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While several studies have shown that focal lesions affect the communication between structurally normal regions of the brain, and

that these changes may correlate with behavioural deficits, their impact on brain’s information processing capacity is currently

unknown. Here we test the hypothesis that focal lesions decrease the brain’s information processing capacity, of which changes in

functional connectivity may be a measurable correlate. To measure processing capacity, we turned to whole brain computational

modelling to estimate the integration and segregation of information in brain networks. First, we measured functional connectivity

between different brain areas with resting state functional magnetic resonance imaging in healthy subjects (n = 26), and subjects

who had suffered a cortical stroke (n = 36). We then used a whole-brain network model that coupled average excitatory activities

of local regions via anatomical connectivity. Model parameters were optimized in each healthy or stroke participant to maximize

correlation between model and empirical functional connectivity, so that the model’s effective connectivity was a veridical repre-

sentation of healthy or lesioned brain networks. Subsequently, we calculated two model-based measures: ‘integration’, a graph

theoretical measure obtained from functional connectivity, which measures the connectedness of brain networks, and ‘information

capacity’, an information theoretical measure that cannot be obtained empirically, representative of the segregative ability of brain

networks to encode distinct stimuli. We found that both measures were decreased in stroke patients, as compared to healthy

controls, particularly at the level of resting-state networks. Furthermore, we found that these measures, especially information

capacity, correlate with measures of behavioural impairment and the segregation of resting-state networks empirically measured.

This study shows that focal lesions affect the brain’s ability to represent stimuli and task states, and that information capacity

measured through whole brain models is a theory-driven measure of processing capacity that could be used as a biomarker of

injury for outcome prediction or target for rehabilitation intervention.
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Introduction

Focal brain lesions due to stroke cause behavioural impair-

ment in different functional domains such as motor, lan-

guage, attention, vision, and memory. Traditionally, these

behavioural deficits are thought to originate from local dys-

function of the injured region (Scoville and Milner, 1957;

Ferrier, 2012). However, since the seminal work of Von

Monakow (1911; see review in Carrera and Tononi,

2014) it has been recognized that focal lesions cause

physiological changes to structurally intact regions far

away from the lesion, so-called ‘diaschisis’. More recently

it has become apparent that focal lesions cause widespread

and large-scale changes to the temporal synchronization or

coherence of different brain networks, and that these

changes account for behavioural variability at the acute

stage (He et al., 2007; Carter et al., 2010; van Meer

et al., 2010; Wang et al., 2010; Park et al., 2011;

Baldassarre et al., 2014; reviewed in Carter et al., 2012;

Corbetta, 2012).

From a more theoretical perspective, network theories of

brain function emphasize the importance of integration and

segregation of information and neural activity in promoting

efficient processing of information (Tononi et al., 1994;

Park and Friston, 2013). These theories have recently

received strong support from computational neuroimaging

studies showing that the brain’s structural and functional

connectivity organization represents a trade-off between ef-

ficient processing within local modules, and metabolically

expensive integration through large-scale interactions of

spatially segregated modules (Bullmore and Sporns, 2009;

Sporns, 2013; Deco et al., 2015).

From these observations and theories follows the hypoth-

esis that focal lesions may affect the optimal balance of

integration and segregation, and that these changes may

relate to large-scale abnormalities of network coherence

observed empirically and potentially to behavioural deficits

(He et al., 2007; Andrew James et al., 2009; Grefkes and

Fink, 2011; Westlake and Nagarajan, 2011). To date, a

few computational studies have modelled the impact of

artificial lesions on network activity computed from struc-

tural models of brain connectivity (Honey and Sporns,

2008; Alstott et al., 2009). However, no study has esti-

mated the effect of focal lesions on both empirical and

model-based measures of functional integration and

segregation.

Here we use whole brain dynamic modelling of spontan-

eous (or resting state) activity to derive measures of inte-

gration and segregation in healthy subjects and patients

affected by stroke. Whole brain dynamic models (Deco

and Jirsa, 2012; Deco et al., 2013) have been shown to

reliably replicate several spatial and temporal features of

functional brain networks empirically measured during

rest. The models have essentially four components: (i) a

realistic structural connectivity matrix (either single subject

or group), obtained either using tracing studies in primates

(Kötter, 2004) or diffusion spectrum/tensor imaging (DSI/

DTI) in case of human brains (Hagmann et al., 2008); (ii) a

model of the local dynamics of neuronal activity based on

intracortical recordings of real activity; (iii) a convolution

of the neural activity with a model haemodynamic re-

sponse; and (iv) model fitting to optimize the correlation

between model and empirically measured functional

connectivity.

In this study, functional connectivity was measured sep-

arately in healthy subjects and patients with stroke 2 weeks

post-onset. Simulated functional connectivities were ob-

tained by fitting the model with empirically measured func-

tional connectivity in healthy and stroke individuals. Using

the empirically-derived functional connectivity ensures that

the model’s effective connectivity captures the effects of

stroke on network coherence measured by functional con-

nectivity. After model fitting, we derived a measure of ‘net-

work integration’ and a measure of ‘network segregation’,

which captures the variability of network states in response

to these stimuli. Measures of integration and segregation

obtained in single subject models in a group of participants

with cortical stroke were compared with models in a group

of age- and education-matched healthy control subjects.

Further, because activations of several subnetworks called

the resting state networks (RSNs) have been found by dif-

ferent imaging methods (Damoiseaux et al., 2006; Mantini

et al., 2007) to be a characteristic feature of brain’s spon-

taneous state, and, alterations in functional connectivity-

based measures at the level of RSNs have recently been

shown (Baldassarre et al., 2014; Siegel et al., 2016) to ro-

bustly capture impact of stroke, we calculated the compu-

tational measures also at the level of seven different RSNs.

We predicted that both integration and segregation meas-

ures will be decreased in stroke as compared to healthy

subjects. We also examined the relationship between these

model measures and empirically measured functional con-

nectivity and behaviour.
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Materials and methods

Participants

Stroke sample

Subjects (n = 172) were prospectively recruited, of whom 132
met post-enrolment inclusion criteria (for details see Corbetta
et al., 2015). Thirty-six subjects with cortical lesions were se-
lected for this study (see ‘Selection of stroke lesions’ section
below).

Inclusion criteria included: (i) age5 18 with no upper age
limit; (ii) first symptomatic stroke, ischaemic or haemorrhagic;
(iii) up to two lacunes, clinically silent, 515 mm in size on CT
scan; (iv) clinical evidence of motor, language, attention,
visual, or memory deficits based on neurological examination;
(v) time of enrolment: 52 weeks from stroke onset; and (vi)
awake, alert, and capable of participating in research.

Exclusion criteria included: (i) previous stroke based on clin-
ical imaging; (ii) multi-focal strokes; (iii) inability to maintain
wakefulness in the course of testing; (iv) presence of other
neurological, psychiatric or medical conditions that preclude
active participation in research and/or may alter the interpret-
ation of the behavioural/imaging studies (e.g. dementia, schizo-
phrenia), or limit life expectancy to 51 year (e.g. cancer or
congestive heart failure class IV); and (v) report of claustro-
phobia or metal object in body.

