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Abstract

Novel biomarkers are key to addressing the ongoing pandemic of type 2 diabetes mellitus.

While new technologies have improved the potential of identifying such biomarkers, at the

same time there is an increasing need for informed prioritization to ensure efficient down-

stream verification. We have built BALDR, an automated pipeline for biomarker comparison

and prioritization in the context of diabetes. BALDR includes protein, gene, and disease

data from major public repositories, text-mining data, and human and mouse experimental

data from the IMI2 RHAPSODY consortium. These data are provided as easy-to-read fig-

ures and tables enabling direct comparison of up to 20 biomarker candidates for diabetes

through the public website https://baldr.cpr.ku.dk.

Introduction

The advance of high-throughput omics methods has given rise to large-scale data capture for

biomarker discovery. However, with ever-increasing data density from these analyses, the abil-

ity to prioritize candidates of interest for follow-up experiments, as part of an efficient down-

stream verification process, has become increasingly necessary. While many online tools exist

for the analysis of single molecular entities in the context of human disease, few tools are avail-

able for the comparison and prioritization of a large set of molecules as potential biomarkers

[1–3]. With the rapid rise in type 2 diabetes mellitus (T2DM) incidence worldwide [4,5], there

is an increasing need for new diagnostic and progression biomarkers. However, there are cur-

rently no integrative tools available for diabetes biomarker discovery or prioritization. To

address this gap, we developed Biomarker AnaLysis for Diabetes Research (BALDR), a tool

that automatically produces a comprehensive report that enables informed comparison of up

to 20 targets for their relevance as biomarkers for T2DM.
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Public databases such as UniProt [6], PHAROS [7], Open Targets [8], DrugBank [9], and

the Human Protein Atlas (HPA) [10] contain vast amounts of functional, interactional, and

disease-relevant information for the human proteome. In BALDR, we utilize these data to

inform on the relevance of proteins as novel, biologically relevant biomarkers for diabetes.

Moreover, we include observational and experimental data from the Risk Assessment and Pro-

greSsiOn of Diabetes (RHAPSODY) consortium, financed by the EU Innovative Medicines

Initiative-2. Within RHAPSODY, a large quantity of omics data has been generated based on a

federation of clinical cohorts that include patients in varying stages of T2DM [11], as well as

human tissue analysis [12,13] and mouse experiments [14] conducted within the consortium.

These data include analysis of human blood and pancreatic islets and mouse adipose, skeletal

muscle, liver, and pancreatic islet tissue, measuring a total of over 16,000 proteins and protein-

coding gene transcripts.

BALDR is, to our knowledge, the first publicly available tool that allows for direct compari-

son between multiple protein biomarker candidates (Fig 1). We facilitate the integration and

comparison of user candidates in a set of user-friendly graphics and tables that can readily be

used for scientific publications. In the present version of BALDR, we use a combination of

experimental data, text mining of full-length papers, and data obtained from major publicly

available databases and repositories. This enables the user to make informed comparisons and

prioritizations of biomarker candidates for T2DM. The framework is not limited to T2DM but

can easily be adapted to other diseases of interest by changing the data capture workflow

accordingly. BALDR is provided as open access through the public website (https://baldr.cpr.

ku.dk).

Fig 1. Schematic representation of the BALDR pipeline. The BALDR pipeline consists of three steps: Data

integration, Query, and User report. In the Data integration step, data from multiple data sources is captured and

consolidated into the BALDR database accessible to the BALDR source code. In the query step, the user selects up to 20

candidates using UniProt IDs or gene names. The targets are linked by UniProt IDs to the BALDR database and the

BALDR source code runs using Rmarkdown. Lastly, a User report is produced containing five main sections:

Functional information, Experimental evidence, Disease association, Mechanistic evidence, and Biomarker potential.

Image credit: Openclipart.org.

https://doi.org/10.1371/journal.pcbi.1011403.g001

PLOS COMPUTATIONAL BIOLOGY Comparison of biomarker candidates for type 2 diabetes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011403 August 17, 2023 2 / 13

innovation programme and EFPIA. This work is

supported by the Swiss State Secretariat for

Education‚ Research and Innovation (SERI) under

contract number 16.0097. The opinions expressed

and arguments employed herein do not necessarily

reflect the official views of these funding bodies.

