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Abstract

Background

Genotype-phenotype analyses of rare diseases often suffer from a lack of power, due to

small sample size, which makes identifying significant associations difficult. Sinusoidal

obstruction syndrome (SOS) of the liver is a rare but life-threatening complication of hemato-

poietic stem cell transplantation (HSCT). The alkylating agent busulfan is commonly used in

HSCT and known to trigger SOS. We developed a novel pipeline to identify genetic determi-

nants in rare diseases by combining in vitro information with clinical whole-exome sequenc-

ing (WES) data and applied it in SOS patients and controls.

Methods

First, we analysed differential gene expression in six lymphoblastoid cell lines (LCLs) before

and after incubation with busulfan. Second, we used WES data from 87 HSCT patients and

estimated the association with SOS at the SNP and the gene levels. We then combined the

results of the expression and the association analyses into an association statistic at the

gene level. We used an over-representation analysis to functionally characterize the genes

that were associated with a significant combined test statistic.

Results

After treatment of LCLs with busulfan, 1708 genes were significantly up-, and 1385 down-

regulated. The combination of the expression experiment and the association analysis of
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WES data into a single test statistic revealed 35 genes associated with the outcome. These

genes are involved in various biological functions and processes, such as “Cell growth and

death”, “Signalling molecules and interaction”, “Cancer”, and “Infectious disease”.

Conclusions

This novel data analysis pipeline integrates two independent omics datasets and increases

statistical power for identifying genotype-phenotype associations. The analysis of the tran-

scriptomics profile of cell lines treated with busulfan and WES data from HSCT patients

allowed us to identify potential genetic contributors to SOS. Our pipeline could be useful for

identifying genetic contributors to other rare diseases where limited power renders genome-

wide analyses unpromising.

Trial registration

For the clinical dataset: Clinicaltrials.gov: NCT01257854. https://clinicaltrials.gov/ct2/

history/NCT01257854.

1. Introduction

Sinusoidal obstruction syndrome (SOS) of the liver is a serious, sometimes life-threatening

complication of chemotherapies and hematopoietic stem cell transplantation (HSCT) [1]. SOS

commonly arises from endothelial damage and hepatic injury which are triggered by the con-

ditioning regimens given prior to HSCT [2]. Known risk factors for SOS are treatment with

multiple alkylating antineoplastic agents, younger age at HSCT, underlying disease, previous

liver damage, iron overload, HSCT-specific factors such as myeloablative versus reduced-

intensity conditioning regimens, donor type, number of previous HSCTs, and concomitant

hepatotoxic treatments [3–5]. Particularly the alkylating agent busulfan which is used in a

large proportion of patients undergoing HSCT shows a strong and dose-dependent association

with SOS impacting survival [6–8]. Mouse models identified the exposure to busulfan as initi-

ating factor leading to endothelial cell injury and later SOS [9]. The further mechanisms

involved in SOS are complex. Initial endothelial cell damage caused by the conditioning regi-

men leads to inflammation resulting in activation of the coagulation cascade leading to micro-

thrombi in the liver microvasculature [10,11] and obstruction of the centrilobular vein of the

liver [12]. The outflow obstruction in the liver causes additional damage to the hepatic cells

and leads to painful hepatomegaly, jaundice, and liver dysfunction. In severe cases, patients

may develop multiple organ failure with a mortality rate of over 80% [5]. Defibrotide, an anti-

coagulant and anti-inflammatory drug, is an effective treatment if administered early in the

course of the disease [13,14]. Also, prophylactic treatment with defibrotide starting simulta-

neously with the conditioning regimen in high-risk populations is feasible and effective but

not without side effects [15]. To target the right patients for prophylaxis, we need to identify

the risk factors associated with SOS, including genetic contributors.

