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Photon-Counting Detector CT for Liver Lesion Detection—Optimal
Virtual Monoenergetic Energy for Different Simulated Patient Sizes

and Radiation Doses

Damien Racine, PhD, Victor Mergen, MD, Anaïs Viry, PhD, Thomas Frauenfelder, MD,
Hatem Alkadhi, MD, MPH, Veronika Vitzthum, PhD, and André Euler, MD, MHBA
Objectives: The aim of this study was to evaluate the optimal energy level of vir-
tual monoenergetic images (VMIs) from photon-counting detector computed to-
mography (CT) for the detection of liver lesions as a function of phantom size
and radiation dose.
Materials and Methods: An anthropomorphic abdominal phantom with liver
parenchyma and lesions was imaged on a dual-source photon-counting detector
CT at 120 kVp. Five hypoattenuating lesions with a lesion-to-background con-
trast difference of −30 HU and −45 HU and 3 hyperattenuating lesions with
+30 HU and +90 HU were used. The lesion diameter was 5–10 mm. Rings of
fat-equivalent material were added to emulate medium- or large-sized patients.
The medium size was imaged at a volume CT dose index of 5, 2.5, and
1.25 mGy and the large size at 5 and 2.5 mGy, respectively. Each setup was im-
aged 10 times. For each setup, VMIs from 40 to 80 keVat 5 keV increments were
reconstructed with quantum iterative reconstruction at a strength level of 4 (QIR-
4). Lesion detectability was measured as area under the receiver operating curve
(AUC) using a channelized Hotelling model observer with 10 dense differences
of Gaussian channels.
Results: Overall, highest detectability was found at 65 and 70 keV for both
hypoattenuating and hyperattenuating lesions in the medium and large phantom
independent of radiation dose (AUC range, 0.91–1.0 for the medium and
0.94–0.99 for the large phantom, respectively). The lowest detectability was
found at 40 keV irrespective of the radiation dose and phantom size (AUC range,
0.78–0.99). A more pronounced reduction in detectability was apparent at
40–50 keV as compared with 65–75 keV when radiation dose was decreased.
At equal radiation dose, detection as a function of VMI energy differed stronger
for the large size as compared with the medium-sized phantom (12% vs 6%).
Conclusions:Detectability of hypoattenuating and hyperattenuating liver lesions
differed between VMI energies for different phantom sizes and radiation doses.
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Virtual monoenergetic images at 65 and 70 keV yielded highest detectability in-
dependent of phantom size and radiation dose.
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(Invest Radiol 2024;59: 554–560)

P hoton-counting detector computed tomography (PCD-CT)'s inher-
ent spectral capabilities enable the reconstruction of virtual

monoenergetic images (VMIs), which have become the default recon-
struction for diagnostic readings.1–4 In traditional energy-integrating de-
tector CT (EID-CT), VMIs have demonstrated increased contrast-to-
noise ratio (CNR) of iodinated structures, increased lesion
conspicuity,5 and reduced beam-hardening.6 In addition, former research
has indicated that the use of VMI from PCD-CT may enable radiation
dose reduction while improving diagnostic performance as compared
with EID-CT.7–10 However, one of the challenges using VMI from
EID-CTwas that the optimal VMI energy depended on the size of the pa-
tient and the diagnostic task.11–14 Attenuation properties of tissues and
noise texture may vary between small and large patients due to photon
statistics, including the number of detected photons and the correspond-
ing statistical fluctuations.15–17 Thus, the VMI energy needs to be ad-
justed as a function of patient size to optimize lesion detectability.18–20

Previous studies suggested that smaller patients may require lower energy
levels to achieve optimal image quality, whereas larger patients may re-
quire higher energy levels to overcome increased attenuation and improve
the CNR of iodinated structures.14,19 Therefore, an understanding of the
relationship between patient size and the optimal VMI energy for lesion
detection is crucial to provide accurate and reliable diagnoses in different
patient populations and clinical scenarios.

