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Abstract
The aim of this prospective, observational cohort study was to investigate and assess diverse neuroimaging biomarkers to 
predict patients’ neurological recovery after coma. 32 patients (18–76 years, M = 44.8, SD = 17.7) with disorders of con-
sciousness participated in the study. Multimodal neuroimaging data acquired during the patient’s hospitalization were used 
to derive cortical glucose metabolism (18F-fluorodeoxyglucose positron emission tomography/computed tomography), and 
structural (diffusion-weighted imaging) and functional connectivity (resting-state functional MRI) indices. The recovery 
outcome was defined as a continuous composite score constructed from a multivariate neurobehavioral recovery assessment 
administered upon the discharge from the hospital. Fractional anisotropy-based white matter integrity in the anterior fore-
brain mesocircuit (r = 0.72, p < .001, 95% CI: 0.87, 0.45), and the functional connectivity between the antagonistic default 
mode and dorsal attention resting-state networks (r = − 0.74, p < 0.001, 95% CI: − 0.46, − 0.88) strongly correlated with 
the recovery outcome. The association between the posterior glucose metabolism and the recovery outcome was moderate 
(r = 0.38, p = 0.040, 95% CI: 0.66, 0.02). Structural (adjusted R2 = 0.84, p = 0.003) or functional connectivity biomarker 
(adjusted R2 = 0.85, p = 0.001), but not their combination, significantly improved the model fit to predict the recovery com-
pared solely to bedside neurobehavioral evaluation (adjusted R2 = 0.75). The present study elucidates an important role of 
specific MRI-derived structural and functional connectivity biomarkers in diagnosis and prognosis of recovery after coma 
and has implications for clinical care of patients with severe brain injury.
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Introduction

Coma is a state of prolonged unarousable unresponsiveness 
following severe brain injury. Recovery occurs in a gradual 
but not necessarily definite restoration of arousal, aware-
ness, and responsiveness [1]. Bedside clinical evaluation 

using neurobehavioral scores, such as the Glasgow Coma 
Scale [2] or the Coma Recovery Scale-Revised (CRS-R) [3], 
remains the standard approach to assess the level of impaired 
consciousness and predict the outcome [4]. Clinical evalu-
ation is indispensable for establishing the proper diagnosis 
and treatment plan for the patient’s care; however, accurate 
detection of subtle signs of conscious awareness may often 
be hindered. The misdiagnosis rate following bedside exami-
nation can reach 40% [5, 6], influenced by biases, such as 
the examiner, the environment, and/or the patient [7, 8]. In 
the latter, sensory impairments or neurological conditions 
affecting motor functions, language and praxia may conceal 
the patient’s ability to interact with the environment despite 
being conscious and mimic disturbances of consciousness 
[9].

Complementing clinical examination with neuroimaging 
can significantly improve the patient’s diagnosis, prognosis, 
and subsequently their treatment plan. Owen’s et al. [10] 
seminal study demonstrated the successful use of an active 
imagery task paradigm during functional MRI (fMRI) to 
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identify covert awareness in a patient behaviorally diagnosed 
being in a vegetative state. This paradigm has been since 
applied to larger cohorts of patients, confirming the pres-
ence of covert awareness in a proportion of unresponsive 
patients [11–15]. These patients show the ability to will-
fully modulate their brain activity following a command by 
engaging in motor or spatial imagery. Due to a clear dis-
sociation between their motor output and residual cogni-
tive abilities, their condition has been defined as a cognitive 
motor dissociation (CMD) [16]. While the neuromodulation 
task showed very good sensitivity in healthy subjects [17], 
assessing its detection accuracy in behaviorally unresponsive 
patients is impossible due to the absence of an independent, 
“ground-truth” measure of awareness, other than behavior 
[18]. It, therefore, represents a great risk for false negatives 
since a severe brain injury often gravely impacts functioning 
in multiple cognitive domains required to perform the fMRI 
mental imagery task [19].

Apart from the above-mentioned task-fMRI, the applica-
tion of neuroimaging techniques to improve clinical diag-
nosis and predict recovery has been intensely studied, using 
diverse imaging methods, for example, structural imaging to 
gain qualitative and quantitative information about structural 
damage, or functional imaging using varying passive task 
paradigms and task-free methods [20] offering an insight 
into brain activity. Structural connectivity focused analyses 
based on microstructure diffusion-weighted imaging (DWI), 
revealed the significance of specific white matter track integ-
rity in predicting the recovery from coma [21–23]. The ante-
rior forebrain mesocircuit has been suggested as a prominent 
model to explain the common underlying mechanism for dis-
orders of consciousness of different etiologies [24, 25]. The 
main components of the circuit: medial frontal and anterior 
cingulate cortex, central thalamus and the striatum, form a 
supporting architecture for brain arousal regulation of excita-
tory input from the brainstem [25]. The level of preserved 
integrity of the mesocircuit structures and their structural 
connectivity showed to be correlated with the degree of 
recovery after coma [23, 26–30].

