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Abstract 

The partial least squares technique (PLS) has been touted as a viable alternative to latent variable 

structural equation modeling (SEM) for evaluating theoretical models in the differential 

psychology domain. We bring some balance to the discussion by reviewing the broader 

methodological literature to highlight: (1) the misleading characterization of PLS as an SEM 

method; (2) limitations of PLS for global model testing; (3) problems in testing the significance 

of path coefficients; (4) extremely high false positive rates when using empirical confidence 

intervals in conjunction with a new “sign change correction” for path coefficients; (5) 

misconceptions surrounding the supposedly superior ability of PLS to handle small sample sizes 

and non-normality; and (6) conceptual and statistical problems with formative measurement and 

the application of PLS to such models. Additionally, we also reanalyze the dataset provided by 

Willaby et al. (2015; doi:10.1016/j.paid.2014.09.008) to highlight the limitations of PLS. Our 

broader review and analysis of the available evidence makes it clear that PLS is not useful for 

statistical estimation and testing.  

 

Keywords: Partial least squares, structural equation modeling, capitalization on chance, 

significance testing, model fit.  
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On the Adoption of Partial Least Squares in Psychological Research:  

Caveat Emptor 

1. Introduction  

Researchers have recently suggested that Partial Least Squares (PLS) should be 

considered as a viable estimator for testing theoretical models in psychological research 

(Willaby, Costa, Burns, MacCann, & Roberts, 2015).  These authors have largely followed the 

arguments of PLS advocates in the marketing, information systems research, and strategic 

management domains – where the technique has become a methodological mainstay – making 

several claims about the superiority of PLS relative to the more commonly-used technique in 

psychology, latent variable structural modeling using (SEM). However, the veracity of such 

claims has been challenged by a number of recent works highlighting serious problems with the 

PLS method (e.g., Antonakis, Bendahan, Jacquart, & Lalive, 2010; Goodhue, Lewis, & 

Thompson, 2012; McIntosh, Edwards, & Antonakis, 2014; Rönkkö, 2014; Rönkkö & Evermann, 

2013; Rönkkö & Ylitalo, 2010); these critiques were not considered in the Willaby et al. (2015) 

paper and have received little uptake in the PLS literature more broadly. 

In light of these issues, the purpose of this paper is to provide a “sober second thought” 

on the purported advantages of PLS discussed by Willaby et al. (2015) and others, by reviewing 

the existing methodological literature and providing novel empirical demonstrations. We start by 

first explaining why labeling PLS as a SEM method is highly misleading; it is much more 

informative to consider PLS only as an indicator weighting system for creating composite 

variables. Second, we discuss the limitations of PLS regarding its ability to test how well a given 

theoretical model represents the observed data (i.e., the lack of well-established 
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overidentification tests). Third, we examine problems surrounding statistical inference on path 

coefficients, as well as the undesirable effects on confidence intervals stemming from a “sign 

change correction” built into some popular PLS software packages. Fourth, we critically discuss 

a set of inaccuracies that have long been perpetuated in the PLS literature, namely that PLS is 

better able to deal with small sample sizes and non-normal variables than can SEM, and that PLS 

somehow provides a “natural” statistical approach to validating formative models. Overall, our 

goal is raise awareness among applied researchers in the psychology domain concerning the 

shortcomings of the PLS method that the article by Willaby et al. (2015) and the majority of 

other current writings about PLS fail to address. 

2. PLS is Simply an Indicator Weighting System 

Whereas PLS is currently described as a SEM method (Hair, Hult, Ringle, & Sarstedt, 

2014), or as an alternative to SEM (Willaby et al., 2015), this characterization is rather 

misleading1. The main problem with defining PLS as a SEM method is that it does not have a 

coherent theoretical foundation for estimation and inference. Unlike classical maximum 

likelihood-based SEM, which rests on a unified statistical theory for simultaneous estimation of 

all model parameters (i.e., measurement and structural effects and the associated 

overidentification tests; Jöreskog, 1978 ), the PLS approach consists of an ad hoc collection of 

statistical procedures that have not been formally analyzed (McDonald, 1996). Thus, labeling 

PLS as an SEM estimator essentially gives it an ascribed rather than achieved status. 

What does PLS actually do? Willaby at al. (2015) describe the algorithm as three stages, 

of which the first two are required for parameter estimation.  In Stage 1, the indicators are 

combined as weighted composites (i.e., weighted sums), which are of course not latent variables 

                                                
1 The question of whether PLS is a SEM estimator can be recast as a question of whether we can find a definition for 

the term “estimator” that matches what PLS does. The answer is that we can (e.g., Greene, 2012, p. 155; Lehmann & Casella, 
1998, p. 4), but these definitions are so broad that even a pseudo-random number generator would qualify as an “estimator.” 
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but merely noisy proxies or substitutes for them. Next, in Stage 2, the composites are used in 

OLS regression analyses to estimate the path coefficients. Therefore, the PLS method is no 

different from using summed scales, factor scores, principal components, or any other type of 

weighted composites in an OLS regression. This simple fact is sometimes obscured in the PLS 

literature. For example, Lu, Kwan, Thomas, and Cedzynski (2011) explain that “[compared to 

regression with composites] PLS is more mysterious because estimates are produced by 

complicated algorithms embedded in specialized statistical software” (p. 259). To remove the 

mystery and show that the simple PLS algorithm can be implemented with little programming in 

a general purpose statistical package, we provide a replication of Willaby et al.’s  final model as 

a Stata input file in Supplementary Data 1. That PLS is simply regression with composites 

logically leads to the conclusion that any purported advantages that PLS might provide over 

regression with summed scales or other composites by virtue of being a SEM method are simply 

incorrect (e.g., Gefen, Rigdon, & Straub, 2011; see Rönkkö & Evermann, 2013). 

