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The importance of feature 
aggregation in radiomics: a head 
and neck cancer study
Pierre Fontaine1,2*, Oscar Acosta2, Joël Castelli2, Renaud De Crevoisier2, Henning Müller1 & 
Adrien Depeursinge1,3

In standard radiomics studies the features extracted from clinical images are mostly quantified with 
simple statistics such as the average or variance per Region of Interest (ROI). Such approaches may 
smooth out any intra-region heterogeneity and thus hide some tumor aggressiveness that may 
hamper predictions. In this paper we study the importance of feature aggregation within the standard 
radiomics workflow, which allows to take into account intra-region variations. Feature aggregation 
methods transform a collection of voxel values from feature response maps (over a ROI) into one or 
several scalar values that are usable for statistical or machine learning algorithms. This important step 
has been little investigated within the radiomics workflows, so far. In this paper, we compare several 
aggregation methods with standard radiomics approaches in order to assess the improvements in 
prediction capabilities. We evaluate the performance using an aggregation function based on Bags 
of Visual Words (BoVW), which allows for the preservation of piece-wise homogeneous information 
within heterogeneous regions and compared with standard methods. The different models are 
compared on a cohort of 214 head and neck cancer patients coming from 4 medical centers. Radiomics 
features were extracted from manually delineated tumors in clinical PET-FDG and CT images were 
analyzed. We compared the performance of standard radiomics models, the volume of the ROI alone 
and the BoVW model for survival analysis. The average concordance index was estimated with a five 
fold cross-validation. The performance was significantly better using the BoVW model 0.627 (95% 
CI: 0.616–0.637) as compared to standard radiomics0.505 (95% CI: 0.499–0.511), mean-var. 0.543 
(95% CI: 0.536–0.549), mean0.547 (95% CI: 0.541–0.554), var.0.530 (95% CI: 0.524–0.536) or volume 
0.577 (95% CI: 0.571–0.582). We conclude that classical aggregation methods are not optimal in case 
of heterogeneous tumors. We also showed that the BoVW model is a better alternative to extract 
consistent features in the presence of lesions composed of heterogeneous tissue.

Radiomics allows quantitative analyses from radiological images with high throughput extraction to obtain 
prognostic patient information1.

Prediction of disease-free survival or the response to the treatment is performed via quantitative image 
features extracted from diagnostic or pre-treatment images. Previous improvements on radiomics workflows 
mainly addressed either the features optimization step, i.e. better description the tumor and its environment, or 
the improvement of machine learning algorithms2,3. However, some underlying relations that may exist between 
radiomics features and outcomes may be hidden due to the way they are quantified in the early stages of the 
workflow. Region-wise analysis of features is often performed by using low order statistics extracted over the 
entire region of the lesion. Nevertheless, additional relationships may be revealed by considering intra-regional 
heterogeneity using specific aggregation functions with feature maps.

The general process and related impact of feature aggregation methods has so far been little investigated in 
this context. In order to extract collections of scalar measurements that can be used as independent variables for 
statistical and machine learning algorithms4, an aggregation function is required to gather and summarize the 
operator responses over a considered Region Of Interest (ROI). Classical aggregation functions include first-order 
measures, which can be computed not only the image itself but also to response maps of image operators such 
as image filters or co-occurrence matrices. A common established feature aggregation method in radiomics is to 
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compute the average, the variance (e.g. the first four statistical moments) or quantiles (e.g. maximum, minumum) 
of the distribution of the voxel values inside the ROI.

The average in particular is the most straightforward aggregation function but it is inappropriate when tumors 
and composing tissue are heterogeneous (i.e. non-stationary). This aspect is illustrated in Fig. 1, where the initial 
image (fabric) contains two visually distinct sub-regions M1 and M2 , corresponding to the visual words c1 and 
c2 , respectively. The sub-regions are also distinct and well-defined in a feature space spanned by the responses 
of Simoncelli wavelets5 and aggregated using the average over the sub-regions M1 and M2 . However, when the 
feature maps are aggregated over the entire image M3 , the averaging operation results in an information loss 
and the resulting scalar features do not correspond to the two distinct patterns observed in the initial image 
(blue diamond).

