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Abstract

TCRep 3D is an automated systematic approach for TCR-peptide-MHC class I structure prediction, based on homology and
ab initio modeling. It has been considerably generalized from former studies to be applicable to large repertoires of TCR.
First, the location of the complementary determining regions of the target sequences are automatically identified by a
sequence alignment strategy against a database of TCR Va and Vb chains. A structure-based alignment ensures automated
identification of CDR3 loops. The CDR are then modeled in the environment of the complex, in an ab initio approach based
on a simulated annealing protocol. During this step, dihedral restraints are applied to drive the CDR1 and CDR2 loops
towards their canonical conformations, described by Al-Lazikani et. al. We developed a new automated algorithm that
determines additional restraints to iteratively converge towards TCR conformations making frequent hydrogen bonds with
the pMHC. We demonstrated that our approach outperforms popular scoring methods (Anolea, Dope and Modeller) in
predicting relevant CDR conformations. Finally, this modeling approach has been successfully applied to experimentally
determined sequences of TCR that recognize the NY-ESO-1 cancer testis antigen. This analysis revealed a mechanism of
selection of TCR through the presence of a single conserved amino acid in all CDR3b sequences. The important structural
modifications predicted in silico and the associated dramatic loss of experimental binding affinity upon mutation of this
amino acid show the good correspondence between the predicted structures and their biological activities. To our
knowledge, this is the first systematic approach that was developed for large TCR repertoire structural modeling.
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Introduction

Recognition by the CD8+ T-cell receptor (TCR) of immuno-

genic peptide (p) presented by class I major histocompatibility

complexes (MHC) is one key event in the specific immune

response against virus-infected cells or tumor cells, leading to T-

cell activation and killing of the target cell. Structural studies have

revealed how the molecular recognition of pMHC by the TCR is

mediated by six complementary determining regions (CDR) of the

TCR at the interface with the pMHC complex. Each chain of the

TCR (a and b) is bearing three loops called CDR1, CDR2 and

CDR3. The CDR2 loops form the outside of the binding site, thus

mainly contacting the alpha helices of the pMHC. CDR2 loops

hence participate in the diagonal binding orientation that is

generally observed on TCRpMHC structures [1]. CDR1 loops

interact with the MHC but also contact the N- and C-termini of

the peptide [2] [3] along with CDR3 that are the central loops in

the TCR binding site and mostly interact with the peptide.

However, the commonly accepted paradigm of CDR1 and CDR2

binding to the MHC and CDR3 to the peptide does not fully

account for the true structural complexity of TCRpMHC

complexes. Indeed, all CDR loops interact both with the peptide

and MHC and their modeling should not favor peptide or MHC

interactions regardless of the CDR studied [4].

CDR3 sequences are encoded by combination of gene elements,

P- and N-region nucleotide addition and joining flexibility

conferring a much greater diversity of lengths and sequences.

The study of Al-Lazikani et al. [5] on existing TCRpMHC

experimental structures revealed the existence of a limited number

of canonical backbone conformations for CDR1 and 2 of both Va
and Vb of the TCR. These canonical groups of CDR1 and CDR2

structures are identified by a combination of CDR length

requirements and the presence of key residues at defined positions

within the TCR sequences.

Experimental techniques used to determine the sequences of

TCR that bind to a pMHC complex [6] have recently been used

intensively, leading to the collection of large repertoires of TCR

sequences that are specific for a given pMHC [7] [2]. In recent

studies on the immunodominant human tumor antigen Melan-

A(MART-1) [2] and on the NY-ESO-1 cancer testis antigen [7],
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restricted sets of T-cells were found to recognize the peptide/

HLA-A*0201 pMHC complex. The TCR repertoire specific for

the Melan-A decamer (ELAGIGILTV) was biased towards a

Va2.1 usage and that of NY-ESO-1 (SLLMWITQC) towards

Vb13, Vb1 and Vb8. To understand the selection mechanisms

that underlie these restricted gene usage, there is a need for in silico

approaches that take thorough advantage of the knowledge

accumulated in TCRpMHC biology [8]. Such dedicated system

may provide model structures that convey functional information

and allow the identification of conserved 3D binding motifs that

are not obvious from repertoire sequences alone.

Following the study of Michielin et al. [9], we set up an expert

modeling method, called TCRep 3D, dedicated to the modeling of

high quality TCRpMHC complexes, and focusing on the CDR

loops structure. This approach has been designed to include

optimal automation to analyze numerous TCR sequences and

provide functional insight on the interaction between TCR and

pMHC. It makes use of homology models of TCRpMHC [10] [9],

based on the constantly increasing list of available crystal

structures that have been solved since the first one in 1996 [11]

and are available in the Protein Data Bank [12] (http://www.rcsb.

org/). Importantly, we developed in this study a dedicated method

for systematic ab initio refinement of the six CDR loops using a

simulated annealing approach. This method is based on the fact

that hydrogen bonds between the TCR and the pMHC are known

to be of major importance for the TCRpMHC complexation and

protein-protein interaction [13]. Such potential bonds were

intensively searched during this step of the modeling, by iteratively

generating conformers of a CDR loop, and by including new

restraints derived from the hydrogen bonds statistics of the

previous iterations in the subsequent ones. The canonical loop

information [5] is also accounted for by means of additional

restraints automatically derived by our program. Our approach

does not favor explicitly the CDRs to contact either the peptide or

the MHC, since all CDR – pMHC contacts are equally

considered.

We used a test set of 10 known crystal structures to assess the

efficiency of the ab initio CDR prediction method according to its

ability to reproduce CDR loop conformations and crystal contacts.

The accuracy of our approach was then compared to other

selection methods based on several popular scoring functions

(Anolea [14], Dope [15] and the Modeller scoring function [10]).

Ultimately, the modeling of 6 TCRpMHC structures from

experimental sequences related to the NY-ESO-1 TCR repertoire

revealed a striking mechanism of selection through the presence of

a single conserved Gly situated in the center of all CDR3b. An in

vitro experimental functional study of mutations of this amino acid

combined with in silico modeling of several mutants was

performed. It confirmed that dramatic predicted structural

changes caused by these mutation are linked to the loss of affinity

of the TCR to NY-ESO-1/HLA-A*0201.

Results

Figure 1 shows the detailed modeling procedure. In the

following, Root Mean Square Deviations (RMSD) are calculated

over heavy atoms, unless specified otherwise.