Unfortunately, the widespread mischaracterization of PLS as a SEM technique continues 

to confuse applied researchers. We discuss first the special case where each composite consists 

of a single indicator (e.g., a total score or scale mean), such as the model shown in Figure 1 by 

Willaby et al. (2015). Because there is no need for the multi-indicator PLS weighting system in 

this situation, the model reduces to conventional OLS regression with observed variables, and so 

reporting the analysis as PLS is actually a misnomer. Furthermore, the comparison of ML and 

PLS estimates for the model shown in Willaby et al.’s Figure 1 is uninformative because OLS 

and ML will yield identical estimates for the saturated and recursive case (i.e., no feedback loops 

or correlated errors). The comparison is therefore essentially between two maximum likelihood 
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estimators (ML and OLS), which should provide identical estimates and also do so in our 

replication included in Supplementary Data 22. 

The question of whether PLS is a useful way to estimate multiple-indicator latent variable 

models is more complex to answer. Given that PLS is best considered as simply an indicator 

weighting system, it is important to pause and consider the two following questions: Is it a good 

idea to estimate a latent variable SEM by approximating the latent variables with composites? 

Second, what is the best way to calculate the composites? The answer to the first question is a 

resounding no because composites inherit the measurement error in their constituent indicators 

(Bollen, 1989, pp. 305–306), which renders PLS both inconsistent3 (i.e., estimates do not 

asymptotically converge to the true population values) and biased (i.e., it over or underestimates 

the population parameters in finite samples) when applied to latent variable models (Dijkstra, 

1983; Hui & Wold, 1982). The issue of consistency is critical if estimates can be of any use in 

informing policy and practice. As mentioned by Wooldridge in his highly-regarded econometrics 

textbook (2009), “Although not all useful estimators are unbiased, virtually all economists agree 

that consistency is a minimal requirement for an estimator. The Nobel Prize–winning 

econometrician Clive W. J. Granger once remarked, ‘If you can’t get it right as n goes to infinity, 

you shouldn’t be in this business.’ The implication is that, if your estimator of a particular 

population parameter is not consistent, then you are wasting your time.” (p. 168). 

                                                
2 Note that the direct and indirect effects in the mediation model that Willaby et al. (2015) tested are not causally 

identified, due to violation of the “order condition” (i.e., at least as many exogenous variables, which are excluded from the y 
equation, are needed to predict the mediators). Unfortunately, we cannot deal with this important issue here, given that the 
accompanying dataset does not allow sufficient augmentation of the mediation model to satisfy this condition. However, 
interested readers can refer to a recent chapter by Antonakis, Bendahan, Jacquart, and Lalive (2014) for a user-friendly 
introduction to causal identification.  

3 Dijkstra and his coauthors (Dijkstra & Henseler, 2015; Dijkstra & Schermelleh-Engel, 2014) have proposed using the 
correction for measurement error attenuation (cf., Muchinsky, 1996) to make PLS consistent (PLSc). However, this correction is 
generally considered obsolete with the wide availability of modern SEM techniques (e.g., Moosbrugger, Schermelleh-Engel, & 
Klein, 1997, p. 97). Furthermore, PLSc addresses only one of the two main sources of bias in PLS: aside from attenuation due to 
measurement error, the PLS estimates are also biased because of capitalization on chance (Rönkkö, 2014), so finite-sample bias 
is still inevitable (Rönkkö, McIntosh, & Antonakis, 2015).   
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The second question has attracted much less attention in the literature.  A key problem 

here is that although PLS weights are often referred to as being “optimal”, the literature is not 

clear for which specific purpose the weights are optimal. Some authors argue that the weights are 

optimal for maximizing prediction (e.g., Fornell & Bookstein, 1982; Sosik, Kahai, & Piovoso, 

2009), whereas others suggest that they maximize reliability (e.g., Chin, Marcolin, & Newsted, 

2003); these are of course two very different criteria (Penev & Raykov, 2006; Rönkkö, 2014). 

Henseler and Sarstedt (2013) attempt to reassure users  by stating that the PLS scores are 

“optimal in some sense ” (p. 566), but this obviously provides no resolution to the issue. To get 

some clarification on this issue, we recently asked a leading PLS proponent on a fairly large 

private research methods- focused email list to comment on the purported advantages of PLS 

weights over unit weights, and he admitted that he did not know of any proven, concrete 

advantage that PLS weights would provide4.  

Another major problem in claiming that the PLS weights are “optimal” is that the PLS 

literature largely ignores the fact that a number of alternative, more well-established indicator 

weighting schemes have existed for decades, each of which was developed to solve a specific 

problem and mathematically proven to be the optimal solution. For example, (a) regression 

factor score weights maximize the expected reliability of the composite by minimizing the error 

in the constituent items (Grice, 2001); (b) correlation-preserving factor score weights generate 

composites that maintain the estimated factor correlations (Grice, 2001; ten Berge, Krijnen, 

Wansbeek, & Shapiro, 1999); and (c) principal component weights maximize the indicator 

variance explained by the composite variable (Dunteman, 1989, p. 15). Unfortunately, there is a 

paucity of studies attempting to systematically determine whether PLS actually yields relatively 

better composites than the above approaches with respect to the particular criterion that the 
                                                
4 The PLS proponent declined our request for permission to cite or quote the email discussion. 
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composites were designed to optimize. Considering that PLS weights converge asymptotically to 

much more well-known factor-analytic weights (Dijkstra, 2010, p. 210), it is not clear why PLS 

would provide an advantage over this or any other more well-established technique. 

