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Abstract 

Helper Innate Lymphoid Cells (ILCs), the most recently identified population of the Innate 

Lymphoid Cell family, play a fundamental role in the restoration of tissue integrity, in the 

protection against infiltrating pathogens as well as in tumor immune-surveillance. ILCs have 

been divided into three main subsets, ILC1, ILC2 and ILC3, that can be specifically activated by 

different signals coming either indirectly from pathogens or from other cell populations, 

including cancer cells. Following activation, ILCs are in turn able to promptly secrete a wide 

range of soluble mediators that modulate effector cell functions. The discovery and the study of 

these immune cells is now offering important opportunities for innovative therapies of allergic 

airway diseases, inflammatory disorders and might be crucial for the discovery of new targets for 

the therapy of cancer. It is therefore fundamental that the scientific community establishes 

harmonized guidelines to obtain a consensus in the identification and phenotypical and 

functional characterization of ILCs. 
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Introduction 

Beside natural killer (NK) cells and lymphoid tissue inducer (LTi) cells, discovered respectively 

in 1975 and 1997(1,2), several distinct Innate Lymphoid Cell (ILCs) populations have been 

recently identified(3). As NK and LTi, ILCs require the common γ  chain of the interleukin chain of the interleukin-2 (IL-

2) receptor and the transcriptional repressor Id2 for their development, and are characterized by

the absence of rearranged antigen-specific receptors(4-6). These ILC populations have been 

named ILC1, ILC2 and ILC3 according to their cytokine and transcriptional profiles that mirror 

the ones of CD4
+
 T helper (Th)1, Th2 and Th17/22 cells, respectively, and are therefore 

considered “helper” ILCs(7,8). According to this classification, LTi have been included in the 

ILC3 population, while NK cells are part of the ILC1 subset, even if they represent the 

“cytotoxic” ILCs, being the counterpart of CD8
+
 cytotoxic T cells(9) (Fig.1).  

Helper ILCs are circulating in the peripheral blood but are also present in lymphoid organs and 

are enriched at mucosal and barrier surfaces. As innate immune cells, their role is crucial during 

the early stages of the immune responses(10-12), when they constitute the main source of several 

pro- and anti-inflammatory cytokines (Fig.1). Since ILCs are now the focus of extensive 

investigations describing their central role in both homeostatic and pathophysiological processes, 

a careful identification of their phenotype as well as of their function will be key for their 

understanding. 

Identification of ILCs 

The first concern in the study of ILCs is represented by the fact that several groups have used 

distinct criteria and markers for their identification. Indeed, ILCs have been initially defined as 

Lineage negative (Lin
-
) CD127

+
 cells, but some groups have recently identified non-classical 

human ILCs CD127
dim

 and mouse ILCs CD127
- 
(that are out of the focus of this review)(13-16). 

This article is protected by copyright. All rights reserved.
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Moreover, it is difficult to determine what “Lineage” means for the different research teams. In 

humans, the most common Lineage markers include CD3, CD19, CD56, CD14, HLA-DR and 

CD34, to respectively identify T, B and NK cells, monocytes, dendritic cells and hematopoietic 

progenitor cells. However, these markers might not be sufficient to exclude Lineage positive 

cells from the ILC gate. For example, it is known that CD3 can be internalized and, therefore, its 

extracellular expression consequently be reduced once T cells get activated(17), opening the 

possibility that CD127
+
 T cells could be included in the CD3

-
 gate and, thus, making CD3 

insufficient for T cell exclusion. Moreover, CD19 might also not be sufficient to completely 

exclude all human B cell subsets(18), while CD56 and HLA-DR should not be included in the 

Lineage being expressed on a subset of ILC3(19). 

Since there is not a way to precisely determine which markers belong to the “Lineage”, different 

groups have developed their own “Lineage mix”. As a consequence, results obtained from 

different groups are not comparable and/or reproducible. To test the impact of using different 

Lineage mix on the reproducibility of the results, we collected blood from three healthy donors 

and we compared the frequency of total ILCs obtained with our Lineage mix and with the mix 

published by four other groups. As shown in Figure 2, by using different Lineage mix, the 

frequencies of gated ILCs are indeed different, irrespective of inclusion or exclusion of the 

CD127
dim

 ILCs. 