Furthermore, this work were supported by the

Novo Nordisk Foundation (grants NNF14CC0001

and NNF17OC0027594 to A.T.L., T.Si., D.W., D.Va.,

L.C., T.R., K.B., and S.B.), Bayer A/S (research

grants to D.Vi.), Sanofi Aventis (research grants to

D.Vi.), Novo Nordisk A/S (research grants to D.Vi.),

and Boehringer Ingelheim (research grants to D.

Vi.). The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: D.Vi. is employed at

Novo Nordisk A/S and holds shares in Novo

Nordisk A/S. T.Sp. is employed at Novo Nordisk A/

S and holds shares in Novo Nordisk A/S. T.Si.

holds shares in Armata Pharmaceuticals Inc.,

Intellia Therapeutics Inc., Moderna Inc., and IGM

Biosciences Inc. S.B. holds shares in Intomics A/S,

Hoba Therapeutics Aps, Novo Nordisk A/S,

Lundbeck A/S, and managing board memberships

in Proscion A/S and Intomics A/S. All other authors

have no conflicts of interest to declare.

https://baldr.cpr.ku.dk/
https://baldr.cpr.ku.dk/
http://Openclipart.org
https://doi.org/10.1371/journal.pcbi.1011403.g001
https://doi.org/10.1371/journal.pcbi.1011403


Design and implementation

Data capture for biomarker prioritization

We extracted all relevant data from five public data sources included in the BALDR framework

as a snapshot at the time of compilation. Specifically, we captured data from UniProt [6]

(https://www.uniprot.org/), PHAROS [7] (https://pharos.nih.gov/), Open Targets [8] (https://

www.opentargets.org/), DrugBank [9] (https://www.drugbank.com/), and the Human Protein

Atlas (HPA) [10] (http://www.proteinatlas.org).

The UniProt database contains protein annotation and sequence data for the human prote-

ome, as well as multiple other species. Data from the UniProt database was used for mapping

genes and proteins using the UniProt and Ensembl IDs.

The PHAROS database is developed to improve drug discovery by gathering information

for poorly annotated potential drug targets, especially G-coupled receptors, ion channels, and

kinases. Within PHAROS, scores have been developed to characterize the knowledge level for

targets. The PHAROS database was used for protein-specific information in the form of

descriptions and aggregated scores for functionality and development level.

The Open Targets database consists of data collected from multiple sources on disease-tar-

get associations and summarizes this data as evidence scores for multiple data types, including

text mining, genetic associations, and animal models. An overall score across data types is also

provided. Diseases and phenotypes can be searched using the Experimental Factor Ontology

(EFO) and Mondo Disease Ontology (MONDO). Open Target data was used here to inform

on the evidence availability for targets in relation to diabetes mellitus (EFO_000400), as well as

T2DM (MONDO_0005148), T1DM (MONDO_0005147), GDM (EFO_0004593), and other

diabetes types.

The DrugBank database contains information on drugs and their association with molecu-

lar entities. Here, we include information on all drugs with evidence of interaction with a pro-

tein target. We include basic information on the drug, including ATC codes (if available), drug

group, and pharmacological action. We also include links to evidence for these interactions

through the DrugBank platform.

The HPA database contains information on the localization of proteins in cells, tissues, and

organs based on omics and imaging data. HPA data was here used to inform on protein class

and cellular location. Data from HPA was further used to identify proteins found in circulation

for the RHAPSODY meta-analysis (see below).

The semi-automatic data capture pipeline is based on the Snakemake workflow system

[15], integrating individual Python scripts for each database. The pipeline can be adapted to

any disease with an Experimental Factor Ontology (EFO) label for the capture of disease-spe-

cific data from Open Targets and PHAROS. The data from these five major protein, gene, and

disease databases resulted in 70 selected unique features for 20,343 of the 20,375 proteins avail-

able in UniProt (Table 1 and S1 File).

Table 1. Database overview.