The most common approach for constructing composite variables for use in OLS 

regression analysis is to sum the indicators using equal or unit weights (cf., Bobko, Roth, & 

Buster, 2007), and therefore it is natural that articles promoting PLS argue that the PLS weights 

would provide an advantage specifically over this popular indicator weighting system by 

improving composite reliability (e.g., Gefen et al., 2011). However, the current evidence 

suggests that PLS rarely enhances reliability over unit weights, and even in those cases where it 

does, the difference is only marginal (Henseler et al., 2014; McIntosh, Edwards, & Antonakis, 

2014; Rönkkö & Evermann, 2013; Rönkkö & Ylitalo, 2010; Rönkkö, 2014). Moreover, decades 

of research addressing a wide variety of situations shows that the advantage of even ideal 

weights that maximize composite reliability in a sample over unit weights is non-existent or 

trivial (e.g., Bobko et al., 2007; Cohen, Cohen, West, & Aiken, 2003, pp. 97–98; Cohen, 1990; 

McDonald, 1996; Raju, Bilgic, Edwards, & Fleer, 1999).  

We now use the data provided by Willaby et al. (2015, Supplementary Material 5) to 

show that the PLS composites are so highly correlated with unit-weighted composites that one 

system cannot have an advantage over another in terms of composite reliability. Table 1 shows 

that the unit-weighted composites were nearly perfectly correlated (i.e., 0.976-0.998) with the 

PLS composites for the model in Figure 2, meaning that in terms of reliability, the differences 

between the two sets of composites are marginal. More interestingly, Table 1 reveals that the 

within-method bivariate correlations, which correspond to regression paths between the multi-

item composites in the model, are always higher for PLS composites and that this effect is 
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stronger for weaker correlations. For example, the correlations between Organization and 

Mechanics with Conscientious are 24% and 19% higher, respectively, in the PLS vs. unit-

weighted composite case. If the only difference between the two sets of composites were their 

reliabilities – as often suggested by the PLS literature – the differences between these 

correlations should be less than 2.6%5, but the observed differences are much larger.  

----- Insert Table 1 about here ----- 

The real reason why the within-method correlation matrices differ is that the PLS weights 

capitalize on chance to make the correlations larger (Goodhue, Thompson, & Lewis, 2013; 

Rönkkö, 2014). It is widely known that in most conventional statistical procedures (e.g., 

correlation, regression, SEM), random sampling error increases the variance of the estimates but 

not their bias, given that random over and underestimation cancel each other out across repeated 

sampling so that estimates are correct on average (i.e. unbiased). Even in the case where 

sampling error and unreliability interact to produce “chance correlations” among the 

measurement errors in the observed variables (cf., Charles, 2005; Rönkkö, 2014; Zimmerman, 

2007), bias is not a concern for conventional correlation and regression methods (Rönkkö, 2014). 

Unfortunately, in PLSs’ model-dependent weighting scheme, the effects of chance correlations 

among measurement errors are much more pervasive, leading to bias as well as inefficiency 

(Goodhue, Lewis, & Thompson, 2007; Goodhue et al., 2013; Rönkkö & Evermann, 2013; 

Rönkkö, McIntosh, & Antonakis, 2015; Rönkkö, 2014). In particular, Rönkkö’s (2014) 

simulation studies, which compared regression coefficients across scenarios where chance 

correlations among measurement errors were present versus artificially removed, showed 

                                                
5 If we know that reliability is the only difference between the composites, then we can apply the well-

known attenuation formula (e.g., Cohen, Cohen, West, & Aiken, 2003, sec. 2.10.2) to calculate an upper limit for the 
difference between the correlations calculated between the different sets of composites. The maximum difference in 
attenuation between Conscientiousness and Organization can be expressed as , or 2.6% 
attenuation. 
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unequivocally that capitalization on chance fallaciously inflates the correlations between PLS 

composites; this effect was also clearly visible in all other simulation studies reviewed in the 

article. Removal of chance correlations, however, had only negligible effects on the estimates 

obtained from SEM or regression using unit-weighted composites.  

Given this overwhelming evidence, the PLS proponents have also recognized that the 

technique capitalizes on chance to inflate regression estimates. Nevertheless, they argue that 

referring to this phenomenon as “capitalization on chance” carries an unfair “negative 

connotation” in the PLS context (Sarstedt, Ringle, & Hair, 2014, p. 133). Yet, the definitions for 

this term provided in the statistical literature accurately capture the phenomenon that we 

described in the previous paragraph; that is, it is all about taking advantage of idiosyncratic 

variance in a finite sample, which therefore means that the population parameter is not accurately 

estimated. For example, Stevens (2012) defines capitalization on chance as “Seizing on the 

properties of the sample” (p. xii); and Corsini (2002) refers to it as “The process of basing a 

conclusion on data biased in a particular direction by chance factors. Purely random factors often 

seem to show interpretable patterns, and capitalization on chance involves mistaken inferences 

from these patterns.” (p. 139). The term is used in a similar way in the SEM context (e.g., 