Healthy control subjects

A healthy control group (n = 26) were matched with the study
sample for age, gender, and years of education.

Selection of stroke group based on
lesions

Lesions were manually segmented on structural MRI images
[T1, T2, fluid attenuated inversion recovery (FLAIR)] using the
Analyze biomedical imaging software system (Robb and
Hanson, 1991) and automatically classified in cortical, subcor-
tical, and cortico-subcortical based on their overlap with three
masks (grey matter, white matter, and subcortical regions
including basal ganglia and thalamus). Each mask was com-
puted as 50% conjunction of 38 single subject FreeSurfer
(http://surfer.nmr.mgh.harvard.edu/) (Dale et al., 1999) grey
and white matter segmentations obtained from an independent
group of healthy volunteers (age range = 18–35) on
1 � 1 � 1 mm MP-RAGE T1-weighted images. A K-means
clustering in MatLab (MatLab Works) was run using the per
cent of lesion volume that intersected with each mask (i.e.
number voxels in the lesion overlapping with each mask/
total number of voxels in the lesion) as input, to display the
overlap of each lesion group with grey matter, white matter,
and subcortical nuclei. The number of lacunes on the MRI was
recorded and the periventricular white matter was rated ac-
cording to Longstreth et al. (1996). The group of ‘cortical’
lesions (n = 36) were selected for this study. This makes it
more likely that the effect on functional connectivity is due
to damage of cortical nodes, which is how the model is
organized.

Functional MRI

Procedure and scanning

Scanning was performed with a Siemens 3 T Tim-Trio scanner at
the School of Medicine of the Washington University in St. Louis.
Patients underwent a scanning session within 2 weeks
(mean = 13.4 days, SD = 4.8 days) after the stroke. All partici-
pants underwent structural, functional and diffusion tensor
scans. Structural scans consisted of: (i) a sagittal MP-RAGE
T1-weighted image (repetition time = 1950 ms, echo time =
2.26 ms, flip angle = 90�, voxel size = 1.0 � 1.0 � 1.0 mm,
slice thickness = 1.00 mm); (ii) a transverse turbo spin-echo
T2-weighted image (repetition time = 2500 ms, echo time =
435 ms, voxel-size = 1.0 � 1.0 � 1.0 mm, slice thickness =
1.00 mm); and (iii) a sagittal FLAIR (repetition time = 7500 ms,
echo time = 326 ms, voxel-size = 1.5 � 1.5 � 1.5 mm, slice thick-
ness = 1.50 mm). PASL acquisition parameters were: repetition
time = 2600 ms, echo time = 13 ms, flip angle = 90�, bandwidth
2.232 kHz/pixel, and field of view = 220 mm; 120 volumes were
acquired (322 s total), each containing 15 slices with slice thick-
ness 6- and 23.7-mm gap. Resting state functional scans
were acquired with a gradient echo EPI sequence (repetition
time = 2000 ms, echo time = 27 ms, 32 contiguous 4-mm
slices, 4 � 4 mm in-plane resolution) during which participants
were instructed to fixate on a small cross in a low lumi-
nance environment. Six to eight resting state functional
MRI runs, each including 128 volumes (30 min total), were
acquired.

Data preprocessing

Functional MRI data underwent a preprocessing procedure
consisting of the following steps: (i) asynchronous slice acqui-
sition was compensated by sinc interpolation to align all slices;
(ii) elimination of odd/even slice intensity differences resulting
from interleaved acquisition; (iii) a whole brain normalization
corrected for changes in signal intensity across scans; (iv) data
were realigned within and across scans to correct for head
movement; and (v) EPI data were co-registered to the subject’s
T2-weighted anatomical image, which in turn was co-registered
with the T1-weighted MP-RAGE, in both cases using a cross-
modal procedure based on alignment of image gradients
(Rowland et al., 2005). The MP-RAGE was then transformed
to an atlas-space (Talairach and Tournoux, 1988) representa-
tive target using a 12-parameter affine transformation.
Movement correction and atlas transformation were accom-
plished in one resampling step (resulting in an isotropic
3 mm voxel size) to minimize blur and noise. In preparation
for the functional connectivity MRI analysis, data were passed
through several additional preprocessing steps (Fox et al.,
2005): (i) spatial smoothing (6 mm full-width at half-maximum
Gaussian blur); (ii) temporal filtering retaining frequencies in
the 0.009–0.08 Hz band; and (iii) removal of the following
sources of spurious variance unlikely to reflect spatially specific
functional correlations through linear regression: (a) six par-
ameters obtained by rigid body correction of head motion;
(b) the whole-brain signal averaged over a fixed region in
atlas space; (c) signal from a ventricular region of interest;
and (d) signal from a region centered in the white matter.

The decision to include whole-brain signal as a nuisance
regressor was made in light of numerous studies showing
that whole-brain signal regression removes substantial
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confound attributable to head motion and respiration (CO2)
and reduces spurious correlations in blood oxygen level-de-
pendent (BOLD) data (Power et al., 2012, 2015;
Satterthwaite et al., 2012; Van Dijk et al., 2012). A recently
published report found that functional connectivity changes
observed in stroke patients relative to age-matched controls
were consistent with and without whole brain signal regression
(Siegel et al., 2016).

Quality control of resting state data

For each frame of resting state functional MRI scans a DVARS
(temporal derivative of time courses of root mean square vari-
ance over voxels) score was calculated. DVARS indexes the
rate of change of the BOLD signal across the entire brain at
each frame of data; the rationale and method for calculating
DVARS has been described previously (Power et al., 2012). To
define the DVAR threshold for our group of patients, we
computed the mean plus 2 standard deviation (SD) of
DVARS values for all frames, excluding the first four frames,
in the group of age-matched control subjects. The threshold
was equal to 4.6. All frames in the resting state functional
MRI scans with a DVARS value of 54.6 were removed
from the analysis. After frame censorings, patients retained
788 � 94 (mean � SD) frames out of 878 � 69 frames
acquired. Controls retained 732 � 154 frames out of
872 � 100 frames acquired.

Behavioural testing

All subjects and controls underwent a behavioural battery that
included assessment of motor, language, attention, memory,
and visual function following each scanning session. Overall
clinical deficit was also assessed in each patient using the NIH
stroke scale (NIHSS) (Brott et al., 1989). Imaging and behav-
ioural testing session usually were performed on the same day.
Dimensionality reduction was performed on the behavioural
performance data as described previously (Corbetta et al.,
2015). Principal components analysis was performed on all
tests within a behavioural domain to produce a single score
that predicted the majority of variance across tasks. The
‘Motor’ score describes contralesional deficits that correlated
across shoulder flexion, wrist extension/flexion, ankle flexion,
hand dynamometer, nine hole peg, action research arm test,
timed walk, functional independence measure, and the lower
extremity motricity index. The ‘Attention (visual field)’ score
describes contralesional visual field effects in Posner, Mesulam,
and BIT centre of cancellation tasks. A separate ‘Attention
(sustained)’ score loaded on non-spatial measures of overall
performance, reaction time, and accuracy on the same tests.
The ‘Spatial Memory’ score loaded on the Brief Visuospatial
Memory Test and spatial span. The ‘Verbal Memory’ score
loaded on the Hopkins Verbal Learning Test. The
‘Language’ score loaded on both comprehension (complex
ideational material, commands, reading comprehension) and
production (Boston naming, oral reading).