The purpose of our experimental study was to determine the optimal
VMI energy from PCD-CT for the detection of hypoattenuating and
hyperattenuating liver lesions as a function of phantom size and
radiation dose.
MATERIALS AND METHODS

Phantom Design
An anthropomorphic abdominal phantom (QSA-453 and QSA-637;

QRM,Moehrendorf, Germany) was used. A liver insert, consisting of a uni-
form background liver parenchyma and several lesions with varying attenu-
ation values, was placed in the phantom. The background attenuation was
equal to 90 Hounsfield units (HU) at 120 kVp, as shown in Figure 1.Within
the liver parenchyma, there were 5 iodinated hypoattenuating and 3
hyperattenuating spherical lesions or capsular focal lesions with an elliptical
shape. Size and lesion-to-background contrast of the hypoattenuating
lesions were 5 mm/−30 HU, 10 mm/−30 HU, 5 mm/−45 HU,
5 � 7.5 mm/−30 HU, and 7.5 � 5 mm/−30 HU, respectively. Size
and lesion-to-background contrast of the hyperattenuating lesions were
5 mm/+90 HU, 10 mm/+30 HU, and 5� 7.5 mm/+30 HU, respectively.
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FIGURE 1. Phantom setup. Representative axial CT images of the medium (left) and large (right) anthropomorphic abdominal phantoms.
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Tovary themorphology of the phantom and simulate normalweight
andoverweightpatients,ringsoffat-equivalentmaterial(M=250�350mm;
L = 300 � 400 mm in thickness) were added (see Fig. 1).

Scan Protocol and Reconstruction Settings
The phantom was imaged using the spectral single-source mode

at 120 kVp on a first-generation clinical dual-source PCD-CT
(NAEOTOMAlpha, Siemens, Syngo CT VA50). Radiation doses were
varied by adjusting the image quality index to achieve a volume CT
dose index of 5, 2.5, and 1.25 mGy, respectively, for the
medium-sized phantom, and 5 and 2.5 mGy for the large-sized phan-
tom. Scanning was repeated 10 times for each setup to obtain sufficient
statistics. Estimation of detectability bias and uncertainty decreased
with increasing numbers of images.21

Each dataset was reconstructed as VMI from 40 to 80 keV at
5 keV increments applying the quantum iterative reconstruction algo-
rithm (QIR, VA50, Siemens) at a strength level of 4 (QIR-4) with kernel
Br36. A strength level of 4 was chosen based on the results of a prior
study, which demonstrated superior lesion detectability at this strength
level as compared with lower strength levels.7 Scan acquisition and im-
age reconstruction parameters are summarized in Table 1.

Assessment of Lesion Detectability
Lesion detectability was evaluated using a channelized Hotelling

model observer with 10 dense differences of Gaussian channels follow-
TABLE 1. Scan Acquisition and Image Reconstruction Parameters

Mediu

Radiation dose (CTDIvol in mGy) 5/
Data acquisition
Tube potential (kVp)
Quality reference mAs 10
Gantry revolution time (s)
Detector collimation (mm) 14
Pitch

Image reconstruction
Display field of view (mm) 37
Section thickness (mm)
Section overlap (mm)
Kernel
Quantum iterative reconstruction (QIR) Stren
Reconstruction 40–80 keVa

CTDIvol, volume CT dose index; VMIs, virtual monoenergetic images.