Bentler, 2010, p. 218; Kline, 2005, p. 33). However, the perspective of Sarstedt and colleagues 

(2014, p. 133) is that PLSs’ tendency to amplify the effects of chance factors in the data is 

apparently an “advantage,” given that it offsets the attenuating effects of the measurement error 

inherent in the composite variables. The problem is that the two sources of bias are not 

guaranteed to exactly cancel out the impact of attenuation (except by chance) and, as shown by 

Rönkkö (2014), will often lead to positively biased and inefficient estimates. Considering that we 

have more than a hundred years of research showing how the effects of measurement error can 
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be adjusted in regression analysis with composites through the well-known correction for 

attenuation (cf., Charles, 2005; Muchinsky, 1996), or using errors-in-variables regression (Fuller, 

1987), relying on a capitalization on chance in small samples is hardly the optimal approach for 

dealing with measurement error attenuation (Rönkkö, 2014, pp. 176–177).  

3. Model Testing  

Does PLS provide any advantage in model testing? Unfortunately, PLS is simply a series 

of separate regressions that each are just–identified; as such, it cannot provide an 

overidentification test to examine if the constraints placed on the model parameters (e.g., 

pathways hypothesized to be zero) are consistent with the observed data. According to Djikstra 

(2014), Herman Wold, the PLS originator, never actually intended a restrictive model for 

imposing constraints on the data, making PLS as an analysis system incompatible with a model–

testing mindset. Thus, Willaby et al.’s (2015) suggestion that PLS can be used for model testing 

is untenable. 

Instead of relying on inferential statistics derived from statistical theory, current PLS 

practice focuses on a set of heuristics for assessing model fit. These approaches traditionally 

include comparing the composite reliability statistics (CR) and average variance extracted (AVE) 

statistics against rule-of-thumb cutoffs (i.e., the Fornell-Larcker criterion, Fornell & Larcker, 

1981), as well as less commonly used Goodness of Fit (GoF) indices based on the model R2 

statistics (Evermann & Tate, 2013; Rönkkö & Evermann, 2013). The problem with the first set 

of indices is that in a PLS analysis, the factor loadings – estimated as bivariate correlations 

between the indicators and the composites that they comprise – are severely positively biased 

(Aguirre-Urreta, Marakas, & Ellis, 2013; Evermann & Tate, 2013; McDonald, 1996; Rönkkö & 

Evermann, 2013), in turn rendering the CR and AVE statistics (calculated based on the loadings) 
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positively biased with respect to the true model characteristics that they are intended to reflect. 

On the other hand, the main shortcoming with the GoF indices is that the predictive power of a 

model (i.e., R2) is a poor yardstick for assessing model fit, because not all well-fitting models are 

strongly predictive and not all strongly predictive models are well-fitting (Henseler & Sarstedt, 

2013; McIntosh et al., 2014); additionally, inconsistent estimators can produce models with high 

R2s. Although there are only a limited number of studies addressing these PLS model quality 

heuristics, they all provide strong evidence that these measures cannot reliably detect model 

misspecification (Evermann & Tate, 2013; Henseler & Sarstedt, 2013; Rönkkö & Evermann, 

2013).  

Recognizing that the current practices of model quality assessment cannot reliably detect 

model misspecification, Henseler, Ringle, and Sarstedt (2015) recently proposed a new statistic 

that is calculated solely from the indicator correlation matrix without any link to the PLS 

algorithm. We fully agree with the idea of disconnecting model evaluation from PLS estimates 

and weights. However, the advantages of Henseler et al.’s new coefficient over inferential 

procedures for testing discriminant validity in modern SEM frameworks (Raykov, 2011) remain 

to be determined. 

We demonstrate the inability of PLS model quality heuristics to detect model 

misspecification by replicating Willaby et al.’s (2015) both “expanded” model and the final, 

reduced version of this model (displayed in their Figure 2), using techniques that have been 

proven to detect misspecified models (with the exception of equivalent models, which can never 

be fully known in real applications; Raykov & Marcoulides, 2007) . The initial, larger model 

contained 7 latent variables (1 exogenous, 6 mediators), whereas the final model contained only 

4 latent variables (1 exogenous, 3 mediators); each model also included the ultimate observed 
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outcome of GPA. We estimated a confirmatory factor analysis (CFA) models for both the large 

and small model using the Lavaan software for SEM (Rosseel, 2012). Neither model fit the data 

according to the chi-square test of exact fit: ; and 

. To assure that the significant lack of fit cannot be explained 

by a having small sample size relative to the model size (i.e., the number of observed variables), 

we also calculated the Swain correction to the chi-square, which compensates for the model size 

effect (Herzog & Boomsma, 2009). This alternative test still shows that both models are 

significantly misspecified: ; and 

. Approximate fit indices (based on the original ML chi-

square), which we report for descriptive purposes further indicate substantial misfit of the model, 

because none meet the commonly recommended cut-off values (e.g., Hu & Bentler, 1999), 

1999): RMSEA = 0.066, CFI = 0.840, and TLI = 0.823 for the smaller model; and RMSEA = 

0.069, CFI = 0.738, and TLI = 0.719 for the larger model. Because PLS does not offer any tests 

or indices of how well the theoretical model reproduces the observed data, Willaby et al. were 

left unaware that their model of the drivers of GPA was in fact misspecified, which in turn 

implies that the parameter estimates are untrustworthy (Hayduk, Cummings, Boadu, Pazderka-

Robinson, & Boulianne, 2007; Kolenikov, 2011; McIntosh, 2007; Yuan, Marshall, & Bentler, 

2003). 