Structural connectivity

Neuroanatomical structural connectivity was obtained using
diffusion spectrum imaging (DSI) data and tractography from
a different cohort of 10 healthy right-handed male subjects.
DSI and MP-RAGE T1-weighted acquisitions were performed

on a Siemens 3.0 T TIM Trio MRI scanner (Siemens
Healthcare) equipped with a 32-channel head coil. The DSI
sequence included 128 diffusion-weighted images with a max-
imum b-value of 8000 s/mm2 and one b0 reference image. The
acquisition volume comprised 96 � 96 � 34 voxels with
2.2 � 2.2 � 3 mm resolution. Repetition and echo times were
6100 and 144 ms, respectively. The MP-RAGE acquisition had
a 1 mm in-plane resolution and 1.2 mm slice thickness, cover-
ing 240 � 257 � 160 voxels. Repetition, echo and inversion
times were 2300, 2.98 and 900 ms, respectively.

The grey matter was parcellated in 34 cortical areas per
hemisphere (68 areas in total) according to anatomical land-
marks (Desikan et al., 2006). This was followed by a further
parcellation into 1000 regions of interest of approximately
equal areas (number of voxels) (Cammoun et al., 2012).
Deterministic streamline tractography within the white matter
was used to estimate the fibre tract density connecting each
pair of regions of interest. Anatomical connectivity strength
between every pair of regions of interest was calculated by
dividing the number of connecting fibres by the average area
of the two regions of interest and by average fibre length be-
tween the two regions of interest (Hagmann et al., 2008).

Parcel assignment to resting state
networks

Grey matter parcels were assigned to resting state networks for
several purposes: ordering matrices for visual display (Fig. 3),
to compute RSN-averaged statistics for integration (Fig. 5),
information capacity (Fig. 6), and to summarize the relation-
ship between computational measures and functional MRI cor-
relations (Fig. 7). Seven RSNs, namely, the dorsal attention
network (DAN), ventral attention network (VAN), motor net-
work (MOT), visual network (VIS), frontal parietal network
(FPN), language network (LAN) and default mode network
(DMN), were derived from a meta-analysis of task-based func-
tional MRI studies (described in Hacker et al., 2013). This
work provided a population level description of the cortical
surface distribution of RSNs by computing an averaging across
individually estimated RSN topographies in 692 subjects. The
group-average RSN estimate was sampled using the surface
parcels in the present study. Each parcel was assigned in a
winner-take-all fashion to the RSN with the greatest estimate
(i.e. the RSN with the highest score after averaging over all
vertices within the parcel). Details on quantification and inter-
pretation of RSN membership estimates for individual brain
loci in single subjects are described in Hacker et al. (2013).

Dynamic mean field model

The model is an approximation of a spiking network model
(Deco and Jirsa, 2012) consisting of populations of excitatory
and inhibitory neurons and it expresses the averaged activity
of each population using a single variable, namely the average
firing rate. Inter-area connections between the excitatory pools
were weighted by the structural connectivity matrix and a
global scaling factor, G. As the global scaling factor was
varied, the local feedback inhibition was adjusted to constrain
the average firing rate of each local excitatory population. For
complete description of model equations and parameters refer
to Deco et al. (2014)b. Model equations were simulated for
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10 min to obtain neuronal activity of each brain area. We then
transformed it to BOLD signal using the Balloon-Windkessel
haemodynamic model (Friston et al., 2003). Finally, we
calculated the simulated functional connectivity using
correlation between simulated BOLD signals of all brain
area-pairs.

Effective connectivity

First the network model, in which dynamic mean field models
for local areas were coupled using structural connectivity aver-
aged across 10 healthy subjects, was simulated for several
values of the global scaling factor G. Resulting simulated func-
tional connectivities were compared with empirical functional
connectivity for every subject using Pearson correlation (Deco
et al., 2014b). As Supplementary Fig. 8A and B display, these
correlations for both control and stroke subjects as a function
of G increase and saturate beyond G � 4.0 for all subjects.
Therefore, we fixed the value G at 4.0 in all future simulations
for all subjects. We then used a gradient descent algorithm
(Deco et al., 2014a) to adjust (i) all interhemispheric homo-
topic connections; and (ii) any other pairwise connections that
were stronger than 0.5% of the strongest connection in the
average structural connectivity matrix we had to obtain an
optimal correlation between the empirical functional connect-
ivity and the simulated functional connectivity. This number
amounted to 18% of total connections. The optimizing pro-
cedure involved the following steps:

(i) In the first step, we used the original structural connectivity and

G (=4.0) in the dynamic mean field model to obtain the simu-

lated time-series for each area.

(ii) Subsequently, we calculated the simulated functional connectiv-

ity between all area-pairs and variance for each area and calcu-

lated the Pearson correlation between simulated functional

connectivity and the empirical functional connectivity.

(iii) We then updated the strengths (Cij) of only connections men-

tioned above using the equation:

Cij ¼ Cijþ gV � Cij � ðeVi� sViÞ þ gFC � ðeFCij� sFCijÞ

ð1Þ

where eVi and sVi are the empirical and simulated vari-

ances respectively, of area i; eFCij and sFCij are the em-

pirical and simulated functional connectivity of brain area

pair ij. gV and gFC are the gain parameters, which are set

to 0.01 and 0.015, respectively. If Cij became negative, we

set it to zero.

(iv) We then used this updated structural connectivity matrix and

repeated the first three steps for 30 iterations.

As Supplementary Fig. 1A and B shows, the Pearson correl-
ation between the model and empirical functional connectivity
increases with each iteration and saturates after about 10 iter-
ations for most subjects. Therefore, we choose the updated
structural connectivity matrix and the corresponding func-
tional connectivity matrix at the 10th iteration as optimal
ones. Finally, as the dynamic mean field model is a stochastic
model, we repeated this entire procedure for every subject 10
times and took the average of the optimal structural and func-
tional connectivity matrices across these repetitions to obtain
the final effective connectivity and model functional
connectivity.

Model-based measures

Information capacity

Information capacity measures the response of the large-scale
network to different stimuli (Deco et al., 2015). This measure
was calculated for each healthy subject and stroke patient by
inserting the corresponding effective connectivity in the dy-
namic mean field model and simulating it. An external input
Iexternal = 0.02 nA was applied to the excitatory population of
10% of the brain areas, randomly selected. The procedure was
repeated for 1000 trials and the resulting evoked responses of
the network were binarized by imposing a threshold. The
threshold is a multiple of the standard deviation in the
values of the evoked responses of all areas across all 1000
trials. Next, of the 1000 resulting binarized patterns, the null
patterns in each of which the activity of all brain areas was
below the threshold were discarded. The entropy of the re-
maining R non-null, evoked binary patterns is defined as:

HðRÞ ¼ �
Xn

i¼1

pilog2pi ð2Þ

where n is the number of unique patterns and pi is the prob-
ability that pattern i is observed. The information capacity is
the normalized entropy, which is obtained by dividing H(R) by
its maximum value (Hmax = log2 R) (Deco et al., 2014b). To
remove the sampling bias, we corrected the entropy values by
using a quadratic extrapolation procedure (Treves and Panzeri,
1995).