CDR loops prediction
We first assessed the capacity of the ab initio prediction (Figure 1)

to model a single CDR loop in its crystallographic environment,

bound to pMHC. This approach is referred to as the single-loop

approach. Each CDR loop from 10 available TCRpMHC crystal

structures was modeled (see Table 1) using the ab initio prediction

and the crystal structure as the initial loop conformation. A total of

60 CDR loops of different lengths were computed (CDR1 length:

8 to 10 amino acids, CDR2: 5 to 7 and CDR3: 3 to 11). 82% of

the predicted CDR had a RMSD from the crystal structure below

the 3.0 Å threshold used to define successful predictions (see

Discussion). The average RMSD was 2.21 Å (Table 1). Hence,

single CDR were successfully predicted in the environment

provided by the crystal structure. During this test, we verified

that the sampling (see Methods) was not confined in the starting

local minimum and artificially biased towards the reference

structure, i.e. that no memory effect exists. For this, we computed

the RMSD between the starting structure and the first CDR

conformer for each CDR. An average of 3.70 Å (SD = 1.68) was

obtained, which confirmed that the exploration of the conforma-

tional space was effective from the beginning of the simulation.

Two CDR3 loops showed a RMSD to crystal above 5 Å: 1fo0

CDR3a with 5.95 Å and 1nam CDR3b with 6.21 Å. Interesting-

ly, the structural analysis of the 1fo0 crystal demonstrated that a

hydrogen bond is present between the hydroxyl group of the

Tyr97 residue of CDR3a and the backbone carbonyl of Ala135 of

a neighbor MHC molecule in the crystal. This crystal contact

apparently deviates the CDR3 away from the pMHC in the

experimental structure. When 1fo0 CDR3a loop is modeled

without the crystal environment, it adopts a conformation directed

towards the peptide as a direct consequence of the use of iterative

hydrogen bonds restraints during the simulated annealing

procedure (see Methods and Figure S1). 1fo0 was hence not

considered further in this study. Figure 2 shows successful

predictions for six illustrative loops computed in the single-loop

approach, both in terms of RMSD from the experimental

structure and hydrogen bonds reproduction.

We tested the ability of the ab initio prediction to model all 6

CDR of each TCR crystal in a successive-loops approach, a

scenario corresponding to the real application (Figure 1). The

CDR were modeled in the following order: CDR2b, CDR1b,

CDR2a, CDR1a and finally both CDR3 together. The choice of

this sequence was devised to model first the CDR in the periphery

of the TCR binding site, since they generally do not play the key

role in TCR-peptide recognition, as opposed to CDR3 loops [16].

Once the CDR2b has been predicted, its conformation is kept

fixed during the subsequent optimization of CDR1b and so on

with the other CDR in the order mentioned above. This

successive-loops approach showed a success rate of 72% compared

to 82% for the single-loops scenario (see Table 1). The average

RMSD from the crystal structures was 2.48 Å (SD = 1.32)

compared to 2.21 Å (SD = 1.12) for the single-loop approach.

Interestingly, we reported that an incorrectly predicted CDR loop

did not systematically lead to a failure for the modeling of

subsequent loops. Indeed, the RMSD for 1mi5 CDR1a and b
were 2.81 Å and 1.46 Å, respectively, while the RMSD for the

CDR2a and b modeled in the previous step were 3.49 Å and

4.81 Å, respectively (Table 1). This illustrates the robustness of the

algorithm with respect to the accuracy of the loop environment.

Numerical data for all loops computed both by single-loop and

successive-loop approaches are given in Table 1 and Table 2.

At the sequence level, very few CDR properties could help

predict the success or the failure of our structure prediction

algorithm. Nevertheless, CDR length is a useful indicator

(Figure 3A). As could be observed, RMSD values between

predictions and their respective crystal references slightly increased

in average, with the loop length. A n/DN-C score was defined as the

ratio between the number of residues that form the loop, n, and

the distance between the N-terminal and C-terminal ends of the

CDR, DN-C. This score describes the «elongation» of the

TCRep 3D: A Systematic Approach for TCR Modeling
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backbone of the CDR: small values of n/DN-C correspond to

elongated loops, and large values to curved ones. It reflects the size

of the accessible conformational space for a loop of a given

number of residues, which is expected to be larger for curved

loops. Considering our 3.0 Å success criteria for RMSD (see

Discussion), Figure 3B shows that a CDR loop is likely to be

correctly predicted ab initio when its n/DN-C is lower than 0.9 Å21.

The 0.9 cutoff still retained 50% of the cases present in the test set,

whereas the cutoff based on the number of residues alone (loops

that are no longer than 6 residues are correctly predicted) retained

less than 30% (Figure 3A). Despite its limitations, the n/DN-C is

thus a better descriptor than n alone, to identify the cases likely to

be correctly predicted. For larger values of n/DN-C, the quality and

the reliability of the prediction cannot be assessed a priori.

Potential hydrogen bonds identification
The biological function of a TCR depends on its affinity for the

peptide-MHC complex [17,18] [19]. This affinity is, in turn, a

function of the interactions taking place at the TCRpMHC

interface, and in particular of the hydrogen bonds [13]. Therefore,

Figure 1. TCRpMHC modeling general procedure. Key steps are numbered in black boxes and referenced to in the Materials and Methods
section.
doi:10.1371/journal.pone.0026301.g001
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the modeling approach was specifically designed to progressively

restrain the exploration of the conformational space to regions of

high occurrence of hydrogen bonds between the TCR and the

pMHC (see Methods).

An analysis of the structures of CDR predicted by the single-

loop and successive-loops modeling approaches showed that the

final models reproduced 77% and 52% of the total 66 hydrogen

bonds present in the crystal structures, respectively (Table 2). The

performance of TCRep 3D in hydrogen bonds reproduction is in

reasonable qualitative agreement with the RMSD from the

experimental structure. Indeed, among the loops that were

predicted with a RMSD lower than 3.0 Å from the experimental

structure, 83% and 59% of the potential hydrogen bonds were

reproduced by the single and successive CDR modeling,

respectively (see Table 1 and Table 2).

Interestingly, the approach performed differently on loops with no

hydrogen bond in the crystal. Indeed, all the CDR with no hydrogen

bond with the pMHC in the reference crystal showed on average 1.33

(SD = 1.33) potential hydrogen bonds identified in the successive-

loops approach. This number was significantly higher for the CDR

loops showing hydrogen bounds in the crystal structure: 2.70

(SD = 1.57, p,0.001). An average of 13.2 potential hydrogen bonds

(SD = 10.8) were identified during the sampling of a given CDR loop

in the last iteration (see methods). It is noteworthy however that 78%

of the hydrogen bonds present in the crystal were actually observed

among the 6 most frequent ones sampled on each CDR.

Iterative sampling and scoring quality
The important novel aspects of TCRep 3D are the systematic

use of canonical restraints and hydrogen bonds derived restraints

Table 1. RMSD, in Å, calculated for each CDR of the test set of 10 crystal structures, for independent and sequential ab initio loop
modeling.