The choice of the Lineage mix 

To determine which markers need to be included in an optimal Lineage mix we started with a 

basic cocktail comprising CD3, CD4, CD8, CD14, CD15, CD16, CD19, CD20 and CD34 and 

we tested which cells were included in the Lin
-
CD127

+
 region, that were not bona fide ILCs.  

This article is protected by copyright. All rights reserved.
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Since dendritic cells are identified as Lin
-
HLA-DR

+
 cells, but HLA-DR can also be expressed by 

ILCs(19), we assessed the expression of other DC markers in the Lin
-
CD127

+
 population. The 

two main populations of myeloid DCs are CD11c
+
CD16

+
 or CD11c

+
CD1c

+
, while plasmacytoid 

DCs are CD11c
-
CD123

+(20)
. Since CD16 was included in our mini-cocktail, we tested only CD1c 

and CD123. As shown in Figure 3A, by comparing Lin
-
CD127

-
 and Lin

-
CD127

+
 cells, we did 

not observe a population of CD1c
+
 or CD123

+
 in the ILC gate. Notably, for dendritic cell 

exclusion, beside CD1c
+
 or CD123

+
, we decided not to include CD11c in the Lineage since ILCs 

are developmentally related to NK cells and it has been shown that NK cells can express this 

marker(21). 

Secondly, we wanted to address if basophils or mast cells were contaminating the ILC gate. To 

test this hypothesis, we monitored the expression of FcεRI and CD203cRI and CD203c in the Lin
-
CD127

-
 and in 

the Lin
-
CD127

+
 gates(22). As shown in Figure 3A, we found both a FcεRIRI

+
 and a CD203c

+
 

population in the ILC gate, and therefore we considered necessary to include these two markers 

in our Lineage mix. 

Finally, we tested if myeloid derived suppressor cells (MDSCs) were present in the gate of ILCs. 

Since we had already included CD14 and CD15 in the Lineage cocktail, we only verified the 

expression of CD33 in the Lin
-
CD127

+
 and in the Lin

-
CD127

-
 regions(23). As shown in Figure 

3A, we found a CD33
+ 

population in the ILC gate and we thus included CD33 in our Lineage 

cocktail. Using this Lineage mix, the presence of ILCs within the Lin
-
CD127

- 
population is 

negligible, as assessed by evaluating the expression of T-bet, GATA3 and RORγt in Lin
-
CD127

- 
 

cells (Figure 3B). 

In conclusion, by performing all these necessary, but possibly not exhaustive comparisons, we 

determined that a Lineage mix useful to exclude rare populations from the ILC gate should 
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contain at least antibodies against CD3, CD4, CD8, CD14, CD15, CD16, CD19, CD20, CD33, 

CD34, CD203c and FcεRI.RI. 

CD161 and NKp44: should we use them? 

Another concern in the identification of human ILCs is represented by the use of the marker 

CD161. Indeed, some groups showed that all ILCs are CD161
+
 and use this marker in their 

gating strategy(24,25),
 
while others, including our group, do not add CD161 in the gating 

strategy(26-28). Since it was shown that CD161 is not present in all ILC subsets, being at least 

ILC1 and LTi CD161
+/-(7,29)

,
 
we propose not to include this marker in the gating strategy, thus 

avoiding to exclude from the analysis ILCs that are CD161
- 
(Fig.4).  

Concerning the phenotype of the three different human ILC subsets, namely ILC1, ILC2 and 

ILC3, it is well established that ILC1 are CRTH2
-
ckit

-
CD56

-
, ILC2 are CRTH2

+
ckit

+/-
CD56

-
, 

while ILC3 are CRTH2
-
ckit

+
CD56

+/-(7,19)
. Here, the main concern is represented by the choice of 

the natural cytotoxicity receptor (NCR) used to discriminate between the two main subsets of 

ILC3, i.e. ILC3 NCR
+
 and ILC3 NCR

-
. In humans, the NCR family is made of three molecules: 

NKp30, NKp44 and NKp46. However, only NKp46 is present in both humans and mice and is 

expressed regardless of the activation status of the cells(30). Therefore, even if several groups 

proposed to use NKp44 to define ILC3 NCR
+
 cells(26,31), we and others suggested to use 

NKp46(27,28,30). Once again, the frequencies of ILC3 NCR
+
 and ILC3 NCR

- 
change according 

to the choice of the NCR marker used for their identification (Fig.4). 

