting) technology was used in this part of the experiment. 

Microdissection was performed in 2 steps; the region of interest was cut by a first laser pulse 
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and then it was catapulted into a collection tube by a second laser pulse (see figure 2-4). This 

is a non-contact and therefore contaminant-free sample collection technology. 

 

 

 

The hippocampus and the retrosplenial cortex were collected in this way in microtubes 

and then a cell lysate was generated using CellsDirect (resuspension buffer and lysis 

enhancer) from Invitrogen. Reverse transcription (SuperScript VILO cDNA Synthesis; 

Invitrogen) was performed immediately following the protocol provided with the kit. A total 

final volume of 20 µl per reaction was prepared, by mixing the reagents delivered with the kit 

with our RNA sample, and then incubated at 25°C for 10 minutes, at 42°C for 60 minutes and 

at 85°C for 5 minutes. Due to the low quantity of material, a preamplification step (Taqman 

Gene Expresion Assays and PreAmp Master Mix Kit from Applied Biosystems) was 

necessary before performing PCR. First, a pool of Taqman assays was done by combining 10 

µl of each 20X assay (32 assays in total, one per gene of interest, see table 2) and diluting it 

with 1X TE buffer, so that the final pool concentration was at 0.2X. Then, a 50 µl reaction 

was prepared by combining the Taqman PreAmp Master Mix, the pooled assay mix and our 

cDNA sample. Preamplification reactions were run in a thermocycler at 95°C for 10 minutes 

and then at 95°C (15 seconds)-60°C (4 minutes) during 14 cycles. The product of this 

preamplification process was diluted 1:20 using 1X TE buffer. All these preamplification 

steps were performed according to the protocol provided with the kit. 

Figure 2-4: Laser 

microdissection (LMPC 

technology) on the ROIs 

(regions of interest) and 

gene expression analysis by 

RT-PCR 
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Glycolysis 

Symbol 

Hk1 

Hk2 

Name 

Hexokinase 1 

Hexokinase 2 

Public RefSeq 

NM_010438.2 

NM_013820.3 

Assay ID 

Mm00439344_m1 

Mm00443385_m1 

Pfkl 

Pfkp 

Aldoa 

Gapdh 

Eno2 

Phosphofructokinase, liver 

Phosphofructokinase, platelet 

Aldolase 1, A isoform 

Glyceraldehyde-3-phosphate dehydrogenase 

Enolase 2, gamma neuronal 

NM_008826.4 

NM_019703.3 

NM_007438.3 

NM_008084.2 

NM_013509.2 

Mm00435587_m1 

Mm00444792_m1 

Mm00833172_g1 

Mm99999915_g1 

Mm00469062_m1 

Pyruvate metabolism 

Symbol 

Pcx 

Pdk1 

Pdk2 

Pdk4 

Name 

Pyruvate carboxylase 

Pyruvate dehydrogenase kinase, isoenzyme 1 

Pyruvate dehydrogenase kinase, isoenzyme 2 

Pyruvate dehydrogenase kinase, isoenzyme 4 

Public RefSeq 

NM_008797.2 

NM_172665.3 

NM_133667.1 

NM_013743.2 

Assay ID 

Mm00500992_m1 

Mm00554306_m1 

Mm00446681_m1 

Mm00443325_m1 

Pentose phosphate pathway 

Symbol 

G6pdx 

Taldo1 

Tkt 

Name 

Glucose-6-phosphate dehydrogenase, X-linked 

Transaldolase 1 

Transketolase 

Public RefSeq 

NM_008062.2 

NM_011528.3 

NM_009388.5 

Assay ID 

Mm00656735_g1 

Mm00807080_g1 

Mm00447559_m1 

Glycogenregulation 

Symbol 

Gyg1 

Gys1 

Ppp1r3c, PTG 

Pygb 

Pygm 

Name 

Glycogenin 

Glycogen synthase 1, muscle 

Protein phosphatase 1, regulatory subunit 3C 

Brain glycogen phosphorylase 

Muscle glycogen phosphorylase 

Public RefSeq 

NM_013755.2 

NM_030678.3 

NM_016854.2 

NM_153781.1 

NM_011224.1 

Assay ID 

Mm00516516_m1 

Mm00472712_m1 

Mm01204084_m1 

Mm00464080_m1 

Mm00478582_m1 

Lactate shuttle 

Symbol 

Ldha 

Ldhb 

Slc16a1, MCT1 

Slc16a7, MCT2 

Slc2a1, GLUT1 

Slc2a3, GLUT3 

Atp1a2 

Name 

Lactate dehydrogenase A 

Lactate dehydrogenase B 

Solute carrier family 16, member 1 

Solute carrier family 16, member 7 

Solute carrier family 2, member 1 

Solute carrier family 2, member 3 

Na
+
/K

+
 ATPase, alpha 2 unit 

Public RefSeq 

NM_010699.1 

NM_008492.2 

NM_009196.3 

NM_011391.1 

NM_011400.2 

NM_011401.3 

NM_178405.3 

Assay ID 

Mm00495282_g1 

Mm00493146_m1 

Mm00436566_m1 

Mm00441442_m1 

Mm00441473_m1 

Mm00441483_m1 

Mm00617899_m1 

Plasticity genes 
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Symbol 

Arc 

Gap43 

Dlg4, PSD95 

Egr1, Zif268 

Name 

Activity regulated cytoskeletal-associated protein 

Growth associated protein 43 

Discs, large homolog 4 (Drosophila) 

Early growth response 1 

Public RefSeq 

NM_018790.2 

NM_008083.2 

NM_007864.3 

NM_007913.5 

Assay ID 

Mm00479619_g1 

Mm00500404_m1 

Mm00492193_m1 

Mm00656724_m1 

 

Table 2: Genes analyzed by RT-PCR using LDA cards 

A list of studied genes showing the gene symbol, the gene name, the reference number and the Applied 

Biosystems identification number. 

 

To perform PCR amplification, 100 µl of the preamplified and diluted cDNA were 

mixed with 100 µl of Taqman Gene Expression PCR Master Mix and loaded in a Low 

Density Array (LDA) card. The LDA card is a 384-well micro fluidic card in which 32 pre-

established probes were already pre-loaded into each well of the card, in triplicate. The LDA 

card was designed to analyze 4 samples at the same time (hippocampus and retrosplenial 

cortex at day 1 and day 9 of the training protocol). PCR amplification was carried out for 40 

cycles in a 7900HT PCR instrument (Applied Biosystems). Results from LDA cards are 

comparable (or even better) to those obtained by conventional qRT-PCR, see (Goulter et al., 

2006) and table 3. 

 

 Day 1 HP LDA (Ct) Day 1 HP Conv. (Ct) 

Actin 19.3 19.9 

Arc 21.9 22.9 

Cycloph. 17.5 17.9 

MCT2 26.2 26.2 

Pcx 24 24.6 

PSD95 22.4 22.9 

Zif268 29.9 29.8 

 

           Table 3: Comparison between LDA cards and conventional qRT-PCR 

 

 

 

 

The results are expressed as the cycle threshold (Ct), i. e. the cycle number at 

which the PCR product crosses the threshold of detection. A comparison has been 

done between LDA cards and conventional qRT-PCR on a day 1-HP 

(hippocampus) sample. LDA cards are even more sensitive than the conventional 

technique. 
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2.8 PREPARATION OF RIBOPROBES AND IN SITU HYBRIDIZATION 
 

cDNA fragments for Na
+
/K

+
 ATPase alpha2 subunit (400 bp) and actin (519 bp) were 

obtained from C57BL/6 mouse RNA using the High Capacity RNA-to-cDNA kit (Applied 

Biosystems). Then, cDNA fragments (for Na
+
/K

+
 ATPase: forward primer: 1430-1447 5’-

TCTCGGATCGCTGGTCTC-3’; reverse primer: 1830-1809 5’- 

AGAAGCCCAGCACTCGTTCCC-3’ and for actin: forward primer: 91-110 5’-

TATCGCTGCGCTGGTCGTCG-3’; reverse primer: 610-591 5’-

ACGCAGGATGGCGTGAGGGA-3’) were cloned into the pGEM-T Easy vector (Promega). 

Plasmids were linearized to make accessible the DNA template for transcription, using 

appropriate restriction enzymes (SpeI for Na
+
/K

+
 ATPase and NcoI for actin), and paying 

attention to create 5’ overhangs to avoid transcription of undesirables fragments. After 

restriction digest, DNA was purified via phenol-chloroform extraction and subsequent ethanol 

precipitation. RNA complementary probes (anti-sense) or anti-complementary probes (sens) 

to our mRNA of interest were obtained by in-vitro transcription using T7 or SP6 polymerases, 

labeling at the same time the RNA by incorporation of DIG-UTP (digoxigenin-uridine 

triphosphate) during the transcription process (DIG RNA Labeling Kit (SP6/T7); Roche 

Applied Science). The Na
+
/K

+
 ATPase antisense probe was synthesized by T7 polymerase 

while the actin antisense probe was synthesized by SP6 polymerase. After transcription, the 

DIG labeling efficiency was determined via the spot test according to the protocol provided 

with the kit. In situ hybridization was performed on the automated Discovery XT system from 

Ventana Medical Systems, Inc., at the Histology Core Facility at EPFL. Tissue sections were 

hybridized with 50 ng of probe for 6 hours at 65°C (for actin) and at 70°C (for Na
+
/K

+
 

ATPase). ISH signal quantification was done by using the Metamorph software at the BIOP 

(Bioimaging and Optics Platform) at EPFL. ISH signal was measured as optical densities in 

our regions of interest (hippocampus and retrosplenial cortex). 