Model vs crystal root mean square deviation [Å]

PDB ID CDR2b CDR1b CDR2a CDR1a CDR3a CDR3b Average (SD)

1ao7 Number of residues 7 8 5 9 8 9

Independent loops modeling 0.66 1.62 1.88 2.27 1.72 2.42 1.76 (0.62)

Sequential loops modeling 0.66 1.60 1.88 3.37 1.94 2.74 2.03 (0.94)

1bd2 7 8 6 9 6 8

" 0.56 2.93 1.43 2.54 2.77 2.89 2.19 (0.97)

2.29 1.64 1.61 2.78 1.26 3.65 2.21 (0.89)

1g6r 7 8 6 9 6 8

" 1.44 1.51 1.41 1.96 0.93 1.36 1.44 (0.33)

1.44 1.62 1.40 2.57 0.89 3.80 1.95 (1.06)

1kj2 7 9 6 9 7 11

" 1.19 3.98 1.11 1.61 1.14 4.11 2.19 (1.45)

1.28 4.07 1.68 2.32 3.50 6.04 3.15 (1.77)

1lp9 7 8 5 9 9 5

" 1.26 1.42 1.96 2.28 1.26 2.62 1.80 (0.58)

1.26 1.73 2.19 2.80 1.48 4.39 2.31 (1.16)

1mi5 7 8 6 10 10 6

" 4.79 2.29 1.55 2.61 4.45 1.58 2.88 (1.41)

4.81 1.46 3.49 2.81 5.64 2.02 3.37 (1.61)

1nam 7 9 7 10 10 7

" 3.00 4.54 2.62 3.22 2.80 6.21 3.73 (1.39)

3.09 4.66 1.54 4.41 2.74 6.38 3.80 (1.7)

1oga 7 8 6 8 7 5

" 1.15 1.86 2.66 0.93 3.83 1.14 1.93 (1.13)

1.24 1.86 2.61 0.95 3.80 1.24 1.95 (1.08)

2ckb 7 8 6 9 6 3

" 1.56 1.78 2.54 3.09 1.41 1.37 1.96 (0.7)

1.29 1.23 2.21 2.20 1.13 1.76 1.64 (0.49)

2bnr 7 8 6 9 9 7

" 1.12 1.86 2.80 2.24 2.16 3.35 2.26 (0.77)

1.24 1.40 2.53 3.09 3.64 2.65 2.43 (0.94)

Average 7.0 (0) 8.2 (0.4) 5.9 (0.54) 9.1 (0.54) 7.8 (1.54) 6.9 (2.17)

(SD) " 1.67 (1.22) 2.38 (1.03) 2.00 (0.59) 2.28 (0.64) 2.25 (1.13) 2.71 (1.49) 2.21 (1.12)

1.86 (1.18) 2.13 (1.14) 2.11 (0.61) 2.73 (0.84) 2.60 (1.45) 3.47 (1.65) 2.48 (1.32)

doi:10.1371/journal.pone.0026301.t001
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during iterative loop samplings and the use of a scoring function

based on the sampled hydrogen bonds (see Materials and

Methods). The efficiency of the ab initio prediction to produce an

optimal model was compared to standard approaches and our

scoring function was compared to several well established energy

scoring methods: Anolea [14], Dope [15] and the Modeller pseudo-

energy [10] scoring functions.

Starting from the crystal structures, the CDR were indepen-

dently modeled without adding restraints and a standard set of

2000 conformers with a Modeller pseudo-energy function value

lower than 500 was collected for each CDR loop. The energy of

each conformer was then computed, using the Anolea, Dope and

the Modeller scoring functions. For each scoring function, we

selected the conformer with the lowest energy as a final model.

The average RMSD of the 60 single loops selected among a set of

2000 structures generated were computed for each function

(Figure 4A). The average RMSD values were respectively 3.64 Å

(SD = 1.57), 3.05 Å (SD = 1.57) and 3.09 Å (SD = 1.76). The use

of these scoring functions after the iterative H-bonds sampling as

implemented in TCRep 3D improved the average RMSD (2.52 Å

(SD = 1.43), 2.47 Å (SD = 1.60) and 2.31 Å (SD = 1.75), respec-

tively), in comparison to TCRep 3D which produced the best

average RMSD value at 2.21 Å (SD = 1.12). Interestingly, our

iterative sampling algorithm brought the average RMSD below

the 3.0 Å cutoff irrespective of the scoring function. TCRep 3D

performed significantly better than unrestrained simulated an-

nealing with Anolea, Dope or Modeller scoring functions

(p,0.001, p,0.005, p,0.0001, respectively). We identified for

each loop, the element in the set of 2000 conformers with the

lowest RMSD from the crystal; the corresponding RMSD average

value over the 60 CDR was 1.24 Å (SD = 0.43) for the standard set

and 1.23 Å (SD = 0.66) for the iterative set (i.e. modeled with

restraints, see Methods).

Since the longest CDR loops, and also the most important loop

modeling failures were contained in the CDR3 set (see Table 1),

the same analysis restricted to CDR3 only was performed. It

showed slightly higher average RMSD with Anolea, Dope or

Modeller (4.07 Å (SD = 2.14), 3.68 Å (SD = 1.88) and 2.88 Å

(SD = 2.17), respectively) (Figure 4B). Results improved after

hydrogen bonds iterative sampling, with average RMSD of 3.36 Å

(SD = 1.92), 3.59 Å (SD = 2.31) and 2.79 Å (SD = 2.81) respec-

tively. Again, with an average RMSD of 2.48 Å (SD = 1.38), our

algorithm remained below the 3.0 Å threshold with better

performance (p,0.399, p,0.066, p,0.021 respectively). The

average RMSD in the standard and iterative sets were 1.26 Å

(SD = 0.44) and 1.34 Å (SD = 0.66), respectively, for the lowest

RMSD selection restricted to CDR3. In summary, these results

showed that TCRep 3D outperforms significantly standard

methods in producing relevant loops conformations.

A key Gly on CDR3b of NY-ESO-1 specific TCR
NY-ESO-1157–165 is one of the most important tumor antigen in

melanoma [20] and is currently being used in many clinical trials.

Analysis of the TCR repertoire selected in these patients has

provided us with a large number of sequence data for which

structural interpretation is needed [7]. These sequences were

identified from naturally occurring HLA-A*0201/NY-ESO-

1157–165–specific CD8+ T cells from five melanoma patients.