© 2024 The Author(s). Published by Wolters Kluwer Health, Inc.
ing the methodology proposed by Racine et al.22 This mathematical
observer mimics human observer responses for the detection of low
contrast image objects.23–25 The observer was applied to sets of
signal-absent images (150 images) and signal-present images (50 im-
ages for hypoattenuating and 30 images for hyperattenuating lesions)
to calculate the average area under the receiver operating curve
(AUC), which served as the figure of merit for lesion detectability. Area
under the receiver operating curve was assessed for hypoattenuating
and hyperattenuating lesions. Internal noise was added to the images
to account for the variability in human perceptual processes. Internal
noise is a proportional factor added to the covariance matrix calculated
from 150 signal-absent images to emulate human results.26

Statistical Analysis
The performance of the channelized Hotelling model observer

was assessed using the 95% confidence interval estimators, which were
calculated using themethod developed byWunderlich et al.27 For lesion
detectability, the confidence intervals were used to determine statistical
significance between the AUC values for different VMI energies and
phantom sizes. To determine if the difference between the maximum
value and other values is statistically significant, the 95% confidence
interval for the differencewas calculated. If the 95% confidence interval
did not include zero, we concluded that the difference was significantly
different from zero. If the 95% confidence interval included zero, we
concluded that the difference was not significantly different from zero.
m Phantom Large Phantom

2.5/1.25 5/2.5

120 120
4/52/26 104/52
0.5 0.5
4 � 0.4 144 � 0.4
0.8 0.8

0 � 370 420 � 420
3.0 3.0
1.5 1.5
Br36 Br36
gth level 4 Strength level 4
t 5 keV increment 40–80 keVat 5 keV increment
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FIGURE 2. Diagnostic accuracy (AUC) for hypoattenuating focal liver
lesions as a function of VMI energy at different radiation doses for the
medium (top) and large (bottom) size phantom.

TABLE 2. Detectability of Hypoattenuating Lesions for the Medium Size

AUC at 5 mGy

40 keV 0.97 ± 0.01* (−3.2%)
45 keV 0.98 ± 0.01* (−2.1%)
50 keV 0.99 ± 0.01 (−1.3%)
55 keV 0.99 ± 0.00 (−0.7%)
60 keV 0.99 ± 0.00 (−0.3%)
65 keV 1.0 ± 0.00 (−0.1%)
70 keV 1.0 ± 0.00 (N/A)
75 keV 1.0 ± 0.00 (−0.2%)
80 keV 1.0 ± 0.00 (−0.2%)

Data are mean of AUC (rounded to 2 decimals) ± 95% confidence intervals for diffe
the optimal VMI are indicated in brackets. Note that the detection was highest at 65–7

*Statistical significance (P < 0.05) as compared with the optimal VMI energy at t

AUC, area under the receiver operating curve; N/A, not applicable.
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RESULTS

Lesion Detectability

Hypoattenuating Lesions
Detectability of hypoattenuating lesions as a function of VMI en-

ergy and radiation dose are summarized in Figure 2. Results are re-
ported in Table 2 for the medium-sized phantom and Table 3 for the
large-sized phantom, respectively.

Lesion detectability was lowest for VMI at 40 keV for all radia-
tion doses and phantom sizes. For both the medium- and the large-sized
phantom, lesion detectability gradually improved with increasing VMI
energies, starting at 40 keV before reaching a maximum. For the
medium-sized phantom, this maximum was found at 70 keV for
5 mGy, at 65 and 70 keV for 2.5 mGy, and at 65 keV for 1.25 mGy, re-
spectively. For the large-sized phantom, this maximum was found at
65 keV and 70 keV for 5 mGy and at 70 keV for 2.5 mGy. After
reaching this maximum, lesion detectability decreased at energies
higher than 70 keV. Regardless of the phantom size, AUC was higher
at higher radiation dose.

Radiation dose reduction influenced detectability stronger at
40 keVas compared with 65 and 70 keV (loss in lesion detectability be-
tween highest and lowest radiation doses of −17% for 40 keVand −8%
for 65–70 keV in the medium phantom and of −10% vs −4% in the
large phantom). In addition, choosing the optimal VMI energy com-
pared with the worst VMI energy improved detection stronger in the
large phantom (ie, +17% vs +8.9% at 2.5 mGy for the large-sized and
the medium-sized phantom, respectively). The lesion detectability at
the lowest radiation dose using the optimal VMI energy was higher as
compared with 40 keV at doubled radiation dose (0.912 ± 0.011 for
65 keVat 1.25 mGy vs 0.898 ± 0.015 for 40 keVat 2.5 mGy in the me-
dium phantom; 0.945 ± 0.013 for 70 keVat 2.5 mGy vs 0.877 ± 0.014
for 40 keVat 5 mGy in the large phantom).