4. Statistical Inference and Sign Change Corrections 

The current strategy used to test the significance of individual PLS parameter estimates 

no less problematic than the approach to assessing overall model quality. The dominant 
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framework for statistical inference in PLS-based research is null hypothesis significance testing 

(NHST). Under this approach, an observed test statistic is referred to a theoretical distribution 

where the null hypothesis of no effect holds, in order to determine the probability of obtaining a 

test statistic at least as extreme as the observed one if the null were true; this probability is 

known as the p value. If this probability falls below a pre-defined threshold (typically, 0.05), we 

can then infer that there is strong evidence against the null hypothesis (Cashen & Geiger, 2004;). 

In PLS-based studies, p-values are generally obtained by comparing the ratios of the parameter 

estimates and their bootstrap SEs against the t-distribution (cf., Chin, 1998), a procedure known 

as the parametric one-sample t-test in the broader statistical literature. This procedure is very 

problematic because the sampling distribution of PLS estimates is non-normal under the null and 

thus the ratio of an estimate to its standard error cannot follow the t-distribution, making such 

comparisons meaningless (Rönkkö & Evermann, 2013; see also McIntosh et al., 2014).  

A recent study by Henseler et al. (2014) suggests that confidence intervals could be used 

to overcome the issue noted above, asserting in particular that users of PLS-Graph need not be 

concerned, despite the evidence that the confidence intervals produced by the software are 

severely biased (Lu, Kwan, Thomas, & Cedzynski, 2011; cited in Henseler et al., 2014)6. 

Because non-normality of the estimates makes normal approximation confidence intervals 

inappropriate, we focus here on empirical confidence intervals, which are formed by using 

values selected from the bootstrapped estimates as the upper and lower confidence limits. 

Different selection rules yield different confidence intervals, such as percentile intervals, bias-

corrected percentile intervals, or bias-corrected and accelerated intervals (Davison & Hinkley, 

1997, Chapter 5). Using empirical confidence intervals with PLS estimation has not been 

                                                
6 We refer to a particular PLS implementation because neither the study by Lu et al. (2011) nor the user manual of the 

PLS-Graph software (Chin, 2001) report what technique was used to calculate the confidence intervals. 
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thoroughly studied, and there is at least one serious issue that has been overlooked in the PLS 

literature. 

Statistical inferences with PLS is further complicated by the so-called “sign change 

corrections”, which involve selective sign reversals on all quantities (i.e., weights, loadings, and 

regression coefficients) across the individual bootstrap replications prior to calculating summary 

statistics from the bootstrap replications. This procedure ensures that the signs of these values in 

the bootstrap replicates are consistent with those from the analysis of the original data set. 

However, the more general bootstrap literature does not recognize any similar corrections (e.g., 

Davison & Hinkley, 1997; Efron & Tibshirani, 1993), and in fact, the sign change corrections 

violate the basic principle of bootstrapping, which states that the replicated statistic should be the 

same (uncorrected) statistic that was used in the original estimation (Davison & Hinkley, 1997, 

Chapter 1).  

These corrections are often motivated by citing an article by Wold (1985; see e.g., 

Tenenhaus, Esposito Vinzi, Chatelin, & Lauro, 2005; Henseler, Ringle, & Sinkovics, 2009), in 

which he explained that the signs of the indicator weights are indeterminate; the PLS composites 

are standardized by multiplying the raw composites by a scalar f which can have either a positive 

or negative sign (Wold, 1985, Eq. 16b). To resolve this ambiguity, he suggested choosing the 

sign so that majority of the indicators are positively correlated with the composites. 

Unfortunately this decision rule is not implemented in the PLSX software (Lohmöller, 1988), 

which PLS-Graph relies on for the PLS algorithm. To compensate for this omission, the PLS-

Graph software included two post-processing options called “Individual Sign Correction” (ISC) 

and the “Construct-level Sign Correction” (CSC) that are applied to bootstrap replications. The 

ISC is applied individually to each parameter estimate so that all replications have the same sign 
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as the original estimate. The CSC is less radical, comparing the signs of weights one block at a 

time and basing the reversal decisions on these comparisons. At least two different versions of 

this latter correction have been presented in the literature: Hair et al. (2014, p. 135) explain that 

the sign reversals are based on the signs of indicator weights, whereas Tenenhaus et al. (2005) 

describe a decision criterion that also takes the magnitude of the weights into account. The PLS 

proponents argue that sign change corrections are needed because standard errors “increase[…] 

dramatically without any real meaning if the sign changes are not properly taken into account 

(Tenenhaus et al., 2005)” (Henseler et al., 2009, p. 307). Rather than focusing on the magnitude, 

the correct criterion would be whether the bootstrap SEs are actually unbiased estimates of the 

SD of the estimates over repeated samples, but none of the more recent papers on the correction 

address the bias of SEs.  