In general, integrative aggregation functions such as counting or averaging over M are inappropriate for 
non-stationary feature maps.

Feature aggregation has been extensively studied in computer vision and led to substantial performance 
improvement in the context of image classification and retrieval. Most notable examples are Bags of Visual 
Words (BoVW)6, Fisher Vectors7, and DeepTen8. The BoVW is a well-known method in computer vision, more 
precisely in the field of image classification9.

It consists of describing images as a vector of visual words instead of one single scalar, where each visual word 
is a relatively homogeneous (stationary) region revealed via clustering (e.g. c1 and c2 in Fig. 1). Fisher Vectors 
extend the BoVW framework by adding second-order moments of the features. DeepTen was introduced in the 
context of Convolutional Neural Networks (CNN). It is an encoding network which can be inserted between 
the convolutional layers and the final layer. This encoding layer learns an inherent dictionary and also affects the 
weights in the convolutional part during the training step.

Surprisingly, feature aggregation was little investigated in the context of radiomics. Three studies focused on 
the importance of feature aggregation in the context of lung cancer. Cirujeda et al.10 proposed an aggregation 
method based on feature covariances on top of a Riesz-wavelet decomposition, which outperformed feature 
aggregation based on the average. Cherezov et al.11 used clustering of a circular harmonic wavelet coefficients 
and showed superior categorization of cancer aggressiveness when compared to classical radiomics features. And 
Hou et al.12 evaluated the performance of Bag-of-features-based radiomics for differentiating ocular adnexal 
lymphoma and idiopathic orbital inflammation from contrast enhanced MRI. In this paper, we investigate the 
importance of the feature aggregation step. To this end, we compare several standard approaches (count, aver-
age, variance) to the BoVW method applied to various feature types including filters and gray-level matrices 
(co-occurrences, run-length). The comparison is performed in the context of overall survival analysis with a 
multicentric cohort of head and neck cancer and PET-FDG and CT scans from 214 patients. Radiomics models 
were already proposed for head and neck cancer13,14, but no study focused on the impact of the aggregation 
function on the model performance.

Figure 1.   Influence of the size and localization of the ROI M for aggregating the feature maps using the 
average. Each sub-region M1 and M2 is well separated in the feature space spanned by Simoncelli wavelets and 
aggregated using the average. The blue region M3 (entire image) involves the averaging of non-stationary sub-
regions. As a consequence, this blue region does not represent the true content of the image well, because its 
representation in the feature space (blue diamond) falls in between the true observations (red circles and green 
crosses). c1 and c2 represent clusters (called visual words) found using the BoVW approach allowing to reveal 
and preserve pattern heterogeneity by relying on an aggregation function that is integrative regarding parts in 
the feature space.
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This paper is organized as follows. Patient characteristics are detailed in “Patient data” section. Section “Image 
operators, feature maps and aggregation functions” lays the distinct fundamental elements of feature extraction 
by introducing image operators, their response maps (also called feature maps) and aggregation functions. The 
latter are further defined in the particular case of image filters and gray-level matrices (i.e. co-occurrences and 
run-length). Specifically considered features and their parameters are described in “Feature extraction” section. 
The fundamentals of the BoVW method and its specific use on with radiomics image operators are described in 
“Bags of visual words” section. The validation method used to estimate the performance of the proposed radiom-
ics models for overall survival analysis is detailed in “Model validation” section. Corresponding results, interpre-
tation and general conclusions are provided in Sections “Results” and “Discussions and conclusion”, respectively.

Material and methods
Patient data.  214 patients from four centers (Rennes, Lausanne, Besançon and Lorient) were retrospec-
tively analyzed. The patients were aged between 18 and 75 years with an average age of 62, stage III or IV (AJCC 
7th edition) with no surgery before RT, nor history of cancer, nor metastasis at diagnosis and a minimal follow-
up of 3 months. All patients were treated with ChemoRadioTherapy (CRT) or RadioTherapy (RT) combined 
with Cetuximab. The outcome studied is dead (positive) or alive (negative) in a context of overall survival analy-
sis. The study was approved by the institutional ethical committees (NCT02469922 and Commission cantonale 
d’éthique de la recherche sur l’être humain: CER-VD 2018-01513). Patient details are listed in Table 1.