The anterior forebrain mesocircuit also plays an impor-
tant interactive role in sustaining and moderating neural 
activity of the cortical fronto-parietal networks [25, 31]. On 
the one hand, these networks consist of the default mode 
network (DMN; the medial prefrontal cortex, the posterior 
cingulate cortex, precuneus and the angular gyri), which is 
activated during passive rest conditions, internally oriented 
attention, and during self-referential processes [32]. On the 
other hand, the DMN is inhibited during tasks that require 
externally oriented attention, and activate lateral fronto-pari-
etal and inferior parietal regions [33]. The strongest anti-cor-
relation has been observed with the dorsal attention network 
(DAN), principally composed of the frontal eye fields and 
intraparietal sulcus [34, 35]. The anti-correlation between 

the DMN and DAN is an inherent robust feature of the func-
tional organization of the brain and it underlies a segregation 
of competitive internal and external cognitive mechanisms 
[36]. Adequate segregation is thought to reflect the brain’s 
ability to adapt to a changing surrounding by flexibly allocat-
ing attention resources and is an indicator of a healthy neu-
ral connectivity [36–38]. Accumulating evidence has shown 
that the within- and between-network connectivity of the 
DMN and extrinsic networks assessed during resting-state 
fMRI (rs-fMRI) is attenuated in patients with less favorable 
outcome after severe brain injury [39–42], possibly being a 
promising neuroimaging biomarker to assess residual brain 
function. Similarly, the studies on brain metabolism using 
the 18F-FDG PET/CT showed reduced glucose metabolism 
in severe brain injury patients with less favorable diagnosis 
[12, 30], particularly in the posterior cingulate and precu-
neus [43, 44], which are the central nodes of the DMN [45], 
as well as the highest interconnected hub in the brain [46].

Despite the accumulating knowledge on neural mecha-
nisms of recovery after brain injury and prominent advances 
in neuroimaging, determining an accurate prognosis in 
severe brain injury still remains a difficult challenge with 
critical consequences for the patient. The use of neuroim-
aging, while valuable, poses non-negligible cost and acces-
sibility issues. It is hence imperative to assess the value of 
various neuroimaging biomarkers to optimize the use of 
resources and improve the prediction of coma outcome. 
Nonetheless, studies using multimodal neuroimaging meas-
ures and comparing their role in the prognosis of recovery 
in the disorders of consciousness are sparse [30, 39, 47, 
48]. Therefore, the goal of this study was twofold. We first 
evaluated univariate associations between the recovery level 
and multimodal neuroimaging biomarkers, derived from the 
DWI, rs-fMRI and 18F-FDG PET/CT imaging. In particu-
lar, we assessed the mesocircuit structural connectivity and 
fronto-parietal functional integrity as potential predictors 
of the recovery after coma. We then compared which com-
bination of the neuroimaging biomarkers can best improve 
the prediction of the recovery at the post-acute phase with 
regards to the clinical assessment only. The results of the 
present study showed that complementing bedside neurobe-
havioral evaluation with a selective neuroimaging biomarker 
importantly improves the prediction of recovery after severe 
brain injury.

Materials and methods

Subjects

Adult patients (≥ 18 years old) admitted to the Acute Neu-
rorehabilitation Unit at the Lausanne University Hospi-
tal between the May 1, 2020 and the April 30, 2023 were 
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enrolled in this prospective study. Inclusion criteria were a 
severe brain injury due to trauma or disease, and a behav-
ioral phenotype of disorders of consciousness based on the 
clinical consensus for DOC diagnosis, i.e., Coma Recovery 
Scale—Revised (CRS-R) criteria for coma, unresponsive 
wakefulness syndrome, or minimally conscious state [3, 49]. 
Exclusion criteria were artificial coma, premorbid history 
of developmental, psychiatric or neurological illness result-
ing in documented functional disabilities at the time of the 
accident, glucose plasma level > 8.3 mmol/L, an MRI-unsafe 
device or metal fragment implant (Fig. 1). Only patients with 
informed consent to participate in the study, obtained from 
their legal representatives, were included in the study. The 
study was conducted in compliance with the ethical stand-
ards of the Declaration of Helsinki and was approved by the 
local ethical committee (CER-VD, 142/09).

Clinical evaluations

The patients’ levels of motor, cognitive, and functional 
recovery were repeatedly assessed with a set of neurobe-
havioral evaluation tools during their stay in the unit by an 
experienced neuropsychologist or neurologist. The patients’ 
evolution was continuously monitored with the CRS-R first 
prior to their admission to the unit and followed-up every 
7 days during their stay at the unit until the recovery of 
consciousness according to the CRS-R criteria (i.e., func-
tional use of objects and/or functional communication). The 
first CRS-R evaluation was complemented with the Motor 
Behavior Tool—revised [50, 51] to detect subtle signs of 
motor behavior that could indicate a clinical CMD (cCMD) 
[52]. Patients with cCMD present subtle signs of conscious 
perception not accounted for by the CRS-R, and in the 

absence of decortication/decerebration signs reflect bilateral 
pyramidal pathway lesion.

A multivariate assessment of patient’s recovery was per-
formed at the discharge from the unit using the Disability 
Rating Scale (DRS) [53], Rancho Los Amigos Levels of 
Cognitive Functioning Scale (RLAS) [54], and Functional 
Ambulation Category (FAC) [55].

18F‑FDG PET/CT and MR imaging acquisition

In line with the study protocol, each patient underwent two 
scanning sessions 2 weeks apart. Each session consisted of 
first 18F-FDG PET/CT scan followed with an MRI scan the 
following day. The analyses were performed on the neuroim-
aging data of the first session; however, in the case of miss-
ing or insufficient quality data, we used the neuroimaging 
data of the second session.

MR data were collected on a 3T Siemens Skyra fit scanner 
(n = 14) and 3T Siemens Magnetom Vida scanner (n = 16; 
Erlangen, Germany) using the same scanning protocol.

Anatomic T1-weighted 3D magnetization-prepared 
rapid acquisition gradient echo images were acquired 
with the TR = 2.3 s, TE = 29.8 ms, flip angle = 9°, dimen-
sion = 160 × 240 × 256 voxels, and 1 × 1 × 1 mm voxel size.

Diffusion-weighted MRI (DWI) data were acquired 
with the neurite orientation dispersion and density imaging 
(NODDI) technique, using the following protocol: TR = 9.4 
s, TE = 105 ms, flip angle = 90°, dimension 128 × 128 × 66 
voxels, 2 × 2 × 2 mm voxel size, and 2 mm spacing between 
slices, 100 frames: 10 at b = 0 s/mm2, 30 at b = 700 s/mm2, 
60 at b = 2000s/mm2.