Database Variable count Protein count

UniProt 5 20,375

PHAROS 12 20,268

Open Targets 42 18,881

DrugBank 11 3,025

The Human Protein Atlas (HPA) 4 19,139

Total 70 20,343

https://doi.org/10.1371/journal.pcbi.1011403.t001
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Suggested biomarkers for type 2 diabetes

A table of known and suggested biomarkers for diabetes was compiled using three sources, i)

Abbasi et al [16] conducted a systematic review of biomarkers T2DM incidence risk, identify-

ing 167 potential biomarkers for diabetes. Of these, we included 48 proteins with a UniProt

ID; ii) A biomarker task force within the RHAPSODY consortium curated a list of 33 bio-

marker candidates; iii) A network expansion was performed on the 81 biomarkers candidates

found in i) and ii) using the Intomics InBio protein-protein interaction data [17]. These were

compared to a network based on the 81 diabetes-associated sites previously identified by

GWAS [18]. Of these, five genes were found to be overlapping and secreted. Finally, we per-

formed a network expansion and identified 47 interaction partners, which interacted with at

least two of the 81 suggested biomarkers with a confidence of at least 0.1. Together, 133 bio-

markers were included as known or suggested biomarkers for T2DM. The full list is provided

in S2 File.

RHAPSODY data and meta-analysis

The RHAPSODY project aims to identify novel biomarkers for T2DM susceptibility and pro-

gression through analysis of omics data from twelve European cohorts comprising a total of

68,000 individuals with different stages of T2DM. Moreover, the project aimed to determine

the link between alterations of insulin secretion and insulin action in the liver, adipose tissue,

and skeletal muscle using pre-clinical mouse models. Lastly, β-cell functional study data from

human and mouse pancreatic tissue are also available through the consortium. Dependent on

species and tissue, multiple omics measurements have been performed, including, but not lim-

ited to, targeted metabolomics, lipidomics, genomics, transcriptomics, and proteomics.

Here, we included data from proteomics and transcriptomics experiments performed in

human and mouse studies from four main analyses: Cox proportional hazard models for dia-

betes progression on 1,195 proteins using the SomaLogic SOMAscan platform in 1,188 indi-

viduals from the DCS and GoDARTS cohorts as described by Slieker et al [11]; differential

RNA expression analysis in human islets and pancreatic tissues from 84 non-diabetic (ND)

and 19 T2DM organ donors and 103 pancreatic tissue specimens (32 ND individuals, 36

T2DM individuals, 15 individuals with impaired glucose tolerance (IGT), and 20 with type 3c

diabetes (T3D)), as described by Solimena et al [12] and Wigger et al [13]; and differential

RNA expression analysis of adipose tissue, pancreatic islets, liver tissue, and skeletal muscle tis-

sue from three mouse strains (C57Bl/6J, DBA/2J, and BALB/cJ) with high fat, high sucrose

diet-induced glucose dysregulation (HF) compared to regular diet (RD)-fed animals, as

described by Sanchez-Archidona et al[14].

We performed a sample size-based p-value meta-analysis, as described by Willer, Li, and

Abecasis [19] across all experiments listed above. The resulting meta p-values were adjusted

for multiple testing using false discovery rate (FDR) correction [20]. To rank the targets, we

created a subset of targets that i) had an adjusted meta p-value under 0.05; ii) have been identi-

fied as found in circulation, either by expression or secretion to the bloodstream, using the

Human Protein Atlas data; and iii) were included in the full-length text mining data, described

below. To identify the most novel leads, the resulting targets were then inversely ranked by the

number of co-mentions with diabetes so that the lowest number of co-mentions (zero)

resulted in the best score of one. A total of 5035 (25%) proteins were assigned a rank between 1

and 710, with the best rank of 1 assigned to 367 targets with zero (0) co-mentions with

diabetes.
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Text mining

Text mining was conducted on 15 million full-text scientific articles and their corresponding

abstracts using the method described in Westergaard et al [21] with two settings. In short,

1,488,927 articles from the open-access PubMed Central corpus (PMC), 3,335,400 articles

from Springer, and 11,697,096 articles from Elsevier spanning the period 1823–2016 were col-

lected. Of these, 902,415 articles were removed as not written in English and additional

1,069,525 articles were removed in quality control, yielding 14,549,483 full-text articles for text

mining. Additional 16,544,511 abstracts from MEDLINE were included for text mining. Text

mining was performed using Named Entity Recognition (NER) using a dictionary comprised

of gene names from the STRING database [36] and disease names from Disease Ontology

[22]. A weighted score was calculated based on weighted counts, where co-occurrence within

the same sentence or paragraph gives higher counts than co-occurrence within the same docu-

ment. Weighted scores were calculated for both full-text articles and abstracts in two searches.