 

2.9 DATA ANALYSIS 
 

Comparison of learning performance was made using paired t-test between day1 and 

day9. Significant level was established at p<0.05. Optical densities of ROI were measured on 

all consecutive brain sections where the given region of interest was present: from Bregma -

1.30 mm to -3.30 mm for the hippocampus and the retrosplenial cortex, from Bregma -0.70 

mm to -1.60 mm for the laterodorsal nucleus of the thalamus, from Bregma -2.10 mm to -2.70 
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mm for the parietal cortex, from Bregma -2.50 mm to -3.00 mm for the mammillary bodies, 

from Bregma 0.5 mm to -1.10 mm for the anterior cingulate cortex and from Bregma 1.4 mm 

to -1.10 mm for the dorsal striatum (Hof et al., 2000). Regions of interest were drawn on Nissl 

images and optical densities determined on the corresponding autoradiograms, since both type 

of images were aligned. Optical densities were converted to 
14

C concentration in nCi/g (2DG 

uptake) based on a 
14

C-calibrated microscale. 2DG uptake of regions of interest was 

normalized to the mean 2DG uptake of the corpus callosum. Comparison between 

experimental groups (Day 1-Day 9 trained animals, AC and QC) for each analyzed region of 

interest was performed using unpaired t-test, except for the laterodorsal nucleus of the 

thalamus where an ANOVA followed by a Tukey-Kramer multiple comparison test was 

applied. Gene expression data were analyzed using an excel macro from Frontiers in Genetics 

(RT-PCR analysis-macro version 1.1) in which all LDA cards were put together. The average 

quantity for each triplicate was calculated and then all samples were normalized to a 

normalization factor obtained by calculating the geometric mean of the most stable reference 

genes (Vandesompele et al., 2002), being actin and cyclophilin the reference genes in our 

study. A threshold correction has also been done for each gene to allow comparison between 

different samples. 
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3 RESULTS 
 

3.1 LEARNING PERFORMANCE 
 

A total number of 43 animals were trained in the eight-arm radial maze (n= 7 for day 

1-OLP; n= 7 for day 9-OLP; n= 5 for day 1-PP; n= 7 for day 9-PP; n= 8 for day 1-PPd and n= 

9 for day 9-PPd). Trained mice have learned the spatial task with a level of performance at 

day 9 of 85% (see figures 3-1 and 3-2). During the first day of training (paired t-test, 

p<0.0001), mice make approximately 45% of correct choices, a value close to the expected 

percentage for finding the baited arm by chance. This percent correct choice at Day 1 was in 

fact higher than chance level (38%) possibly because it represents the average of 6 trials per 

daily session. Percentage of correct choice was calculated as the number of entries in correct 

arms out of the total number of entries during the session and is expressed as the mean ± the 

standard error of the mean (s.e.m). A mean of correct choice for all mice at each day of 

training is represented in figure 3-1. The graph of learning performance shows clearly that the 

learning performance is rapid and linear up to Day 6, leveling off until Day 9. 

 

Figure 3-1: Learning performance graph 

It shows the mean of correct choice per day of training. The two circled days (D1 and D9) 

represent the days of training where 2DG and gene analysis studies were performed. At day 9 

mice reach an 85% of good choice.***p-value < 0.001 compared toDay 1. 
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3.2 METABOLIC MAPPING 
 

Brain metabolic activity was assessed by two different softwares: MCID, a 

“conventional” image densitometry system, and JULIDE (Ribes et al., 2010), a new software 

developed during this thesis work in collaboration with Jean Philippe Thiran’s lab, as 

described in “Materials and Methods”. First, I am going to present the MCID results and then 

the JULIDE software framework followed by JULIDE results. 

 

Brain MCID metabolic mapping revealed increases in energy consumption in several 

regions during the behavioral task, as measured by 2DG uptake (optical density of a given 

region of interest normalized to the optical density of the corpus callosum). The figure 3-3 

represents 2DG uptake in the two regions showing the highest increases at day 1 or day 9 of 

the training protocol: the hippocampus and the retrosplenial cortex (n= 7 for both days), 

respectively. The 2DG uptake levels were normalized to the active control animal group (n= 8 

for active control day 1; n= 7 for active control day 9). This “active control” group 

represented animals that had been placed in the radial maze with all 8 arms baited. The 2DG 

uptake comparison between day 1 and day 9 reveal that glucose utilization is high in the 

hippocampus the first day of training and decreased by 77 % at day 9 to reach 5 nCi/g 

Figure 3-2: Training performance at Day 1 and Day 9 

Trials start on the central platform of the RAM (white square). We can see that animals go everywhere the 

first day of training (no learning), whereas at Day 9 (learning has occurred) they go directly into the 3 arms 

baited (numbers 1-4-6 in this example). 
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(unpaired t-test, p= 0.001, for the hippocampus day 1 versus day 9). In contrast, in the 

retrosplenial cortex, 2DG uptake is low at day 1 and increases by 79% at day 9 to reach 24 

nCi/g (unpaired t-test, p= 0.032 for the retrosplenial cortex day 1 versus day 9). Color images 

were taken from the MCID analysis software and illustrate an autoradiographic image in 

which the color scale represents different concentrations of radioactivity, red corresponding to 

the highest radioactivity. 

 

 

 

 

 

 

 

 

 

 

 

Other brain regions, moreover the hippocampus, were found to be activated at Day 1. 

These regions are: the laterodorsal nucleus of the thalamus, the fornix, the parietal cortex and 

the mamillary bodies. 

Figure 3-3: MCID results for the hippocampus (HP) and the retrosplenial cortex (RS) 

Histograms representing the glucose consumption during the learning task (OLP) in the 

hippocampus and the restrosplenial cortex, the two most modulated regions in our paradigm as 

revealed by the 2DG metabolic mapping. The y axis represents the increase in 2DG uptake 

(nCi/g) compared to the active control 2DG level and is expressed as the mean + s.e.m. **p-value 

< 0.01 for the hippocampus, day 1 compared to day 9. *p-value < 0.05 for the retrosplenial cortex, 

day1 compared to day 9. Color images illustrate an autoradiogram of a coronal brain section from 

mice trained one and nine days. The color panel symbolizes different radioactivity concentrations: 

1 = 50-200 nCi/g; 2 = 200-300 nCi/g; 3 = 300-400 nCi/g; 4 = 400-450 nCi/g; 5 = 450-600 nCi/g. 
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In figure 3-4 we can see an activation of the laterodorsal nucleus of the thalamus the 

first day of training (Day 1) for the OLP condition (n= 7) compared to the quiet control (QC; 

n= 8). Glucose utilization increases at Day 1 about 18% compared to the 2DG level of the 

quiet control animals, which should represent the “basal” glucose consumption levels since 

these animals do not go to the RAM, neither for training nor for exploration. However, 

animals exploring the behavioral paradigm for one day but without spatial learning (AC, n= 

8) present almost the same levels of glucose utilization as animals trained one day, suggesting 

that maybe this brain region is not spatial learning-specific but rather associated to the 

procedural aspect of the radial maze. This point will be discussed in detail later. 

 

 

 

 

 

 

 

 

 

At Day 1 also the parietal associative cortex was found to be activated in trained 

animals (see figure 3-5). This region is involved in spatial navigation since it is responsible 

for the integration of different sensory stimuli, including visual, tactile and auditory stimulus. 

An increase in glucose consumption (about 10% more) was found in the parietal cortex of 

Figure 3-4: MCID results for the thalamic laterodorsal nucleus (LD) 

Significant activation, measured as 2DG uptake, of the LD the first day of training (Day 1) 

compared to the Quiet Control (QC). Animals going to the RAM for one day but without spatial 

learning (AC) also present high levels of glucose utilization, comparable to those of one-day 

trained mice. Analysis of variance (ANOVA) followed by a Tukey-Kramer multiple comparison 

test. ***p-value< 0.001 for D1-OLP vs QC and AC vs QC. 
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animals trained one day (n= 7) when compared to the Active Control-Day 1 (AC; n= 8) 

group. 

 

 

 

 

 

 

 

Moreover the Day 1-activation of the hippocampus, the laterodorsal nucleus of the 

thalamus and the parietal cortex during the learning task (OLP group), only one brain region 

was found activated the first day of training but 45 minutes after the end of the RAM, 

corresponding to the Post-Processing (PP) condition: the mammillary bodies (see figure 3-6). 

Results obtained from the MCID software concerning this brain region show an increase in 

2DG uptake (about 27%) at Day 1 (n= 5) compared to Quiet Control (QC; n= 8). Even if this 

difference in glucose utilization between Day 1-PP and QC seems to be quite clear, it was not 

significant, due to the low number of animals forming the Day 1-PP group. Several 

inconvenient during the behavioral training, brain freezing and cryostat sectioning process 

have brought us to this low number of individuals in this experimental group. 

 

 

Figure 3-5: MCID results for the parietal associative cortex (PTL) 

Increase in glucose consumption, measured as 2DG uptake, in the 

parietal cortex (PTL) the first day of training for the OLP condition. t-

test comparison between Day 1-OLP trained mice (n= 7) and Active 

Control-Day 1 (AC; n= 8).*p-value = 0.015. 



 

- 62 - 

 

 

 

 

 

 

 

 

 

In the same way as for Day 1, some other regions, moreover the retrosplenial cortex, 

were found activated the last day of training (Day 9). These regions were the cingulated 

cortex and the dorsal striatum. 

 

Glucose consumption in the anterior cingulated cortex (ACC), measured by the MCID 

software, is represented in figure 3-7. A very significant activation (p-value < 0.001) was 

found in ACC the last day of training (Day 9, n= 7) when compared to Day 1 (n=7). The 

increase in 2DG uptake at Day 9 is about 37% more than at Day 1. 

 

2DG results concerning the dorsal striatum, a region known to be implicated in skills 

and habits, show an increase in glucose utilization (about 13%) the last day of training (Day 9; 

n= 7) when compared to the corresponding active control (animals going to the RAM for 9 

days; n= 7). See figure 3-8. 

 

Figure 3-6: MCID results for the mammillary bodies (MB) 

Increase in glucose utilization in the mammillary bodies the first day of 

training for the PP condition (45 minutes after the end of the training task). t-

test comparison between Day 1-PP trained mice (n= 5) and Quiet Control 

(QC; n= 8). This difference in 2DG uptake was not found significant. MCID 

analysis done by Monika Saxena for this region. 
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Figure 3-7: MCID results for the anterior cingulate cortex (ACC) 

Glucose consumption, measured as 2DG uptake, in the ACC during the first 

(Day 1) and the last (Day 9) day of training. t-test comparison between Day 9 

(n= 7) and Day 1 (n= 7) trained mice. ***p-value < 0.001. MCID analysis 

done by Monika Saxena for this region. 

Figure 3-8: MCID results for dorsal striatum 

Increase in glucose consumption at Day 9 when compared to the corresponding 

AC (active control animals going to the RAM for 9 days). T-test comparison 

between Day 9 (n= 7) and AC (n= 7). *p-value < 0.05. MCID analysis done by 

Monika Saxena for this region. 
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3.3 JULIDE: A NEW SOFTWARE FOR THE UNBIASED ANALYSIS AND 

3D RECONSTRUCTION OF BRAIN AUTORADIOGRAMS. 

 

JULIDE was born from a collaboration between Julia Parafita from the group of Pierre 

Magistretti at the LNDC (neuroenergetics and cellular dynamics laboratory) and Delphine 

Ribes from the group of Jean-Philippe Thiran at the LTS (signal processing laboratory), both 

groups at the EPFL. The software’s name comes from JULIa and DElphine. 

 

JULIDE is a software that allows users to detect activated areas in the brain by 

performing a voxel-based statistical analysis. This software give results in an unbiased 

manner as no specific brain regions need to be defined prior to the analysis. The software 

code is fully written in ITK (National Library of Medicine Insight Segmentation and 

Registration Toolkit (Ibanez and Schroeder, 2005)) and presents a user-friendly interface. 