PET/CT image acquisition.  All patients underwent FDG PET/CT for staging at most 8 weeks before RT. 
For three centers, an injection of 4 Mbq/kg of 18F-FDG was given to the patient who fasted at least four hours. 
After a 60 minutes uptake period of rest, images were taken using the Discovery ST PET/CT imaging system 
(GE Healthcare) or the Siemens Biograph 6 True Point PET/CT scanner (Siemens Medical Solutions). First, 
CT (120 kV, 80 mA, 0.8 s rotation time, slice thickness 3.75 mm) was performed, followed by the PET imme-
diately afterwards. A similar protocol was used for the last center; however, a smaller injection of 3.5 Mbq/kg 
of 18F-FDG was used with the Discovery D690 TOF PET/CT (GE Healthcare). For each patient, Gross Tumor 
Volume-Tumor (GTV-T) were manually segmented on each PET/CT images by the same radiation oncologist. 
A ROI was computed by adding a 3D margin of 5 mm to GTV-T. More details can be found in Castelli et al.15.

Image operators, feature maps and aggregation functions.  In this section, we use the general theo-
retic framework for radiomic analysis introduced in16 to define and isolate the role and responsibilities of the 
aggregation step. We consider discrete images I[k] indexed by the vector k = (k1, k2, k3) ∈ Z

3 . In general terms, 
a radiomics image analysis approach can be characterized by a set of N local operators Gn and their correspond-
ing spatial supports Gn ⊂ Z

3 . The expression Gn{f }[k0] ∈ R represents the application of the operator Gn to the 
image I at location k0 and provide a scalar-valued response. The operator Gn is applied at every location k ∈ Z

3 in 
the image by systematically sliding its corresponding support Gn over the entire image (For the sake of simplicity, 
we consider that the support of the image I is Z3 ). This process yields response maps hn[k] (also called feature 
maps) as hn[k] = Gn{I}[k] . Finally, hn[k] can be summarized over a ROI M to compute, via an aggregation func-
tion such as the average or maximum, a scalar feature ηn.

Filters.  This first type of image operators considered belongs to a group of approaches called convolutional 
and are based on topological operators called filters. The image operator G is fully characterized by a topologi-
cal function g[k] , where G is linear and its application to the image I at the position k0 is obtained via the scalar 
product of I and g as

(1)G {I}[k0] = �I[·], g[k0 − ·]�.

Table 1.   Patient characteristics.

Cohort # patient Mean age, years (SD)
Stage 
(AJCC) # events

Rennes 103 62 (9)
III 22

63
IV 81

Besançon 34 63 (8)
III 13

16
IV 21

Lorient 16 NC
III 5

5
IV 11

Lausanne 61 63 (9)
III 20

7
IV 41
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The full feature map is obtained via the convolution as h[k] = (g ∗ I)[k] . One classical way to aggregate the feature 
map h[k] to obtain a scalar valued feature η is to compute the average as η = 1

|M|

∑

k∈M h[k] which is integrative 
and where |M| denotes the number of elements (i.e. voxels) in the region M . It is worth noting that the absolute 
value or the energy of the feature map must be computed for filters g[k] that are zero-mean.

Gray‑level matrices.  Gray-level matrices are based on binary operators detecting the presence or absence of a 
given configuration of gray-levels starting at the location k0 . These configurations can include co-occurrences17, 
run-lengths18 or even size zones19. The first two are detailed below.

Gray-Level Co-occurrence Matrices (GLCM) GLCMs17 are based on a quantized image I�[k] ∈ (1, . . . ,�) 
with � the number of gray-levels (e.g. 8, 16, 32) and binary operators G that are detecting co-occurences between 
two gray levels (�i , �j) observed at the position pairs k0 and k0 +�k . As such, GLCMs are based on a collection 
of operators defined as

This collection of responses is aggregated in an integrative fashion over M by constructing a co-occurrence 
matrix, which simply counts the responses of the various operators and organizes them in a square co-occurrence 
matrix C of dimension �2 indexed by ( �i , �j ). Then, a collection of scalar texture measurements η is obtained 
by computing quantities (e.g., cluster prominence, correlation, entropy, also called Haralick features) from C.