Rs-fMRI data were acquired with a T2*-weighted 
echo planar imaging sequence (TR = 2 s, TE = 30 ms, flip 

Fig. 1   Inclusion flow diagram and the number of patients with imag-
ing data. In total 32 patients were recruited, of which 29 had a 18F-
FDG PET/CT scan, 24 had a diffusion MRI scan and 23 had a rest-

ing-state functional MRI (rs-fMRI). 19 patients had data of all three 
imaging modalities
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angle = 80°, dimension 64 × 64 × 35 voxels, 3 × 3 × 3 mm 
voxel size and 3 mm spacing between slices, 300 frames).

Glucose brain metabolism was assessed using the 
18F-fluorodeoxyglucose positron emission tomography (18F-
FDG PET/CT) scanning at resting state on a PET/CT scan-
ner (Biograph64 Vision 600, Siemens, Erlangen, Germany). 
Before radiotracer injection, 20 min of sensorimotor rest 
were respected in a dark and quiet room. The static 18F-
FDG PET/CT images were acquired 30 min post-injection 
(3 MBq/kg 18F-FDG) with a 3-dimensional static emission 
for 16 min. The PET scan attenuation was corrected with 
the information provided by the CT (120 kVp, 40 mA, FOV 
50 cm). Images were reconstructed on a 440 × 440 matrix 
(PSF + TOF 12i5s), 164 slices, pixel size = 0.825 × 0.825, 
thickness = 1.6 mm.

Neuroimaging data preprocessing and derivation 
of biomarkers’ values

The neuroimaging data were first evaluated for the image 
quality, and the scans that exceeded the quality control 
threshold were excluded from the analyses.

The DWI data were denoised, preprocessed, and used to 
derived fractional anisotropy (FA) maps as described previ-
ously in Pozeg et al. [23]. We quantified the structural con-
nectivity of the forebrain mesocircuit using the multi-scale 
probabilistic atlas of human connectome [56]. We calcu-
lated the mesocircuit structural connectome by extracting 
the mean FA values across the voxels belonging to the white 
matter bundles connecting the bilateral regions forming a 
part of the forebrain mesocircuit (the frontal cortex, pre-
cuneus, cingulate cortex, thalamic nuclei, and the basal 
ganglia). We derived the biomarker of structural connectiv-
ity (mesocircuit FA) by averaging the FA values across the 
entire mesocircuit connectome. The method used to derive 
the mean structural connectivity value is described in detail 
in the Supplemental Information.

The anatomical and rs-fMRI data were preprocessed 
using the default fmriprep pipeline (21.0.2) [57, 58]. Rest-
ing-state functional connectivity was assessed with the data-
driven, group independent component (IC) analysis [59] by 
decomposing the preprocessed and smoothed data in 20 spa-
tially ICs. We sorted the ICs into the components presenting 
resting-state networks (RSN) and noise components through 
the visual inspection of various signal and noise features 
[60], and through a comparison to the resting-state networks 
templates [61]. The mean group spatial t-value maps of the 
RSN ICs were thresholded at t > 4 and used as brain masks 
to extract the individual mean spatial map connectivity value 
(t-value) from each patient’s corresponding IC spatial map. 
Second, we calculated the within-network connectivity of 
the DMN by correlating the IC time courses of the DMN 
components. In the same manner, we also calculated the 

connectivity (anti-correlations) between the DMN and the 
executive functioning related networks (EFN) [62].

The 18F-FDG PET/CT images (in bq/ml) were trans-
formed into the standard uptake values (SUV) maps con-
sidering the patient’s body weight and dose decay correc-
tion. The SUV maps were co-registered with the native 
anatomical images and normalized to the MNI space. For 
each patient, the SUV map was normalized by the mean 
value of the pons to obtain the SUV ratio (SUVr) map. Mean 
global SUVr value was calculated across the entire brain 
grey matter, and the mean posterior SUVr value was derived 
by averaging the SUVr of the posterior cingulate and the 
precuneus. The neuroimaging preprocessing and biomark-
ers’ values extraction steps are detailed in the Supplemental 
Information and illustrated in Fig. 2.

Statistical analysis

Outcome index

To reduce data dimensionality, we used principal component 
analysis on patients’ clinical evaluation scores at discharge, 
combining DRS, RLAS, and FAC scores. The first princi-
pal component, reflecting the most explained variance, was 
defined as the outcome index, representing overall functional 
and cognitive recovery from coma. We linearly transformed 
outcome index scores to a positive scale for clarity, where 
higher scores indicate more favorable outcomes. The analy-
sis details are presented in the Supplemental Information.

Univariate regressions and linear regression model 
comparisons

First, we have tested the strengths of associations between 
the neuroimaging biomarkers and the outcome index meas-
ured at the discharge using Pearson’s correlation coefficient. 
Then, we compared different nested and non-nested linear 
regression models to determine which neuroimaging bio-
markers can best explain the variance of the outcome index 
and if they can significantly increase the explained variance 
of the CRS-R score alone. We first built a minimal “clinical” 
linear model consisting of the CRS-R score at the approxi-
mate time of the MRI and PET scans, and the patient’s age, 
sex, time between the injury and outcome evaluation at the 
discharge, and the time between the CRS-R and outcome 
evaluation at the discharge as confounding variables in the 
model. This “clinical” linear model was then compared to 
the non-nested minimal “neuroimaging” linear models, con-
taining each of the neuroimaging biomarkers and the cor-
responding confounding variables using the Vuong test [63] 
for non-nested models.