For one search, all co-mentions between “diabetes” and all proteins were pulled, resulting in

16,366 proteins with at least one co-mention out of the 18,563 proteins (88%) identified in the

text corpus. Similarly, we pulled co-mentions between disease terms for all diseases but diabe-

tes and proteins and found at least one co-mention for 18,212 proteins (98%). Using full-text

articles yielded on average 40 times more co-mentions for diabetes and 22 times more co-men-

tions for all other diseases compared to text mining of abstracts.

Protein-protein interaction networks

Public protein-protein interaction (PPI) network data from the STRING database [23] were

used to build PPI networks for each target. The networks were built to include physical inter-

actions between candidates and interaction partners (primary interactions), as well as between

interaction partners (secondary interactions). We used the recommended confidence thresh-

old of 0.7 for the combined score to differentiate between high-confidence interactions and

potential interactions [24]. The current version of BALDR implements the 9606 (human)

physical links protein network data v11.5.

Overrepresentation analysis

WebgestaltR [25] was used to conduct an overrepresentation analysis (ORA) of functional

gene set terms on eight databases (see S3 File) in two separate analyses. In the first analysis, the

enrichment analysis was conducted on the protein-protein interaction networks identified in

the PPI analysis against all transcripts and proteins measured in RHAPSODY. Only terms

including the candidates of interest were kept. In the second analysis, the enrichment analysis

was conducted on the selected candidates in a shared analysis against all transcripts and pro-

teins measured in RHAPSODY. In both analyses, enrichment is shown as significant (FDR

adjusted p-value < 0.05) and not significant (FDR adjusted p-value� 0.05). Based on the PPI

networks, we performed gene enrichment analysis for 15,185 networks. Of these, 12,475 (82%)

had at least one enriched gene term.

User report

BALDR is built using R v4.2.1 [26] and R markdown v2.11 [27], a plain text editor that inte-

grates R code and outputs with HTML code to produce formatted documents. The R packages

ggplot2 v3.3.5, knitr v1.33 [28], and formattable v0.2.1 [29] were used to produce formatted

figures and tables that are provided as stand-alone files in multiple formats. Figures are
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provided both as standard .png files and in vector format as .pdf files. Tables are likewise pro-

vided as .png files, as well as Excel sheets.

The BALDR report contains five sections that cover the different aspects of the input data:

i. Functional information. To provide a basis for further exploration of the chosen candidates,

we give a general overview of the candidates’ protein characteristics in the first table. The

variables include subcellular location (HPA), protein family (PHAROS), protein class

(HPA), and target development level (PHAROS). A second table presents functional

descriptions from PHAROS, as well as their status as diabetes biomarkers.

ii. Experimental evidence. Experimental data from the RHAPSODY consortium is presented

through volcano plots, scatter plots, and tables. We provide comparisons between candi-

dates, as well as omics, species, and tissue types. Moreover, we provide a meta-analysis and

ranking of all targets according to text-mining novelty for diabetes. This enables the user to

compare their own results to those obtained in the RHAPSODY consortium and to assess

the strength of the evidence across candidates.

iii. Disease association. To explore existing evidence for candidate-disease associations, we

present disease-wide text-mining data (PHAROS and in-house text mining), diabetes-spe-

cific text-mining data from 15 million full-text articles (in-house text mining), and associa-

tion scores for diabetes mellitus as a supergroup, as well as selected diabetes mellitus types

such as T2DM, T1DM, and GDM (Open Targets).

iv. Mechanistic evidence. We use public protein-protein interaction data to produce protein-

protein interaction networks for each candidate separately. Interaction partner informa-

tion is made available to enable pathway exploration. These interaction networks also serve

as a basis for gene set enrichment analysis for GO-terms, pathways, and disease/drug asso-

ciation. In a separate analysis, the input targets are analyzed together for enriched gene set

terms to explore commonalities between candidates.

v. Biomarker potential. In the last section, we explore the candidates in the context of their

potential as biomarker candidates. We provide information on target-drug interaction

from DrugBank, counts of commercially available antibodies, and a collective novelty score

based on text mining from PHAROS. These data should be seen in the context of the candi-

dates as general biomarkers and may not reflect their potential as diabetes biomarkers.