JULIDE is based on a four-step approach which includes: (1) an automated pre-processing to 

select the desired section, (2) a 3D reconstruction of autoradiographic volumes, (3) a spatial 

normalization to compensate all the differences in position, orientation and shape and finally 

(4) a 3D voxel-based statistical analysis based on t-test. Outputs of JULIDE are 3D activation 

maps allowing to identify the significant differences in CMRGlu between two conditions. The 

comparison of CMRGlu between two groups is represented by color-coded statistical maps of 

p values defined by the user (figures 3-9 & 3-10). 

 

JULIDE is free-available and can be downloaded at http://julide.epfl.ch 

 

http://julide.epfl.ch/
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 Figure 3-9: JULIDE software presentation 

Summary of all main and complementary steps we can perform with our “home-made” program. 
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(1) The program can differentiate the pixels 

corresponding to the desired image and the 

pixels corresponding to the background and 

“clean” all the rest, as the arrow and the 

adjacent sections we can see on the 

autoradiographic sections on the left top of the 

figure. 

(2) All autoradiographic sections are aligned 

and a 3D brain volume is reconstructed. We 

can visualize it in a coronal, sagittal and 

horizontal view. At the end of this step, we 

have a 3D volume for each animal. 

(3)  We need now to align 3D brains in the 

same space coordinate to be able to compare 

them statistically. Different transformations 

were applied to the “moving image”: the 

volume we want to align to a reference one 

(fixed image). Rigid reg.: transformation in 

orientation and position. Bspline reg.: free-

form deformation, to register sections by 

matching two images at increasing levels of 

detail. 

(4) A mean 3D brain for each experimental 

group is created. Then, 3D volumes are 

compared two by two by performing a t-test. 

Results obtained are color-coded statistical 

maps allowing us the identification of 

significant differences in CMRGlu between 2 

conditions. 

Figure 3-10: The four main steps to process images with JULIDE 

(1) Preprocessing, (2) reconstruction of a 3D volume, (3) alignment of 3D brains and (4) statistical analysis. 
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Moreover these four main steps, some others steps are necessary to achieve a good 3D 

brain reconstruction and analysis: (a) rescaling, (b) normalization, (c) update spacing and (d) 

toolbox. A rescaling step (a) is used to give a correspondence between gray level and 2DG 

concentration. A normalization step (b) is necessary if brain sections have different gray 

intensities due to film exposure, images acquisition procedures or different 2DG diffusion 

between animals. To do that a reference region, i.e. the corpus callosum, must be drawn on 

each brain section before aligning them to reconstruct a 3D volume. The number of slices per 

animal was not the same throughout the experiment and the cutting protocol was changed 3 

times to improve this software, because we found that the less space we have between 

sections the better 3D virtual brain we get. To align all 3D brains to a reference one in the 

same space coordinate, the program needs to know how much distance there is between 

autoradiograms for each brain and this is done in the (c) update spacing step. Sometimes a 

tissue fragment is missing from one or more sections of a brain due to the cryostat sectioning 

procedure. The (d) tool box is a work tool allowing us to identify holes or fissures in the brain 

sections, like that the program will not deform the brain image during the Bspline registration 

explained above to compensate this missing tissue. 

 

We have applied this mapping approach to the study of the regional variations in 

CMRGlu in mice undergoing a spatial learning task. Significant differences in the areas 

engaged during the behavioral task at day 1 (when animals are confronted for the first time to 

the maze) and at day 9 (when animals are highly performing) have been identified. These 

areas include the hippocampus, the fornix, the thalamic laterodorsal nucleus, the parietal 

cortex and the mamillary bodies at Day 1; and the anterior cingulate, the retrosplenial cortex 

and the dorsal striatum at Day 9.  

 

In figure 3-11 we can see the first results we obtained with JULIDE which was in the 

first phase of development: comparison of two experimental conditions by subtraction of grey 

levels between different sections. So we get results in 2D, the 3D reconstruction not being 

implemented yet. In figure 3-11, a comparison has been done between animals trained one 

day (Day 1-OLP) versus the Quiet Control (QC) and activation was found in the hippocampus 

(HP), the laterodorsal nucleus of the thalamus (LD) and the fornix (fx). While confirming the 

findings, concerning the hippocampus (represented in figure 3-3), of the densitometrical 

analysis made by the MCID software, JULIDE points out differences in other brain regions, 

like LD and the fornix (fx). After having obtained these results, the thalamic laterodorsal 
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nucleus (LD) was analyzed by MCID and the same results were found: a Day 1-OLP 

activation compared to the QC (see figure 3-4 in the preceding section). 

 

 

 

 

 

 

 

Figure 3-12 shows a color-coded map in which the hippocampus, an area which is 

well-known to be implicated in spatial memory, is activated during the learning task the first 

day of training. The other activated region we can see on this figure is the parietal associative 

cortex that integrates sensory information from different modalities as vision, touch and 

audition, being involved in spatial navigation and visual processing. The t-test comparison 

was done between trained mice for one day and Active Control. 

 

Figure 3-11: First JULIDE results when the software performed analysis only in 2D 

Subtraction of grey levels between Day 1-OLP and Quiet Control showing an activation of the 

hippocampus (Hp), the laterodorsal nucleus of the thalamus (LD) and the fornix (fx). The color 

scale represents the significance level (80% in bleu, 90% in green and 99% in red). This image 

corresponds to early stages of the software’s development. 
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At day 9, the last day of training, the hippocampus is no longer activated but a high 

signal is detected in the anterior cingulate and the retrosplenial cortex (see figure 3-13), 

meaning that the 2DG recruitment has moved, over the nine days of training, from the regions 

that were activated at day 1 to these cortical areas, which is consistent with theories of 

memory consolidation (Alberini, 2005; Frankland and Bontempi, 2005). The t-test 

comparison was done between animals trained one and nine days. 

 

 

Figure 3-12: JULIDE results for the On-Line condition at Day 1 

At Day 1, the hippocampus (HP) and the posterior parietal associative cortex (PTLp) are the most 

activated regions for the OLP condition (during learning), whereas 45 minutes later (Post-

processing) the hippocampus is no more activated. The parietal associative cortex integrates 

sensory information from different modalities as vision, touch and audition. It is involved in 

spatial navigation and visual processing. t-test comparison between Day 1 and Active Control 

(AC). P-value = 0.02. 
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At Day 9, the striatum (brain region implicated in skills and habits, besides being one 

of the major input relay station of the basal ganglia) was found activated the last day of 

training, Day 9, which is maybe consistent with some kind of habituation throughout the nine 

days of training. The t-test comparison was done between animals, belonging to the On-line 

condition, trained nine days (Day 9-OLP) and animals going to the RAM without developing 

a spatial strategy (AC), see figure 3-14.  

Figure 3-13: JULIDE results for the On-Line condition at Day 9 (ACC & RS) 

Activation of the anterior cingulated (ACC) and the retrosplenial cortex (RS) during the last day of training, 

Day 9. Interestingly there is not at all activation of the hippocampal formation, meaning that the recruitment of 

2DG has moved, in time, from the hippocampus to the cortex. Images of the post-processing condition are also 

included in the picture to show that no activation was found 45 minutes after the end of the task. T-test 

comparison between Day 9 and Day 1. P-value = 0.05.  
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We also looked at brain glucose consumption once the learning task was finished to 

see if the cerebral activity related to spatial learning continues for a while or if it is stopped at 

the same time as the learning task is over. In this case, the mammillary bodies were found 

activated the first day of training (see figure 3-15, t-test comparison was done between Day 1 

trained mice and Quiet Control). Mammillary bodies are part of the Papez circuit, which is 

involved in storing memories, and receive inputs from the hippocampus via the fornix which 

is also a region we found activated during the learning task the first day of training (see figure 

3-11, for fornix activation) 

Figure 3-14: JULIDE results for the On-Line condition at Day 9 (Striatum) 

The striatum, which anatomically corresponds to the caudate and the putamen nuclei of the basal 

ganglia, is found activated the last day of training when compared to the Active Control. T-test 

comparison between Day 9 and AC. P-value = 0.01. No activation was found when the 

comparison was made between Day 9-Post-Processing and AC. 



 

- 72 - 

 

 

 

 

 

 

 

 

 

 

Thus we have now a rather complete picture of the patterns of regional activations 

which are differentially engaged at Day 1 and Day 9 (see table 4). Results obtained with 

JULIDE are comparable to those obtained manually by optical densitometry of pre-selected 

ROI as indicated by figures 3-3 and 3-12 for the hippocampus, figures 3-3 and 3-13 for the 

retrosplenial cortex, figures 3-4 and 3-11 for the laterodorsal nucleus of the thalamus, 

figures3-5 and 3-12 for the parietal cortex, figures 3-6 and 3-15 for the mammillary bodies, 

figures3-7 and 3-13 for the anterior cingulated and figures 3-8 and 3-14 for the dorsal 

striatum. 

Figure 3-15: JULIDE results for the Post-Processing condition at Day 1 

Mammillary bodies (MB) are the only brain region we found activated in the Post-Processing 

condition (45 minutes after the learning task). t-test comparison between Day 1-PP and Quiet 

Control (QC). p-value = 0.05. A group of three consecutive images belonging to Day 1-OLP was 

also included in the picture to show no activation of MB immediately after the end of the learning 

task. 
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Activated region 
In 

(exp. group) 
Compared to 

Analyzed 

by MCID 

Analyzed 

by JULIDE 

Hippocampus D1-OLP D9-OLP/AC/QC √ √ 

LD D1-OLP QC √ √ 

Fornix D1-OLP QC ---- √ 

Parietal Cortex D1-OLP AC √ √ 

Anterior cingulate D9-OLP D1-OLP √ √ 

Retrosplenial cortex D9-OLP D1-OLP √ √ 

Striatum D9-OLP AC √ √ 

Mammillary bodies D1-PP AC/QC √ √ 

 

    Table 4: Summary of MCID and JULIDE results 

 

3.4 GENE EXPRESSION RESULTS 
 

As with the 2DG technique we measured glucose consumption, for the gene 

expression analysis we have chosen genes related to glucose metabolism. In table 2 (Materials 

and Methods), we can see a list of the studied genes with the gene symbol, the gene name, the 

reference number and the Applied Biosystems identification number. Genes are grouped by 

pathway, representing the glycolysis, the pyruvate metabolism, the pentose phosphate 

pathway, the glycogen regulation and the lactate shuttle. We have also studied some genes for 

synaptic plasticity. Moreover these 30 genes, 3 reference genes were also analyzed: 18S, actin 

and cyclophilin. 