The ILC gating strategy and the cytokine production 

The main function of ILCs is to rapidly respond to different signals by secreting a wide range of 

soluble mediators. In particular, ILC1 are activated by IL-12/IL-15/IL-18 to secrete type 1 

This article is protected by copyright. All rights reserved.
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cytokines (i.e. IFN-γ , TNF-α ), ILC2 by IL-25/IL-33/TSLP/PGD2 to secrete type 2 cytokines (i.e. 

IL-4, IL-5, IL-13) and ILC3 by IL-23/IL-1β  to secrete type 3 cytokines (i.e. IL-17, IL-22, GM-

CSF, LT-α)(32).
 
As a consequence, ILC1 are involved in type 1 immunity to viruses and 

intracellular bacteria(16,33), ILC2 in type 2 immunity to helminths and allergens(34,35), while 

ILC3 in type 3 immunity to extracellular microbes(36,37). Therefore, it is fundamental that the 

three different ILC subsets identified by the selected gating strategy are sensitive to the subset-

specific stimulation and are able to produce the pattern of soluble mediators specific of each ILC 

subset (Fig.5). It has to be noticed that ILCs can also be stimulated with phorbol 12-myristate 

13-acetate (PMA) and ionomycin to induce cytokine production/secretion. However, this 

stimulation is not subset-specific and therefore the different ILC subsets might display 

production of soluble mediators that is not occurring under physiological conditions (e.g. ILC2 

able to produce IFN-γ ). 

The ILC gating strategy in disease 

Finally, the selected gating strategy should allow to evaluate phenotypic and functional 

alterations in ILCs in different disease settings. In that regard, it has been shown that ILC2 play a 

crucial role in allergic airway disease both in mice and in humans(38,39).
 
In this setting, among 

other stimuli, ILC2 are enhanced and activated by eicosanoids, suggesting that ILC2 function 

could be modulated by interacting with metabolites of the eicosanoid pathway(40-42).
 
Given the 

fact that ILC2 are identified as CRTH2
+
 ILCs, but that CRTH2 is also expressed by basophils 

and mast cells(22), to appreciate the increase of ILC2 in allergic patients, it is important that the 

Lineage cocktail includes markers allowing the exclusion of these cells by using other markers 

than CRTH2 (e.g. FcεRIRI and CD203c) (Fig.6). 

This article is protected by copyright. All rights reserved.
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It has been shown that ILCs also play a central role in cancer immunity(30,43,44).
 
For example, 

in the context of leukemia, ILC1 are increased, although hypo-functional, being less able to 

produce type 1 cytokines in comparison to their healthy counterpart. In particular, ILC1 were 

found increased in patients suffering from either acute myeloid leukemia or chronic lymphocytic 

leukemia(27,45,46).
 
Again, the choice of the Lineage cocktail and of the markers useful to 

identify ILCs should enable to appreciate the ILC1 increase in leukemic patients, without risking 

a contamination of the ILC1 subset by leukemic cells or other cell subsets (Fig.6). 

Concluding remarks 

In the last few years, great efforts have been done to characterize the newly discovered family of 

helper ILCs in tissue and in peripheral blood, in both mice and in humans. However, data 

generated by different groups are often not comparable due to the choice of the markers used to 

identify both total ILCs and the different ILC subsets. In this review, we describe our gating 

strategy to identify human circulating ILCs, providing evidence to support our choice of markers 

(Table 1). However, we believe that a consortium of experts in the field should meet to reach a 

consensus about which markers have to be included in the Lineage and which ones have to be 

used to discriminate the different ILC subsets, both for mouse and human ILCs. This would be 

extremely important not only for fundamental research on ILCs, but also for the rapid application 

of these findings to translational research. Indeed, the next challenge in the ILC research field is 

represented by the identification of strategies to target ILCs in human diseases. Therefore, the 

increasing importance of ILCs in innate responses really deserves that a uniform phenotype is 

established. 
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Figure legends 

Figure 1. Innate lymphoid cells and their counterparts in the adaptive immune response. 

