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Abstract. In clinical research, the analysis of patient cohorts is a widely employed 
method for investigating relevant healthcare questions. The ability to automatically 

extract large-scale patient cohorts from hospital systems is vital in order to unlock 

the potential of real-world clinical data, and answer pivotal medical questions 
through retrospective research studies. However, existing medical data is often 

dispersed across various systems and databases, preventing a systematic approach 

to access and interoperability. Even when the data are readily accessible, clinical 
researchers need to sift through Electronic Medical Records, confirm ethical 

approval, verify status of patient consent, check the availability of imaging data, and 

filter the data based on disease-specific image biomarkers. We present Cohort 
Builder, a software pipeline designed to facilitate the creation of patient cohorts with 

predefined baseline characteristics from real-world ophthalmic imaging data and 

electronic medical records. The applicability of our approach extends beyond 
ophthalmology to other medical domains with similar requirements such as 

neurology, cardiology and orthopedics. 
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1. Introduction 

The advent of artificial intelligence (AI) and machine learning (ML) technologies heralds 

a new era in healthcare, offering unprecedented opportunities for advancements in 

diagnostics and patient care [1–3]. In particular, specialties that utilize image-based 

diagnostics, such as ophthalmology, have seen significant benefits from the integration 

of AI for disease detection, medical imaging analysis, and predictive health outcomes 

[4–12]. The capabilities of AI to support early disease detection, enhance the precision 

of medical image interpretations, disease prediction and evolution have been widely 

recognized [13]. However, the practical application of AI in clinical practice is 

contingent upon the availability of extensive, well-organized datasets [14,15]. Existing 

literature acknowledges the arduous but critical steps required to prepare medical 

imaging data for AI analysis, emphasizing the need for ethical approvals, data 

anonymization, quality assurance, and structured data storage to support AI training 

effectively [16,17]. Nevertheless, there exists a discernible gap in research regarding the 

methodologies for consolidating disparate data sources for medical imaging AI 

applications. 

2. Methods 

Cohort Builder is a software pipeline designed to facilitate the creation of patient cohorts 

from real-world ophthalmic imaging data. Image Management System: We used the 

Discovery® software by RetinAI as an Image Management System (IMS) and Image 

Viewer. It can automatically segment and extract biomarkers from medical image 

acquisitions using AI [18,19]. It also serves as a tool to perform automatic medical image 

segmentation, which allows monitoring of disease progression. 

3. Results 

Cohort Builder is composed of three main modules: Cohort Planner, Cohort Extractor 

and Cohort Labeler (as shown in Figure 1). Integration of these subcomponents enables 

clinical researchers to efficiently extract and label patient data for research purposes. An 

instance of Cohort Builder has been deployed on the servers of the Swiss Ophthalmic 

Imaging Network [20] and it is available to researchers and clinicians at partner 

institutions. 

3.1.  The Cohort Planner Module 

This module allows researchers with a specific clinical question to estimate the number 

of potential patients available for analysis based on specified baseline characteristics 

(such as age, gender, or disease). Patient consent for data usage is verified by querying 

the patient consent database, ensuring compliance with privacy regulations and legal 

provisions on research involving human subjects. By estimating sample size and 

providing support for power calculations, it assists in planning the subsequent cohort 

extraction phase.  
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3.2.  The Cohort Extractor Module 

The main module, called Cohort Extractor, streamlines the process of cohort assembly. 

It automatically "uploads" raw images to an Image Management System (IMS). It then 

performs an AI-assisted extraction of retinal biomarkers and "downloads" the data. 

3.3. The Cohort Labeler Module 

Designed to facilitate expert labelling of the extracted patient cohort, this software 

module enables clinical experts to systematically view the extracted data and assign a 

label via an interactive Graphical User Interface. The output can be used to train AI 

algorithms and answer the original clinical question. Cohort Labeler enables the 

visualization of selected scans in the patient history, and displays the segmentation of 

relevant ocular structures. It shows the distribution of pathological retinal fluids via 

histogram overlays and it allows the recording of annotator’s notes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Overview of the Cohort Builder software pipeline. The pipeline comprises three main modules: 

Cohort Planner, Cohort Builder, and Cohort Labeler. Cohort Planner assists clinicians in estimating potential 

patient numbers and planning data extraction. Cohort Builder automates the extraction of retinal biomarkers, 
streamlining cohort assembly, while Cohort Labeler facilitates expert labelling of patient datasets for AI 

algorithm training and potential future studies. 
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3.4. The EMR Health Checker Module 

This software module, separated from the rest of the pipeline, analyses the Electronic 

Medical Record (EMR) database to provide indicators of the completeness of certain 

fields, such as the diagnosis status. EMR Health Checker offers an estimation of EMR 

hygiene, necessary for the correct identification of subjects with certain baseline 

characteristics, which is a prerogative of Cohort Builder. 

3.5. Use Cases and Code availability 

The Cohort Builder pipeline has played a crucial role in the creation of patient cohorts 

with specific baseline characteristics for a range of ophthalmology projects, ranging from 

grading of ocular inflammation [22] to ocular genomics [23–25]. More detailed 

information is available on the website of the Swiss Ophthalmic Imaging Network 

(SOIN): https://sphn.ch/network/projects/completed-projects_tiles/project-page_soin. 

The Cohort Builder pipeline software, to which access is granted upon request, is 

available at https://github.com/JulesGoninRIO/cohortbuilder. 

4. Discussion 

Our methodology and our open-source pipeline hold the potential to serve as a strong 

foundational implementation for other institutions, impacting clinical research on large-

scale retrospective studies. Furthermore, the adoption of the innovative infrastructure 

developed in this project holds promise for addressing prevalent challenges across 

various healthcare settings, beyond ophthalmology. 

5. Conclusions 

Acknowledging the importance of patient cohorts for addressing clinical research 

questions in everyday medical practice, we propose a modular software solution to 

address the fragmentation of patient data across disparate systems and the lack of a 

systematic approach to data access and interoperability. Cohort Builder is a software 

pipeline that ensures effective utilization of real-world data. It is designed to streamline 

the creation of patient cohorts integrating information on consent, diagnoses from EMRs, 

and AI-based disease-critical biomarkers. Jointly, Cohort Planner, Cohort Extractor, and 

Cohort Labeler automate data preparation and processing and improves the efficiency 

and accuracy of patient cohort creation in clinical research settings. Our approach holds 

the potential to serve as a strong foundational implementation for other institutions, 

impacting clinical research on large-scale beyond ophthalmology.  
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