In the case of stroke subjects, we decreased the evoked re-
sponses of all damaged brain areas in proportion to the
damage suffered by them before applying the threshold. This
was done primarily for mathematical considerations as our
mean field model considers an average of activity of individual
excitatory neurons in each local brain area and we assumed
that the damage suffered by each region of interest results in
the death of neurons, thereby decreasing the average activity
or response. To our knowledge, the precise relationship be-
tween the extent of damage of a region of interest and its
average activity (in terms of mean firing rate) is not described
in the literature.

To compare the information capacity values across subjects,
it was necessary to have identical number of non-null patterns
for each case as otherwise, higher number of non-null patterns
typically yielded higher value of entropy. This condition
required us to calculate a precise value of the threshold for
binarization in the case of each subject.

Integration measure

The integration measure is a graph theoretical measure found
from the empirical and optimal simulated functional connect-
ivity matrix (Deco et al., 2015). For a given absolute thresh-
old, �; between 0 and 1, the functional connectivity is
binarized (using the criterion jFCijj5� which determines
whether the ijth connection will be 0 or 1). We then find the
largest connected component (a subnetwork or subgraph), in
which any two nodes are connected to each other by paths and
not connected to any nodes outside the component, and cal-
culate its size in terms of number of nodes. We calculate this
size (normalized by the total number of areas in the network)
for a range of thresholds between 0 and 1 and obtain a curve
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as shown in Fig. 2C. The integration measure is the area under
this curve.

Empirical functional connectivity-
based measures

Homotopic functional connectivity

Averaged functional connectivity for all pairwise connections
between (i) all interhemispheric homotopic brain areas; (ii) all
interhemispheric homotopic brain areas belonging to each
RSN; and (iii) averaged across RSNs.

Inter-resting state network functional connectivity

Average functional connectivity between all brain areas be-
longing to ‘extrinsic’ networks such as the DAN, VAN,
motor network and visual network, and those belonging to
‘intrinsic’ networks such as DMN, FPN and LAN within the
lesioned hemisphere.

Statistical tests

All correlations between the computational measures defined
in this study and empirically measured characteristics such as
functional connectivity-based measures, behavioural scores,
lesion volume and network properties of structural connectiv-
ity were obtained using Pearson correlation. All comparisons
of averages between group of healthy participants and partici-
pants with stroke were done using unpaired t-test. We cor-
rected for multiple comparisons using Benjamini-Hochberg
procedure for controlling false discovery rate (Benjamini and
Hochberg, 1995).

Results
Subjects with stroke (n = 36) were enrolled prospectively

based on the occurrence of a first time stroke and persist-

ence of neurological impairment at the time of the dis-

charge from the stroke unit. For inclusion and exclusion

criteria, see the ‘Materials and methods’ section. This

sample is part of a larger cohort of n = 132 patients

described fully in Corbetta et al. (2015). We selected for

this study only patients with predominantly cortical lesions

to insure that the lesions directly damaged the nodes of the

computational model, which is based on a cortical parcel-

lation. Controls (n = 26) were selected to be demographic-

ally matched to patients. No significant difference was

found between patients and controls in number of R-func-

tional MRI frames (t-statistic = 1.78, P = 0.079) or head

motion (t-statistic = �1.03, P = 0.31).

Table 1 shows the clinical characteristics of the sample.

This group of patients was heterogenous in lesion location

and impairment by design in the experiment. Figure 1

shows the frequency distribution of lesions mapped onto

a normalized cortical surface in atlas space. The most fre-

quently damaged regions were the left inferior parietal

lobule, right inferior frontal gyrus, right lateral occipital,

and precentral cortex. Behaviourally, patients showed

significantly worse scores on language, spatial attention,

verbal memory, and motor tasks.

Figure 2 displays the whole brain computational model-

ling and measures used in this study. The model functional

connectivity matrix obtained by computing the pairwise

temporal correlation across all regions of interest after con-

volving the model neural data with a haemodynamic re-

sponse function was optimized at the individual subject

level to match the empirically measured functional connect-

ivity matrix both in healthy and stroke participants.

Figure 3A–F displays the effective connectivity, model

functional connectivity and empirical functional connectiv-

ity for a single healthy subject (stroke patient).

Supplementary Fig. 2 displays these matrices, averaged

across the two groups. The brain regions in each matrix

are ordered according to their assignment to seven RSNs as

in Hacker et al. (2013). In the healthy empirical functional

connectivity there is a considerable correlation among brain

regions that belong to the same RSN. This modularity is

considerably attenuated in the stroke patients. The correl-

ation between model and empirical functional connectivity

was close to r = 0.75 in both healthy and stroke groups

except for two healthy subjects who were removed from

further analyses (Fig. 3G).

The effective connectivity in the model reflected the

amount of damage produced by the lesion, which was ex-

pressed as the fraction of damaged vertices belonging to

each brain region. When comparing the fraction of

damaged vertices across all regions with at least 1%

damage, we found that it was positively correlated with

the fractional decrease of those regions’ effective connect-

ivity (r = 0.3, P = 4 � 10�6) (Fig. 3H).

As the effective connectivity procedure optimizes several

parameters, we trained the algorithm, for each participant,

using functional connectivity calculated from half the data

points and validating it against the functional connectivity

calculated using the other half. Supplementary Fig. 3 dis-

plays the Pearson correlation between model functional

connectivity and empirical functional connectivity, for

each participant, for the training set (Supplementary Fig.

3A and B) and for the validation set (Supplementary Fig.

3C and D) as a function of learning iterations. Mean cor-

relation between model functional connectivity and empir-

ical functional connectivity for the training and validation

dataset was found to be 0.65 and 0.58, respectively, for the

healthy group and 0.63 and 0.55, respectively, for the

stroke group.

Having optimized the whole brain dynamic model, we

examined measures of integration and segregation. First,

we calculated the integration measure from both empirical

functional connectivity and model functional connectivity

for each of 24 control and 36 stroke participants. Both

mean model and empirical integration values were lower

in the stroke group, with a significant difference in the

model values as compared to healthy controls (Fig. 4A

and B).
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Second, we calculated information capacity in each sub-

ject, for nine different numbers of non-null patterns and

compared group averages for each case. As shown in Fig.

4C, mean information capacity was lower in stroke than

healthy subjects for all nine cases; however, the difference

was not statistically significant in any of them or when

averaged across all cases (Fig. 4D). The information cap-

acity values for all cases displayed strong pairwise correl-

ations (Supplementary Fig. 4).