Various studies have reported germline genetic variants in association with SOS. Most of

these studies have used a candidate gene approach. They identified several genetic determi-

nants of SOS in genes that encode for detoxification enzymes, particularly glutathione S trans-

ferases such as GSTA1 [16–18], enzymes which affect glutathione levels (e.g. cystathionine

gamma-lyase [CTH]) [19]), oxidative liver injury (e.g. methylenetetrahydrofolate reductase

[MTHFR]) [19,20], the iron metabolism (e.g. homeostatic iron regulator [HFE]) [21], and urea
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cycle (e.g. carbamoyl phosphate synthetase I [CPS1]) [21]. We previously performed an

exome-wide association analysis focusing on exonic variants with predicted functional impact

and those in adjacent untranslated regions (UTRs) in patients undergoing busulfan-based

HSCT. We identified genetic variants in the UGT2B10 and LNPK genes, which were replicated

in an independent population [22]. The polymorphisms that were found to be associated with

SOS in previous studies were not validated in the exome-wide discovery analysis, which likely

reflects the coverage of the exome-specific analysis and selection of functional variants. Cur-

rently, our knowledge of the genetic predictors for SOS is still very limited, identified associa-

tions were only inconsistently replicated [23], and novel approaches should be developed to

estimate the genetic contribution to SOS.

Since a majority of studies addressing complications of HSCT and similar other rare condi-

tions lack the power to identify genetic predictors due to the small sample size, we used a strat-

egy that is built on the strong link between the exposure to busulfan and the onset of SOS [24].

We generated transcriptomic data from lymphoblastoid cell lines (LCLs) exposed to busulfan

in vitro and evaluated gene expression changes following treatment. We used the raw whole-

exome sequencing (WES) data published previously [22]. Additional filtering steps on the

WES data were applied to reduce genetic heterogeneity in the sample, prior to conducting the

association analysis. We performed the association analysis with SOS at the SNP and gene

level. Importantly, we combined the results of the association analysis and the transcriptomic

analysis into a test statistic which measures the strength of association with the phenotype of

interest, at the gene level.

2. Materials and methods

2.1. Design of the study

We developed a data analysis pipeline which includes the following steps:

First, we performed a differential gene expression analysis of LCLs before and after in vitro
exposure to 100 μM busulfan (Fig 1). Second, we performed an association analysis with SOS

at the SNP level, using the raw whole-exome sequencing (WES) data published previously

Fig 1. Flowchart of the transcriptomic data analysis pipeline in 6 lymphoblastic cell lines with and without in
vitro busulfan treatment. Legend: BAM, Binary Alignment Map; DEG, differentially expressed genes; RNA,

ribonucleic acid; SAM, Sequence Alignment Map; WES, whole-exome sequencing.

https://doi.org/10.1371/journal.pone.0281892.g001
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[22], after the application of a series of filtering steps to reduce genetic heterogeneity in the

data [25]. Third, we used a gene-based test for association, which allows us to combine the

effects of all SNPs in a gene into one test statistic while correcting for linkage disequilibrium

(VEGAS2) [26]. A gene-based approach allows achieving greater power for identifying rele-

vant genes by (i) detecting significant associations through the combination of several SNPs

showing marginal levels of significance that are often indistinguishable from random noise in

the initial WES results [26], and (ii) reducing the multiple-testing problem of WES analysis by

considering statistical tests for approximately 20,000 genes per genome as opposed to testing

hundreds of thousands of SNPs in a typical exome-wide analysis [26]. Then, we computed a

gene-based score, and its associated p-value, by combining the results of the differential gene

expression analysis and the gene-based test for association. By integrating the expression and

association evidence at the gene level, we increased the power to detect genetic determinants of

the clinical outcome of interest, since (i) the resolution of our approach should be higher than a

classical exome-wide analysis, as we combine evidence from independent experiments, and (ii)

the resolution of our approach should be higher than a candidate gene study, as we don’t focus

exclusively on a few candidates, selected a priori. This increase in power relies on the following

assumption: genetic variants which predispose to SOS are found preferentially in genes which

expression level is affected by the treatment. Fourth, we performed a functional analysis, which

consists of identifying pathways and gene sets that are over-represented in the list of signifi-

cantly associated genes. Fifth, we estimated polygenic risk scores (PRS) for the cases and the

controls for which the exome data was available [22]. These scores were computed as the sum of

the number of risk alleles carried at each variant, weighted by their effect size (Fig 2).