In addition, we evaluated if a simple lesion assessment 
based on anatomical MRI scan can outperform or improve 
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the minimal clinical linear model. To this end we evaluated 
the lesion load as described in our previous work [64]. An 
experienced neuroradiologist assessed bilaterally four corti-
cal (frontal, temporal, parietal, and occipital lobe) and five 
subcortical regions (basal ganglia, thalamus, mesencepha-
lon, pons, and cerebellum). Each region was scored binary: 
with 0 when no lesion or a smaller lesion was present and 
with 1, when a larger focal lesion, covering more than 30% 
of the region’s volume or a diffuse lesion was present. The 
lesion load was defined as the sum of the lesion scores for 

all 18 regions and was included as a predictor in the minimal 
“lesion” model together with the confounding variables.

We subsequently compared the nested minimal “clini-
cal” linear model to more complex linear models containing 
additional lesion or neuroimaging biomarkers. The nested 
linear models were compared and evaluated for the model fit 
using the Akaike Information Criteria (AIC) as well as the 
χ2 test on log likelihood ratios. The family-wise error rate 
was controlled by employing Bonferroni method to adjust 
the α level within each family of tests.

Fig. 2   Pre- and post-processing of multimodal neuroimaging data and 
measures of brain glucose metabolism, structural, and functional con-
nectivity. a Native diffusion-weighted image (DWI) was preprocessed 
and used to derive a fractional anisotropy (FA) map in native space, 
which was then normalized to the MNI152 space. The atlas tractog-
raphy was overlaid with the patient’s normalized FA map. The struc-
tural connectivity biomarker, the mesocircuit FA, was calculated by 
averaging the FA values across the voxels belonging to the white mat-
ter bundles connecting the brain regions within the anterior forebrain 
mesocircuit. b The native rs-fMRI BOLD images were preprocessed 
and normalized to the MNI152 space with the fmriprep pipeline. 
The smoothed images were then analyzed with the group independ-
ent component analysis (ICA) and decomposed into 20 independent 
spatial components. These components were then sorted into the rest-

ing-state networks and noise. The average spatial maps of the resting-
state networks components were thresholded at t-value > 4 and used 
as masks to extract individual spatial connectivity values. In addition, 
we extracted the time course signal of the posterior default mode net-
work and dorsal attention network to calculate the between-networks 
functional connectivity (DMN-DAN anti-correlation). c Native static 
18F-FDG PET images in bq/ml were converted into standard uptake 
values (SUV) maps. The SUV maps were normalized to the MNI152 
space. Each patient’s SUV map was then normalized by the mean 
value of the pons using the anatomical mask to obtain the SUV ratio 
(SUVr) map. To obtain the biomarker of the brain metabolism in the 
posterior cingulate and precuneus (posterior SUVr), we averaged the 
SUVr value using an anatomical mask for this region of interest
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Results

Subjects

In total, 32 patients (11 women) with age range between 
18 and 76 years (M = 44.8 years, SD = 17.7) were included 
in the study. The etiology of brain injury was traumatic 
(n = 15), hemorrhagic (n = 6), ischemic (n = 1), postan-
oxic (n = 3), SARS-CoV-2-related encephalopathy (n = 5), 
encephalitic (n = 1), and other (global rostral midbrain syn-
drome and corpus callosum infarction in the context of insuf-
ficient shunt drainage, n = 1).

All patients were identified as cCMD based on the MBT-r 
tool (i.e., they all showed signs of conscious perception at 
the first evaluation). The median CRS-R score prior to or 
at the admission to the unit was 6 (range: 0–23, IQR = 3) 
and the median score at the approximate time of the scan 
was 19 (range: 3–23, IQR = 11). The mean outcome index 
computed based on the RLAS, DRS, and FAC scores at the 
discharge from the unit was 5.0 (range: 1.3–7.8, SD = 1.6). 
The summary of the patients’ demographic and clinical data 
is presented in Table 1. The flow diagram showing patient 
selection and number of patients per neuroimaging modality 
is shown in Fig. 1.

Table 1   Patients’ demographics and clinical info. ANR: Acute NeuroRehabilitation

P-value < 0.05 was considered significant

Variable Shapiro–wilk 
test of normal-
ity

Age (years) 18–76, M = 44.9 ± 17.8 W = 0.95
p = 0.16

Sex Women 11 (34%)
Men 21 (66%)

Etiology Traumatic 15 (47%)
Hemorrhagic 6 (19%)
Ischemic 1 (3%)
Postanoxic 3 (9%)
SARS-CoV-2 encephalopathy 5 (16%)
Encephalitic 1 (3%)
Other 1 (3%)

MBT-r classification cCMD 32 (100%)
CRS-R diagnosis prior to/at the ANR admission coma 5 (16%)

UWS 15 (47%)
MCS 12 (37%)

CRS-R initial score prior to/at the ANR admission 0–17, Mdn = 6, IQR = 3 W = 0.93
p = 0.043

CRS-R score at scan 3–23, Mdn = 19, IQR = 11 W = 0.86
p < 0.001

Time between injury and outcome evaluation (days) 23–160, Mdn = 57, IQR = 27.3 W = 0.88
p = 0.002

Time between injury and admission to the ANR (days) 3–104, Mdn = 23, IQR = 17.8 W = 0.81
p < 0.001

Time between CRS-R initial score and outcome evaluation (days) 13–88, M = 43.1, SD = 16.5 W = 0.97
p = 0.43

Time between CRS-R at scan and outcome evaluation (days) 0–63, M = 24.3, SD = 13.5 W = 0.96
p = 0.20

Time between 18F-FDG PET/CT scan and outcome evaluation (days) n = 29 2–60, M = 23.3, SD = 13.1 W = 0.96
p = 0.33

Time between DWI scan and outcome evaluation (days) n = 24 1–45, M = 19.3, SD = 11.7 W = 0.95
p = 0.29

Time between rs-fMRI scan and outcome evaluation (days) n = 23 3–59, M = 23.1, SD = 14.9 W = 0.94
p = 0.17

Outcome index (n = 32) 1.3–7.8, M = 5, SD = 1.6 W = 0.97
p = 0.53
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Lesion biomarker

The median lesion load score was 3 (range: 0–12, 
IQR = 4.25). The correlation between the lesion count 
and the outcome index at the discharge was not significant 
(Shapiro–Wilk W = 0.87, p = 0.001; Spearman’s ρ = − 0.25, 
p = 0.168).