Figure 3 exhibits the corresponding images of the lesions.

Hyperattenuating Lesions
Detectability of hyperattenuating lesions as a function of VMI

energy and radiation dose are summarized in Figure 4. Results are re-
ported in Table 4 for the medium-sized phantom and Table 5 for the
large-sized phantom, respectively. Figure 5 exhibits the corresponding
images of the lesions.

Lesion detectability was lowest at 40 keV for all radiation doses
and phantom sizes. Lesion detectability gradually improved with in-
creasing VMI energies, reaching a maximum at 70 keV for 5 mGy
AUC at 2.5 mGy AUC at 1.25 mGy

0.90 ± 0.02* (−8.9%) 0.80 ± 0.02* (−12.1%)
0.92 ± 0.01* (−6.6%) 0.83 ± 0.02* (−9.4%)
0.94 ± 0.01* (−4.3%) 0.86 ± 0.02* (−6.4%)
0.96 ± 0.01* (−2.4%) 0.88 ± 0.01* (−4.2%)
0.98 ± 0.01 (−1.0%) 0.90 ± 0.01 (−1.8%)
0.99 ± 0.00 (N/A) 0.91 ± 0.01 (N/A)
0.99 ± 0.00 (−0.1%) 0.91 ± 0.01 (−0.2%)
0.98 ± 0.01 (−0.7%) 0.90 ± 0.02 (−1.6%)
0.97 ± 0.01 (−1.7%) 0.88 ± 0.02 (−3.1%)

rent VMI energies at 5, 2.5, and 1.25 mGy. Percentage differences compared with
0 keV, and the minimum was obtained at 40 keV.

he same radiation dose.

© 2024 The Author(s). Published by Wolters Kluwer Health, Inc.
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TABLE 3. Detectability of Hypoattenuating Lesions for the Large Size

AUC at 5 mGy AUC at 2.5 mGy

40 keV 0.88 ± 0.01* (−11.1%) 0.78 ± 0.02* (−17.0%)
45 keV 0.91 ± 0.01* (−8.3%) 0.82 ± 0.02* (−13.7%)
50 keV 0.93 ± 0.01* (−5.6%) 0.85 ± 0.02* (−10.2%)
55 keV 0.95 ± 0.01* (−3.4%) 0.88 ± 0.01* (−7.2%)
60 keV 0.97 ± 0.01* (−1.6%) 0.91 ± 0.01* (−3.9%)
65 keV 0.99 ± 0.00 (−0.1%) 0.94 ± 0.01 (−1.1%)
70 keV 0.99 ± 0.00 (N/A) 0.95 ± 0.01 (N/A)
75 keV 0.99 ± 0.01 (−0.2%) 0.94 ± 0.02 (−0.3%)
80 keV 0.98 ± 0.01 (−0.4%) 0.93 ± 0.02 (−1.2%)

Data aremean of AUC (rounded to 2 decimals) ± 95% confidence intervals for
different VMI energies at 5 and 2.5 mGy. Percentage differences compared with
the optimal VMI are indicated in brackets. Note that the detection was overall
highest at 70 keV for both radiation doses.

*Statistical significance (P < 0.05) as compared with the optimal VMI energy
at the same radiation dose.

AUC, area under the receiver operating curve; N/A, not applicable.
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and 2.5 mGy, and at 65 keV for 1.25 mGy for the medium-sized phan-
tom. For the large phantom, the highest detectability was found at
65 keV for 5 mGy and at 70 keV for 2.5 mGy. After reaching a maxi-
mum, lesion detectability slightly decreased at higher VMI energies.