We showcase BALDR using the six novel biomarkers significantly associated with diabetes

progression as measured by time to initiation of insulin treatment in the DCS and GoDARTS

cohorts, as identified by Slieker et al [11]. The six proteins were identified as having the highest

effect size for acceleration to insulin dependency out of 11 proteins significantly associated

with the outcome. We compared these to three biomarkers associated with T2DM in the great-

est number of incident cases included in the systematic review by Abbasi et al [16] (Table 2).

Code availability and access

The code for BALDR and the depending data capture is freely available on GitHub at https://

github.com/agnetelundgaard/BALDR.

Results

Automated data capture workflow combining multiple data sources

Comparing proteins as potential biomarkers, in the context of a specific disease such as

T2DM, is challenging as candidate ranking can be based on different features, such as novelty,
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protein interaction partners, or gene-disease evidence depending on the research objective. To

address this challenge, we made a semi-automated pipeline that captures public data from five

major protein databases (UniProt, PHAROS, Open Targets, DrugBank, and the Human Pro-

tein Atlas (HPA)) that serve as the main data input for BALDR. We further enriched the report

with data generated by text-mining of 15 million full-length papers [21], public protein-pro-

tein interaction network data [23], functional gene enrichment data [25], T2DM biomarker

suggestions from internal and external sources [16], and published data from the RHAPSODY

consortium [11–14]. We have gathered and standardized selected features for 20,343 human

proteins for which comparative figures and tables can be produced through the BALDR pipe-

line. The easy-to-read graphics and tables can be used in publications with minimal editing

required or imported by expert users to produce new graphics. Presenting these data directly

to the user allows flexible decision-making and encourages transparency of the prioritization

process.

Example of a BALDR report

To showcase the value of BALDR, we compared nine potential diabetes biomarkers, six protein

biomarkers identified by Slieker et al [11] as significantly correlated with T2DM progression

in multiple cohorts, and three protein biomarkers identified by Abbasi et al [16] to have been

positively associated with T2DM in the greatest number of incident cases (Table 2). We use

this as a case scenario, where the task was to prioritize promising biomarker candidates identi-

fied in primary experimental data and we compare these to three highly studied T2DM bio-

markers as a reference point. The example report on the nine biomarkers can be found in the

supplement material (S4 File).

In section 1—Basic information, we find the cellular location, protein family, and PHAROS

target development level of the candidates, as well as detailed functionality descriptions.

ENPP7, GGT1, and GTP are enzymes involved in lipid or amino acid metabolism, while the

other candidates belong to the non-IDG family, i.e., proteins that are not expected to be likely

drug targets. The majority of these are receptors or receptor ligands involved in cellular signal-

ing. One target, CRELD1, does not have a functionality description from PHAROS, so here,

we need to extend our search to UniProt via the provided link. The section also provides sum-

marized information from Open Targets on the association of candidates with diabetes. All

except CRELD1 and ENPP7 have previously been directly or indirectly associated with T2DM,

as well as other diabetes types.

In the next two sections, section 2 –Experiment evidence and section 3 –Disease associa-

tion, we found that FAS, CRELD1, GDF15, CRP, and GPT were all found to be significantly

Table 2. Showcase targets from Slieker et al, 2021 [11] and Abbasi et al, 2016 [16].

Source Gene name Protein name UniProt ID

[11] CRELD1 Protein disulfide isomerase CRELD1 Q96HD1

ENPP7 Ectonucleotide pyrophosphatase/phosphodiesterase family member 7 Q6UWV6

FAS Tumor necrosis factor receptor superfamily member 6 P25445

GDF15 Growth/differentiation factor 15 Q99988

IL18R1 Interleukin-18 receptor 1 Q13478

RTN4R Reticulon-4 receptor Q9BZR6

[16] CRP C-reactive protein P02741

GGT1 Glutathione hydrolase 1 proenzyme P19440

GPT Alanine aminotransferase 1 P24298

https://doi.org/10.1371/journal.pcbi.1011403.t002
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associated with diabetes in a minimum of one RHAPSODY experiment, while only the Slieker