Among them, LAU 155#1 TCR has a sequence identical to

that of the experimental structure Va23-Vb13 TCR bound to NY-

Figure 2. A selection of CDR structures successfully modeled by the single-loop approach in the ab initio prediction. Experimental
structures (purple) are superimposed to CDR models (cyan). Oxygen, nitrogen and sulfur atoms are colored in red, blue and yellow, respectively.
Dotted lines show hydrogen bonds between CDR and pMHC. Hydrogen bonds reproduced by the model in green and in orange otherwise. In the
case of 1lp9 CDR3, the hydrogen bond with pMHC which is not reproduced (involving Ala97), is replaced in the model by another hydrogen bond
involving the carbonyl group of the Ser98 backbone (additional contact in Table 2).
doi:10.1371/journal.pone.0026301.g002
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ESO-1/HLA-A2 (PDB code 2bnr [21]), except for 5 residues

situated on the CDR3a (Gln95, Thr96, Ala97 instead of Thr95,

Ser96, Asn97) and CDR3b (Ala97, Ala98 instead of Asn97, Thr98).

In total, 6 TCR sequences showed a TCRVb13 gene usage (CDR3

sequences and encoding gene numbers are shown in Figure 5A).

Considering this, we focused on them and used the procedure

described by Michielin et. al. [9] to build homology models of our

target sequences using the 2bnr TCRpMHC complex along with

TCR structures of our data set (see Methods and Table S1) as

templates. This constrained the TCR binding orientation over the

pMHC according to the known specific diagonal binding mode of

Va23-Vb13 TCR bound to NY-ESO-1 [22]. As a consequence,

very small structural deviations were observed between the pMHC

in the models and the structure of 2bnr. The largest calculated

RMSD between one of our models and the pMHC crystal structure

was 1.19 Å. In particular, although the structure of the peptide

showed small variations, especially on side chains (see Figure 5B), its

overall position in the model was very close to that in the crystal

structure, with a RMSD lower than 1.0 Å after superposition of the

pMHC. We then applied our TCRep 3D successive-loops modeling

algorithm to the homology-derived models to obtain a detailed

analysis of TCR-pMHC interactions within this subset of the NY-

ESO-1 TCR repertoire.

All final models reproduced the binding motif of CDR3 a and b
making a lock around the two central residues Met4 and Trp5 of

the peptide as described by Sami et al. [22] [7]. A structural

alignment of the six models was performed and revealed a

conserved central position for a Gly residue in the CDR3b
sequence (Figure 5A, the central Gly is slightly shifted for LAU

50#1). Indeed, this Gly is remarkably conserved in all six CDR3b
sequences and was shown to fit structurally into a notch under the

peptide Trp5 side chain (Figure 5B).

Table 2. Hydrogen bonds statistics in the test set for independent and sequential ab initio loop modeling.

Hydrogen bonds between TCR and pMHC : reproduced/total (additionnal)

PDB ID CDR2b CDR1b CDR2a CDR1a CDR3a CDR3b Total

1ao7 Number of residues 7 8 5 9 8 9

Independent loops modeling 0/0 (0) 1/1 (0) 0/0 (1) 1/2 (2) 5/5 (1) 2/3 (1) 9/11 (5)

Sequential loops modeling 0/0 (0) 1/1 (0) 0/0 (1) 0/2 (4) 1/5 (1) 0/3 (0) 2/11 (6)

1bd2 7 8 6 9 6 8

" 0/0 (0) 0/0 (3) 1/1 (0) 1/1 (1) 2/3 (1) 0/1 (1) 4/6 (6)

0/0 (0) 0/0 (1) 1/1 (0) 1/1 (0) 2/3 (2) 0/1 (2) 4/6 (5)

1g6r 7 8 6 9 6 8

" 0/0 (1) 1/1 (3) 0/0 (2) 0/2 (1) 2/2 (1) 0/0 (1) 3/5 (9)

0/0 (1) 0/1 (3) 0/0 (2) 0/2 (2) 2/2 (0) 0/0 (1) 2/5 (9)

1kj2 7 9 6 9 7 11

" 2/2 (1) 0/0 (4) 0/0 (0) 1/1 (1) 3/3 (1) 1/1 (6) 7/7 (13)

2/2 (1) 0/0 (4) 0/0 (2) 1/1 (1) 2/3 (2) 0/1 (5) 5/7 (15)

1lp9 7 8 5 9 9 5

" 0/0 (0) 1/1 (0) 0/0 (1) 0/0 (1) 3/4 (4) 0/0 (1) 4/5 (7)

0/0 (0) 1/1 (0) 0/0 (2) 0/0 (1) 2/4 (4) 0/0 (0) 3/5 (7)

1mi5 7 8 6 10 10 6

" 2/2 (3) 0/0 (0) 0/0 (1) 2/2 (0) 0/1 (5) 3/4 (2) 7/9 (11)

2/2 (2) 0/0 (0) 0/0 (2) 1/2 (1) 0/1 (6) 1/4 (3) 4/9 (14)

1nam 7 9 7 10 10 7

" 0/0 (2) 0/0 (2) 0/0 (1) 0/1 (4) 1/2 (1) 0/0 (3) 1/3 (13)

0/0 (1) 0/0 (2) 0/0 (1) 0/1 (2) 1/2 (2) 0/0 (1) 1/3 (9)

1oga 7 8 6 8 7 5

" 2/2 (0) 1/1 (0) 0/0 (0) 0/0 (0) 0/0 (5) 4/4 (2) 7/7 (7)

2/2 (0) 1/1 (0) 0/0 (0) 0/0 (0) 0/0 (5) 2/4 (1) 5/7 (6)

2ckb 7 8 6 9 6 3

" 0/0 (2) 0/0 (4) 0/0 (2) 1/2 (3) 1/2 (2) 0/0 (1) 2/4 (14)

0/0 (3) 0/0 (3) 0/0 (2) 2/2 (3) 1/2 (2) 0/0 (0) 3/4 (13)

2bnr 7 8 6 9 9 7

" 1/1 (0) 1/1 (0) 1/1 (1) 0/0 (0) 2/4 (2) 2/2 (4) 7/9 (7)

1/1 (0) 1/1 (0) 1/1 (1) 0/0 (2) 0/4 (1) 2/2 (3) 5/9 (7)

Total - - - - - -

" 7/7 (9) 5/5 (16) 2/2 (8) 6/11 (13) 19/26 (23) 12/15 (22) 51/66 (92)

7/7 (8) 4/5 (13) 2/2 (13) 5/11 (16) 11/26 (25) 5/15 (16) 34/66 (91)

doi:10.1371/journal.pone.0026301.t002
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We further investigated this pattern via in silico mutations from

Gly to Ala and Ser. We repeated the coupled CDR3 a and b ab

initio modeling on the six models. Modeling results showed a

dramatic conformational change of the CDR3b. For example, the

RMSD from the wild type CDR3b, calculated for the backbone

atoms, were 5.88 Å (Gly to Ala) and 3.28 Å (Gly to Ser) for LAU

155#1 CDR3b (Figure 6A). This was confirmed on all the six

mutated structures, for both Ala and Ser mutations with backbone

RMSD values ranging from 3.09 Å to 5.88 Å. All mutated loops

were unable to fit into the peptide notch.