Instead of making inference more robust, applying the sign change corrections makes 

matters worse. Particularly, when the more aggressive ISC is used, all bootstrap replications are 

constrained to have the same sign, effectively truncating the bootstrap distribution at zero. We 

demonstrate this in Figure 1, which shows the distribution of the bootstrap replications of one 

parameter estimate after ISC, as reported in Willaby et al.’s (2015) Supplementary Data 4. There 

is no scenario where this type of zero-truncated bootstrap distribution would be desirable, 

because it ensures that the empirical confidence intervals will never contain zero, resulting in a 

100% false positive rate. This effect can also be seen in the confidence intervals reported in 

Supplementary Data 4 provided by Willaby et al., who seemingly did not notice that two 

methods of inference – p value-based NHST and empirical confidence intervals – led to different 

conclusions for the same data set. If they had relied on their empirical confidence intervals to 

evaluate the model pathways, they would have retained their original model in its entirety.  
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---- Insert Figure 1 about here ---- 

We further illustrate the behavior of different types of confidence intervals, the 

parametric one-sample t-test and the various sign-correction alternatives using the simple 

population structural equation model studied by both Rönkkö and Evermann (2013) and 

Henseler, Ringle, and Sarstedt (2015). The population model has two uncorrelated latent 

variables, each measured with three indicators loading at 0.6, 0.7, and 0.8. Note that because the 

latent variables are uncorrelated, estimating the regression between the composites representing 

the latent variables allows us to directly determine the null distribution (and Type I error rates or 

“false positives”) of the associated t-statistic under the various sign change options. We 

examined the behavior of the t-statistic using a Monte Carlo simulation with 1000 replications of 

samples of 100. The standard errors required for calculating the t-statistic were calculated by 

bootstrapping each Monte Carlo replication 500 times.  The analyses were conducted using the 

matrixpls package for R (Rönkkö, 2015). The initial simulation resulted in 13 non-convergent 

results, which we reran to obtain 1000 convergent replications. The R code for the simulation is 

available in Supplementary Data 3. 

Figure 2 shows the sampling distribution of the calculated t-statistics compared to the t-

distribution, which is typically used as the reference distribution for NHST with PLS. For this 

particular model, the CSC was almost always applied to both composites if it was triggered, and 

thus the sampling distributions of the t-statistics with this correction are indistinguishable with 

the case where no correction was applied and are omitted for clarity. The effect was the same for 

the decision rule presented by Hair et al. (2014, p. 135) and Tenenhaus et al. (2005). Because the 

relationship between the two composites in our example model is a standardized simple 

regression slope (i.e., bivariate correlation), both the CSC version presented by Tenenhaus et al. 
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(2005) and Wold’s (1985) original sign indeterminacy solution lead to identical results. 

However, for models containing multiple regressions with correlated predictors, the techniques 

will not be equivalent.  

The ISC correction results in much larger t-values, which is to be expected considering 

that: (1) the purpose of the sign-change corrections is to produce smaller standard deviations; and 

(2) the ISC is more aggressive than the CSC. Based on Figure 2, it is clear that the test statistics 

do not follow the reference distribution, and consequently, any inferences made by comparing 

these to a t-distribution would likely be incorrect. These results are further analyzed in Table 2, 

which shows the number of times that the null hypothesis of no effect is rejected for a given 

significance level. Because the null hypothesis was true in our population model, these statistics 

unambiguously showcase false positive rates. With both the CSC and uncorrected results, the 

false positive level is nominal for the weakest significance level (p < 0.10), but starts to increase 

when moving to smaller p-values. The results of using the ISC show false positive rates up to 

two orders of magnitude larger than the nominal rates. Based on these findings, it is clear that 

none of these techniques should be used for statistical inference.   

----- Insert Figure 2 and Table 2 about here ----- 

To be sure, PLS proponents have noted that the ISC frequently rejects the null hypothesis 

in cases where results are non-significant with no sign change correction (Hair et al., 2014, 

Chapter 5; Hair, Sarstedt, Pieper, & Ringle, 2012). However, they seem unaware of the extreme 

statistical phenomenon that we have revealed here, namely a 100% false positive rate. Rather, 

works providing guidance in the use of PLS typically present the CSC as a middle ground or 

compromise between the two extremes of no sign correction and the ISC, and advise that the 

CSC be used as a check on whether significant results obtained under the ISC can be considered 
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valid (Hair et al., 2014, Chapter 5, 2012).  However, we suspect that the pervasive and well-

known problem of confirmation bias (cf., Nickerson, 1998) will have the unfortunate effect of 

motivating many researchers to, perhaps unwittingly, build a case for justifying the acceptance of 

significant results under the ISC; indeed, such justification is not in short supply, as authoritative 

papers on PLS are available that directly recommend the use of this procedure (cf., Henseler et 

al., 2009, p. 307).        

5. On Other Purported “Advantages” of PLS Over SEM 

In addition to the issues raised thus far, Willaby et al. (2015) repeat some additional 

purported advantages over ML SEM that are frequently discussed in the PLS literature: lower 

sample size requirements, less restrictive distributional assumptions, more enhanced capabilities 

for exploratory modeling, and a more natural approach to formative measurement. In this 

section, we briefly reflect on these four claims in light of both current methodological 

developments and empirical evidence.   

The issue of sample size and non-normal data is poorly understood (Dijkstra, 2010, sec. 