et al [11] candidates were significant in the RHAPSODY cohort meta-analysis. In this meta-

analysis, the highest ranked target is ENPP7, indicating that the target had the lowest count of

co-mentions with diabetes, a proxy for the target’s novelty as a diabetes biomarker. Interest-

ingly, when we look at the disease association data, we can see that ENPP7 has the lowest text

mining score for all metrics but the highest fraction of diabetes co-mentions to all-disease co-

mentions except for CRP, which also has the highest total number of co-mentions. Similarly,

in the later section on target novelty (section 5.3), ENPP7 has one of the highest novelty scores.

Taken together, ENPP7 appears to be understudied in general but may be relevant as a novel

biomarker for diabetes. In contrast to ENPP7, we find that CRP, FAS, and GDF15 are the

most studied targets for diabetes. GDF15 was identified by Slieker et al [11] to have the greatest

effect size in their proteomics analysis, as shown in plot 2.1.2 in the report. Moreover, CRP

was identified as the target with the highest association score for T2DM, as shown in section

3.2, followed by GDF15. Conversely, CRELD1 and ENPP7 were not associated with T2DM or

any other diabetes type in Open Targets (sections 1.2 and 3.2).

In section 4 –Mechanistic evidence, protein-protein interaction (PPI) networks and gene

enrichment are explored. The two largest networks are found for RTN4R and FAS, containing

201 and 117 interactions, respectively. This is explained by their role in large signaling path-

ways, as RTN4R is a receptor in the Rho signaling pathway responsible for the reorganization

of the cytoskeleton, while FAS is a receptor for Caspase signaling mediating apoptosis. In con-

trast, we find no interaction partners for CRELD1 and no high-confidence interaction partners

for ENPP7, GGT1, and GTP. IL18R1 has four high-confidence interaction partners, all related

to interleukin signaling, including IL18 identified by Abbasi et al [16] as a biomarker for diabe-

tes. CRP has multiple high-confidence interaction partners which have been identified as

potential T2DM biomarkers through network expansion (FCN2 and CFH), by Abbasi et al
[16](C3) or has been suggested by experts in the RHAPSODY consortium as potential novel

targets (OLR1). FCN2, CFH, and C3 are involved in innate immunity, while OLR1 is involved

in the degradation of oxidized low-density lipoprotein (oxLDL). Lastly, GDF15 has two high-

confidence interaction partners, RET and GFRAL, that together mediate GDF15-induced food

restriction.

Looking at the gene enrichment analysis we see a relatively limited number of shared terms

for the KEGG pathways, GLAD4U diseases, and GLAD4U drugs databases (section 4.2.2).

Most notably, FAS, IL18R1, and GDF15 have a non-significant enrichment in inflammatory

pathways and anti-infectives. This is similarly seen in the gene enrichment analysis of their

networks, where terms related to inflammation and apoptosis are found in most of the

searched databases. Moreover, we find CRP, GGT1, GPT, and GDF15 to be highly enriched

for multiple disease terms related to cardiovascular diseases and diabetes in the GLAD4U dis-

ease database. We also find multiple terms related to these diseases enriched for the individual

candidate PPI networks (section 4.2.1). For example, CRP and GGT1 share enrichment for

microvascular angina (182-fold compared to all genes in RHAPSODY) and likewise, we see

enrichment in the two candidate PPI networks separately, although this enrichment is only

significant for CRP.

In the last section, section 5 –Biomarker potential, our comparisons largely overlap with the

results from sections 2 –Experimental evidence and 3 –Disease association, with FAS having

the highest scores for antibody count and one of the lowest novelty scores. This indicates that

FAS may be a suitable biomarker for T2DM, but has little novelty compared to other candi-

dates. Meanwhile, ENPP7 and IL18R1 have some of the highest novelty scores, but impor-

tantly, a relatively high number of antibodies, making these targets suitable as biomarker

candidates with high novelty. None of the Slieker et al [11] candidates have any known drug
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interactions registered in the DrugBank database, while two drugs for CRP are being investi-

gated, both involved in LDL metabolism. Moreover, one and four drugs are approved or sold

as nutraceuticals for GGT1 and GPT, respectively.