Neuroimaging biomarkers

We did not acquire DWI scans for six subjects due to exces-
sive agitation in the scanner, and the DWI data of two sub-
jects were excluded from the subsequent analysis due to 
insufficient image quality (movement artifacts). In total, 
we analyzed the DWI data of 24 patients. The association 
between the mean mesocircuit FA and the outcome index 
was strong and significant (Shapiro–Wilk W = 0.92, p = 0.06; 
Pearson’s r = 0.72, p < 0.001, 95% CI: 0.87, 0.45), indicating 
more preserved white matter fiber integrity of the mesocir-
cuit in patients with better clinical recovery.

We did not acquire rs-fMRI scans for five subjects due to 
excessive agitation in the scanner, and the rs-fMRI data of 
subjects was excluded from the subsequent analysis due to 
insufficient image quality (movement artifacts, n = 1), larger 
brain deformation preventing image co-registration and nor-
malization (n = 2), and a different rs-fMRI protocol (n = 1). 
In total, the rs-fMRI data of 23 patients were analyzed. Fol-
lowing the IC decomposition, we identified 13 ICs represent-
ing RSN source signals; these were two DMN components: 
posterior DMN (p-DMN), anterior DMN (a-DMN); four 
EFNs: dorsal attention (DAN), salience, executive control, 
and right fronto-parietal network; six primary sensory and 
motor networks, and the reward network. The mean spatial 
maps of the DMN and EFN independent components, and 
their associations with the outcome index are shown in the 
Supplemental Information, Fig. S3.

The highest correlation between the mean spatial connec-
tivity and the outcome index was found for the p-DMN (Sha-
piro–Wilk W = 0.97, p = 0.75; Pearson’s r = 0.43, p = 0.040, 
95% CI: 0.72, 0.02); however, it did not survive the Bonfer-
roni corrected significance level (α = 0.0045). The associa-
tion between the DAN network and the outcome index (Sha-
piro–Wilk W = 0.96, p = 0.49, Pearson’s r = 0.39, p = 0.07, 
95% CI: 0.69, − 0.03) was fair/weak and not significant. The 
other ICs demonstrated weaker and insignificant associa-
tions with the outcome index (all r < 0.35, p > 0.05).

The analyses of within- and between-ICs connec-
tivity demonstrated that the connectivity between the 
p-DMN and DAN ICs was strongly negatively and signifi-
cantly associated with the outcome index (Shapiro–Wilk 
W = 0.98, p = 0.82; Pearson’s r = − 0.74, p < 0.001, 95% 
CI − 0.46, − 0.88). In other words, the patients with stronger 
negative functional connectivity (anti-correlation) between 

the p-DMN and DAN showed more favorable clinical indi-
ces of recovery. On the other hand, the strength of within-
DMN network connectivity (between a-DMN and p-DMN) 
did not show any association with the outcome index (Sha-
piro–Wilk W = 0.95, p = 0.24; Pearson’s r = 0.08, p = 0.71, 
95% CI: 0.48, − 0.34). The connectivity values between the 
p-DMN and other EFN were weak and did not show any 
statistically significant correlation with the outcome index 
(all p > 0.05); the scatter plots representing their associa-
tions with the outcome index are shown in Supplemental 
material Fig. S3.

The 18F-FDG PET/CT scans could not be acquired for 
two patients due to their excessive agitation in the scanner. 
One patient was scanned with a different scanning protocol; 
therefore, their 18F-FDG PET/CT data were not included in 
the analyses. In total, we analyzed the data of 29 patients. 
The associations between the mean global SUVr and the 
outcome index (Shapiro–Wilk W = 0.94, p = 0.12; Pearson’s 
r = 0.18, p = 0.34, 95% CI 0.52, − 0.20) were weak and sta-
tistically not significant. The association between the poste-
rior SUVr and the outcome index was fair/weak and signifi-
cant (Shapiro–Wilk W = 0.95, p = 0.15; Pearson’s r = 0.38, 
p = 0.040, 95% CI: 0.66, 0.02). The scatter plots displaying 
the most pertinent correlations between neuroimaging bio-
markers and the outcome index are shown in Fig. 3.

The mean FA of the mesocircuit significantly corre-
lated with both the negative functional DMN-DAN con-
nectivity (n = 20, Pearson’s r =  − 0.70, p < 0.001, 95% 
CI: − 0.87, − 0.37) and the posterior SUVr (n = 23, Pearson’s 
r = 0.51, p = 0.013, 95% CI: 0.13, 0.76), whereas the cor-
relation between the posterior SUVr and the negative func-
tional DMN-DAN connectivity was weaker and statistically 
not significant (n = 22, Pearson’s r =  − 0.38, p = 0.08, 95% 
CI: − 0.69, 0.05). The scatter plots displaying correlations 
between the biomarkers are shown in Fig. 4.

Linear regression model comparisons

We conducted statistical comparisons on linear models fea-
turing single clinical or neuroimaging predictors, as well as 
their combinations, while accounting for confounding vari-
ables. This analysis was restricted to the subset of patients 
with neuroimaging data from all three modalities (n = 19).