We found no significant correlation between information

capacity and integration values with total lesion volume

(Fig. 4E and F). There was a significantly negative correl-

ation (r = �0.35; P = 0.04) between integration and mean

betweenness centrality of lesioned cortex, but no

correlation between centrality measures and information

capacity (Supplementary Fig. 5). Values of integration

and information capacity were not correlated (Fig. 4G),

suggesting that these measures evaluate two independent

properties of the underlying brain network.

Next, we calculated these measures for each of the seven

RSNs described in the methods. Model integration was sig-

nificantly lower in stroke as compared to healthy controls

for every RSN, as well as when averaged across all RSNs

(Fig. 5). Empirical integration was significantly reduced in

stroke patients for all RSNs except VAN and LAN

(Supplementary Fig. 6). The information capacity, calcu-

lated for 500 non-null patterns, was also significantly

lower in stroke patients in DAN, FPN and when averaged

Table 1 Clinical characteristics of cortical stroke sample

ID Age Gender Stroke type Side Territory Volume

(mm3)

tPA NIHSS Information

capacity

Integration

029 50 Male Ischaemic Left MCA 776 0 2 0.86 0.54

030 50 Female Ischaemic Right MCA 5332 0 10 0.87 0.38

033 56 Female Ischaemic Left MCA 910 0 6 0.85 0.53

035 59 Female Ischaemic Left PCA 2462 0 2 0.86 0.49

041 63 Male Ischaemic Left ACA 4161 0 12 0.61 0.66

056 52 Male Ischaemic Right MCA 1399 0 3 0.87 0.57

063 45 Female Ischaemic Left MCA 5177 0 7 0.80 0.50

064 55 Male Ischaemic Left ACA 1164 0 1 0.86 0.56

072 63 Female Ischaemic Right MCA 10186 0 10 0.88 0.50

073 43 Female Ischaemic Right PCA 2275 0 1 0.91 0.53

074 47 Male Ischaemic Right PCA 146 0 2 0.89 0.50

078 62 Male Ischaemic Left ACA 991 0 – 0.77 0.49

082 61 Female Ischaemic Right MCA 5906 0 2 0.85 0.47

083 60 Male Ischaemic Left PCA 336 0 1 0.90 0.32

084 51 Female Ischaemic Right PCA 323 0 1 0.89 0.49

085 72 Female Ischaemic Left MCA 584 0 1 0.26 0.63

087 57 Male Ischaemic Right MCA 2565 0 2 0.78 0.55

092 66 Male Ischaemic Left MCA 470 0 4 0.87 0.52

097 44 Male Ischaemic Left MCA 771 0 6 0.83 0.57

108 70 Female Ischaemic Left MCA 6287 0 4 0.90 0.49

114 53 Female Ischaemic Right PCA 7920 0 4 0.18 0.59

115 58 Male Haemorrhagic conversion Left MCA 7104 0 6 0.74 0.53

116 54 Female Ischaemic Right MCA 313 0 2 0.78 0.55

119 61 Female Ischaemic Left MCA 3911 0 – 0.90 0.56

120 77 Male Ischaemic Left PCA 2833 0 – 0.91 0.33

122 64 Male Ischaemic Left MCA 6975 0 8 0.21 0.63

124 41 Male Ischaemic Left PCA 324 0 0 0.84 0.42

133 62 Male Ischaemic Right MCA 9475 0 10 0.78 0.52

136 49 Male Ischaemic Left PCA 362 0 0 0.61 0.53

144 43 Female Ischaemic Left MCA 2714 0 13 0.81 0.56

163 45 Female Ischaemic Left PCA 1222 0 0 0.67 0.60

164 47 Female Carotid dissection Right MCA 3650 0 1 0.73 0.51

165 52 Male Ischaemic Right PCA 255 0 1 0.91 0.42

166 60 Male Ischaemic Right PCA 2657 0 3 0.85 0.55

168 50 Male Ischaemic Left MCA 179 0 1 0.90 0.55

196 50 Male Ischaemic Left MCA 867 0 0 0.82 0.55

Mean 55.33 20 male/16 female – 22 left/14 right – 2861 – 3.82 0.78 0.52

SD 8.75 – – – – 2861 – 3.75 0.19 0.07

NIHSS scores were acquired during the initial clinical visit within 48 h of the stroke. tPA = tissue plasminogen activator.
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across all RSNs (Fig. 6). Differences in group means in all

these comparisons were significant at the 0.05 level after

correcting for multiple comparisons using Benjamini-

Hochberg procedure for controlling false discovery rate.

An important question for the interpretation of these

measures of network integration and information capacity

is their relationship with empirically measured functional

connectivity changes at the level of networks, which in

turn correlate with behavioural impairments in different

domains (motor, attention, language, etc.) (He et al.,

2007; Carter et al., 2010; Baldassarre et al., 2014). We

specifically focused on two measures—the homotopic func-

tional connectivity and the inter-RSN functional connectiv-

ity as described in the ‘Materials and methods’ section. In

our sample the average homotopic functional connectivity

was significantly reduced in stroke subjects, but there was

no significant difference in inter-RSN functional connectiv-

ity (Fig. 7A and B). Further, the homotopic functional con-

nectivity was less strongly related to information capacity

than integration (Fig. 7C and D). While homotopic func-

tional connectivity values only in the motor, FPN and LAN

were significantly correlated with motor information cap-

acity, its values for all RSNs except VAN correlated signifi-

cantly with model integration in most RSNs, as well as for

the whole brain. These relationships were found to be sig-

nificant at the 0.05 level after correcting for multiple com-

parisons using Benjamini-Hochberg procedure.

By contrast, information capacity was more related to the

segregation of RSNs within the lesioned hemisphere

(Supplementary Fig. 7). While model integration was not

correlated with inter-RSN functional connectivity values,

global information capacity values were significantly nega-

tively correlated with them (r = �0.42, P = 0.01) as well as

with inter DAN-DMN functional connectivity values

(r = �0.4, P = 0.015). The DAN and DMN are two

networks that are frequently negatively correlated during

high performance even in healthy subjects (Kelly et al.,

2008; Sestieri et al., 2010) and that represent the pivot

networks of the two large extrinsic and intrinsic systems

of RSNs noted above.

Finally, we compared integration and segregation meas-

ures with behavioural deficits in stroke patients. These be-

havioural deficits were measured in terms of factor scores

in four domains (Corbetta et al., 2015) – language (Lang),

motor function, coded by side of the body contralateral

versus ipsilateral to the stroke (MotIC), visuospatial atten-

tion coded by lateralized performance to contralateral

versus ipsilateral visual stimuli (AttVFIC), attention per-

formance overall (AttAVE) indexing accuracy and speed

of processing independently of the side of the stimulus,

spatial and verbal memory (MemS and MemV).