2.2 Transcriptomic analysis of lymphoblastoid cell lines

We collected RNA sequencing data on LCLs (Coriell Cell Repository, Camden, NJ, USA)

before and after exposure to busulfan. Briefly, we performed true-seq RNA-sequencing of

mRNA extracted from six LCLs (GM7056, GM12239, GM12762, GM12057, GM12489, and

Fig 2. Flowchart of the data analysis pipeline combining whole-exome sequencing of predominantly pediatric patients

with in vitro transcriptomic data. Legend: LCL, lymphoblastoid cell line; SNP, single nucleotide polymorphism; SOS,

sinusoidal obstruction syndrome; WES, whole-exome sequencing.

https://doi.org/10.1371/journal.pone.0281892.g002
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GM12546) pre and post 48h of 100 μM busulfan treatment. The chosen concentration of

busulfan represents 80% of cell viability in our set of LCLs with an average 50% inhibitory con-

centration of 415,1+/-203,3 μM. To avoid having non-genetic cell-to-cell variability in gene

expression which could be introduced by the culturing condition, we fixed a limit on the maxi-

mum number of cell culture medium passages of 15 times.

Library construction and sequencing were performed at the iGE3 Genomics Platform–

CMU, Geneva, Switzerland, using the Illumina HiSeq 2000 library preparation kit. The differ-

ential expression analysis was performed with DESeq2 [27,28] following a standard data analy-

sis pipeline (Supporting Information: Text and Figures; Text S01 in S1 File). The p-values of

the test for differential expression were adjusted for multiple testing using the procedure of

Benjamini and Hochberg [32].

2.3. Data filtering on WES genotype data

We used the unfiltered whole-exome sequencing data, of which analyses were published previ-

ously [22]. Briefly, 87 patients were included, of which 12 developed the main outcome SOS as

defined by the modified Seattle criteria [3] (S1 Tabe). Prior to conducting the association anal-

ysis, we applied a series of filtering steps on genotype data to reduce genetic heterogeneity as

previously described [25], using PLINK version 1.9 [29]. (Supporting Information: Text and

Figures; Text S02 in S1 File). Written informed consent was obtained from every patient or

parent/legal guardian by the local research team, who participated in the study and provided

genetic material and clinical data. The study was conducted in accordance with the Declara-

tion of Helsinki. The Institutional Review Board of the CHU Sainte-Justine, Montreal, Canada,

approved the study and all patients/parents provided an informed consent form (IRB number:

2450, trial registration: Clinicaltrials.gov: NCT01257854).

2.4. Tests of association of WES data with clinical outcome

Our clinical outcome SOS was defined using the modified Seattle criteria, as outlined in the

description of the clinical dataset [22]. The test for association between the SNPs and the

binary outcome, i.e. SOS, was performed with PLINK version 1.9, using both the standard chi-

squared test and the logistic regression model implemented in the software. We included the

multidimensional scaling components as covariates in the logistic regression analysis, which

have been estimated previously to control for population stratification.

We used the Versatile Gene-based Association Study-2 (VEGAS2) software [26] to combine

the effects of all SNPs in a single gene into one test statistic (i.e. a chi-squared statistic) and its

associated p-value. The tool accounts for linkage disequilibrium (LD) and gene size (number

of SNPs per gene) [26].

2.5. Combined test of transcriptomic and WES data

We computed a gene-based score, and its associated p-value, by combining the results of the

differential gene expression analysis (Zexp) and the gene-based test for association (Zassoc),

using the weighted Z-method [30]. We converted the p-values of the 2 tests into z-scores and

computed the Zs- combined test statistic, using the following formula:

Zs ¼
Zexp þ Zassoc

ffiffiffi
2
p � N 0; 1ð Þ

To assign equal weights to the 2 experiments into the combined statistic, we rescaled the p-

values derived from the LCL expression analysis to have the same range as the p-values
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calculated from the WES data, before converting them to Z-scores. We used Bonferroni cor-

rection for multiple testing.