The minimal clinical linear model incorporating 
only the CRS-R score and the covariates (age, sex, time 
between the injury and outcome index evaluation, and 
time between the CRS-R and the outcome index evalua-
tion) explained 75% of variance (adjusted R2, p < 0.001, 
AIC = 55.0). The CRS-R score significantly predicted the 
outcome index (B = 0.23, p < 0.001). However, to note, 
this association weakened with a longer period between 
assessments, i.e., between CRS-R at/prior to admission 
and outcome index at the discharge (r = 0.06, p = 0.73). 
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Further details and additional analysis including the 
CRS-R initial score and diagnosis are available in the 
Supplemental Information.

The minimal lesion model with the lesion load as the 
single predictor and covariates explained 26% of variance 

(adjusted R2) in the outcome index and was statistically 
not significant (p = 0.11, AIC = 75.7).

Statistically significant was the minimal neuroimaging 
linear model with the functional p-DMN-DAN anti-corre-
lation as the single predictor and the covariates (adjusted 
R2 = 0.68, p < 0.001, AIC = 59.8), where the p-DMN-DAN 

Fig. 3   Outcome index and its correlation with neuroimaging bio-
markers at the time of discharge. a Upper: The probabilistic white 
matter fiber bundles of the anterior forebrain mesocircuit extracted 
from the human connectome atlas. Lower: scatter plot showing the 
correlation between the mean fractional anisotropy of mesocircuit 
and the outcome index. b Upper: the brain mask of the posterior 
cingulate and precuneus used to extract the mean posterior SUVr 
value. Lower: scatter plot showing the correlation between the pos-
terior SUVr and the outcome index. c Upper: brain mask represent-

ing the resting-state networks of the posterior default mode (DMN) 
in blue and dorsal attention (DAN) in yellow obtained with the group 
independent component analysis by thresholding the component’s 
average spatial t-map. Lower: the scatter plot is showing the correla-
tion between the outcome index and the negative functional connec-
tivity between the DMN and DAN (anti-correlation). d Scatter plot 
showing the correlation between the Total Coma Recovery Scale—
Revised (CRS-R) score and the outcome index. The shaded areas rep-
resent the 95% confidence interval of the fitted line
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anti-correlation significantly predicted the outcome index 
(B =  − 4.0, p < 0.001), and the minimal neuroimaging linear 
model with the structural connectivity biomarker (adjusted 
R2 = 0.65, p = 0.002, AIC = 61.6), where the mesocircuit FA 
value significantly predicted the outcome index at the dis-
charge (B = 46.1, p = 0.001).

Comparing the linear models’ explained variance and 
AIC, none of the minimal lesion or neuroimaging linear 
models outperformed the clinical linear model. The Vuong 
test for comparison of non-nested models confirmed the 
clinical model’s superior goodness of fit (all p > 0.05).

Statistical comparison of the nested models showed that 
adding the structural connectivity biomarker (mesocircuit 
FA) to the clinical linear model significantly improved the 
model fit (adjusted R2 = 0.84, χ2 = 11.8, p = 0.003). The pre-
diction of the outcome was also significantly improved when 
adding the anti-correlation between the p-DMN and DAN 
as the fMRI biomarker to the clinical linear model (adjusted 
R2 = 0.85, χ2 = 13.5, p = 0.001). However, addition of both 
significant biomarkers at once (the mesocircuit FA and the 
functional DMN-DAN anti-correlation) did not further 
improve the prediction of the outcome (adjusted R2 = 0.84, 
χ2 = 3.1, p > 0.05). Other neuroimaging biomarkers did not 
show statistically significant improvement of the goodness 
of fit (all p > 0.05). The statistical tests of model compari-
sons are shown in Table 2. The linear models’ performance 
is graphically displayed in Fig. 5. 

Discussion

In this prospective study, we investigated diverse multimodal 
neuroimaging biomarkers to predict recovery after coma. 
Our focus included the indices of DWI-derived structural 
connectivity, rs-fMRI-derived functional connectivity, and 
brain glucose metabolism estimated with the 18F-FDG PET/
CT imaging. Univariate analysis showed strong and signifi-
cant associations between the recovery levels and white mat-
ter integrity in the anterior forebrain mesocircuit, as well as 
with functional segregation between the DMN and DAN 
during rs-fMRI. In multivariate linear regression models, 
both structural and functional connectivity biomarkers sig-
nificantly improved the recovery prediction in the post-acute 
phase.

Our findings demonstrate that patients with stronger 
structural connectivity in the anterior forebrain mesocircuit 
display more favorable neurological evolution at the dis-
charge from the acute neurorehabilitation unit. This aligns 
with the mesocircuit hypothesis, and points to the common 
underlying neural architecture, necessary for the recovery 
of consciousness [24, 25]. This neural circuit encompasses 
the frontal cortices and the striato-pallidal negative loop, 
which regulates the excitatory thalamo-cortical projections 
[24]. Lesions impacting the circuit cause disfacilitation of 
the main anterior frontal cortical targets (anterior cingulate 
and medial frontal cortex) and result in the down regulation 
of arousal [65, 66]. The hypothesis is supported by similar 
studies using DWI showing that greater lesion burden of the 
structures or of the connecting white matter tracts within the 
mesocircuit is associated with a worse outcome [23, 27, 28, 
64, 67–70].