3; Goodhue et al., 2012; Marcoulides & Chin, 2013; McIntosh et al., 2014; Rönkkö & 

Evermann, 2013), and PLS proponents have not addressed why the technique would be expected 

to work well in these scenarios. Instead, the choice of PLS over ML SEM is often justified by 

correctly stating that the latter may be biased in small samples and with non-normal data, and 

then claiming that PLS must therefore be used instead.  However, this argument is illogical 

because it suggests that we replace a potentially biased estimator with one that is known to be 

both biased and inconsistent.  Arguing that an estimator simultaneously makes fewer 

assumptions about the data and works well with smaller samples also violates a basic principle in 

statistical estimation: the parameters are estimated from a combination of sample information 
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(i.e., the observed data) and nonsample information (i.e., parameter constraints, assumed 

distributions). The problem with small sample size is that there is insufficient information in the 

available data for accurate estimation, which can only be addressed by introducing more 

information to the estimator, either by collecting more data or adding more nonsample 

information in the form of assumptions and parameter constraints. It should therefore be obvious 

that the idea that a method works better with small samples is fundamentally incompatible with 

the assertion that it requires less restrictive assumptions.  Indeed, in a recent simulation study on 

PLS with both small samples and non-normal data, Westland (2015, Chapter 3) found extensive 

bias and high false positive rates, and concluded that: "Responsible design of software would 

stop calculation when the information in the data is insufficient to generate meaningful results, 

thus limiting the potential for publication of false conclusions. Unfortunately, much of the 

methodological literature associated with PLS software has conflated its ability to generate 

coefficients without abnormally terminating as equivalent to extracting information" (p. 42).  

Moreover, numerous innovations have been developed over the last couple of decades in 

the SEM domain for dealing with small samples and non-normality. For example, corrections to 

the chi-square statistic will help adjust for the “model size effect” (i.e., low N:p ratio; Herzog & 

Boomsma, 2009; Yuan, Tian, & Yanagihara, 2013) and non-normal distributions can be 

addressed with numerous techniques including multivariate transformations (e.g., Yuan, Chan, & 

Bentler, 2000), modified test statistics (e.g., Tong, Zhang, & Yuan, 2014), and robust estimators 

(e.g., Satorra & Bentler, 1994). Given the existence of these well-supported corrective and 

analytically-derived procedures, there is simply no need to resort to regression with composites; . 

Some PLS methodologists have explicitly recognized the evolving capabilities of SEM to deal 

with violations of distributional assumptions, and state that non-normality is an “obsolete” 
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reason to choose PLS over SEM (cf. Gefen et al., 2011, p. vii).   However, such 

acknowledgments are still rare in the PLS literature. 

Willaby et al. (2015) also suggest that PLS is appropriate for exploratory research. An 

overarching problem with this assertion is that in terms of model specification, PLS is in fact no 

different from SEM, because both techniques require precise a priori decisions on the number of 

latent variables and their respective indicators (the measurement model), as well as on the system 

of model pathways (the structural model) (McIntosh et al., 2014; Rönkkö & Evermann, 2013). 

Moreover, using the PLS indicator weighting is altogether questionable unless supported by a 

very strong theory (Rönkkö & Evermann, 2013). Given that the weights are determined by the 

relationships between adjacent composites, the PLS indicator weighting system requires a strong 

nomological network (i.e., high correlations among path-connected constructs) for accurate 

weight calibration (e.g., Dijkstra & Henseler, 2015).  This requirement is essentially 

irreconcilable with the notion of exploratory research, which has been defined by leading PLS 

supporters as the “search for latent patterns in the data in case there is no or only little prior 

knowledge on how the variables are related” (Hair et al., 2014, p. 3). If a researcher has a paucity 

of information on the strength of model pathways, unit weights provide a much more appealing 

way of constructing composite variables in exploratory scenarios, given that they assume nothing 

about correlations between the latent variables and have been shown to be robust across a wide 

range of situations (e.g., Bobko et al., 2007; Cohen et al., 2003, pp. 97–98; Cohen, 1990; 

McDonald, 1996; Raju et al., 1999). Additionally, SEM offers a wide array of well-developed 

exploratory modeling tools. For example, there are modification indices that help locate 

misspecified parameter constraints if the initial model fails to fit the data (Hancock, 1999), as 
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well as several automated model search procedures for situations where a clear motivating theory 

is absent (Marcoulides & Ing, 2012).  

The final area where Willaby et al. (2015) claim an advantage of PLS over SEM is 

formative measurement.  Unfortunately, they fail to point out that formative measurement is a 

highly controversial subject involving multiple recent debates (e.g., Aguirre-Urreta & Marakas, 

2014a; Bainter & Bollen, 2015; Howell, Breivik, & Wilcox, 2007; Lee, Cadogan, & 

Chamberlain, 2014).  The numerous statistical issues involved with estimating and testing such 

models, as well as a lack of measurement theory that would be compatible with the formative 

approach, have led to calls for abandoning formative measurement altogether (Edwards, 2011; 

Hardin, Chang, Fuller, & Torkzadeh, 2011) or at least changing the term to break the connection 

with formative models and measurement (Markus & Borsboom, 2013, p. 172; Rhemtulla, Bork, 

& Borsboom, 2015). A major statistical issue with formative measurement with survey data is 

that “all variance in the items is treated as meaningful” (Willaby et al., 2015, pp. 2–3). In other 

words, the use of formative indicators necessitates rejecting the notion of measurement error, 

which is implausible. Considering that alternative modeling approaches can be used to 

accomplish the same goals as formative measurement but without the unrealistic assumption of 

error-free variables, the use of formative indicators is not justified (Edwards, 2011). 