 

All these genes are represented in figure 3-16, in which two different compartments 

symbolizing a neuronal and an astrocytic cell have been drawn. Metabolic pathways are 

represented by different colors and, to simplify, only the first and the last metabolite for each 

pathway are indicated along with the selected enzymes. Genes with a darkest color in the 

same pathway represent astrocyte-specific genes (eg HK2 in glycolysis and GLUT1, LDHA, 

MCT1 and ATP1a2 in the lactate shuttle). 
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The results of gene expression analysis for all 30 genes and 12 experimental 

conditions are presented in table 5: 

 

Figure 3-16: Representation of studied genes in astrocytes and neurons 
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Table 5: Gene expression primary data 

Gene quantities were calculated for each gene from PCR cycle number comparison and normalized to a 

normalization factor obtained from the values of actin and cyclophilin. Missing values correspond to 

samples with results above 2 standard deviation. We decided to not include these results to avoid bias 

in the expression levels of studied genes. 
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Table 6 illustrates which are the most induced genes at Day 1 and Day 9 in the 

hippocampus and the retrosplenial cortex at 45 minutes (PP) and 6 hours (PPd) after the 

learning task. Induced genes were divided in 2-10 fold increase and more than 10 fold 

increase for each time point. 

 

 

 

 

Table 6: Gene expression kinetics 

Genes induced at Day 1 and Day 9 of the training protocol in the hippocampus and the retrosplenial cortex at 45 

minutes and 6 hours after the learning task. The OLP condition was taken as baseline. Gene induction was 

classified in two categories: 2-10 fold increase and more than 10 fold increase. 
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Table 6-A: genes induced at Day 1 in the hippocampus 

The majority of genes whose expression was increased at Day 1 in the hippocampus 

belong to the PP condition (gene expression analysis performed 45 minutes after the learning 

task). These genes are: hexokinase 1 (Hk1), phosphofructokinase (Pfkl and Pfkp) and Enolase 

(Eno2) for glycolysis; pyruvate carboxylase (Pcx) and pyruvate dehydrogenase kinase 2 

(Pdk2) for pyruvate metabolism; transaldolase (Taldo) and transketolase (Tkt) for the pentose 

phosphate pathway; glycogenin (Gyg), protein targeting to glycogen (PTG) and brain 

glycogen phosphorylase (Pygb) for glycogen regulation; Na
+
/K

+
-ATPase (ATP1a2) for the 

lactate shuttle and Gap43 and PSD95 as plasticity genes. 

 

Table 6-B: genes induced at Day 9 in the hippocampus 

Increased gene expression in the hippocampus at Day 9 was mostly detected 6 hours 

after task (PPd condition). Thus genes whose expression is increased include : hexokinase 2 

(Hk2), phosphofructokinase (Pfkl and Pfkp) and Enolase (Eno2) for glycolysis; pyruvate 

carboxylase (Pcx) for pyruvate metabolism; transaldolase (Taldo) and transketolase (Tkt) for 

the pentose phosphate pathway; protein targeting to glycogen (PTG) and brain glycogen 

phosphorylase (Pygb) for glycogen regulation; lactate dehydrogenase A (Ldha), 

monocarboxylate transporter 2 (MCT2) and Na
+
/K

+
-ATPase (ATP1a2) for the lactate shuttle 

and, as genes for plasticity, Gap43 and PSD95. 

 

Table 6-C: genes induced at Day 1 in the retrosplenial cortex 

Most of genes induced in the retrosplenial cortex during the first day of training were 

induced 45 minutes after the task. These genes included the hexokinase 1 (Hk1), 

phosphofructokinase (Pfkp), aldolase (Aldoa) and Enolase (Eno2) for glycolysis; pyruvate 

dehydrogenase kinase 2 (Pdk2) for pyruvate metabolism; transaldolase (Taldo) and 

transketolase (Tkt) for the pentose phosphate pathway; protein targeting to glycogen (PTG) 

for glycogen regulation; Na
+
/K

+
-ATPase (ATP1a2) for the lactate shuttle and, as genes for 

plasticity, Gap43 and PSD95. 

 

Table 6-D: genes induced at Day 9 in the retrosplenial cortex 

At Day 9, gene expression was augmented in the retrosplenial cortex at both times, 45 

minutes and 6 hours. Increased expression 45 minutes after the task was observed for the 

following genes: phosphofructokinase (Pfkp) and Enolase (Eno2) for glycolysis; pyruvate 

dehydrogenase kinase 2 and 4 (Pdk2 and Pdk4) for pyruvate metabolism; glucose-6-
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phosphate dehydrogenase (G6pdx), transaldolase (Taldo) and transketolase (Tkt) for the 

pentose phosphate pathway; glycogenin (Gyg), protein targeting to glycogen (PTG) and brain 

glycogen phosphorylase (Pygb) for glycogen regulation; Na
+
/K

+
-ATPase (ATP1a2) for the 

lactate shuttle and Gap43 and PSD95 for plasticity genes. A similar profile of gene expression 

was observed 6 hours after the task, except for pyruvate metabolism: pyruvate carboxylase 

(Pcx) was induced but no induction was observed for pyruvate dehydrogenase kinase 2 and 4 

(Pdk2 and Pdk4). 

 

In order to provide an overall view of the gene expression profiles, a graphic 

representation of the mean level of gene expression for a given pathway was calculated at 

days 1 and 9 in the hippocampus and retrosplenial cortex, using the expression in the OLP 

condition as baseline. Geometric means of the levels of expression of the genes in a given 

pathway were displayed as blue horizontal bars (see figure 3-17), the shortest bar representing 

the lowest geometric mean.  

 

 

 

 

 

Figure 3-17: Metabolic pathway profile at 45 minutes and 6 hours after the learning task 

The OLP condition was taken as baseline. The metabolic pathway score represented in colored 

bars is the geometric mean of all genes studied for this pathway. The different lengths of 

colored bars represent different increase percentages compared to the geometric mean of the 

same pathway for the OLP condition. 
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As illustrated in figure3-17, in the PP condition (post processing corresponding to 45 

minutes after end of the task) expression of genes for glucose metabolism and synaptic 

plasticity was increased in the hippocampus at Day 1 compared to Day 9, whereas in the 

retrosplenial cortex gene expression was more important at Day 9 compared to Day 1. 

However, 6 hours after training (Post-Processing delayed, PPd) the level of gene expression 

was higher at Day 9 in both regions. 

 

In order to reveal the effect of learning on gene expression, a subtraction between Day 

9 and Day 1 was done for both regions of interest, the hippocampus and the retrosplenial 

cortex, and for the 3 experimental times; OLP, PP and PPd (see figure 3-18). Relative 

normalized gene expression data are represented by horizontal histograms. Negative values 

mean that the level of gene expression was higher at Day 1. Positive values mean that the 

level of gene expression was higher at Day 9. The most induced genes at Day 9 in the 

retrosplenial cortex – the time and region corresponding to learning, from the behavioral point 

of view, in association with a metabolic activation as revealed by increased glucose utilization 

- are phosphofructokinase (Pfkp) and enolase (Eno2) for glycolysis, pyruvate carboxylase 

(Pcx) and pyruvate dehydrogenase kinase 4 (Pdk4) for pyruvate metabolism, all genes tested 

involved with glycogen regulation (Gyg1, Gys1, PTG, Pygb and Pygm), glucose transporter 

GLUT3 and the Na
+
/K

+
-ATPase for the lactate shuttle.  
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The schematic representations in figure 3-19 show the effect of learning on gene 

expression for each pathway. This has been done by calculating the average resulting from the 

Figure 3-18: Subtraction of gene expression levels between Day 9 and Day 1 

Results are represented in horizontal histograms for the 3 different times OLP, PP and PPd. In 

blue, the results for the hippocampus; in red, the results for the retrosplenial cortex. Negative 

values mean that the level of gene expression is higher at Day 1. Positive values mean that the 

level of gene expression is higher at Day 9. 
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subtraction of expression levels at Day 9 minus Day 1 at all three experimental times OLP, PP 

and PPd, thus providing the main tendency of the metabolic pathway in the two regions at 

both experimental days. This schematic representation is aimed at providing at a glance how 

each metabolic pathway related to glucose (glycolysis, pyruvate metabolism, pentose 

phosphate pathway, glycogen metabolism and lactate shuttle) is modulated by learning. To do 

so, two different radial cycles are represented, one for each region of interest. Each radial 

cycle is formed by 5 big “balls” illustrating each of the 5 pathways related to glucose 

metabolism. Inside each big ball, the 3 different learning times are represented in the form of 

little “balls”: OLP in blue, PP in red and PPd in green. 

 

 

 

 

 

 

 

 

 

In the hippocampus, the same expression pattern was found for all three experimental 

conditions OLP, PP and PPd. There was no change for OLP, remaining close to zero for all 

metabolic pathways, whereas PP expression was lower in all cases meaning that there is a 

higher gene expression at Day 1 for this experimental time. In contrast, PPd was augmented 

compared to OLP and PP, meaning that the levels of gene expression for this condition were 

Figure 3-19: Effect of learning on gene expression per pathway 

The score was calculated as the mean of gene expression of all genes for a given pathway at Day 9, minus 

the mean of gene expression of the same genes at Day 1. The blue, red and green balls illustrate the OLP, 

PP and PPd times, respectively. Moreover the five pathways related to glucose metabolism, the same 

transcriptional score was calculated for plasticity genes and represented in a similar graph for each brain 

region. 
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higher at Day 9. In the retrosplenial cortex, we found the same results as observed in the 

hippocampus for OLP, staying close to the baseline in all pathways. However, and contrary to 

what we found in the hippocampus, PP expression was increased in all pathways at Day 9, as 

did PPd. 

 

3.5 IN SITU HYBRIDIZATION (ISH) 
 

In order to confirm the results obtained by RT-PCR, we performed some in situ 

hybridization experiments to demonstrate a difference between Day 1 and Day 9 in the level 

of expression of the Na
+
/K

+
-ATPase alpha2 subunit, since this gene seemed to be strongly 

modulated by the learning task.  

 

 

 

In figure 3-20, we can see the results of the ISH experiments for the Na
+
/K

+
-ATPase 

alpha2 subunit, in both regions were laser microdissection and RT-PCR were performed 

(hippocampus and retrosplenial cortex) and at both days (Day 1 and Day 9). ISH was 

performed on brain sections corresponding to the Post-Processing group (45 minutes after the 

end of the learning task). By eye, it seems that there is a slightly higher signal in the 

Figure 3-20: ISH results for the Na
+
/K

+
-ATPase alpha2 subunit 



 

- 83 - 

 

retrosplenial cortex at Day 9, compared to Day 1, which would be consistent with the gene 

expression results. However, concerning the hippocampus, a high ISH signal is also detected 

at Day 9 and this is not consistent with RT-PCR results, since the highest gene expression for 

ATP1a2 mRNA was found the first day of training (see figure 3-18). Moreover, after doing a 

quantification of the ISH signal (optical density measurement) no significant difference was 

found between Day 1 and Day 9, neither for the hippocampus nor for the retrosplenial cortex. 
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IV 

DISCUSSION 
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4 DISCUSSION 
 

The eight-arm radial maze (RAM) has been widely used to study spatial learning in 

rodents (Masuda et al., 1994; Bontempi et al., 1996; Smith et al., 1998; Winocur and Gagnon, 

1998; Bontempi et al., 1999; Routtenberg et al., 2000; Pothuizen et al., 2004; Yoshihara and 

Ichitani, 2004; Ros et al., 2006); however the training protocol has not been always the same. 