Gray-Level Run-Length Matrices (GLRLM) Within a quantized image I�[k] , GLRLMs18 operators detect 
strides of contiguous aligned voxels with identical gray-level value � , length ||�k|| and direction �k as

The aggregation is similar to GLCMs that count the response of the operators and organizes them in a run 
length matrix R of dimension �×� indexed by ( �, ||�k|| ), where � is the number of lengths ||�k|| considered. 
Collections of scalars η are computed from these matrices (e.g., short run emphasis, grey level non-uniformity, 
run percentage).

Feature extraction.  Before the feature extraction step, we convert CT images into Hounsfield Units (HU) 
and PET images into Standardized Uptake Value (SUV). We resampled images (isotropic resampling to 1mm 
cubic voxels) to allow adequate image scale comparisons of all texture features across image series. For step (i), 
from those resampled images, we extract 42 features (21 on CT and 21 on PET) and their response map from 
each of the 214 patients, using our own software tools that were benchmarked with the reference values provided 
by the Image Biomarker Standardisation Initiative (IBSI20). A list of these features is provided in Table 2. We 
focused on those where aggregation is critical, i.e. filters and gray-level texture matrices (also called second-
order). Shape features were excluded since they do not require an aggregation step. Classical separable Wavelets 
(e.g. Haar, Daubechies) were not included as they are generating many irrelevant directional feature maps (e.g. 
XXX, XXY, XYZ, etc...), which is discussed in Section 4.6 of Depeursinge, et al.21. This is illustrated in 2D in 
Fig. 2. For each patient Pi we compute a collection of feature maps h[k] . Every pixel belonging to the ROI is con-
sidered as an observation in a feature space spanned by the 42 feature maps. It is worth noting that the creation of 
feature maps is uncommon for gray-level texture matrices. Then, we compute the gray-level matrices and related 
quantitative features over 5× 5× 5 cubic sliding windows for GLCMs and GLRLMs. In this window, we defined 

(2)G�i ,�j ,�k{f�}[k0] =

{

1 if f�[k0] = �i and f�[k0 +�k] = �j ,
0 otherwise.

(3)

G�,�k{I�}(k0) =

{

1 if a stride of gray-level � starting at the position k0 and ending at k0 +�k is detected,
0 otherwise.

Table 2.   The list of the detailed features used in the study.

Family Feature Quantitative feature

Filter-based
Laplacian of Gaussian
Gabor
Sobel

Sigma = 2mm , radius = 4mm

Sigma = 11/3 , freq. = 0.4 , radius = 4mm

Kernel size = 3 × 3 × 3

Grey-level texture matrices

GLRLM
Radius = 2mm

Angles = Half of all directions (3D), symmetrical
Discretization = 64 grey levels

ShortRunEmphasis
LongRunEmphasis
GreyLevelNonuniformity
RunLengthNonuniformity
LowGreyLevelRunEmphasis
HighGreyLevelRunEmphasis
ShortRunLowGreyLevelEmphasis
ShortRunHighGreylevelEmphasis
LongRunLowGreyLevelEmphasis
LongRunHighGreyLevelEmphasis

GLCM
Radius = 2mm

Angles = Half of all directions (3D), symmetrical
Discretization = 64 grey levels

Energy
InverseDifferenceMoment
Entropy
HaralickCorrelation
ClusterShade
ClusterProminence
Inertia
Correlation
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a collection of space directions. In 3D, the number of possible spatial directions is 13 for �k = 1mm displace-
ments. We also chose �k = 2mm with the same 13 directions. This resulted in a total of 26 distinct offsets and 
we calculated 26 corresponding GLCMs. We computed the value of the quantitative features for every voxel posi-
tion k0 to generate the response maps before using an aggregation function (e.g. average) over the ROI to com-
pute scalar-valued features. The same 13 directions, radius and aggregation methodology was used for GLRLM 
features. This size of the sliding window was chosen as a trade-off between locality of the features (limiting the 
influence of surrounding objects) and the ability of the features to capture texture patterns with larger size22.

Bags of visual words.  The Bag of Visual Words (BoVW) model is an image extension of the bag of words 
model used in the field of information retrieval and text analysis6,23. Building a BoVW model is performed in 
three steps: (i) compute feature maps, (ii) reveal dictionaries of visual words using clustering and (iii) compute 
frequency histograms by counting occurrences of each visual word to describe an entire ROI.