Even if we make the unrealistic assumption that formative model is correct, it is unclear 

why we should expect the PLS indicator weighting system would work well with this type of 

model (Rönkkö, Evermann, & Aguirre-Urreta, 2015).  The idea that PLS would be a useful tool 

for estimating formative models cannot be found in the seminal papers (e.g., Wold, 1982, 1985), 

nor in the extensions presented by Lohmöller (1989). Instead, the idea appears to originate from 

Fornell and Bookstein (1982), who seemed to have confused two techniques for constructing 
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PLS composites (i.e., Mode A and Mode B) with the structure of the statistical model that is 

estimated, after which the subsequent literature started to build on this basic misunderstanding 

(Chin, 1998; Fornell & Cha, 1994; Tenenhaus et al., 2005). As Rigdon (2012) aptly notes, the 

parallels drawn in the PLS literature between Mode A and reflective measurement “may be 

described as an article of faith among regular PLS path modeling users and among those who 

write about the method” (p. 344). Therefore, that PLS is naturally well-suited for estimating 

formative models appears to be a fundamental misconception, which became an accepted fact 

after being repeated by applied PLS researchers and methodologists alike. Fortunately, recent 

research has started to seriously address the veracity of these claims (Aguirre-Urreta & Marakas, 

2014b; Rigdon et al., 2014; Aguirre-Urreta & Marakas, 2014a). Lastly, even if one adopts the 

emerging view that formative indicators do not have any causal properties, and that formative 

variables are only convenient aggregates rather than conceptually meaningful entities (Bollen, 

2011; Cadogan, Lee, & Chamberlain, 2013), PLS will still likely be a suboptimal approach for 

building composites, given the intrinsic limitation of capitalization on chance. Fixed weights are 

an entirely reasonable alternative (Howell, 2013), which is further supported by recent 

simulation evidence (Rönkkö, Evermann, et al., 2015). 

6. Conclusions 

In their article, Willaby et al. (2015) set out to “seed interest in PLS and quell any 

concerns regarding its viability” (p. 1). As with the general literature on PLS, Willaby et al. 

(2015) present it as an undisputed technique that has “undergone extensive development, testing, 

and application” (p. 5). Although PLS is already extensively used in the information systems 

domain (Ringle, Sarstedt, & Straub, 2012), and is gradually and worryingly receiving greater 

uptake in many management disciplines (Antonakis, Bastardoz, Liu, & Schriesheim, 2014; Hair 
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et al., 2012; Rönkkö, 2014), it has not undergone formal testing. Herman Wold, the PLS 

originator, was more interested in developing various algorithms than assessing their properties 

(Dijkstra, 1983), and the more recent literature on PLS is similarly lacking in terms of any 

serious analysis of its performance (Rönkkö & Evermann, 2013). Looking beyond the 

misleading characterization of PLS as a SEM technique and considering it instead as an indicator 

weighting system provides a sobering view on the method. Considering that the literature on PLS 

has not yet agreed on what the purpose of the indicator weighting is, let alone proven that the 

weights are optimal for that purpose, it is clear that there is very little evidence to support the use 

of PLS weights when forming composite variables. 

To conclude, given the intractable problems demonstrated with regard to capitalization on 

chance, compromised statistical significance testing, and lack of model testing capabilities, PLS 

should not be adopted as a tool for psychological research. Instead, applied researchers should 

focus their efforts on familiarizing themselves with the growing body of innovations in the SEM 

area, so that they are best-equipped to deal with the various specific modeling scenarios they 

encounter.  In the event that composite-based approximations to latent variable models are 

actually needed, there is very little reason to use anything else than unit-weighted scales (e.g., 

Bobko et al., 2007; Cohen et al., 2003, pp. 97–98; Cohen, 1990; McDonald, 1996; Raju et al., 

1999). 
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Figure 1 Kernel density plot of a bootstrap disribution from Willaby et al. 
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Figure 2 Kernel density plot of PLS t-statistics with and without sign change corrections compared with the t-distribution over 
1000 replications. 

 

Table 1 Correlations between PLS composites and equal weights composites 

   1 2 3 4 5 6 7 8 9 

PL
S 

1 Conscientious          
2 GPA .182         
3 Organisation .269 .261        
4 Temporal flow .699 -.014 .177       
5 Mechanics .252 .351 .143 .063      

Eq
ua

l 
w

ei
gh

ts
 6 Conscientious .998 .182 .28 .687 .242     

7 GPA .182 1.000 .261 -.014 .351 .182    
8 Organisation .205 .223 .976 .145 .096 .217 .223   
9 Temporal flow .694 -.01 .169 .997 .059 .683 -.01 .135  

10 Mechanics .223 .352 .136 .048 .988 .212 .352 .094 .044 
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Table 2 Nominal false positive rates and realized false positive rates for three different sign-change corrections over four p-
values and confidence intervals (CIs) in 1000 replications 

Criterion Nominal 
number of 
false positives 

No sign-change 
correction 

Construct level 
sign-change 
correction (Hair) 

Construct level 
sign-change 
correction 
(Tenenhaus) 

Individual 
sign-change 
correction 

p < 0.10 100 101 112 101 957 
p < 0.05 50 73 72 73 880 
p < 0.01 10 37 41 37 597 
p < 0.001 1 20 18 20 215 
95% Normal CI 50 61 69 61 435 
95% Basic CI 50 444 452 444 385 
95% Percentile CI 50 60 61 60 1000 
95% BCa CI 50 12 11 12 993* 
Note: * = The CI could not be calculated for 7 replications.  