I took the same training schedule as used by Jacqueline Ros (Ros et al., 2006) who replicated 

the one described by Bruno Bontempi (Bontempi et al., 1999), a procedure consisting in 9 

daily training sessions composed of 6 consecutive trials separated by a 1 minute interval (as 

explained in Materials and Methods). It has been published, several years ago, that a RAM-

spatial protocol lasting 5 days is sufficient to demonstrate a significant progress in learning 

performance over time (Roullet, 1995), which is consistent with our behavioral results (figure 

3-1) as animals present a 74% of correct choice at Day 5, which is highly significant 

(p<0.001; t-student test) when compared to the 45% obtained at Day 1. Nevertheless, we kept 

our 9-days training protocol since we were interested in a very complex and intensive training 

task to have more opportunities to detect post-learning (PP and PPd) changes at the level of 

2DG and gene expression. 

 

Roullet established the important role of the inter-session delay to get good 

performances on a spatial task. On a spatial learning paradigm like the radial arm maze, 

animals should visit each arm only once, so they need to remember which arms they already 

explored during the session. If the delay between two successive training sessions is very 

short, a kind of interference can occur and mice will be confused about those arms already 

visited and those that were not. Roullet has shown that with an inter-session delay inferior to 2 

hours animals are bad learners, while with a 2-hours, 8-hours and, the most frequently used 

(as in our case), 24-hours delay mice reach very good performances (Roullet, 1995). Contrary, 

an intra-session delay (between the different trials performed on the same day) longer than 2 

hours disturbed spatial, mainly working, memory in rats (Yoshihara and Ichitani, 2004). In 

this kind of delayed-RAM, the delay period is normally interposed after the four first choices, 

establishing a pre-delay and a post-delay training. All arms are baited and after the delay-

period animals must find the four arms there were not visited before (Chrobak and Napier, 

2002). 
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The 2DG results for the hippocampus and the retrosplenial cortex corroborate the 

theoretical model of memory consolidation published by Frankland and Bontempi (Frankland 

and Bontempi, 2005), according to which the hippocampus is engaged in the early stages of 

learning, gradually establishing reciprocal connections with the neocortex. The daily 

reactivation of this hippocampal-cortical circuit, as in the protocol used in this study by re-

exposing mice to the radial maze once they have learned, leads to the strengthening of this 

network, mainly in the neocortex. Reinforcement of cortico-cortical connections allows new 

memories to be stabilized and integrated with other pre-existing cortical memories and 

becoming, over time, independent of the hippocampus (figure 4-1). 

 

 

 

 

 

 

 

This is consistent with the important reduction in 2DG uptake in the hippocampus 

observed at day 9 of learning when compared to day 1, showing that this brain structure is 

particularly engaged during early stages of learning. Interestingly, the opposite modulation is 

observed in the retrosplenial cortex where a significant increase in glucose consumption 

occurs at day 9, consistent with the notion that memory traces are transferred, over the nine 

days of training, from the hippocampal formation to this region of the neocortex. In both 

cases, the increase of 2DG uptake is linked to an increase in energy need. As we compare 

groups of mice with or without learning, we can conclude that this additional energy demand 

Figure 4-1: Standard consolidation model 

Evolution of memory consolidation over time. During early stages of learning, information 

remains in a hippocampal-cortical circuitry. Synaptic activity leads to the strengthening of 

synapses in the neocortex either by reinforcement of already existing connections or by 

establishing new ones. Gradually, information is integrated in cortico-cortical circuits becoming 

independent of the hippocampus. Taken from Frankland and Bontempi, 2005. 
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is related to memory formation/storage of information. In agreement with this concept, Squire 

and Alvarez have observed that changes in connections between the hippocampus and cortical 

regions are rapid and transient, whereas changes in cortico-cortical connections are slow and 

long-lasting (Squire and Alvarez, 1995). A more recent paper (Tse et al., 2007) points to the 

capacity of the neocortex for rapid consolidation when newly acquired information is 

compatible with previously acquired knowledge, forming an associative “schema” in which 

new traces are quickly assimilated. 

 

When an already stored information is recalled, the traces encoding it become labile 

and sensitive to disruption (Taubenfeld et al., 2001; Alberini, 2005) requiring another round 

of consolidation (reconsolidation), which involves de novo protein synthesis to preserve it 

(Nader et al., 2000; Debiec et al., 2002). In a certain way, each daily training session of the 

spatial learning paradigm used in this study can be considered as a reactivation of a cortical 

integrated memory that engages again in a hippocampal-cortical circuitry. The fact that 2DG 

levels in the hippocampus of trained animals at day 9, while considerably lower that at day 1, 

still remain higher than levels observed in the hippocampus of animals that visit the radial 

maze without developing a spatial learning strategy because all arms were baited (active 

controls) is consistent with this view. This observation suggests that the process of 

reconsolidation requires energy. Thus, the hippocampus would be again mobilized even on 

the last day of training, when the radial maze task causes a retrieval of acquired information, 

but considerably less so than on day 1. Interestingly, the 2DG results are in excellent 

agreement with gene expression data to be discussed below. 

 

A hippocampal, retrosplenial and prefrontal hypoactivity, determined as c-fos 

expression levels after an eight-arm radial maze task, has been shown in a model of 

diencephalic amnesia (lesions of the mammillothalamic tract) pointing at a subcortical-

cortical memory circuit subserving episodic learning (Vann and Albasser, 2009). Along the 

same lines, lesions of the hippocampal formation but not of the entorhinal cortex decrease c-

fos and Zif268 expression levels in the retrosplenial cortex, further stressing the 

interconnection of these two cerebral regions (Albasser et al., 2007). 

 

If there is no doubt about the implication of the hippocampus in the formation of a 

declarative episodic memory, there is no really a consensus on the role of different 
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subregions/parts of the hippocampus in this kind of memory. Moser and Moser, after 

performing rat hippocampal lesions studies, have showed that a large dorsal hippocampal 

region (70%) is involved in spatial learning, either encoding or retrieval, while the small 

ventral part is not essential for navigation in a water maze task (Moser and Moser, 1998b). In 

the same year, other authors, using human PET studies, published that the anterior 

hippocampus is activated by encoding and the posterior hippocampus by retrieval (Lepage et 

al., 1998). Based on human fMRI studies, other researchers said that there is no anatomical 

difference in hippocampal activation between encoding and retrieval, even though the middle 

and posterior hippocampus is more strongly activated than the anterior part (Greicius et al., 

2003). Pothuizen and collaborators (rat hippocampal lesions studies) state that dorsal lesions 

led to significant impairments in spatial reference and working memory, and that extending 

lesions to the entire hippocampus did not change the behavioral results, suggesting that 

addition of ventral damage did not aggravate the memory deficits observed after dorsal 

lesions alone (Pothuizen et al., 2004). Essentially, Moser & Moser and Pothuizen present the 

same results i.e. the ventral part of the hippocampus seems to be not necessary for episodic 

memory and only the dorsal hippocampus is important. This is maybe due to the kind of 

experiment performed to study this issue, since both groups did rat hippocampal lesions, 

highlighting the importance of being careful when comparing results from different 

techniques (animal lesions, PET and fMRI). In our project, 2DG uptake in the hippocampus 

was assessed in the entire region; if differences exist between the dorsal and the ventral parts 

of this brain region this must be “masked” by our analysis procedure. 

 

The hippocampal formation and the retrosplenial cortex are also reciprocally 

connected to the anterior thalamic nuclei (ATN) (Shibata, 1993; Aggleton et al., 2010), 

formed by the anterodorsal (AD), the anteroventral (AV) and the anteromedial (AM) nucleus. 

They are anatomically close to the laterodorsal thalamic nucleus (LD). Lesions of both 

regions (ATN and LD) cause spatial learning and memory deficits in a water maze task, even 

though the degree of impairment is dependent on the extent of the injury: if the lesion is 

restricted to LD, animals are mildly impaired and can finally learn the task if the training 

period is prolonged, whereas if the lesion affects LD and also the anterior thalamic nuclei they 

are not able to learn, even after a prolonged exposition to the water maze (van Groen et al., 

2002). Another study shows that the anterior thalamic nuclei are involved in acquisition and 

recent memory (tested 5 days after training on a water maze task) while the intralaminar 

thalamic nuclei, together with the adjacent LD, contribute to remote spatial memory (25 days 
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after initial acquisition) (Lopez et al., 2009). In our study, LD seems to be implicated in the 

formation of a spatial memory trace since this region is activated, as the hippocampus, the 

first day of training in the On-Line Processing group (Day 1-OLP), when compared to QC 

(figure 3-4). However, animals going to the RAM but without developing a spatial strategy 

(active control, AC) present the same high metabolic activity (about 270 nCi/g) as one-day 

trained animals, suggesting that the LD activation could be rather associated to the procedural 

aspect of the radial maze (just visit the arms to get food) than the spatial learning process per 

se. 

 

If we assumed that even in a spatial task there is a procedural learning component 

(Morris, 1984; Morris et al., 2003; Rossato et al., 2006), the learning deficits observed by van 

Groen et al. in LD-lesioned mice could be explained by the loss of the procedural aspect of 

the water maze (to swim to escape) that contributes to the final declarative spatial memory 

system. That could also help to explain why these LD-lesioned animals can finally learn the 

task with a double training period (5 days of water maze training-7 days’ rest-5 days of water 

maze training) since one additional training week could compensate the loss of inputs from 

LD to the limbic system and reinforce the collective role in spatial learning and memory of 

each of the anterior thalamic nuclei, that were not affected by this lesion. 

 

Maviel et al have found that the anterior cingulate cortex was essential for storage and 

retrieval of remote spatial memories, 30 days after training in a “one baited arm in a five-arm 

maze” task (Maviel et al., 2004). In another learning context (fear memories), ACC was also 

identified as a key structure for processing remote memory (Frankland et al., 2004). A spatio-

temporal evolution in 2DG consumption from subcortical to cortical regions (including the 

frontal, parietal and anterior cingulate cortex) was identified after a spatial discrimination task 

performed in an eight-arm radial maze (Bontempi et al., 1996). In agreement with these 

papers, and also with our results concerning the retrosplenial cortex, ACC is activated in the 

Day 9-OLP group when compared to Day 1 (figures 3-7 and 3-13), supporting the role of this 

region in storage and consolidation of a spatial memory trace. 