Both the innate and the adaptive lymphocytes arise from the Common Lymphoid Progenitor 

(CLP). Helper ILC1, ILC2 and ILC3 and cytotoxic NK cells originate, upon cytokine 

stimulation, from the Early Innate Lymphoid Cell Progenitor (EILP). Helper Th1, Th2 and Th17 

and the cytotoxic CD8
+
 T cells originate from the CD4

+
CD8

+
 Double Positive Progenitor (DP), 

upon T-Cell Receptor (TCR) and cytokine activation. The signature cytokines for each subset are 

indicated. 

Figure 2. ILC frequencies in peripheral blood and tissues. A) Peripheral blood mononuclear 

cells (PBMCs) were purified by Ficoll density gradient from 3 healthy donors. Five different 

Lineage mixes to identify ILCs by multicolour flow cytometry were compared: i) Lineage ILC 

Mix: CD3 (UCHT1), CD4 (13B8.2), CD14 (RMO52), CD16 (3G8), CD19 (HD237) from 

Beckman Coulter, CD8 (LT8), CD15 (MEM-158) from AbD Serotech, CD20 (2H7), CD33 

(HIM3-4), CD34 (561), CD203c (E-NPP3) and FcεRIα (AER-37) from Biolegend; ii) Mix 

1(47): CD3, CD14, CD19, CD34; iii) Mix 2(48): CD3, CD14, CD19, CD20, CD56, CD11c (3.9) 

and CD123 (6H6) from Biolegend; iiii) Mix 3(49): CD1a (BD, HI149) , CD3, CD11c, CD14, 

CD16, CD19, CD34, TCRαβ (IP26A), TCRγδ (B1) and BDCA2 (V24-785) from BD, FcεR1, 

CD123 and iiiii) Mix 4(31): CD1a, CD3, CD11c, CD14, CD16, CD19, CD34, TCRαβ, TCR γδ, 

BDCA2, FcεR1, CD94 (Biolegend, DX22), CD123. 

ILCs were identified within the peripheral blood lymphocyte region on the basis of their forward 

(FSC) and side scatter (SSC) profiles (FSC low and SSC low) and by excluding from the 

analysis doublets (FSC H/FSC W dot plot, followed by SSC A/SSC W dot plot) and dead cells 

(positive for ViViD LIVE/DEAD fixable dead cell stain kit (LifeTechnologies)). Left part: 

This article is protected by copyright. All rights reserved.
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representative comparison of ILC gating on the same donor according to the different Lineage 

mixes used. Total ILCs were gated in red as Lin
-
CD127

+
 cells, while Lin

-
CD127

bright
 ILCs were 

gated in blue. Right part: histograms represent the mean ±SD of ILC frequencies using the 

different Lineage mixes. ILC frequencies can significantly differ depending on the Lineage mix 

used. B) Following CD45-Krome Orange (J.33, from Beckman Coulter) gating, the Lineage ILC 

mix was also used to identify total ILCs and ILC subsets in tonsils, spleen, axillary, mesenteric 

and inguinal lymph-nodes, thymus, liver, small intestine and colon from tissue cell suspension 

from freshly deceased, healthy cadaveric donors. Representative plots are shown. The different 

ILC subsets were determined according to the expression of CRTH2 vs cKit: ILC1 CRTH2
-
cKit

-
, 

ILC2 CRTH2
+
cKit

+/-
 and ILC3 CRTH2

-
cKit

+
. Antibodies used: Lineage ILC Mix-FITC, CD127-

PerCP-Cy5.5 or BV421(A019D5), cKit-PE or APC (104D2) from Biolegend, CRTH2-BV421 or 

PE-CF594 (BD, BM16).  

The dot plots shown in this review are the result of a minimum of 10
6
 MNCs acquired on a 

Gallios 

flow cytometer (Beckman Coulter). Data were analyzed using FlowJoTM software (TreeStar). 