Non-zero values in Fig.7E and F display the correlations

between computational measures and behavioural factor

scores that were found to be significant (P50.05, non-

parametric permutation test). Information capacity values

for the FPN positively correlated with language and spatial

memory factor score (Fig. 7E). Specifically, high information

capacity in the DMN was correlated with high overall per-

formance, i.e. faster reaction time and more accurate visual

discrimination. Integration values for the DAN and FPN cor-

related positively with visuospatial attention scores

(AttnVFIC) (Fig. 7F). None of these relationships were

found to be significant at 0.05 level when corrected for mul-

tiple comparisons using Benjamini-Hochberg procedure for

controlling false discovery rate. Therefore, we fitted a multiple

linear regression model using the values of information cap-

acity for DMN and FPN and global integration values as

predictors for each of the behavioural factor scores. We

found information capacity for FPN to be a significant pre-

dictor for language (beta = 16.6; P = 0.01) and spatial

Figure 1 Lesion and behavioural data. Left: Surface lesion conjunction map for 36 cortical stroke patients. Right: Deficit in six behavioural

domains for patients (n = 36) relative to age-matched controls (n = 26). In each behavioural domain, a single factor score was determined for each

patient and control based on multiple behavioural tests. Scores are z-normalized based on aged-matched controls (control mean = 0 and SD = 1).

Domains in which the patients differ significantly from controls are indicated with an asterisk (P50.05 after correction for six comparisons).
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memory (beta = 26.5; P = 0.002) factor scores while informa-

tion capacity for DMN was a significant predictor for overall

attention performance (beta = 5.9, P = 0.03).

Discussion
In this study, we sought to characterize the impact of stroke

on measures of network segregation and integration

obtained using an in silico whole brain dynamic computa-

tional model of brain activity derived from functional MRI

data measured in the resting state. The integration measure

is related to the level of connectedness of the underlying

network whereas the information capacity refers to the net-

work’s ability to encode distinct stimuli in distinct activity

patterns. If the network is completely uncorrelated (segre-

gated), the patterns of response to topographically distinct

patterns of stimuli are completely distinct and information

Figure 2 Methodology and description of measures. (A) General methodology used in this study (from Deco et al., 2014b). The empirical

functional connectivity is obtained as correlations between BOLD signals from 68 brain areas for each healthy subject and for each subject with

stroke. The model functional connectivity is found by simulating a network model consisting of a mathematical model for each brain area and an

effective connectivity between brain areas. (B and C) Procedures to calculate the computational measures used in this study. (B) For information

capacity, we applied an external stimulus to 10% of the network nodes (in red, top) chosen randomly and simulate the model using the effective

connectivity matrix for each subject to obtain simulated BOLD activations (middle) of all brain areas. Subsequently, we apply a threshold to obtain

a binary activation pattern (bottom) and repeat the process 1000 times. The information capacity is an entropy measure based on the frequency of

occurrence of distinct, non-zero activation patterns. (C) The integration measure is obtained by finding the largest connected component (in

yellow) from the optimized model functional connectivity (FC) at varying thresholds and by integrating its size over the range of thresholds.
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capacity is maximum. On the other hand, if the network is

completely correlated, all areas are activated irrespective of

distinct topography of stimuli patterns, hence the variability

of responses and the information capacity is zero. In this

sense, the information capacity is a measure of segregation.

We obtained these measures using the resting state func-

tional MRI data from 24 healthy subjects and 36 first-time

stroke patients with only cortical lesions. These data were

obtained at the subacute phase upon the onset of stroke

(2 weeks post-onset).

We found a significantly diminished whole-brain ability for

functional integration in stroke patients in comparison with

their age-matched healthy subjects. Information capacity was

also decreased in stroke patients, but the difference was not

statistically significant when calculated using the entire brain

network. When we calculated these measures by dividing all

brain regions into seven RSNs, the mean integration was

significantly lower in stroke than healthy subjects for each

RSN and for the average across RSNs. Similarly, differences

in information capacity were also stronger at the network

level, with two of seven RSNs and their average showing

significantly lower values in stroke. Differences in integration

and information capacity in stroke were not related to lesion

volume. These model measures correlated with the most

Figure 3 Model functional connectivities from effective connectivity. (A and B) Effective connectivities calculated using the network

model and the empirical functional connectivity (FC) for a single healthy subject (A) and that of a subject with stroke (B). (C and D) Optimized

model functional connectivities for the healthy subject (C) and that of the subject with stroke (D). (E and F) Empirical functional connectivity for

the healthy subject (E) and that of the subject with stroke (F). Each matrix is ordered according to the parcels assigned to different RSNs.

Reduced within-RSN connectivity in the case of stroke is observed in empirical functional connectivity of stroke subject in comparison with the

healthy case, and is captured by the effective connectivity and the corresponding model functional connectivity. (G) Box plot of optimum

correlation between model functional connectivity and empirical functional connectivity for all healthy subjects and stroke patients. Barring two

healthy subjects, which are not considered for further analysis, the effective connectivity yields a median correlation of �0.75 for both groups.

(H) The lesion fraction (measured in terms of fraction of vertices damaged) of lesioned brain areas from all subjects displays significant correlation

with the corresponding decrease in their effective connectivity (r = 0.3, P = 4 � 10�6). MOT = motor network; SC = structural connectivity;

VIS = visual network.

Segregation and integration in stroke BRAIN 2017: 140; 1068–1085 | 1077



common functional connectivity changes described in stroke.

Specifically, homotopic interhemispheric functional connectiv-

ity correlated strongly with integration, and more limitedly

with information capacity; abnormal correlation between

RSNs in the damaged hemisphere was clearly related to in-

formation capacity not integration. Finally, both integration

and segregation measures related to behavioural impairment

across subjects.
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Figure 4 Integration and information capacity in controls and stroke. (A and B) Box plot of integration values calculated using the

empirical functional connectivities (A) and model functional connectivities (B) of all healthy subjects and stroke patients. (C) Mean information

capacity (� standard error of the mean), averaged across healthy control subjects (blue) and stroke subjects (red) for nine different numbers of

non-null patterns (i.e. the activity of at least one brain area is above a threshold). For this comparison, we determine the threshold for each

subject to obtain identical number of non-null patterns which are used to calculate the entropy for each subject. (D) Box plot of information

capacity, averaged across values for nine different numbers of non-null patterns, of all healthy subjects and stroke patients. The black dot in each

box plot indicates the mean while the red line indicates the median. The black asterisk indicates a significant difference in the group averages

(P50.05, unpaired t-test). (E and F) Lack of correlation between values of total lesion volume and information capacity (E) and model integration

(F) demonstrate that the values for these two measures are not a direct consequence of total structural damage. (G) Lack of correlation between

values of information capacity and model integration.
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Computational modelling of stroke

Our computational approach is based on the premise that

it is possible to create a model of whole-brain connectivity

in an individual injured brain. The network model couples

mean field models for local regions via a structural connec-

tome, averaged across 10 healthy subjects, and is optimized

for each healthy and stroke subject using individual empir-

ical functional connectivity. Optimization derives an effect-

ive connectivity by adjusting the synaptic weight of all

inter-hemispheric connections and all other connections

stronger than 0.5% of the strongest connection in the ori-

ginal structural connectivity matrix. The optimization leads

to very similar (correlation wise) model and empirical func-

tional connectivity matrices, r =�0.75 (Fig. 3G).