Experimental mutations of the LAU 155#1 TCR Gly96

confirmed the importance of this central Gly in the CDR3b
sequence in vitro. Soluble wild type and Gly96 to Ser mutant TCR,

and NY-ESO-1/HLA-A*0201 pMHC were produced. Figure 6B

shows the dramatic loss of binding affinity for the Gly96 to Ser

mutant measured by titration ELISA experiment. Additionally,

Gly96 to Ala mutated TCR was expressed at the surface of the T-

cell line SUP-T1 using lentiviral vectors, and binding of NY-ESO-

1/pMHC multimer, as measured by flow cytometry, was also

completely lost (see Figure 6C).

Discussion

There is a considerable interest amongst immunology groups

studying T-cell biology to obtain functional information from

TCR repertoire sequences. We set up an automated and dedicated

system to model TCRpMHC complexes, focused on modeling the

interface of the complex, especially hypervariable CDR loops.

Clearly, only simulations of TCR bound to pMHC were

performed in order to identify binding motifs governing the

definition of TCR repertoires. The method presented in this paper

showed a high efficiency and robustness for the prediction of

TCRpMHC interfaces. Our method relies on using canonical

group knowledge for CDR1 and CDR2 loops, successively

refining CDR loops, iteratively looking for hydrogen bonds at

TCR - pMHC interface and clustering simulated annealing

models to select the best TCRpMHC model. Identifying CDR

interactions with pMHC is key to understand the mechanisms of

TCR selection while the models generated may provide optimal

initial conditions for further TCR engineering [23].

Canonical restraints and sampling quality
We expanded the canonical restraints on backbone dihedral

angles described by Al-lazikani et al. [5] with new crystallographic

data (Table S2). Canonical restraints were defined by their average

values and standard deviations (SD). The restraint violation

computed by Modeller depends crucially on the SD value [10]; the

smaller the SD, the larger the violation. The efficiency of such

dihedral angles restrictions was confirmed in ab initio simulations.

As an example, Figure S2 shows the Ramachandran plots of the

Arg residue at position 2 of CDR2b of 1kj2, for both unrestrained

and restrained simulations. Restraints of Al-lazikani group b2-2

were used, i.e. Q= 2106.71u with SD = 24.97u and y= 44.97u
with SD = 97.68u. As expected, the Q and y angles sampled in the

restrained simulation correspond to those defined by the canonical

restraints (i.e. 2160u#Q#270u and 2180u#y#180u). It is

noteworthy that the large SD of y values in the canonical

restraint implies that all y values can be sampled, as it was actually

observed, while the Q angle is effectively restricted, according to

the corresponding SD. In the region of the Ramachandran plot

defined by the restraints, the sampling performed in the restrained

simulation is comparable to that of the unrestrained one; the entire

allowed region is well sampled. This confirms that the loops were

not confined in a few narrow local energy minima during the

production of conformers with canonical restraints. The applica-

tion of restraints on the accessible conformational space of the

CDR also successfully prevented the system to reach energetically

unfavorable conformations and restricted simulations to more

relevant regions of space (data not shown). Technically, this

Figure 3. RMSD of all predicted single-loops of the test set plotted against two parameters. (A) RMSD against the number of residues n
that form the loop, (B) RMSD against the n/DN-C value of the loop in Å21. The ratio n/DN-C, is a good a priori indicator of modeling success.
doi:10.1371/journal.pone.0026301.g003
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resulted in a significant gain in computational time. Indeed, the

time required to collect 2000 CDR conformers with a Modeller

pseudo-energy function below a cutoff of 500 (see methods) was

divided by (up to) 3 when canonical restraints were available.

RMSD cutoff
For the evaluation of loop modeling successes, we used an

empiric heavy atom RMSD cutoff of 3.0 Å. The structure

similarity between predictions and experimental conformations,

i.e. reproduction of the global conformation and native contacts,

was satisfying according to systematic visual inspections of all

superimposed structures (see results and Figure 2). To test the

influence of the RMSD cutoff value on the success rate (see

results), a 3.5 Å cutoff was considered, for which the success rates

were 88% for single-loops and 82% for successive-loops proce-

dures compared to 82% and 72%, respectively, for the 3.0 A

cutoff. Nevertheless, for cases corresponding to RMSD between

3 Å and 3.5 Å, the quality of the prediction was not satisfying for

all CDR: in some cases, the method was not able to reproduce the

experimental hydrogen bonds, but created alternative ones, while

the conformation was strongly altered compared to the crystal

structure, see below, Table 1, Table 2 and Figure 7. Although

1nam CDR1a and 2bnr CDR3b have heavy atoms RMSD values

of 3.22 Å and 3.35 Å, respectively, the prediction could be

considered a success in the second case, but not in the first one,

showing that a 3.5 Å cutoff does not separate properly successes

and failures. As a consequence, the more stringent RMSD cutoff

of 3.0 Å was used in this study.

Intensive hydrogen bonds search
Because the creation of hydrogen bonds between CDR loops

and MHC is an important mechanism that governs the selection of

a TCR repertoire [13], our approach incorporated a novel

iterative strategy to converge towards such favorable interaction

pattern between TCR and pMHC. The efficiency of the hydrogen

bonds sampling generally increased through the application of

hydrogen bonds derived restraints, compared to a modeling

without iterations (data not shown).

As an illustration, the impact of this strategy on the modeling of

1kj2 CDR3a, a difficult loop to model (n/DN-C = 1.1 Å21), is

presented in Figure 8. On average, the RMSD of the conformers

decreased from 5.31 Å (SD = 1.68) initially to 3.61 Å (SD = 1.34)

after three iteration steps. In the complete set of 2000 conformers,

the total number of sampled hydrogen bonds and the proportion

of hydrogen bonds present in the reference crystal increased. After

three iterations, the final conformer had 2 out of the 3 hydrogen

bonds present in the reference structure, while its RMSD initially

at 5.66 Å reached 3.23 Å. Increasing the number of iterations to 4

Figure 4. TCRep 3D performs better than common modeling approaches because of iterative hydrogen bonds sampling. Single-loop
test set modeling with Anolea, Dope or Modeller pseudo-energy scoring functions with and without iterative hydrogen bond sampling compared to
TCRep 3D. (A) All-loops average RMSD of models to crystal structures. (B) CDR3 loops average RMSD. (*: p-value,0.05, **: p-value,0.01).
doi:10.1371/journal.pone.0026301.g004
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in that example did not improve further the collection of hydrogen

bonds. For the general approach, 3 iterations were made, since this

provided the best compromise between modeling improvement

and required CPU time (data not shown).