2.6. Over-representation analysis

The functional characterization of the genes that show a significant difference in expression in

LCLs after treatment with busulfan was performed using an over-representation analysis

(ORA). We used the Kyoto Encyclopedia of Genes and Genomes (KEGG) [31] release 97 and

the Reactome [32] version 75 databases as a collection of annotated gene sets for ORA. We

used the same strategy to characterize the genes that were associated with a significant com-

bined test statistic and outcome, after Bonferroni correction for multiple testing.

2.7. Polygenic risk scores

We computed polygenic risk scores (PRSs), for the cases and controls, as the sum of the num-

ber of risk alleles carried at each locus (∑nbeffect allele), weighted by their effect size [33]. The lat-

ter was estimated, using PLINK version 1.9, as the logarithm of the odds ratio (ln (OR)).

PRS ¼
P

nbeffect allele∗ln ðORÞ
nbloci

We used for the estimations of the PRSs the SNPs with the p-value of the association test

using the logistic regression model < 0.05, and located within the boundaries of the genes

(including the UTRs) for which the combined test was significant after a Bonferroni correction

for multiple testing.

3. Results

3.1. Transcriptomic analysis of lymphoblastoid cell lines

We identified 3093 genes that showed significant differential expression in the LCLs after in
vitro exposure to busulfan. Among these genes, 1708 genes (55%) were found to be upregu-

lated and 1385 (45%) downregulated in the treated LCLs (S2 and S3 Tables).

Among the gene sets that were enriched in up-regulated genes, we found pathways involved

in “Cell growth and death” (p53 signaling pathway, Apoptosis, Necroptosis; Regulation by c-

FLIP, Caspase activation via Death Receptors in the presence of ligand, RIPK1-mediated regu-

lated necrosis), “immune system” and “immune disease” (Graft-versus-host disease, NOD-like

receptor signaling pathway, Allograft rejection; Interferon alpha/ beta/ gamma, Interleukin-2 /

-4/ -10/ -13/ -35 signaling), “Signal transduction” (TNF, NF-kappa B, Phosphatidylinositol,

FoxO, JAK-STAT) and “Signaling molecules and interaction” (Cell adhesion molecules, Cyto-

kine-cytokine receptor interaction, ECM-receptor interaction; Signaling by KIT in disease,

PECAM1 interactions, RAF-independent MAPK1/3 activation, Activated NOTCH1 Transmits

Signal to the Nucleus, Signaling by VEGF/ PDGF).

Among the down-regulated gene sets, we identified pathways involved in “Cell growth and
death” (cell cycle, cell cycle checkpoints), “Replication and Repair” (DNA replication, DNA

repair, base excision repair, mismatch repair, nucleotide excision repair, chromosome mainte-

nance, cellular responses to stress, activation of ATR in response to replication stress).

3.2. Data filtering on WES genotype data

We used the unfiltered whole-exome sequencing data from our previous publication [19]

which contains genotype information for 87 individuals (12 SOS cases and 75 controls). We

identified 292,064 bi-allelic SNPs with MAF�0.05. We filtered out SNPs and individuals in the
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following series of steps: (1) we excluded 21,138 SNPs with a proportion of missing genotypes

exceeding 20%; no individuals had a proportion of missing genotypes larger than 20%; (2) 11

individuals (10 women, 1 man) showed inconsistencies in their assigned and genetic sex and

were discarded from the dataset; (3) we excluded 4,898 SNPs with MAF < 0.05 in the remain-

ing sample; (4) we excluded 8,744 markers which deviated from Hardy–Weinberg equilib-

rium; (5) we discarded 1 individual from Sub-Saharan African ancestry which showed a

heterozygosity rate below the chosen threshold; (6) we excluded 4 individuals that showed

cryptic relatedness; (7) we removed 14 ethnic outliers, from Asia and Africa. After these filter-

ing steps, our dataset contained genotype information for 57 individuals (11 cases and 46 con-

trols): 1 individual of American origin, 6 individuals from North Africa and 50 individuals of

European ancestry) and 252,817 autosomal SNPs.