 

Two major memory systems have been recognized over the years: the declarative 

(explicit) memory system, under the control of the hippocampus and related temporal regions 

(in green, figure 4-2), and the non-declarative (implicit) or procedural or habit formation 
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memory system, under the control of the striatum (in blue, figure 4-2) and its connections 

(Squire, 1987). 

 

 

Figure 4-2: Hippocampal and striatal memory systems 

Sagittal views of a 3D reconstruction of the hippocampus (in green) and the striatum (in blue). Taken from the Allen Brain 

Atlas (www.brain-map.org). 

 

Learning tasks in animals imply the performance of some form of movement in 

response to visual or other cues. When they become well learned by repetition, memories of 

these tasks may be viewed as habits (Rossato et al., 2006). Several evidences coming from 

brain lesions methodology indicate that hippocampus and dorsal striatum mediate different 

types of memory. Lesions of the hippocampal formation, but not the dorsal striatum, impair 

spatial learning acquisition in a Morris water maze task. Conversely, lesions of the dorsal 

striatum, but not the hippocampus, impair acquisition of stimulus-response “habit” learning in 

another version of the Morris water maze task (Packard and McGaugh, 1992; McDonald and 

White, 1994). Using a water maze task with a visible or not visible platform, a double 

dissociation of the mnemonic functions of hippocampus and dorsal striatum has been 

established by (Teather et al., 2005) by studying the expression of immediate early genes 

products (c-Jun and Fos-like proteins) in these two regions. Training in a spatial (i.e., hidden 

escape platform) water maze task produced a marked increase in both (c-Jun and Fos-like) 

protein expression levels in the dorsal hippocampus. In contrast, training in a non-spatial (i.e., 

visible escape platform) water maze task increased c-Jun levels in the dorsal striatum (Teather 

et al., 2005). The fact that in our training protocol, a high 2DG signal was found in the dorsal 

striatum the last day of training (Day 9-OLP) indicate that going to the RAM becomes a habit 

over the nine days of training. However, since we are talking about a procedural learning-

related region, we could expect the same high metabolic glucose rate in active control (AC) 

http://www.brain-map.org/


 

- 93 - 

 

animals going to the maze for 9 days, and this was not the case. This could be due to the fact 

that learning which are the three baited arms, by repetition from day to day, engage the striatal 

region in a large manner than the “only” exploratory activity of AC mice. 

 

It was proposed, several years ago, that a common feature of anterograde amnesia 

(where new memories are affected) is damage to part of an “extended hippocampal system”, 

comprising the hippocampus, the fornix, the mammillary bodies and the anterior thalamic 

nuclei (Aggleton and Saunders, 1997). Two of these regions (hippocampus and anterior 

thalamic nuclei) were already discussed above, now it is time to focus on the fornix and 

mammillay bodies which were also activated by our spatial learning paradigm. The fornix is 

the major fiber tract connecting the two brain systems that are most consistently associated 

with anterograde amnesia, the medial temporal lobe and the medial diencephalon (Tsivilis et 

al., 2008). Thus, as explained in the introduction (learning and memory-related brain regions), 

the fornix acts as a relay station of many inputs coming from the medial temporal lobe 

(hippocampus, entorhinal and perirhinal cortex) to diencephalic structures as different 

thalamic nuclei (ATN, LD, MD) and the mammillary bodies (MB). 

 

All these interactions reflect an interdependent and complex system that can become 

even more complicated if we consider the different subdivisions in some of these brain 

regions. It appears that separate cell populations in the hippocampal formation innervate ATN 

and MB; the deepest subicular neurons projecting to ATN while the more superficial cells 

project to MB (Wright et al., 2010). Also the MB structure should be divided in two different 

systems (lateral mammillary nucleus and medial mammillary nucleus) instead of being 

considered as a unique region with a unique function (Vann and Aggleton, 2004). Even if 

both nuclei contribute, basically, to the same kind of learning, some differences in terms of 

connectivity and function were identified supporting the idea of treating them as different 

parts of the same related system: the lateral mammillary nucleus projects to the anterodorsal 

thalamic nucleus (AD), while the medial mammillary nucleus projects to the anteromedial 

(AM) and anteroventral (AV) thalamic nucleus. One more evidence is the discovery of head 

direction cells in the lateral, but not the medial, mammillary nuclei of the rat (Vann and 

Aggleton, 2004). A diagram illustrating this intricate “extended hippocampal system” was 

recently published (Aggleton et al., 2010). Atrophy of mammillary bodies was almost always 

associated to the Korsakoff’s syndrome characterized by anterograde amnesia, even though 

retrograde amnesia was often also observed (Yoneoka et al., 2004; Beracochea, 2005; 
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Radyushkin et al., 2005; Kopelman et al., 2009). Furthermore, rodents with lesions of the 

mammillary bodies are impaired on spatial memory tasks as T-maze, radial-arm maze and 

water maze (Saravis et al., 1990; Sziklas and Petrides, 2000; Vann and Aggleton, 2003; 

Radyushkin et al., 2005). Results from this study (figures 3-6, 3-11 and 3-15) support the 

fornix and the mammillary bodies as a part of a complex brain network involved in spatial 

learning since both regions were found activated the first day of training, with the particularity 

that MB are activated with a little delay (45 minutes) compared to the fornix. 

 

The parietal lobe is not traditionally thought to support declarative memory. Some 

studies provide evidences of its role in memory processes, even for simple recognition tasks 

as words, pictures or sounds in human fMRI studies (Shannon and Buckner, 2004; Wagner et 

al., 2005). In a different way, it was published that posterior parietal areas were not essential 

for recognition memory, being the activations found in others fMRI studies the result of a 

widespread brain attentional network, suggesting that the parietal region is associated with, 

but not necessary for, the memory process (Rossi et al., 2006). Furthermore, patients with 

damage in parietal areas were not impaired in recognition tasks (Haramati et al., 2008). We 

should be cautious in the interpretation of Haramati’s results since their subjects were CVA 

(cerebro-vascular accident) patients, meaning that brain damages were not restricted to only 

parietal regions. 

 

Based, again, on human fMRI studies it was established that the parietal lobe was 

responsible for encoding associations (for example, linking an object to a certain location) and 

the subsequent recognition of spatial locations (Sommer et al., 2005). Since associative 

memory is a crucial aspect of episodic memory, this paper insists on the role of parietal 

regions in declarative memory. In the same way, Rogers and Kesner state that the 

hippocampus and the parietal cortex process spatial information, but in a different context 

frame. The hippocampus is responsible for allocentric (spatial learning based on visual cues 

distributed in the walls of the behavioral room) maze acquisition and the parietal cortex for 

egocentric (spatial learning based on the own body movements for orientation) maze 

acquisition, since hippocampal and parietal lesioned-animals were impaired for allocentric 

and egocentric, respectively, versions of the water maze (Rogers and Kesner, 2006). From our 

results we can infer that the parietal cortex should be responsible, at least in part, for spatial 

information processing, since this region is significantly activated in Day 1-OLP animals 

when compared to the active controls. This could be due to the integration of different sensory 
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stimuli, especially visual stimulus, while performing the spatial learning task. Thus, parietal 

cortex ought to be involved in some kind of associative memory (encoding associations 

between a radial (baited) arm/food and a given spatial cue-given wall-given location in the 

room), in agreement with Sommer’s paper. Our RAM is an allocentric task, even though we 

cannot be completely sure about an egocentric component in the final spatial learning process. 

 

Keeping in mind all these results, we can say that spatial learning and memory are a 

phenomenon involving several brain regions, each of them playing a role in a complex and 

intricate memory network. A diagram, summarizing all these results and also some data from 

other works about the interconnections between different brain regions, is presented in figure 

4-3. 

 

 

 

 

 

 

 

 

 

Figure 4-3: Brain circuitry of spatial learning and memory 

This diagram is based on the results obtained in this study and the work of (Shibata, 

1993; Aggleton and Saunders, 1997; Haber, 2003; Aggleton et al., 2010). In red, the 

brain regions activated at Day 1; in blue, the brain regions activated at Day 9. ACC: 

anterior cingulated cortex; ATN: anterior thalamic nuclei; EC: entorhinal cortex; fx: 

fornix; HP: hippocampus; LD: laterodorsal thalamic nucleus; MB: mammillary bodies; 

MD: mediosorsal thalamic nucleus; MTT: mammillothalamic tract;PC: perirhinal 

cortex; PP: perforant pathway; PTL: parietal cortex; RS: retrosplenial cortex; Stri: 

striatum. 
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Some of the major events represented in this figure are: 

▪ HP projects to MB and ATN via the fx. 

▪ HP projects to LD but not all efferents passed through the fx. 

▪ MB projects to ATN via MTT. 

▪ MB projects indirectly to HP via ATN. 

▪ ATN projects directly to HP, ACC and RS. 

▪ HP projects reciprocally to RS. 

▪ RS projects reciprocally to ACC. 

  ▪ ACC projects reciprocally to ATN. 

▪ EC and PC project to HP. 

▪ EC projects to ATN, LD, MD and MB. 

▪ PC projects to MD. 

▪ PTL, ACC, ATN and MD project to the Striatum. 

▪ Striatum projects to ATN which, in turn, projects to the cortex. 

 

Communication across all these regions and circuits is essential in order to help the 

learning process and to elaborate a complex response, going from processing visuospatial 

information, establishing a spatial strategy and coordinating a motor action, to achieve a goal-

directed behavior (find the three arms baited = get food). 

 

The 
14

C-2 Deoxy-D-Glucose (2DG) autoradiographic technique affords a valuable 

means to assess in laboratory animals the engagement of brain regions and circuits in a given 

behavioral task or following a pharmacological intervention, by indirectly determining 

glucose utilization (CMRGlu) associated with neuronal activity. One of the drawbacks of the 

technique is that it implies an a priori definition of regions of interest (ROI); in addition 3D 

reconstructions of the whole brain with unbiased identification of activated (or deactivated) 

regions would be highly desirable, as currently achieved in human functional imaging studies. 

Recent attempts in this direction have been proposed (Lee et al., 2005; Dubois et al., 2007; 

Dubois et al., 2008). With JULIDE, we have developed a novel approach to achieve such 

goals, based on merging and warping of brain autoradiograms prepared from mice belonging 

to the same experimental group, and aimed at the unbiased identification of regions of interest 

combined with 3D reconstruction. Softwares such as JULIDE and other recently proposed 

(Lee et al., 2005; Dubois et al., 2007; Dubois et al., 2008) are likely to provide useful tools to 
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exploit to its full extent the use of 2DG autoradiography to complement behavioral and 

pharmacological studies in laboratory animals. 