This approach led to the identification of numerous potential

hydrogen bond contacts, with many not observed in the crystal

structures. Obviously, the crystal structure of a TCRpMHC

provides an average conformation of the molecules in the crystal

state and does not describes comprehensively its dynamical

behavior at room temperature in solution.

Successive-loops modeling
The single-loops approach was set up to assess our ability to

model a loop in the correct environment provided by the known

crystal structure. The method gave a satisfying success rate of

82% using the 3.0 Å cutoff discussed earlier, illustrating the

efficiency of the loop modeling procedure when the environment

of the modeled part is correct. The success rate decreased to 72%

for the successive-loops approach. The performance change can

be explained by the accumulation of errors during the successive

modeling of the loops; indeed errors during CDR2 modeling will

impact the CDR1 modeling, whose error will, in turn, impact the

CDR3 modeling. Successive-loops modeling of the CDR is

however required in the general case since a standard homology

modeling procedure cannot provide reliable structures for all

CDR as TCR templates are in limited number and CDR

conformations may differ from unbound to bound states [9] [22]

[24] [25]. It is worth noting that, in our approach, the

conformational space that is explored by CDR loops is much

larger than the amplitude of CDR conformational change upon

binding. And since there is no memory effect during the ab initio

modeling (see Results), our results are not influenced by the

amplitude of the conformational change of the CDRs upon

binding (Figure S3).

The CDR refinement starts from the periphery of the binding

site, to end with central CDR3. In this manner, the most reliable

environment can be predicted for the central CDR3 that interact

the most with the rest of the CDRs, and is also often responsible

for most of the interactions with the peptide. The choice of a

sequential approach, where loops are modeled individually was

dictated by the need to sample reasonably sized conformational

spaces [26].

Figure 5. Sequence and structural models of the experimental set of CDR3b specific to NY-ESO-1/HLA-A2. (A) TCRVb sequences of the
experimental set of TCR, and structural alignment of the CDR3b, based on our structure predictions allow the identification of a conserved central Gly
residue (conserved residues are colored). (B) Structural superposition of the peptide and the CDR3b of the six predicted TCR structures bound to NY-
ESO-1/HLA-A2 visually confirm the key position of the central Gly of each CDR3b (green) for the CDR lock conformation around the peptide’s Met4
and Trp5.
doi:10.1371/journal.pone.0026301.g005
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Modeling failures
In non-successful cases, either CDR loops were unusually long

(11 residues for 1kj2 CDR3b) or the accessible conformational

space of the loop was particularly large. Indeed, for the most

notable failures, the n/DN-C values are 0.98, 1.28 and 1.22 Å21 for

1mi5 CDR3a, 1kj2 CDR3b and 1nam CDR3b, respectively (see

Table 1). As mentioned earlier, high values of n/DN-C are

associated with a larger conformational space to sample.

In these cases, the small number of hydrogen bonds made with

the pMHC in the crystal structure (0 or 1) also suggested that

CDR loop conformation is determined by other types of

interactions (mainly non polar) with the pMHC or interactions

within the TCR itself [27] [28].

NY-ESO-1 TCR repertoire structure prediction
Using our approach, we predicted six TCRpMHC structures of

specific TCR recognizing NY-ESO-1/HLA-A*0201. Previous

studies have already stated important characteristics of the

interaction between TCR and pMHC in this repertoire.

Experimental alanine scanning and in silico binding free energy

calculations pointed out the importance of the central Met4/Trp5

residues of the NY-ESO-1 peptide in the recognition by TCR

bearing the BV13 chain [7]. Also, Sami et al. [22] observed from

recently published crystal structures of one given TCR (pdb 2PYE

and 2PYF) that the CDR3b is subject to an important structural

rearrangement upon complexation to NY-ESO-1/HLA-A2 and

that CDR3a and b adopt a lock conformation around the peptide

Met4 and Trp5. Our models showed this lock conformation for all

the analyzed TCR of the repertoire. We further identified a

conserved central Gly residue in the CDR3b sequence fitting into

the notch formed by the Trp5 (Figure 5) and playing a key role in

this lock conformation. Indeed, dramatic structural rearrangements

were observed upon in silico mutations of the Gly to small residues

Ala and Ser, which suggested that the proper lock conformation of

the CDR3a and b was not accessible anymore. Experimental

titration ELISA of soluble TCR and pMHC as well as

measurements by flow cytometry of multimer binding at the

surface of T-cells of the Ala and Ser mutants actually showed a

total loss of binding affinity of the TCR to NY-ESO-1/HLA-A2

(Figure 6), which may be explained by the particular role played

by the Gly residue in our model.

Possible explanations for the structural rearrangement and the

loss of affinity upon complexation include: (i) the available space in

the notch formed by Trp5 is not sufficient to accept any side chain,

thus preventing the lock conformation of the CDR3 to occur. (ii)

the Gly residue may provide improved backbone flexibility to the

CDR3, as discussed by McCormack et al. [29] and Huang et al.

[30], because of the wider range of accessible combinations of Q
and y angles to Gly relative to other residues. This might be the

key allowing the CDR3 to structurally rearrange upon complex-

ation. Preliminary modeling results confirmed that the restriction

of the Gly Q and y angles to values accessible to other amino acids

prevented the CDR3 loop to adopt the lock conformation, and

resulted in structural deviations that were comparable to the ones

obtained by mutation to Ala and Ser (data not shown). The

flexibility of the loop may also allow its residues to have access to a

larger conformational space, in order to make optimal native

contacts with the environment.

In conclusion, the study of NY-ESO-1 binders with our

approach led to the rapid identification of key information that

was not evident at the sequence level. The agreement between

experiment and in silico results illustrates the efficiency of our

method for TCR repertoire analysis in identifying key structural

aspects linked to function, paving the road to structure-activity

relationships studies and rational TCR design.