3.3. Association tests in the clinical WES dataset

The analysis at the SNP level using a standard chi-squared test identified 60 variants associ-

ated with SOS after Benjamini and Hochberg (1995) step-up false discovery rate (FDR) con-

trol [34], and 7 variants after Bonferroni adjustment (S4 Table) [35]. Using the logistic

regression model, no SNPs reached significance after any of the above adjustments for mul-

tiple testing.

At the gene-level, we identified 12 genes that reached significance after Benjamini and

Hochberg FDR control (NACAP1, E2F4, SHCBP1, MIR34C, PF4V1, CYP7B1, TMEM208,

CXCL6, RAB3B, LOC101928744, LOC101928773, CFHR3), and 4 genes after Bonferroni cor-

rection (NACAP1, E2F4, SHCBP1, MIR34C) (S5 Table).

3.4. Combined test, Over-representation analysis and polygenic risk score

We identified 35 genes that were found to be significant for the test which combined the

results of the differential gene expression analysis in LCLs and the gene-based test for an asso-

ciation in the WES dataset after Bonferroni correction for multiple testing (Fig 3; S6 Table).

There was no overlap between the genes being significant for the combined test and the genes

identified from the WES analysis only. But all genes that were significant for the combined test

were found to be differentially expressed before and after exposure to busulfan (Supporting

Information: Text and Figures: Figure S01 and S02 in S1 File).

The functional characterization of these genes using the Reactome database identified 14

significantly enriched pathways (S7 Table). These pathways are mostly involved in “apoptosis

and regulated necrosis” (dimerization of procaspase-8, regulation by c-FLIP, inhibition of

CASP8 activity, regulation of necroptotic cell death, TP53- regulated transcription of death

genes, receptors and ligands, ligand-dependent caspase activation, RIPK1-mediated regulated

necrosis, caspase activation via extrinsic apoptotic signalling pathway). Among the enriched

gene sets, we found a pathway implicated in “cell proliferation and differentiation” (i.e. tran-

scriptional regulation by RUNX3). “Cell surface proteins” important in cell interaction (integ-

rin cell surface interactions, non-integrin membrane-ECM interactions, extracellular matrix

organization).

The KEGG analysis identified 16 enriched pathways. These pathways were involved in “cell

growth and death” (p53 signaling pathway, cellular senescence), “signaling molecules and

interaction” (cytokine-cytokine receptor interaction), cancer, and infection (Fig 4).

The polygenic risk score computed using 209 SNPs from the 35 genes identified through

combined expression and association analyses at the gene level showed a significantly different

distribution between the cases and the controls (p-value = 8.506e-07; Supplementary

Figure S02 in S1 File).
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4. Discussion

In this study, we identified new potential genetic determinants of SOS at the SNP, gene, and

pathway levels using a new multi-omics data analysis pipeline integrating data from two differ-

ent experiments. We analyzed in vitro transcriptomics data of LCLs after treatment with busul-

fan and WES data of predominantly pediatric HSCT patients with and without SOS. We

combined the results of these analyses into a test statistic which measures the strength of asso-

ciation to SOS at the gene level. Our pipeline addresses the lack of power of small datasets by

prioritizing genes from a differential gene expression analysis in LCLs, and the existence of

genetic confounders by using filtering steps to increase genetic homogeneity in WES data. Our

pipeline allowed the identification of new potential genetic determinants of SOS that can be

validated in a follow-up study using a replication cohort.

Fig 3. Graphical representation of the relationship between the p-values of the combined test (color coded), the lymphoblastoid cell line expression test

(x-axis), and the whole-exome sequencing association test (y axis): We see that the majority of the genes that are associated with a significant combined

test statistic show very low p values for the expression test and that the p-value of the combined test increases with the p-value of the association test.

https://doi.org/10.1371/journal.pone.0281892.g003
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In the LCLs treated with busulfan, we found several upregulated pathways, which are

mainly involved in the inflammatory response, signaling by interleukins and interferon-

gamma, TP53 signaling, and apoptosis. Interleukins-1 and -2, tumor necrosis factor-alpha,

and transforming growth factor-beta were identified previously to be elevated in patients with

SOS [36,37] or after busulfan exposure in vitro in endothelial cells [38]. The expression change

we measured is in agreement with these findings, supporting the assumption that LCLs might

be a valid cell model for our study. Among the downregulated pathways, we identified cell

cycle and mitochondrial translation. Previous in vitro analyses have demonstrated a cell cycle

arrest after busulfan exposure which supports our findings [39].