 

In the process of learning and memory, synaptic plasticity represents a fundamental 

mechanism, supporting the idea that the brain is plastic and can undergo adaptations 

following an experience. These adaptations are related to changes in synaptic strength as 

illustrated by the well characterized process of long-term potentiation (LTP), in the 

weakening of synaptic strength: long-term depression (LTD), in synaptogenesis and 

remodeling of synapses, and in neurogenesis (Bruel-Jungerman et al., 2007). All these forms 

of brain plasticity are dependent as LTP promote the proliferation and survival of new 

generated neurons in adult rat hippocampus and neurogenesis would facilitate LTP (Bruel-

Jungerman et al., 2006; Trouche et al., 2009). Studies aimed at unraveling the molecular 

mechanisms of learning and memory have focused almost exclusively on genes involved in 

neuronal function such as brain-derived neurotrophic factor (BDNF), Ca
2+

/calmodulin-

dependent protein kinase II (CaMKII), N-methyl-D-aspartate (NMDA) receptor, mitogen-

activated protein kinase (MAPK) (Giovannini et al., 2001; Wang et al., 2003; Vaynman et al., 

2006) as well as transcription factors like cAMP-response-element-binding (CREB) and 

CCAAT-enhancer-binding protein (C/EBP) (Alberini, 2009) and immediate early genes like 

c-fos, Zif268 and Homer 1a (Bozon et al., 2003a; Davis et al., 2003; Frankland et al., 2004; 

Maviel et al., 2004; Duncan et al., 2005). 

 

Activation of plasticity genes appears to be induced with specific time courses. Thus, 

for example NMDA is induced during memory acquisition; CaMKII, amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPA) receptor, protein kinase C (PKC) and post-

synaptic density 95 (PSD95) during the early phases of memory establishment; protein kinase 

A (PKA), MAPK, CREB and C/EBP during long-term memory (Micheau and Riedel, 1999; 

Dunning and During, 2003). These proteins contribute to complex intracellular signalling 

networks leading eventually, at least for most of them, to protein synthesis necessary for long-

term memory. 

 

In the molecular part of this study we have taken another angle to study the molecular 

mechanisms of long-term memory, by focusing our attention on genes involved in energy 

metabolism, with a particular focus on neuron-glia metabolic coupling. The underlying 

hypothesis that we were interested to test was whether the plastic changes that have been 
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revealed for the synaptic machinery are accompanied by parallel changes in the expression of 

genes involved in energy metabolism. This angle seemed particularly justified considering the 

high energy demands of the brain, which are largely related to synaptic (mainly 

glutamatergic) signaling (Sibson et al., 1998; Hyder et al., 2006; Magistretti, 2006). 

 

Gene expression results reported here clearly indicate that there is indeed a marked 

plasticity in the expression of energy metabolism genes. Indeed, out of 30 genes studied, the 

level of expression of 20 genes was modified at one point or another of the learning paradigm 

(see table 6).  A set of genes appears to be particularly upregulated by learning (figure 3-18) 

and deserves some discussion:  

 

Glycolysis: increased levels of expression for phosphofructokinase (Pfkl and Pfkp) and 

enolase (Eno2) mRNAs.  

Phosphofructokinase (Pfk) is a rate-limiting glycolytic enzyme that catalyzes the 

conversion of fructose-6-phosphate to fructose-1,6-bisphosphate.Pfkis modulated by the 

energy status of the cell, being activated by AMP, ADP and inorganic phosphate and inhibited 

by ATP, citrate and fatty acids. High ATP levels indicate sufficient energy availability and no 

need of glycolytic pathway activity; so the ATP-dependent inhibition of phosphofructokinase 

can stop the glycolysis at this point. Induction of Pfk gene expression as observed during the 

spatial learning paradigm is consistent with increased energy demands. Consistent with this, it 

has been shown that contracting rat skeletal muscle cells present increased glycolytic activity 

as indicated by augmented glucose uptake, hexokinase and Pfk activities, and lactate 

production (Pinheiro et al., 2010). Also Pfkm, which is the muscle-specific form of 

phosphofructokinase, is up-regulated at the mRNA level by exercise in skeletal muscle of 

wild-type mice (Mason et al., 2004). Both Pfk analyzed genes in our study are induced, 

namely Pfkl, the liver isozyme form and Pfkp, the platelet one. 

 

Enolase2 (Eno2) is a neuronal-specific enzyme which catalyzes the conversion of 2-

phosphoglycerate to phosphoenolpyruvate, corresponding to the penultimate step of 

glycolysis. This reaction can be reversible depending on the substrates concentration. 

Moreover the glycolytic implication, enolase seems to be related to ischemia, hypoxia and 

Alzheimer’s disease (Butterfield and Lange, 2009). 
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Pyruvate metabolism: increased levels of expression for pyruvate carboxylase (Pcx) and 

pyruvate dehydrogenase kinase 4 (Pdk4) mRNAs.  

Pyruvate carboxylase (Pcx), an astrocytic-specific enzyme, catalyzes the conversion of 

pyruvate (final product of glycolysis) to oxaloacetate. The importance of this metabolic 

reaction is to replenish the TCA cycle in carbons, in a process known as the anaplerotic 

(meaning replenishing) cycle. Pyruvate can of course also be converted to Acetyl-CoA which 

will also enter the TCA cycle. This conversion is catalyzed by the pyruvate dehydrogenase 

complex and takes place in the mithocondria. Pyruvate dehydrogenase kinase (Pdk) inhibits 

pyruvate dehydrogenase complex by phosphorylating it. This is reversed by the pyruvate 

dehydrogenase phosphatase that removes the phosphate from the pyruvate dehydrogenase, a 

process that renders it active. Increased levels of pyruvate dehydrogenase kinase, as it is the 

case in our study, would favor a decrease in pyruvate oxidation favoring lactate production. 

Interestingly, the muscle form of Pdk is strongly induced by exercise (Nordsborg et al., 2003; 

Pilegaard and Neufer, 2004). 

 

Pentose phosphate pathway: increased levels of expression for transaldolase (Taldo) and 

transketolase (Tkt) mRNAs.  

The pentose phosphate pathway is divided in two phases: oxidative and non-oxidative. 

The oxidative phase leads to the production of NADPH and pentoses. During the non-

oxidative phase, several reactions implicating the transfer of carbon units between molecules 

lead to the formation of fructose-6-phosphate (F6P) and glyceraldehyde-3-phosphate (GAP) 

from the pentose molecules generated during the oxidative part. These interconversions are 

catalyzed by transketolase (Tkt), which is responsible for the transfer of 2 carbon atoms, and 

transaldolase (Taldo), which is responsible for the transfer of 3 carbon atoms. These two 

enzymes represent the link between the pentose phosphate pathway and glycolysis, since both 

products (F6P and GAP) are intermediate metabolites of the glycolytic pathway. Induction of 

Tkt and Taldo is consistent with a switch of the pentose phosphate pathway to a more non-

oxidative profile aimed at providing additional substrates to glycolysis and energy production. 

 

Glycogen regulation: increased levels of expression for glycogenin (Gyg), protein 

targeting to glycogen (PTG) and brain glycogen phosphorylase (Pygb) mRNAs.  

Glycogen is the major energy reserve of the brain and it is localized almost exclusively in 

astrocytes (Magistretti, 2008). The enzyme responsible for its synthesis, the glycogen 

synthase (Gys), is an elongation enzyme that catalyzes the progressive extension of a 
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glycogen chain by adding successive glucose molecules. That means that glycogen synthase is 

not able to start the synthesis of glycogen by itself; it needs a “primer”, an already existing 

glycogen chain of, at least, 4 glucose residues. Glycogenin (Gyg) is the enzyme responsible 

for the initiation of glycogen synthesis, starting it by adding a glucose molecule to one of its 

own tyrosine residues. In this way, a short linear glucose polymer is produced by glycogenin 

(Smythe and Cohen, 1991; Lomako et al., 2004). 

 

Protein targeting to glycogen (PTG) is implicated in glycogen synthesis since it promotes 

the activity of the phosphatase protein 1 (PP1). Activation of PP1 causes the 

dephosphorylation of glycogen synthase resulting in its activation. Thus, glycogen production 

and storage is augmented in cells and tissues where high levels of PTG were found (Allaman 

et al., 2000; Greenberg et al., 2003). 

 

Glycogen phosphorylase (Pygb) is responsible for glycogen degradation, breaking down 

the molecule of glycogen to release glucose subunits that can enter in the glycolytic pathway 

to produce energy. Glycogen synthesis and glycogen degradation are regulated in a reciprocal 

way. Both enzymes, glycogen synthase (glycogen anabolism) and glycogen phosphorylase 

(glycogen catabolism) are phosphorylated by the same protein kinase (PKA) and 

dephosphorylated by the same protein phosphatase (PP1). The phosphorylated state 

transforms glycogen synthase in an inactive form but activates glycogen phosphorylase. 

Dephosphorylation makes glycogen synthase active and transforms glycogen phosphorylase 

in an inactive enzyme.  

 

The fact that, in our results, all studied genes for glycogen regulation, either for synthesis 

or for degradation, are augmented could be explained by the fact that laser microdisecction 

and the ensuing gene analysis were performed at the tissue (and not cellular) level. In our 

ROI, hippocampus and retrosplenial cortex, some cells could be synthesizing glycogen while 

some others cells could be degrading it. What it is clear is that our training paradigm 

profoundly affects glycogen turnover, supporting a role of glycogen metabolism in learning. 

Interestingly, recent data have shown that pharmacological inhibition of brain glycogen 

phosphorylase with the antidiabetic drug DAB, which results in impaired glycogen 

mobilization, strongly inhibits learning in chicks (Gibbs et al., 2006; Gibbs et al., 2007) and 

long term memory in an inhibitory avoidance task in rats (Suzuki et al., submitted). 
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One more aspect we must consider here is the effect of barbiturate anesthesia on glycogen 

metabolism. It has been published that an 85% increase in glycogen content was found in rat 

cerebral cortex after 6h of pentobarbital anesthesia (Swanson, 1992). I do not believe such an 

effect due to anesthesia is causing the increase in glycogen synthesis-related mRNAs 

expression (Gyg, Gys and PTG) since 5 minutes after the i.p. pentobarbital administration the 

brains were already frozen, having not enough time to modify glycogen metabolism. 

Swanson’s study also showed no anesthesia effects on cortical astrocytes cultured without 

neurons, suggesting that the effect of barbiturate anesthesia on glial glycogen content in vivo 

may be secondary to depression of neuronal activity rather than a direct effect on glial 

metabolism. 

 

Lactate shuttle: increased levels of expression for Na
+
/K

+
-ATPase alpha2 subunit 

(ATP1a2) mRNA. 