Figure 7. Adequacy of 3.0 Å RMSD cutoff. Structural and hydrogen bond inspection confirm the modeling failure of 1nam CDR1a, RMSD 3.22 Å,
while 2bnr CDR3b, RMSD 3.35 Å, may be considered a successful prediction. Structural superposition of predicted loops (cyan ribbon) for 1nam
CDR1a (A) and 2bnr CDR3b (B) with their respective crystal references (purple ribbon). Dotted lines: CDR-pMHC potential hydrogen bonds made
between the CDR and the pMHC, green: potential hydrogen bonds reproduced by the predicted loop, orange: potential hydrogen bonds observed in
the crystal structure but not in the prediction and black: additional potential hydrogen bonds of the modeled CDR. pMHC residues making hydrogen
bonds with the CDR are explicitly shown in ball and stick. Peptide and MHC are shown in ribbon representation, in transparent grey.
doi:10.1371/journal.pone.0026301.g007

Figure 6. In silico and experimental mutation results in NY-ESO-1 repertoire. Mutations confirm the importance of the central Gly in CDR3b.
(A) Dramatic structural rearrangements of predicted structures of mutated Gly96Ala (orange) and Gly96Ser (red) loops superposed with the non-
mutated predicted structure of the CDR3b of LAU 155#1 (cyan). (B) Duplicated experimental titration ELISA on LAU 155#1 TCR and Gly96Ser mutant
shows the loss of affinity resulting from these mutations. (C) Mutation of the Gly96 to Ala in CDR3b induced loss of binding of NY-ESO-1 multimer, as
seen at the surface of SupT1 cells transduced with lentiviral particles.
doi:10.1371/journal.pone.0026301.g006
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Materials and Methods

Two modules were used for the TCRpMHC structure

prediction from the amino acids sequence. First, the homology

module was used to build the overall TCRpMHC model, as

previously described by our group [9]. The ab initio prediction was

used next to refine the CDR loops that determine the TCR

specificity for a pMHC complex (Figure 1). Computations were

spread on a computing grid and minimal user input was required.

Manual setup
We defined a database of X-ray crystal structures available for

homology computations and for quality evaluation of the method

(Table S1). The peptide sequence to model was manually aligned

with the peptides of the library. The order in which CDR loops

were refined by the ab initio prediction was defined manually to

offer flexibility, with the option of simulating several CDR loops

simultaneously. All subsequent steps were automatically executed.

Automated workflow
The IMGTH [31] (IMGTH, the international ImMunoGeneT-

ics information systemH http://www.imgt.org) database provides

the positions of the two first complementary regions (CDR1 and

CDR2) for each TCR alleles. The method performed a one-by-

one alignment of the V chains of the target with the alleles

provided by IMGTH to match the target sequence with its

corresponding allele and determine the position of the CDR1 and

CDR2 in the target. The templates were structurally aligned

together and the target sequence was then aligned to the fixed

structural alignment to determine the position of the CDR3. CDR

loops have by definition limited sequence homology between

different TCR, and have thus to be modeled ab initio. Therefore,

canonical restraints on the Q and y dihedral angles of CDR loops

(mean value and standard deviation) were added to limit the

conformational space accessible to a CDR loop during the

modeling steps. Canonical restraints consider key residues in the

TCR sequence together with CDR length to categorize CDR in

canonical groups associated with dihedral angles values [5]. We

expanded the table available in the literature with more recent

crystallography data from TCR and TCRpMHC [8] (Table S2).

Homology modeling. When required (NY-ESO-1 TCR

repertoire analysis), the alignment defined above together with

the canonical restraints of CDR loops dihedral angles was used for

the homology modeling of the TCRpMHC complex. The

computation of homology models as well as the clustering

method were conducted as described by our group in [9]. The

whole TCRpMHC complex, including TCRVa, TCRVb,

peptide, MHC class I and b2-microglobuline, is built during this

step and is used then as an initial condition for CDR ab initio

modeling.

Figure 8. Iterative application of hydrogen bonds derived restrains improves simulation results. The example of 1kj2 CDR3a in
sequential loop modeling demonstrates for the complete set of 2000 conformers (A) increased number of hydrogen bonds sampled with larger
proportion of interactions present in the reference crystal and decreased mean RMSD at each iteration. (B) Statistics of the best conformers at each
iteration. Three iterations were sufficient to obtain optimal results.
doi:10.1371/journal.pone.0026301.g008
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Ab initio prediction (Figure 1). The CDR loops were

refined successively according to the user-defined order. The first

CDR (or group of CDR) was modeled, using either a crystal

structure (assessment of the algorithm) or a homology structure

(NY-ESO-1 TCR repertoire analysis) as initial condition

(Figure 1.1). In this step, all the residues of the complex not

belonging to CDR loops remained fixed in space. Canonical

restraints were used as described above (Figure 1.2). The program

distributed the simulations on a computing grid until it collected

2000 conformers with a Modeller pseudo-energy function lower

than 500 (Figure 1.3). For each conformer of this set, potential

hydrogen bonds between the TCR and the pMHC were

identified. Then, 2000 new complexes were computed from the

same initial structure but with the potential hydrogen bonds

computed as additional restraints (Figure 1.4). Our aim was to bias

the population of conformers towards the region of conformational

space demonstrating TCR-antigen (i.e. pMHC) interaction. This

procedure was iterated 2 more times: on iteration i+1, the

hydrogen bonds occurring in at least 26i% of the 2000 conformers

were added as restraints to further restrict the conformation space

accessible to the system. (Figure 1.4). The RMSD matrix of the last

set of conformers allowed clustering the candidates (Figure 1.6 to

1.8) [9]. The RMSD cutoff of the algorithm was automatically

adjusted to ensure that the biggest cluster contained at least 20

conformers. To select the final conformer, the TCRep 3D scoring

function was computed for each conformer within the best mean

Modeller pseudo-energy cluster as the sum of the occurrence of

each of its potential hydrogen bonds between the TCR and the

pMHC in the 2000 conformers set (Figure 1.9). If no conformer in

that cluster made potential hydrogen bonds with the pMHC, the

one with the lowest pseudo-energy was selected. If another CDR (or

group of CDR) had to be modeled, this conformer was used as

initial condition. Therefore, to model one CDR, 8000 complete

TCRpMHC were generated and the clustering based on a

4006400 (or bigger) RMSD matrix was computed, leading to a

total computation time of about 7 CPU days on recent CPU

architecture. The parameters shown above for the iterative

modeling with canonical and hydrogen bonds restraints were set

to the maximal values allowing to obtain the results in a reasonable

amount of time, taking account of the available computing power.

Making 3 iterations after the first set of conformers was shown to

improve the ability of the ab initio prediction to model hydrogen

bonds accurately (see discussion and Figure 8).

Databases
TCR variable a and b chains CDR1 and CDR2 positions were

determined from IMGTH (http://www.imgt.org) [31]. In this

paper, crystallographic structures are named according to their

Protein Data Bank accession numbers (Research Collaboratory for

Structural Bioinformatics Protein Data Bank, http://www.rcsb.

org/pdb/) [12]. Crystal structures of TCRpMHC were selected

after the review of Rudolph et al. [8] : 1ao7 [32], 1bd2 [33], 1g6r

[34], 1kj2 [35], 1lp9 [36], 1mi5 [27], 1nam [28], 1oga [37], 2bnr

[21] and 2ckb [38] (Table S1). Redundant structures were ignored

in our test set, but they were used nonetheless for canonical groups

categorization. Crystal structures of TCR and fragments of TCR

were also included in the templates list for homology modeling and

canonical groups categorization: 1b88 [39], 1bec [40], 1i9e [41],

1h5b [42], 1kb5 [43], 1ktk [44], 1nfd [45] and 1934.4 (not in PDB)

[46].