Then, step (ii) relies on the clustering (e.g. k-means, Gaussian mixtures, DBSCAN24) of the feature space 
created in step (i). Each cluster center is considered as a visual word and the set of clusters constitute the visual 
dictionary of our set of training images. This process is illustrated in Fig. 1 where the two clusters (i.e. visual 
words) c1 and c2 correspond to the two distinct texture patterns present in the initial image. We chose the Gaussian 
mixture model as clustering algorithm in order to define clusters based on both mean and variance. The most 
interesting particularity of the BoVW method is that step (ii) acts as a feature aggregation function that is inte-
grative by parts in the feature space, which allows revealing and preserving distinct homogeneous sub-regions.

Step (iii) uses the results of steps (i) and (ii) to assign each voxel of the ROI to a cluster ci , thus populating a 
histogram of visual words of dimension k that can be further used as a collection of scalars η for machine learn-
ing models (see “Model validation” section).

Model validation.  This section details the workflow used to evaluate the radiomics model’s performance 
using the head and neck cohort described in “Patient data” section, and in particular to test our hypothesis that 
feature aggregation has an important role in radiomics. To estimate the influence of the feature aggregation 
method on the survival prediction performance, we pooled the image data from the four centers and randomly 
divided it five times into a training cohort and a validation cohort using a stratified shuffling method. We used a 
Cox–Lasso regression model25 to predict a Hazard Score (HS) and further computed Harrell’s C-index26 as our 
performance measure to estimate the quality of survival analysis. We created the dictionary based on each train-
ing fold. The BoVW model is compared to four other baseline models based on classical aggregation methods, 
as well as one univariate model based on the volume of the ROI (i.e. tumor) only27, which can be seen as the 
most basic aggregation function based on the count of the number of voxels inside the ROI. To summarize, we 
evaluate the following six models: 

1.	 Classical radiomics This model uses the classical aggregation functions described in “Image operators, feature 
maps and aggregation functions” section, i.e. the average for filters and the count followed by the collection 
of scalars for the gray-level texture matrices. Sliding-window-based feature maps are therefore not used in 
this case.

2.	 Average-variance Average and variance inside the ROI based on the (sliding-window) feature maps computed 
as described in step (i) of “Feature extraction” section.

3.	 Average Average only inside the ROI from the feature maps,
4.	 Variance Variance only inside the ROI from the feature maps.
5.	 Volume Univariate model based on the volume of the ROI only.
6.	 BoVW The BoVW model as described in “Bags of visual words” section.

For all methods, the final feature collections η were standardized to z-scores using the mean and standard devia-
tion estimated on the training folds.

In each fold, we evaluate the six models together by bootstrapping with replacement (1000 times) and calculat-
ing the C-index. The five folds yields 5000 estimations of the C-index for each model, which we summarize with 
averages and their Confidence Intervals (CI) at 95%. This validation strategy is shown and summarized in Fig. 3.

Ethical approval.  All procedures performed in studies involving human participants were in accordance 
with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki 

Figure 2.   For each patient Pi , the 42 feature maps are concatenated into a matrix where each coefficient voxel of 
the ROI is a 42-dimensional vector.
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Declaration and its later amendments or comparable ethical standards. The study was approved by the institu-
tional ethical committees (NCT02469922 and Commission cantonale d’éthique de la recherche sur l’être humain: 
CER-VD 2018-01513).

Informed consent.  Informed consent was obtained from all individual participants included in the study.

Results
We first investigate the influence of the number of clusters k (i.e. the number of visual words) on the performance 
of the BoVW model. Several methods exist to determine the optimal k, including the Elbow28, Silhouette29 or Gap 
statistic30. In this study, we use the Gap statistic method as it is based on the measure of intra-cluster variation. 
Using the entire dataset, Fig. 4 reveals that k = 50 constitutes an interesting trade-off between the number of 
words and the ability to capture data heterogeneity. Using the validation scheme described in “Model validation” 
section, the influence of k on the performance of the BoVW model is shown in Fig. 5. Based on these results, 
we fixed k = 50 for the remaining experiments, which is also close to the dimensionality of the initial number 
of features extracted (i.e. 42).