We identified new genetic markers in significant association with SOS, using the WES data,

after the application of filtering steps to increase the homogeneity of the genetic dataset. Our

data workflow reduced the number of individuals from the unfiltered WES dataset by 34.5%

and the number of SNPs by 12.4%. Our pipeline thus generated a more homogenous sample at

the cost of a smaller sample size. This workflow allowed us to identify through the analyses at

the gene level 12 genes in significant association with SOS. None of these genes was identified

in the previously published study, where a different strategy was used with a focus on single

SNPs and functional variants [22].

Fig 4. Over representation analysis using CPDB.org incorporating 35 genes associated with sinusoidal

obstruction syndrome identified through a combined test statistic.

https://doi.org/10.1371/journal.pone.0281892.g004
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Existing data suggest that the association of the currently identified genes with SOS could

be meaningful. NACAP1 is a pseudogene which was recently associated with pre-eclampsia, a

disorder of pregnant women with arterial hypertension, neurological symptoms, and fetal

growth restriction [40]. This disease is understood as being mediated by endothelial cell dys-

function [41], which is also a major driver in SOS. PF4V1 is involved in platelet disorders and

clot formation [42,43]; interaction with the coagulation system was long suggested to play a

role in SOS [44]. SHCBP1 is involved in various cell signalling processes, cell proliferation, and

upregulated in various neoplasms [45]. CXCL6 is a chemokine with angiogenic properties and

is involved in TNF signaling pathway. The CYP7B1 gene from the cytochrome P450 gene fam-

ily is involved in cholesterol and lipid metabolism and is associated with neonatal liver disease

[46]. Additional genes identified here are associated with apoptosis (MIR34C, E2F4) [47,48]

and autophagy (TMEM208) [49]. Among those genes, only SHCBP1 was significantly downre-

gulated in LCLs after treatment with busulfan, while CXCL6, NACAP1 and PF4V1 were not

expressed in LCLs.

The combined test statistic allowed to integrate the expression results and the association

metrics into a single statistic measure. We identified 35 genes that were found to be associated

with SOS after correction for multiple testing. None of these genes was previously investigated

for an association with SOS. The functional analysis of these genes, using the KEGG database

revealed that many are involved in the TP53 signaling pathway and cellular senescence

(CCND1, FAS, MDM2, TNFRSF10B, CALML6). This result can be explained by the response

of the cells to the toxic effect of busulfan and its metabolites which might also play a role in

SOS [50]. In addition, TP53 regulated genes were significantly upregulated in our gene expres-

sion analysis such as MDM2, and the pro-apoptotic genes BBC3 and GADD45A. CALML6
plays an important role in the regulation of the innate immune response through the NF-kB

signaling pathway. Previous reports have shown a similar signal of cell cycle gene dysregula-

tion after busulfan exposure [38]. TNFRSF10B is a member of the TNF-receptor superfamily,

that is activated by TNF-related apoptosis-inducing ligand (TNFSF10), and transduces an apo-

ptosis signal [51]. Additionally, the cytokine-cytokine receptor interaction gene set could be

explained by inflammatory processes.

The functional analysis using the Reactome database identified pathways mostly involved

in programmed cell death. Additionally, gene sets linked to the integrin cell surface interac-

tions were found (ITGB8, HSPG2, ITGAM). Cellular responses to external stimuli are mainly a

stress response pathway and regulate cell adaptations when exposed to reactive oxygen species,

heat, or other stimuli. Integrins are the receptors that interact with the extracellular matrix and

are important for cell adhesion. Two upregulated genes after the treatment with busulfan in

this gene set, ITGAM and ITGB8, are also involved in the complement and coagulation path-

way [52], a relevant mechanism involved in SOS [44,53–55], and endothelial cell function [38].