Fig. 4   Correlations between neuroimaging biomarkers. a Scatter 
plot representing the correlation between the mean fractional anisot-
ropy value of the mesocircuit and the negative functional connectiv-
ity between the default mode and dorsal attention network. b Scatter 
plot representing the correlation between and the negative functional 
connectivity between the default mode and dorsal attention network 

and the posterior standard uptake value ratios (SUVr). c Scatter plot 
representing the correlation between the mean fractional anisotropy 
value of the mesocircuit and the posterior SUVr values. The shaded 
areas represent the 95% confidence interval of the fitted line. The 
color bar represents the outcome index value
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We also showed that the negative functional connectivity 
(anti-correlation) between the two antagonistic fronto-pari-
etal networks correlates with the degree of recovery from 

coma. This finding implicates that the patients with better 
functional and cognitive recovery profiles displayed more 
preserved intrinsic cortico-cortical organization of the brain, 

Table 2   Model comparisons statistics

P-value < 0.05 was considered significant

Prediction of the outcome index at discharge from the acute neurorehabilitation unit

Model Adj. R2 AIC Model F (p value) Predictor t (p value) Vuong test z (p value) χ2 test (p value)

Minimal clinical
CRS-R + age + sex + time: injury to outcome 

evaluation + time: CRS-R to outcome 
evaluation

0.75 55.0 11.8 (< 0.001) 6.5 (< 0.001) –

Minimal lesion
Lesion load + age + sex + time: injury to out-

come evaluation + time: CRS-R to outcome 
evaluation

0.26 75.7 2.3 (0.11)  − 2.4 (0.035) 2.62 (> 0.99) –

Minimal structural
FA mesocircuit + age + sex + time: injury 

to outcome evaluation + time: dMRI to 
outcome evaluation

0.65 61.6 7.5 (0.002) 4.6 (0.001) 0.91 (0.82) –

Minimal functional
p-DMN-DAN anti-correla-

tion + age + sex + time: injury to outcome 
evaluation + time: rs-fMRI to outcome 
evaluation

0.68 59.8 8.6 (< 0.001)  − 5.5 (< 0.001) 0.68 (0.75) –

Minimal 18F-FDG PET/CT
pSUVr + age + sex + time: injury to outcome 

evaluation + time: PET to outcome evalu-
ation

0.16 78.0 1.7 (0.21) 1.7 (0.11) 3.5 (> 0.99) –

Clinical + lesion
CRS-R + lesion load + age + sex + time: 

injury to outcome evaluation + time: 
CRS-R to outcome evaluation

0.74 56.0 9.6 (< 0.001) 5.0 (< 0.001)
0.82 (0.43)

– 1.04 (0.31)

Clinical + structural
CRS-R + FA mesocircuit + age + sex + time: 

injury to outcome evaluation + time: 
CRS-R to outcome evaluation + time: 
dMRI to outcome evaluation

0.84 47.2 14.6 (< 0.001) 4.2 (0.002)
2.2 (0.048)

– 11.8 (0.003)

Clinical + functional
CRS-R + p-DMN-DAN anti-correla-

tion + age + sex + time: injury to outcome 
evaluation + time: CRS-R to outcome 
evaluation + time: rs-fMRI to outcome 
evaluation

0.85 45.5 16.1 (< 0.001) 4.1 (0.002)
 − 3.0 (0.013)

– 13.5 (0.001)

Clinical + 18F-FDG PET/CT
CRS-R + pSUVr + age + sex + time: injury 

to outcome evaluation + time: CRS-R to 
outcome evaluation + time: PET to outcome 
evaluation

0.74 56.2 8.5 (0.001) 5.5 (< 0.001)
1.0 (0.34)

– 2.8 (0.25)

Clinical + structural + functional
CRS-R + FA mesocircuit + p-DMN-DAN 

anti-correlation + age + sex + time: injury 
to outcome evaluation + time: CRS-R 
to outcome evaluation + time: dMRI to 
outcome evaluation + time: rs-fMRI to 
outcome evaluation

0.84 48.1 11.2 (< 0.001) 3.3 (0.009)
0.8 (0.45)
 − 1.3 (0.24)

– 3.1 (0.21)
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a necessary property for adequate information integration 
and processing. In line with the previous research [39, 41, 
71, 72], our results show that the strength of anti-correlation 
between the DMN and DAN could be a promising biomarker 
for the preserved neural capacity to sustain awareness.

Contrary to prior research, our study only partially repli-
cated the common finding of restored within-connectivity of 
the DMN [20]. We observed a moderate association between 
the p-DMN spatial map connectivity and the outcome index, 
but no correlation in the connectivity strength between 
the posterior and anterior DMN nodes with the degree of 
recovery. The lack of correlation might be attributed to the 
medial prefrontal cortex (mPFC), which serves as both the 
anterior hub of the DMN, and the salience network, and 
is considered a functionally heterogeneous region, involved 
in various cognitive and affective processes [73]. Conse-
quently, our analysis might have not reflected the within-
DMN connectivity. As preserved within-DMN connectivity 
was also reported in unresponsive patients and propofol-
induced unconscious subjects [39, 74], it is suggested that 
this connectivity does not exclusively represent conscious 
mental activity, but rather a fundamental functional brain 
organization that is necessary, yet not sufficient for suste-
nance of consciousness [75, 76]. In addition, the outcome 
in our study was defined with an interval scale based on the 
multidimensional neurological evaluation, and not on binary 

classification based on the Glasgow Outcome Scale [77] or 
CRS-R recovery of consciousness.

While we found a fair/weak association between the glu-
cose metabolism in the posterior cingulate/precuneus and 
the outcome index, this biomarker has not shown to signifi-
cantly improve the prediction of the recovery. Although 18F-
FDG PET/CT imaging previously showed a promising role 
in diagnosing patients with disorders of consciousness [12, 
30, 43, 78], the measure is biased by various factors, such as 
the use of substances, and artifacts including hyperglycemia, 
resulting in larger variations in glucose metabolism among 
the subjects [79]. In addition, as already suggested and also 
observed in our data, 18F-FDG PET/CT imaging might have 
a higher accuracy to identify patients who will not display 
any improvement in recovery of consciousness, but a lesser 
sensitivity to predict recovery in a graded manner [12].