Figure 6 compares the C-index values for all six models presented in “Model validation” section using the vali-
dation method explained in Fig. 3. Table 3 lists the average C-index values for each method. The BoVW approach 

Figure 3.   Proposed validation strategy using the multi-centric cohort of head and neck cancer.

Figure 4.   The number of clusters k is chosen based on the Gap value (higher is better) computed on the entire 
dataset. We chose k = 50 clusters (i.e. visual words) as a very large number of cluster is required to significantly 
increases the Gap value beyond k = 50.
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Figure 5.   Influence of k on the performance of the survival model measured using the C-index.
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Figure 6.   Average C-indices and 95% CIs for the six proposed models based on various feature aggregation 
methods. * p < 0.01.

Table 3.   Harrell’s C-indices for the six proposed models.

Mean (lower bound-upper bound) (95% CI)

Classical radiomics 0.505 (0.499–0.511)

Average–variance 0.543 (0.536–0.549)

Average 0.547 (0.541–0.554)

Variance 0.530 (0.524–0.536)

Volume 0.577 (0.571–0.582)

BoVW 0.627 (0.616–0.637)
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Figure 7.   Kaplan–Meier curves using a risk stratification into two groups as defined by the median value of the 
HS (“Model validation” section).
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allows improving the performance in a statistically significant way when compared to all other aggregation 
methods as well as the volume. The classical radiomics model does not deliver predictions that are significantly 
better than random. We derived the Kaplan–Meier curve for three models (Fig. 7): Classical radiomics (Fig. 7a), 
Volume (Fig. 7b) and BoVW (Fig. 7c). The group stratification is based on the median of the HS provided by the 
prediction of the unseen test set for one train/test split: the split with a performance that was the closest to the 
respective observed average C-index (see Table 3) was used. The Kaplan–Meier curves (Fig. 7c) of the BoVW 
model suggests that the latter allows to separate the patients with distinct survival characteristics better than 
the other approaches.

Discussions and conclusion
Radiomics is becoming increasingly important in particular in oncology. It allows to non-invasively predict 
response to treatment or to characterize tumor type and aggressiveness. The main assumption of the work 
described in this article is that heterogeneous tumors require more advanced feature aggregation methods than 
the classical integrative or quantile-based methods that are commonly used in radiomics.

Averaging or using the maximum voxel value in non-stationary response maps entails the risk of mixing or 
discarding different sources of information.

As observed in Fig. 6 and Table 3, the method used to aggregate information inside the ROIs can significantly 
impact the performance of the model in overall survival analysis for head and neck cancer. The BoVW method 
to aggregate feature maps allowed to improve the performance of survival models with statistical significance. 
This result can be attributed to the fact that the BoVW relies on the integration of parts for feature aggregation, 
allowing to reveal and preserve sub-regions in non-stationary feature maps. Figure 6 shows that no classical 
feature aggregation method could outperform a simple model relying on the tumor volume solely.This can be 
partly explained by the large heterogeneity of our dataset with four clinical centers with different scanner manu-
facturers. This generates variations in radiomics features but has a limited impact on the measure of the volume. 
The Kaplan–Meier analysis (Fig. 7) showed that both BoVW and volume models (Fig. 7b,c) have significant 
prognostic performance (i.e. p value = 0.009 and p value = 0.032, respectively), where the BoVW model allowed 
best stratification. By contrast, the classical radiomics model (Fig. 7a) is not significant with a p value = 0.055 
(which is consistent with the observed average C-index of this model). This demonstrating the possibility of 
specific risk assessment in head and neck cancer, which is consistent with reported results of previous studies13–15.

This work constitutes a proof-of-concept demonstrating the importance of feature aggregation in radiom-
ics studies. We recognize several limitations. First, as we focused on the feature aggregation step, the feature 
extraction step was not specifically optimized for the task at hand and simply relies on a classical radiomics 
feature set. Second, the histogram of visual words used in the BoVW is very sparse since it relies on hard cluster 

Figure 7.   (continued)
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assignments. Therefore, the Cox–Lasso model might struggle to work with such sparse data matrices, which we 
plan to further investigate in future work.
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