Other genes of interest but not identified in the ORA analysis were GBP5 which is expressed in

endothelial cells and promotes the inflammasome [56], DDR1 which is associated with endo-

thelial cell senescence [57], HSPG2 that regulates vascular response to injury and may inhibit

thrombosis [58], LACC1 and HCAR3 which are proteins from fatty-acid oxidation, lipogenesis,

and lipid metabolism, while POLH is implicated in DNA damage repair [59].

We estimated polygenic risk scores for the cases and the controls that were included in this

study, using the SNPs that were found within the boundaries of the 35 genes that were associ-

ated with a significant combined test statistic. The difference in the distributions of the PRSs

between the cases and the controls is highly significant. Classically, PRSs are estimated in

another cohort than the one that was used to estimate the association metrics with the pheno-

type of interest. Here, our goal was to estimate the magnitude of differences in scores between

our cases and our controls. The difference in scores between cases and controls was highly
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significant and underscores the notion that the SNPs we used to estimate those scores are good

candidates for further validation. In a future study, selecting those SNPs that contributed most

to the PRS should be tested or some of the SNPs could be further prioritized, choosing some

specific functional categories, i.e. non-synonymous variants.

The pipeline we developed and used in this study allowed us to identify genes and pathways

in association with a rare clinical outcome with a limited number of patient samples, where

machine learning-based approaches are inapplicable [60]. Classical approaches are based on

candidate gene studies that rely on specific genes which are selected based on previous knowl-

edge. Some of these candidate-gene studies have led to relevant findings with an impact on

clinical practice (e.g. TPMT polymorphism-associated mercaptopurine intolerance in leuke-

mia) [61]. But often, candidate-gene studies suffered from inconsistent replication efforts

[62,63] such as was witnessed for SOS [23]. In contrast to a classical candidate gene approach,

our method does not rely on the selection of genes a priori. By combining two independent

tests, we enable the identification of novel associations that were not previously investigated or

hypothesized.

There are some limitations to our approach that are associated with the assumptions that

are made in the setup of this study. First, the hypothesis that the genes that are dysregulated in

LCLs after busulfan exposure are more likely to carry variants which are modifiers of busulfan

toxicity might not be true. The importance of transcriptomic changes after drug exposure was

shown previously to correlate with adverse events after drug exposure [64]. Based on the data

on busulfan exposure as initiating factor of SOS, we hypothesized that transcriptomic changes

after treatment with busulfan play a pivotal role in the development of this complication. The

disadvantage is that we focus with this approach on an upstream event and not on the outcome

directly. Second, the magnitude of dysregulation might not be linked to the outcome of inter-

est. Third, LCLs have been extensively used in pharmacogenomic research [65], but some

genes which might be relevant for SOS are not expressed in LCLs, which limits their applicabil-

ity to model endothelial or liver cells. This inherent weakness of our model could be addressed

in a future study by choosing cell types that reflect more closely the effector cells of the target

disease. Conversely, peripheral blood cells such as the used lymphoid cells might harbor the

advantage of being more easily be accessible in patients and transcriptomic data could be mea-

sured as a potential biomarker of SOS in future studies as previously illustrated [66]. Fourth, to

further assess the impact of the identified genes, additional analyses will be needed such as

inhibition or overexpression analyses. As this manuscript covers the methodological aspects of

combining in vitro data with clinical information and due to the complexity of mechanisms

leading to SOS, we will perform these analyses in a future study. Fifth, we did not include clini-

cal confounders (such as patient age, conditioning regimen, underlying disease among others)

in our pipeline due to the low number of patients with SOS in our sample. We will include

these confounders in a future replication analysis.

In this paper, we proposed a novel approach to unravel the genetic determinants of SOS by

combining in vitro gene expression information after treatment exposure with clinical geno-

mic data into a multi-omics model. Our approach could be used in other research contexts to

increase the power to identify the genetic contribution to other rare diseases.
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