Radiation dose reduction influenced detectability stronger at
40 keVas compared with 65 and 70 keV (loss in lesion detectability be-
FIGURE 3. Regions of interest of each hypoattenuating focal liver lesion of the
radiation dose and VMI energy. AUC values are listed. Images were obtained by
10 mm/−30 HU, 5 mm/−45 HU, 5 � 7.5 mm/−30 HU, and 7.5 � 5 mm/−30

© 2024 The Author(s). Published by Wolters Kluwer Health, Inc.
tween highest and lowest radiation doses of −13% for 40 keVand −5%
for 70 keV in the medium phantom and of −12% vs −3% in the large
phantom). Again, choosing the optimal VMI energy compared with
theworst VMI energy improved detection stronger in the large phantom
(ie, +13.6% vs +3.9% at 2.5 mGy for the large-sized and the
medium-sized phantom, respectively). The lesion detectability at the
lowest radiation dose using the optimal VMI energy was higher as com-
pared with 40 keV at doubled radiation dose.
DISCUSSION
Former research has indicated that VMIs from PCD-CT poten-

tially enable higher lesion image quality (ie, lesion detectability or con-
spicuity) as compared with polychromatic images from conventional
EID-CT.7,8,28 However, the optimal VMI energy to detect liver lesions
as a function of patient size and radiation dose has not yet been deter-
mined for PCD-CT. This study systematically assessed the optimal
VMI energy to detect hypoattenuating and hyperattenuating liver le-
sions with respect to different patient sizes and radiation doses using a
PCD-CT and a model observer. Traditional human observer stud-
ies are very time-consuming, and reader performance is variable
compromising the reproducibility of the results. Model observers have
been developed to overcome these limitations, enabling objective as-
sessment of CT technology under controlled conditions. Our results in-
dicate that the highest detectability for both hypoattenuating and
hyperattenuating lesions was achieved using VMI at 65 or 70 keV. In
addition, the impact of changes in radiation dose was minimized by
using the optimal VMI energy. These results differed from previous
studies that investigated the optimal VMI energy for liver imaging using
medium phantom (left) and large phantom (right) as a function of
averaging 10 repeated scans. Lesions from left to right: 5 mm/−30 HU,
HU.

www.investigativeradiology.com 557
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FIGURE 4. Diagnostic accuracy for hyperattenuating focal liver lesions.
AUC for hyperattenuating focal liver lesions as a function of VMI energy
at different radiation doses for medium phantom (top) and large
phantom (bottom).

TABLE 5. Detectability of Hyperattenuating Lesions for the Large
Size

AUC at 5 mGy AUC at 2.5 mGy

40 keV 0.95 ± 0.01* (−5.0%) 0.83 ± 0.02* (−13.6%)
45 keV 0.96 ± 0.01* (−3.4%) 0.86 ± 0.02* (−10.9%)
50 keV 0.98 ± 0.01* (−2.1%) 0.89 ± 0.01* (−7.8%)
55 keV 0.99 ± 0.00* (−1.1%) 0.91 ± 0.01* (−5.1%)
60 keV 0.99 ± 0.00 (−0.5%) 0.94 ± 0.01 (−2.6%)
65 keV 1.0 ± 0.00 (N/A) 0.96 ± 0.01 (−0.6%)
70 keV 1.0 ± 0.00 (−0.1%) 0.96 ± 0.01 (N/A)
75 keV 1.0 ± 0.00 (−0.3%) 0.96 ± 0.02 (−0.5%)
80 keV 1.0 ± 0.00 (−0.7%) 0.95 ± 0.02 (−1.6%)

Data aremean ofAUC (rounded to 2 decimals) ± 95% confidence intervals for
different VMI energies at 5 and 2.5 mGy. Percentage differences compared with
the optimal VMI are indicated in brackets. Note that the detection was highest
at 65–70 keV.

*Statistical significance (P < 0.05) as compared with the optimal VMI energy
at the same radiation dose.

AUC, area under the receiver operating curve; N/A, not applicable.