Most of synapses in the brain are glutamatergic. Glutamate released during the 

synaptic transmission is removed predominantly by astrocytes from the synaptic cleft. The 

driving force for glutamate into astrocytes is provided by the electrochemical gradient of Na
+
 

with a stoichiometry of 3 Na
+
 ions per glutamate co-transported resulting in an increase in 

intracellular Na
+
concentration (Chatton et al., 2000). As is the case in any cell, Na

+
 

homeostasis is maintained by the activity of the Na
+
/K

+
-ATPase. In astrocytes glutamate 

uptake results in an acute mobilization of the alpha2 subunit (ATP1a2), an astrocytic-specific 

form of the enzyme (Pellerin and Magistretti, 1997). This sodium signal and the ensuing 

activation of the pump, causes ATP consumption and decreased levels (Magistretti and 

Chatton, 2005), which provides a trigger for glucose uptake and activation of glycolysis 

(Magistretti, 2006). Thus, Na
+
/K

+
-ATPase activity is central for the coupling of synaptic 

activity with glucose utilization (Magistretti and Pellerin, 1999). 

 

Na
+
/K

+
-ATPase and its possible role in spatial learning and memory. 

Na
+
/K

+
-ATPase is a membrane protein formed by α and β subunits and a regulatory 

FXYD protein. The α catalytic subunit is responsible for binding sodium and potassium ions 

and also for ATP hydrolysis. The β subunit is responsible for appropriate insertion of α in the 

membrane and for modulating substrate affinity. Four isoforms have been identified for the 

alpha subunit (α1, α2, α3 and α4) and another four for the beta subunit (β1, β2, β3 and β4) 

showing specific tissue and cell distribution (Kaplan, 2002; Shinoda et al., 2009). Three alpha 
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isoforms are found in the brain; the α1 is expressed in all cell types, the α2 is mainly 

expressed in astrocytes and the α3 is exclusively expressed in neurons.  

 

Consistent with a possible implication of Na
+
/K

+
-ATPase in learning, Zhan and 

collaborators have shown that intraventricular administration of ouabain, which is an inhibitor 

of Na
+
/K

+
-ATPase, impairs spatial water maze learning in rats during the all period of 

treatment. However, after interruption of ouabain injection, spatial learning performance 

recovers to the same level of non-treated animals, suggesting that maybe Na
+
/K

+
-ATPase 

contributes to spatial learning (Zhan et al., 2004). To determine which α isoform is implicated 

in learning and memory processes, a research group has developed α1, α2 and α3 

haploinsufficient mice. Haploinsufficiency is the absence of one of the two copies of each 

gene. Both α2 and α3 deficient mice showed learning and memory deficits when tested in the 

Morris water maze, further supporting the view that Na
+
/K

+
-ATPase is implicated in spatial 

learning (Lingrel et al., 2007; Moseley et al., 2007). Moreover, decreased levels of expression 

and activity of Na
+
/K

+
-ATPase have been demonstrated in an animal model of Alzheimer’s 

disease with memory impairments (Dickey et al., 2004; Dickey et al., 2005). 

 

Results presented here are consistent with the view that Na
+
/K

+
-ATPase may be 

implicated in the formation of a spatial memory trace, since it is one of the genes that presents 

the greatest induction in the retrosplenial cortex when gene expression levels are compared 

between day 9 and day 1 (i.e. corresponding behaviorally to learning), in agreement with the 

other papers described above. Interestingly, there is a large body of evidence indicating the 

induction of Na
+
/K

+
-ATPase alpha subunits in muscle after physical exercise (Nordsborg et 

al., 2003; Petersen et al., 2005; Murphy et al., 2006; Aughey et al., 2007; Murphy et al., 

2007). 

 

In addition to the well established role of Na
+
/K

+
-ATPase in maintaining 

electrochemical gradients, several other physiological processes seem to engage this protein 

such as signal transduction and modulation of dendritic growth (Desfrere et al., 2009) and  

protection against hypoxia/reoxygenation (Kasai et al., 2003). Dysfunctions of this protein  

have also been implicated in certain neuropsychiatric diseases such as familial migraine (De 

Fusco et al., 2003; Moskowitz et al., 2004; Gallanti et al., 2008; Tavraz et al., 2008), epilepsy 

(Grisar et al., 1992; Gallanti et al., 2008), rapid-onset dystonia parkinsonism (de Carvalho 
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Aguiar et al., 2004), depression (Goldstein et al., 2006) and Alzheimer’s disease (Harris et al., 

1996; Chauhan et al., 1997; Hattori et al., 1998; Dickey et al., 2005). 

 

A modulation of expression of Zif268 gene and protein has been described in many 

behavioral paradigms, including spatial learning (Davis et al., 2003; Knapska and Kaczmarek, 

2004). Due to the numerous events taking place after synaptic stimulation, it is not always 

possible to establish a direct or indirect engagement of this gene in neuronal plasticity. 

Indeed, the expression of Zif268 is controlled by a complex mechanism, and the interactions 

between this gene and other transcription factors are numerous. We found no changes (at 

least, not the great changes we expected) in the expression of Zif268 in our experiment. One 

possible explanation is that extensive training decreases in a general way the levels of Zif268 

in many brain structures, including the hippocampus and the cingulate cortex (Hernandez et 

al., 2006). Or maybe, because it is an immediate-early gene, we are too late in time to detect 

important changes on its expression. A rapid increase in Arc, Zif268 and c-fos RNA levels 

has been demonstrated after a spatial water task showing a peak of expression at 30 minutes 

after training (Guzowski et al., 2001). Data obtained in this study confirm results obtained by 

other researchers (Skibinska et al., 2001; Rekart et al., 2005; Holahan et al., 2007; Holahan 

and Routtenberg, 2008; Hu et al., 2009) that neuronal plasticity and information storage 

processes are being engaged by the induction of Gap43 and PSD95 which, in our paradigm, 

were strongly modulated in all experimental conditions and in both regions, the hippocampus 

and the retrosplenial cortex. 

 

In summary for this molecular part of the study, induction of genes in the retrosplenial 

cortex at day 9 may well represent a molecular concomitant of memory consolidation 

(Frankland and Bontempi, 2005; Suzuki, 2006) . Interestingly, with the exception of GLUT3 

which has an exclusively neuronal distribution, all genes related to glycogen metabolism are 

selectively expressed in astrocytes along with pyruvate carboxylase and the Na
+
/K

+
-ATPase 

alpha2 subunit. These results are consistent with a strong mobilization of energy-producing 

pathways in astrocytes as a concomitant of synaptic plasticity. In a very recent article it was 

shown that GLUT3 heterozygous mice presented deficiencies in spatial learning and working 

memory, both reliant on environmental cues, after training in a water maze and an eight-arm 

radial maze task, respectively (Zhao et al., 2010). 
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The results obtained with the transcriptomic approach in functionally-defined brain 

areas metabolically-activated by a spatial learning paradigm, indicate a remarkable 

modulation of gene expression, indicating the existence of adaptive mechanisms particularly 

in terms of energy metabolism and neuron-glia metabolic coupling. Gene expression levels do 

not change during the on-line processing time and immediately after the end of the task. 

Indeed, under these conditions, the time delay is too short to expect activation, except 

possibly for immediate-early genes. In contrast, under post-processing conditions in the 

hippocampus, i.e. 45 minutes after the end of the task, the expression level of a large number 

of genes analyzed is induced on the first day of the learning protocol. This is in contrast to 

what is observed in the retrosplenial cortex where gene induction is higher at day 9 when 

compared to day 1. 

 

This profile of gene activation matches the spatial and temporal pattern of metabolic 

activation as monitored with the 2DG technique. This pattern is consistent with a transfer of 

activation and plasticity mechanisms from the hippocampus to the retrosplenial cortex as 

previously suggested (Frankland and Bontempi, 2005; Albasser et al., 2007), indicating a 

spatial as well as temporal shift in brain areas engaged in learning. This transfer is reflected 

both at the neuroenergetic (2DG) and molecular levels (genes expression), indicating a 

coincidence in gene induction and increased glucose utilization. 

 

mRNAs levels in biological samples can be analyzed by different procedures as 

Northern blot, ribonuclease protection assay (RPA), in situ hybridization (ISH) and, more 

recently, the reverse transcription-polymerase chain reaction (RT-PCR). The last one is, 

maybe, the preferred technique of a large number of investigators due to its ability to detect 

mRNAs from samples containing small number of cells or small amount of tissue (Ceol et al., 

2001). Several papers published in the last 15 years have emphasized the higher sensitivity of 

RT-PCR compared to ISH techniques (Komminoth et al., 1994; Bates et al., 1997; 

Biedermann et al., 2004). A well-illustrating example can be taken from the study of 

Wakamatsu about the detection of the Newcastle disease virus mRNA using different 

techniques: RT-PCR, ISH and immunohistochemistry (IHC). All 10 samples they analyzed 

from infected birds were found positive by RT-PCR while only 4 of 10 and 2 of 10 were 

found positive with IHC and ISH, respectively (Wakamatsu et al., 2007). 
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In our ISH experiments we had a very low number of animals per group (n=4 for Day 

1 and n=4 for Day 9). This could, maybe, explain the lack of significant differences after 

optical density signal quantification. But it doesn’t account for the high signal we can see on 

the hippocampus at Day 9 as shown in figure 3-20. The main reason that could explain the 

lack of ISH results certainly come from the low quantity of material we have and the 

difficulty to normalize the observed signal expression with references genes as we can do for 

the RT-PCR technique. 

 

5 CONCLUSION AND FUTURE PERSPECTIVES 
 

This study demonstrates that memory encoding is a phenomenon involving several 

brain regions. Nerve cells activated by the learning task need more energy to make synaptic 

transmission more efficient in order to store the “learned” information somewhere in the 

brain. Glutamate release during synaptic activity and glutamate removal from the synaptic 

cleft by both post-synaptic neurons and astrocytes triggers a cascade of molecular events 

leading to the strengthening of synapses. Our genetic analysis at different times after learning 

has shown that these molecular events evolve in time between the different brain regions 

implicated in learning and memory formation processes. The same pattern of flow of 

information was found at a cellular and a molecular level. Transcriptional modifications for 

glucose metabolism pathways and for plasticity genes occurred in the same brain regions 

where glucose is being consumed to support the cellular increase in energetic demands 

provoked by the learning activity. The identification of metabolic genes induced as a 

concomitant of learning, provides novel insights into molecular aspects of synaptic plasticity 

in particular by pointing at certain metabolic pathways that may be either disrupted in 

pathological conditions associated with memory impairment or become the targets for 

pharmacological interventions aimed at improving cognitive performance.  

 

A more in-depth study about the possible role on learning and memory of some of the 

genes identified in this project, like Na
+
/K

+
-ATPase alpha2 subunit, Pdk4 and glycogen-

related genes, could be done in the future. Gene silencing and posterior behavioral testing 

could assess the importance of these genes on information acquisition and storage. 
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