The rationale behind considering all interhemispheric

homotopic connections (whether existing originally or

not) in the optimization procedure lies in the limitation of

the diffusion spectrum imaging methods in identifying

interhemispheric tracts that traverse the corpus callosum.

These are important connections that are found in the func-

tional connectivity of healthy individuals and are regularly

missed in the structural connectome obtained by DTI/DSI.

In non-human primates, these structural connections have

been directly found in tracing studies. Further, diminished

functional connectivity between interhemispheric homoto-

pic regions is a robust measure found in stroke subjects

(Baldassarre et al., 2014; Siegel et al., 2016); therefore it

was important to accurately characterize these connections

in the model functional connectivity.
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Figure 5 Integration in controls and stroke at the level of RSNs. Box plots of values of integration for all healthy subjects and stroke

patients, calculated within each RSN: DAN (A), VAN (B), motor network (MOT, C), visual network (VIS, D), FPN (E), LAN (F) and DMN (G)

and averaged across RSNs (H). The black dot in each box plot indicates the mean while the red line indicates the median. The black asterisk

indicates a significant difference in the group averages (P50.05, unpaired t-test, corrected for multiple comparisons using Benjamini-Hochberg

procedure for controlling false discovery rate). Mean integration is significantly decreased in case of stroke subjects for all RSNs as well as when

averaged across RSNs.
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One limitation of this approach is the possibility of over-

fitting due to optimization of several scaling parameters.

Limited number of data points (functional MRI scans per

subject) available also limit the robustness of the estimation

procedure given the number of free parameters (18% of

total connections). However, using a single scaling param-

eter as used in previous studies (Deco et al., 2013; Adhikari

et al., 2015) yields a significantly lower fit between model

and empirical functional connectivity, maximum r = �0.45

(Supplementary Fig. 8). Also, when we trained the effective

connectivity algorithm using part of the data we found that

the correlation between the trained model functional con-

nectivity and empirical functional connectivity from the

other part of the data, did not differ much from that in

the training phase (Supplementary Fig. 3). Third, given dif-

fusion spectrum imaging has its own limitations in correctly

estimating structural connectivity (particularly for interhe-

mispheric pathways), and the difficulty of estimating trac-

tography in stroke subjects, this strategy seems a sensible

compromise as proof-of-concept of whole brain computa-

tional modelling in stroke.

Another limitation is that we cannot directly estimate the

effect of the structural lesion on the model functional con-

nectivity; in other words, we cannot relate for instance

lesion topography or volume to specific topographic

changes in model functional connectivity, or separate the
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Figure 6 Information capacity in controls and stroke at the level of RSNs. Box plots of values of information capacity for all healthy

subjects and stroke patients, calculated within each RSN: DAN (A), VAN (B), motor network (MOT, C), visual network (VIS, D), FPN (E), LAN

(F) and DMN (G) and averaged across RSNs (H). Here, information capacity is calculated using 500 non-null patterns. The black dot in each box

plot indicates the mean while the red line indicates the median. The black asterisk indicates a significant difference in the group averages (P50.05,

unpaired t-test, corrected for multiple comparisons using Benjamini-Hochberg procedure for controlling false discovery rate). Mean information

capacity is significantly decreased in case of stroke subjects for five RSNs as well as when averaged across all RSNs.
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effects of direct anatomical disconnection from transynaptic

physiological effects. An improvement of this computa-

tional approach will require obtaining accurate structural

connectivity information for each stroke subject. However,

although the structural lesion was not used to directly

‘damage’ the model structural connectivity, differences in

effective connectivity between healthy and stroke subjects

are related to the actual damage of different cortical regions

(Fig. 3H). This result gives confidence that the optimized

model functional connectivity is indeed related to the

lesion.

A caveat to the interpretation of our study arises from

unequal sampling of lesions across the cortex. Our sample

of cortical lesions was taken from a stroke dataset shown

Figure 7 Relationship between computational measures and functional connectivity-based and behavioural measures.

(A and B) Box plots of values of (A) average functional connectivity (FC) between all homotopic areas within each RSN, averaged across RSNs

and (B) average inter-RSN [between DAN, VAN, motor network (MOT), visual network (VIS) and DMN, FPN, LAN], intrahemispheric

(ipsilesional hemisphere for stroke participants) functional connectivity. The black dot in each box plot indicates the mean while the red line

indicates the median. The black asterisk indicates a significant difference in the group averages (here, P = 0.001, unpaired t-test). (C and D)

Correlation between values of information capacity (C) and model integration (D) for stroke participants with the corresponding average

interhemispheric functional connectivity between homotopic areas within each RSN and for the whole brain network. Here all non-zero values

are the only correlations which were found to be significant (P50.05, calculated using a permutation test, not corrected for multiple com-

parisons). When corrected for multiple comparisons using Benjamini-Hochberg procedure for controlling false discovery rate, homotopic

functional connectivity within most RSNs except the VAN correlates significantly at 0.05 level with the corresponding model integration while

homotopic functional connectivity in motor, FPN and LAN is found to display significant correlation with motor information capacity values.

(E and F) Correlation between values of information capacity (E) and model integration (F) within each RSN and for the whole brain network

with behavioural factor scores obtained from within domain factor analyses for all participants with stroke. Here all non-zero values are the only

correlations which were found to be significant (P50.05, calculated using a permutation test, not corrected for multiple comparisons).
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to represent the much larger clinical sample of stroke.

These included anterior cerebral artery (3/36), middle cere-

bral artery (21/36), and posterior cerebral artery (12/36).

The somewhat higher incidence of posterior cerebral artery

strokes likely arises from the cortical stroke selection

criterion.

The most important advantage of a whole brain compu-

tational model of stroke is the ability to estimate measures

of information processing that are not obtainable in pa-

tients. While a graph theoretical measure like integration

can be derived from empirical functional connectivity, in-

formation capacity is a purely model based measure that

cannot be obtained experimentally unless to submit a pa-

tient to thousands of different stimuli and tasks. A network

model optimized to represent empirically observed resting

state functional connectivity allows exploration of its re-

sponses to a wide range of distinct stimuli or tasks, effect-

ively exploring the possible range of neural states that a

brain can generate. This approach is theoretically sup-

ported by the empirical observation that indeed resting

state patterns of activity constrain in space and time task

patterns. In fact the topography of resting state patterns is

similar to that observed during task behaviour (Smith et al.,

2009; Cole et al., 2014), and that task states are subtle but

consistent modulations of resting states (Betti et al., 2013;

Spadone et al., 2015)..

A limitation of the current approach is that the randomly

generated stimuli do not resemble any specific task-like

conditions. The network model represents the empirically

observed RSNs when it is in a stationary regime. Therefore,

we apply a constant external current to the local excitatory

neuronal population of each of the randomly chosen brain

regions to represent a stimulus condition; in contrast, in

real task-like conditions this external input would be

time-dependent. However, the information capacity meas-

ures used in this study primarily reflects the ability of the

network model to encode different stimuli in distinct spa-

tial, not temporal, patterns. Therefore, it is independent of

the specific design of the stimuli as long as identical designs

are used for different conditions and for all subjects.