Comparing the candidates across the five sections, we find some general trends for the nine

candidates included here. CRP, a well-known biomarker for T2DM, shows high scores for text

mining, disease association scores, and low novelty, as well as interaction with several identi-

fied potential biomarkers and high enrichment for gene terms related to inflammation and

metabolic disease. Surprisingly, CRP was not found to be significantly associated with T2DM

in the RHAPSODY meta-analysis and only a single transcriptomics experiment in pancreas

islets shows a significant association between CRP and T2DM. In contrast, CRELD1 and

ENPP7 were significantly associated with T2DM in the RHAPSODY meta-analysis, but they

are largely unstudied with no association with diabetes according to Open Targets, low text

mining scores, and high novelty scores, as well as few or no interaction partners and enriched

gene terms. Between these extremes, we find GDF15 to be greatly enriched in the RHAPSODY

proteomics analysis, having high association scores for multiple diabetes types and medium-

high text mining scores and novelty. GDF15 is, together with its interaction partners, involved

in the regulation of food intake and is found to be associated with diabetes and cardiovascular

diseases in gene enrichment analysis. Based on these findings, we find CRP to be a poor candi-

date as a novel biomarker, CRELD1 and ENPP7 to be interesting novel candidates that have

largely unknown roles in diabetes, and GDF15 to be a candidate with a strong association with

diabetes, but which have not been identified through systematic reviews such as Abbasi et al
[16] or by biomarker prioritization frameworks such as network expansion.

Comparison to other tools

While multiple online tools exist for the feature analysis of molecular entities in the context of

human disease, we have not been able to identify a single biomarker tool that would fit the

need for biomarker prioritization for T2DM, though several exist for cancer [30–33] or are

aimed more broadly for diseases or drug targets [23,34–37]. Some of the tools require the

upload of primary data [37,38] or are made as R packages, requiring a specialized skill set to

use [35,36]. We were not able to access all tools that we identified in our search, as they either

were behind a paywall [39] or were no longer available online [33,40,41].

These publicly available tools overlap with some of the included features in BALDR, such as

protein-protein interaction networks [23,30,33,35] and gene set enrichment analysis

[23,30,35]. In addition to these functions, BALDR also provides T2DM-specific experimental

data from the RHAPSODY consortium, integration of multiple major databases, and text min-

ing results from 15 million full-text articles. We show the utility of BALDR by comparing six

biomarkers for T2DM identified by Slieker et al [11] with three highly studied T2DM-bio-

markers from Abbasi et al[16]. Here, we discuss the molecular insights arising from multiple

analyses and highlight candidates according to their novelty as diabetes biomarkers.

Availability and future directions

The BALDR report is provided at https://baldr.cpr.ku.dk/, where the user can request a report

on up to 20 biomarker candidates at a time. It includes all published proteomics and transcrip-

tomics data from the RHAPSODY consortium. The report can be downloaded as a .zip-file

directly through the website or e-mailed to the user. After compilation, all data processed are

deleted immediately. All supplied information, including queried biomarker candidates, is

treated as confidential. The website and finished report can be accessed through standard

browsers and there are no computational restrictions for running the tool. The report, figures,
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and tables can be freely used and adapted by the user. Data from the RHAPSODY consortium

can be freely used for academic and industrial purposes. All other data included in the BALDR

report is publicly available from the primary sources listed above and should be used according

to their individual licenses regarding use and redistribution.

The code for BALDR and its data capture scripts are freely available on GitHub at https://

github.com/agnetelundgaard/BALDR. The provided source code for compiling the biomarker

matrix that can be adapted to most diseases using EFO labels. However, BALDR has been spe-

cifically developed for T2DM, which means that some features, such as full-text text mining

and experimental data, are not readily available for other diseases. Other sources for these data

types will, therefore, be needed for a complete replication of the report, while protein-protein

interaction networks, gene enrichment analysis, and functional information on targets are

directly transferable and do not need adaptation to other diseases.

Our hope is that BALDR may serve as a framework for future applications enabling

researchers to directly compare molecules of interest using public data without a prerequisite

for specialized programming skills.
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