We found significant correlations between the mesocircuit 
structural connectivity and the DMN-DAN negative func-
tional connectivity, and between the mesocircuit structural 
connectivity and glucose metabolism in the posterior cingu-
late/precuneus. This finding further corroborates observa-
tions of the interactions between the two system components 
[25] that are necessary to enable a sufficient arousal of the 
system through the brainstem-thalamo-cortical projections, 
and which facilitate adequate communication between 
high level cortical networks, required for conscious mental 

Fig. 5   Linear models’ performance comparison. Bar chart showing 
the models performance metrics: explained variance with adjusted 
R2 (blue) and Akaike information criterion (AIC, red). Minima linear 
models: clin = minimal clinical, lesion = minimal lesion pet = minimal 
18F-FDG PET/CT, sc = minimal structural, fcDMN-DAN = minimal 

functional; Nested linear models: clin lesion = clinical + lesion, clin 
pet = clinical + 18F-FDG PET/CT, clin sc = clinical + structural, clin 
fcDMN-DAN = clinical + functional, clin sc fcDMN-DAN = clini-
cal + structural + functional
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activity [41, 68, 80, 81]. Our findings also highlight the 
important involvement of the posterior cingulate/precuneus 
in the recovery of consciousness, aligning with previous 
studies showing reduced functional [82], effective con-
nectivity [83], and metabolic activity [43, 44] within this 
region in the patients with disorders of consciousness. This 
brain region displays dense long-range connections with the 
frontal regions, temporal lobes, parahippocampal areas, and 
with the pontine regions [84]. Studies demonstrated that the 
dorsal posterior cingulate/precuneus forms a functional part 
of the DMN, while its ventral part activates with the central 
executive network during cognitively demanding tasks [84], 
suggesting an important modulating role in the interaction 
between attention and cognition. With its strategic position, 
it is viewed as a main hub area to integrate internal and 
external stimuli, and associate them with existing knowledge 
in order to facilitate an adequate behavioral response [85].

Lastly, we assessed whether incorporating neuroimaging 
biomarkers improves outcome prediction compared to the 
CRS-R evaluation alone. None of the neuroimaging bio-
markers alone outperforms the CRS-R evaluation. However, 
adding either the mesocircuit structural connectivity index 
or the DMN-DAN negative functional connectivity index 
significantly increased the explained variance in recovery. 
While the CRS-R remains important for standardized bed-
side evaluation, there is an overlap with neurobehavioral 
scales (most notably the DRS) in the measured construct, 
showing high concurrent validity [3, 86], and therefore, 
presenting a confounding factor of multicollinearity in the 
interpretation of the true predictive validity of the scale.

Our study also showed that deploying both structural 
and functional connectivity biomarkers together does not 
add additional value to the prediction of the outcome. This 
has important implications for diagnostic tests planning, 
especially in settings with limited access to the neuroimag-
ing facilities. When deciding between using the DWI-FA 
derived structural or the rs-fMRI connectivity, the latter can 
be affected by the arousal levels and sedation [87], there-
fore, its validity might be hindered when used in the critical 
care in the early phase of the injury. In addition, structural 
connectivity is less prone to time-related changes, and is, 
unlike functional connectivity, state-independent. As such, 
it remains a good candidate for the neuroimaging biomarker 
of recovery from coma. However, a future longitudinal study 
is essential to confirm its stability and predictive validity 
across different injury phases and recovery time intervals.

The study has certain limitations, including a small sam-
ple size, requiring validation on a larger sample for gen-
eralizability. Further research should also explore whether 
different neuroimaging acquisition protocols, preprocessing 
pipelines, and noise removal methods yield similar results, 
ensuring the robustness of findings. Here we have used the 
FA as a metric for white matter integrity as it is a most 

commonly used marker of cerebral white matter microstruc-
ture. However, its interpretability is reduced in the presence 
of crossing fibers or edema [88], thus a confirmatory study 
using advanced diffusion imaging techniques that account 
for different neurite orientations [89] is needed. In the same 
line, there is no single way to derive the RSN from the rs-
fMRI. We here followed the state-of-the art, open access, 
and robust pipeline for neuroimaging preprocessing [57] and 
a commonly used tool for the group independent component 
analyses [59], in order to facilitate the reproducibility of 
the current study. Nevertheless, the group ICA RSN spatial 
maps are inherently sample-dependent. For these reasons, 
we showed that atlas-based extraction of DMN-DAN inter-
network connectivity produces similar results (see Supple-
mental Information), suggesting a less expertise-demanding 
and more generalizable approach may be used instead. We 
acknowledge that reproducibility of neuroimaging studies 
represents a significant challenge for implementing rs-fMRI-
based biomarkers in clinical settings [90]. Standardizing 
methodology and outcome definitions is crucial to develop 
reliable and accurate neuroimaging biomarkers for diagnos-
ing and prognosing disorders of consciousness.

In conclusion, our study demonstrates that greater pre-
served structural connectivity in the anterior forebrain meso-
circuit and stronger negative functional rs-fMRI connectivity 
between DMN and DAN are significantly correlated with 
a more favorable neurological evolution upon hospital dis-
charge. In multivariate linear regression models, we showed 
that the individual structural or functional connectivity bio-
marker, but not their combination, significantly improves 
the model fit to predict the recovery in the post-acute phase 
compared solely to the bedside neurobehavioral evaluation. 
These findings have implications for selecting diagnostic 
tests, improving the patient identification for potential recov-
ery, planning a targeted therapy, and aiding in life-death 
decision-making.
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