Molecular modeling software
The automated approach to model the TCRpMHC complex

was programmed in Perl (http:www.perl.org) and simulations were

distributed on a computing grid. The following software was used

for specialized tasks. Sequence and alignments, homology and

CDR loop modeling were performed by Modeller 9v5 software

[10] (http://salilab.org/modeller/modeller.html), loop modeling

used the method of conjugated gradients combined with molecular

dynamics and simulated annealing [10,26]. Jali [47] performed

single sequences alignments with structurally aligned block of

crystal templates (http://bibiserv.techfak.uni-bielefeld.de/jali/).

Potential hydrogen bonds were identified with the HBplus

software version 3.15 [48].

Protein production and Titration ELISA
The alpha and beta chains of TCR LAU 155 (AV23.1 &

BV13.1), up to and including constant region residues alpha-

Cys209 and beta-Cys242, were cloned into pHYK8 under the

control of a CMV promoter. Similar to Chang et. al. [49], chain

pairing was facilitated with an acidic-basic zipper, and a His-tag

was included at the carboxy terminus of the beta chain. The

mutation beta-Gly96Ser was introduced using the QuickChangeH
mutagenesis kit (Stratagene, La Jola, CA). Soluble TCR was

produced at the Protein Expression Core Facility of the Ecole

Polytechnique Fédérale de Lausanne in PEI transfected HEK 293

cells cultured over 5 days, and was subsequently purified with Ni-

NTA agarose (Qiagen, Valencia, CA) and imidazole elution.

Recombinant soluble HLA H and b2 microglobulin chains (HLA-

A2) were obtained using a prokaryotic expression system (pET;

R&D Systems, Minneapolis, MN) as previously described [50].

The chains were folded by dilution in the presence of NY-ESO-

1157–165 peptide (p) and subsequently purified by fast protein liquid

chromotography. The BirA enzymatic site, included at the

carboxy terminus of the H chain, was then biotinylated (Avidity,

Denver, CO). Protein quality was assessed by SDS-PAGE and

concentrations were determined by Bradford measurement.

Titration ELISA was used to assess TCR binding. Briefly,

biotinylated pHLA-A2 was captured in streptavidin-coated plate

wells blocked with 2% bovine serum albumin (BSA) in Tris

buffered saline (TBS, pH 7.4). Soluble TCR, titrated in TBS, 1%

BSA, 0.1% Tw, was incubated for 1.5 h at RT. TCR bound to the

pHLA-A2 was detected with anti-b chain TCR MAb (Pierce,

Rockford, IL; TCR1151) diluted 1/1500, followed by HRP-

conjugated-goat- (anti-mouse IgG)-Ab (Pierce, 31430), diluted 1/

1500 in TBS, 0.1% Tw, and HRP detection with ABTS in a citric

acid and phosphate solution containing H2O2. Plate wells were

thoroughly washed at each step. Plate readings were taken at

OD405–490 nm.

Lentiviral production, cell transduction and flow
cytometry analysis

The Gly96Ala substitution was introduced into the wild-type

(WT) TCR BV13.1 (patient LAU 155) DNA by PCR mutagenesis

using the QuickChange mutagenesis kit (Strategene, La Jolla, CA)

and confirmed by DNA sequencing (GenBank accession number:

JN180298). Lentiviral vectors were produced by transient

transfection of 293T cells, a human embryonic kidney (HEK)

epithelial cell line that expresses the SV40 large T antigen (ATCC)

[17], using a standard calcium phosphate precipitation protocol as

described elsewhere [17]. In brief, 293T cells were cotransfected

with the vector of interest (pRRL-hPGK-TCR Va23.1-IRES-

TCR Vb13.1) and the transfer vector, envelope, and packaging

plasmids (pRSV-Rev, pMD2-VSV-G, and pMDLg/pRRE).

Supernatants were harvested 24 h and 48 h post transfection,

filtered, and concentrated by ultracentrifugation. Pellets were

resuspended in sterile cold PBS and directly used. A total of

16106/ml of SUP-T1 cells were transferred to pretreated
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polybrene plates (1 mg/ml) and transduced with concentrated

lentiviral supernatant. After 5 days of culture in RPMI 1640

(Invitrogen) supplemented with 10% fetal calf serum, 10 mM

Hepes, and antibiotics, cells were analyzed by flow cytometry

using PE-labeled HLA-A2/NY–ESO-1157–165 (SLLMWITQA)

multimer, FITC-conjugated antibody against human BV13.1 or

CD8-PE-Cy7.

Additional software
P-values were computed by the GraphPad Prism software.

Molecular representations were made using the Visual Molecular

Dynamics (VMD) software [51].

Supporting Information

Figure S1 (A) Crystal structure of 1fo0 CDR3a (red transpar-

ent), displayed with its crystal neighbor TCRpMHC complex. The

residues making the crystal contact, e.g. CDR3a Tyr97 (red) and

MHC Ala135 (green) are shown in sticks. (B) TCRep 3D model of

1fo0 CDR3a (red transparent) demonstrates a significant confor-

mational deviation from the crystal with a hydrogen bond between

CDR3a Tyr97 (red) and Asp4 of the peptide (green).

(EPS)

Figure S2 Ramachandran plot for 2000 conformers of 1kj2

CDR2b Arg50, in unrestrained simulations, and with canonical

restraints. The region defined by the canonical restraints is

localized by an orange line. Ramachandran positions of the

residues in the crystal structures are shown by an orange dot in

each plot. Colored surfaces correspond to the Q/y accessible areas

for all amino-acids except Gly. The plots are generated by the

VMD software.

(EPS)

Figure S3 Success of CDR loop modeling is independent of

conformational changes upon TCR binding to pMHC. RMSD of

all predicted single-loops of the test set plotted against the

corresponding RMSD between the bound and unbound crystal

structures [25] (when available).

(EPS)

Table S1 (A) List of TCRpMHC crystal structures used in the

test set. (B) List of crystal structures of unbound TCR and pMHC

used to complement the template list and update the definition of

canonical restraints.

(XLS)

Table S2 Table of the canonical groups defined by Al-Lazikani

et al. [5]. Angles and SD values were updated with more recent

structures (see Methods). Key residues are highlighted. The

canonical group a2-1 is entirely defined by residues that are

external to the CDR (e.g. Phe 32 and Leu 66).

(XLS)
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