Integration and information
capacity in stroke

The first and potentially most important result from this

study is that structural damage caused by stroke causes a

decrease of integration and segregation of brain networks.

Especially important is the observation that focal lesions

produce alterations of resting dynamics that lead to a de-

crease of variability of task states produced by the presen-

tation of a large number of artificial task patterns. Lesion

leads to low dimensional dynamic states associated with

deficits. For instance, in patients with hemiparesis post-

stroke, a reduction of the variability of correlated EMG

patterns during natural movements has been observed

that likely relate to a decrease of variability of cortical or

spinal cord synergies of neural activity (Cheung et al.,

2009).

If a network is completely uncorrelated, its information

capacity is a maximum while the integration is zero (as the

size of a maximally connected component is 0 for any

threshold). On the other hand, if the network is perfectly

correlated, the information capacity is zero while the inte-

gration is maximum. Thus, conceptually these two meas-

ures would be expected to be anti-correlated with one

another in extreme cases. However, the information cap-

acity is a non-linear measure of variability of responses and

so is the size of the largest connected component as a func-

tion of the threshold from which integration is calculated.

Therefore, they may not display any correlation in real

situations as was found for participants with stroke in

this study, thereby indicating that they capture different

aspects of brain function.

The loss of integration and information capacity in stroke

was much stronger when measured at the level of RSNs. In

the case of information capacity this can be attributed to

the higher impact that a lesion can have on the variability

of response of regions connected in a local network as

compared to the whole brain network. Owing to the

reduced dimensionality of RSNs the theoretical number of

distinct non-null response patterns is diminished exponen-

tially (2n
� 1; where n is the number of regions). The ex-

istence of a lesioned region within an RSN diminishes both

the local activity and propagation of activity to connected

regions thereby accentuating the impact on variability of

responses in this already shrunken state space. A stronger

difference in the average integration, between stroke pa-

tients and healthy subjects, at the level of RSNs suggests

a stronger decrease in the connectedness of RSNs of stroke

patients in comparison with the whole brain network. This

is supported by the observation that integration more

strongly correlates with homotopic within-RSN than be-

tween-RSN functional connectivity (Fig. 7). More generally

our results confirm the importance of RSN as spatiotem-

poral structures of neural activity that organize brain dy-

namics both at rest and during tasks.

Relationship to empirical functional
connectivity changes and
behavioural deficits

Decrements of interhemispheric homotopic functional con-

nectivity across different networks, and abnormal increases

of correlation in the damaged hemisphere between net-

works that are normally independent or negatively corre-

lated are emerging as the two most robust network

phenotypes of stroke (He et al., 2007; Carter et al.,

2010; Baldassarre et al., 2014). Importantly, these abnorm-

alities present at the subacute stage explains large amounts

of behavioural variance, especially for cognitive deficits.

A key issue, then, for the biological plausibility and po-

tential application of whole brain models to stroke, and
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more generally other disease states, is whether model-based

measures of network segregation/integration relate to em-

pirical measures of connectivity and behaviour. Indeed, we

found a robust correlation of both integration and segrega-

tion measures with empirical functional connectivity

changes in stroke. There was a significant positive correl-

ation between integration measure and homotopic func-

tional connectivity in stroke patients at the level of

several RSNs as well as the whole-brain (Fig. 7D). This

clearly relates to the importance of interhemispheric con-

nectivity in organizing RSNs as interhemispheric correl-

ations are among the strongest connections in the brain.

On the other hand, information capacity displayed a stron-

ger correlation with abnormal intrahemispheric between-

RSN functional connectivity (e.g. DAN–DMN or extrin-

sic–intrinsic RSNs) (Supplementary Fig. 7). This link is

also very interesting as the ability to encode task-specific

states relates to the specialization of specific regions in each

hemisphere, while high levels of inter-hemispheric syn-

chrony are observed in states of low information processing

such as seizures, sleep, low arousal, anaesthesia, etc.

Finally, also of great interest, is that model measures sig-

nificantly predicted behavioural performance in real pa-

tients. The pattern of relationship, albeit post hoc, is

intriguing. Information capacity was related to cognitive

functions like attention and spatial memory whose behav-

ioural variance is robustly predicted by large-scale patterns

of abnormal functional connectivity, but not structural in-

formation (Corbetta et al., 2015). Integration measures in

the DAN and FPN positively correlated with visuospatial

attention performance.

Whole brain dynamic models as a
strategy to test novel interventions

The ability to obtain quantitative indices of networks pro-

cessing dysfunction in a computer model of a damaged brain

is more than of theoretical importance. It is currently unclear

what a biomarker of brain dysfunction, acutely or during

recovery, should look like. Several groups are measuring a

number of different advance imaging metrics [e.g. fractional

anisotropy (Puig et al., 2013) and interhemispheric functional

connectivity (Carter et al., 2010)] for risk stratification and

outcome prediction, but their clinical relevance remains un-

clear. Moreover, the data that are emerging suggest wide-

spread alterations of connectivity while current

interventions both rehabilitative and neuro-stimulation, e.g.

transcranial magnetic stimulation or transcranial direct cur-

rent stimulation, are directed at modulating activity at one or

a few regions. The current conceptual framework in neuro-

stimulation, for instance, is the notion to increase or decrease

excitability at one cortical location, or rebalance activity be-

tween the damaged and normal hemisphere. The current

result suggests that perhaps a better biomarker for recovery

and a potential target for treatment would be the processing

abnormalities that derive from abnormal global dynamics

post-stroke. Such a strategy should also take into account

recent developments aimed at understanding how activity at

specific nodes, or combination of nodes, control global dy-

namics (Gu et al., 2015).

Mechanistically, integration measure is associated with

connectedness of a functional brain network (whether com-

plete or a subnetwork like a RSN). While it reflects the

strength of underlying axonal pathways within the network

as is evident from a significant positive correlation with

homotopic functional connectivity, the largest connected

component of the functional network could include

motifs with areas without direct structural connections be-

tween them but with a common area. Integration measure

could therefore be useful in characterizing compensatory

reorganizations of the functional networks after structural

lesions due to stroke. Information capacity is associated

with ability of the network to encode different topological

patterns in response to different stimuli. While it is difficult

to speculate the measure closest to information capacity

that is accessible in humans, the information capacity, for

stroke patients, was found to be anti-correlated with inter-

RSN intrahemispheric functional connectivity; thus infor-

mation capacity could be considered as a measure of

segregation of RSNs. Here, we considered subjects with

only cortical strokes; an immediate next step would be to

generalize the methodology of this paper to subjects with

subcortical and white matter stroke to demonstrate that

measures like information capacity and integration have

wider applicability. These markers can be calculated using

the whole-brain model and the functional connectivity at

any stage after the onset of stroke in order to assess the

impact of stroke as well as recovery.
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