Figure 3. The choice of the Lineage mix. A) A minimal Lineage mix (Lin) was used 

comprising PE-conjugated CD3 (UCHT1), CD4 (13B8.2), CD8 (SFCI21Thy2D3), CD19 (89B) 

from Beckman Coulter, CD14 (MφP9), CD15 (HI98), CD34 (8G12) from BD and CD16 (3G8) 

from Biolegend. CD127 was used in BV421. Comparison of different marker expression 

between Lin
-
CD127

-
 lymphocytes in gray (non ILC population) and Lin

-
CD127

+ 
lymphocytes

 
in 

red (Total ILCs) for DC (CD1c and CD123), basophils, mast cells and MDSC (FcεRI, CD203c 

and CD33) exclusion. Antibodies used: CD123-PE-Cy7, CD1c-APC-Cy7 (Biolegend, L161), 

FcεRI-FITC, CD203c-FITC, CD33-FITC, CD34-FITC, cKit-APC, CD127-BV421, CRTH2-
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PerCP-Cy5.5. B) Representative histograms comparing T-bet, GATA-3 and RORγt expression 

between Lin
-
CD127

-
 lymphocytes in gray (non ILC population) and Lin

-
CD127

+ 
lymphocytes

 
in 

red (Total ILCs). The stainings were repeated in 3 different healthy donors with comparable 

results. Antibodies used are: Lin-FITC, CD127-PerCP-Cy5.5, RORγt-PE (Q21-559), GATA3-

PE-Cy7 (L50-822), T-bet-PE-CF594 (04-46) from BD. 

Figure 4. CD161 and NKp44. Representative histograms of CD161 expression in total ILCs 

(upper part), and of NKp46 and NKp44 expression in ILC3 (lower part) gated using either the 

Lineage ILC Mix or the Mix 4 (purple and grey histogram respectively). The stainings were 

repeated in 3 different healthy donors with comparable results. MFI values are shown. 

Antibodies used: Lin-FITC, CD127-BV421, cKit-PE, CRTH2-PE-CF594, NKp46-PerCP-Cy5.5 

(9E2), NKp44-APC (p44-8) and CD161-AmCyan (HP-3G10) from Biolegend. 

Figure 5. Specific transcription factors and cytokine production in the different ILC 

subsets. A) Total ILCs and ILC subsets were stained as in Figure 1 using the Lineage ILC mix, 

then the cells were fixed and permeabilized (eBioscience™ Foxp3 / Transcription Factor 

Staining Buffer Set) and stained for T-bet, GATA3 and RORγt expression. B) Total PBMCs 

(3x10
6 
cells/condition) were cultured with different cytokine cocktails overnight in the presence 

of brefeldin A (2 µg/ml). As negative control, PBMCs were cultured in absence of stimulating 

cytokines for the same period of time. IL-12, IL-15, IL-18 were used to stimulate ILC1s, IL-25, 

IL-33, TSLP, PGD2 to stimulate ILC2s and IL-23, IL-1β for ILC3s. All cytokines were use at 50 

ng/ml. PGD2 was used at 100 nM. Intracellular expression of IFN-γ, IL-13, and LT-α was 

evaluated in the 3 subsets. Antibodies used: Lin-FITC, CD127-PerCP-Cy5.5 or PE-CF594, cKit-
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APC/Fire 750 (Biolegend, 104D2), CRTH2-BV421 or PerCP-Cy5.5, RORγt-PE, GATA3-PE-

Cy7, T-bet-PE-CF594, IFN-γ-PE-Cy7 (4S.B3) and IL-13-APC (JES10-5A2), from BD, LT-α-PE 

(Biolegend, 359-81-11). 

Figure 6. ILC gating strategy in HD and patients. Comparison of blood-derived total ILCs 

and ILC subset distribution using the Lineage ILC mix in A) HD vs allergic patients and B) HD 

vs acute myeloid leukemia (AML) patients (n=3 in all the conditions). Antibodies used: Lin-

FITC, CD127-BV421, cKit-APC, CRTH2-PE-CF594. 

Table 1. Comparison of marker expression in human ILC subsets. 
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