Racine et al Investigative Radiology • Volume 59, Number 8, August 2024
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EID-CT and PCD-CT. Higashigaito et al28 found that VMI at 50 keV
provided the best trade-off between objective and subjective image
quality at maintained liver lesion conspicuity. In addition, Graafen
et al29 found that liver lesion conspicuity was high on VMI at 65 keV
TABLE 4. Detectability of Hyperattenuating Lesions for the Medium Size

AUC at 5 mGy

40 keV 0.99 ± 0.00 (−0.6%)
45 keV 1.00 ± 0.00 (−0.4%)
50 keV 1.00 ± 0.00 (−0.2%)
55 keV 1.00 ± 0.00 (−0.1%)
60 keV 1.00 ± 0.00 (−0.1%)
65 keV 1.00 ± 0.00 (−0.1%)
70 keV 1.00 ± 0.00 (N/A)
75 keV 1.00 ± 0.00 (−0.1%)
80 keV 1.00 ± 0.00 (−0.1%)

Data are mean of AUC (rounded to 2 decimals) ± 95% confidence intervals for diffe
the optimal VMI are indicated in brackets. Note that the detection was highest at 65 a

*Statistical significance (P < 0.05) as compared with the optimal VMI energy at t

AUC, area under the receiver operating curve; N/A, not applicable.

558 www.investigativeradiology.com
or lower energies but worsenedwhen using VMI at 70 keVor higher en-
ergies. Although both studies focused on image quality and lesion con-
spicuity, lesion detectability was not assessed. Lesion detectability was
significantly lower for the large phantom as compared with the medium
phantom in our study. One possible reason for this could be higher im-
age noise, which is observed in larger patients as demonstrated by
Decker et al30 who investigated low-dose CT of the abdomen with
PCD-CT. Comparing PCD-CT to EID-CT, Euler et al12 and Bette et al31

observed a higher gain in CNR and a higher reduction in image noise in
obese patients than in normal weight patients when using optimal VMI
energies. This gain was also reflected by the larger improvement in de-
tection when choosing the optimal VMI energy in the large phantom as
compared with the medium phantom in our study. We found higher le-
sion detectability for hyperattenuating lesions than for hypoattenuating
lesions. This may be mainly due to a higher average contrast difference
of 45 HU for hyperattenuating lesions as compared with an average
contrast difference of 35 HU for hypoattenuating lesions in
our phantom.

Our findings suggest that the optimization of the VMI energy
can be used for radiation dose optimization. As an example, in the large
AUC at 2.5 mGy AUC at 1.25 mGy

0.96 ± 0.01* (−3.9%) 0.86 ± 0.02* (−9.2%)
0.97 ± 0.01* (−2.8%) 0.88 ± 0.02* (−6.6%)
0.98 ± 0.01 (−1.7%) 0.90 ± 0.02 (−4.6%)
0.98 ± 0.01 (−0.9%) 0.92 ± 0.01 (−2.8%)
0.99 ± 0.00 (−0.4%) 0.94 ± 0.01 (−1.1%)
1.00 ± 0.00 (−0.1%) 0.95 ± 0.01 (N/A)
1.00 ± 0.00 (N/A) 0.95 ± 0.02 (−0.1%)
1.00 ± 0.00 (−0.2%) 0.94 ± 0.02 (−0.7%)
0.99 ± 0.00 (−0.4%) 0.93 ± 0.02 (−1.7%)

rent VMI energies at 5, 2.5, and 1.25 mGy. Percentage differences compared with
nd 70 keV independent of dose.

he same radiation dose.

© 2024 The Author(s). Published by Wolters Kluwer Health, Inc.
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FIGURE 5. Regions of interest of each hyperattenuating focal liver lesion of themedium (left) and large (right) phantom as a function of radiation dose and VMI
energy. AUC values are listed. Images were obtained by averaging 10 repeated scans. Lesions from left to right: 5� 7.5 mm/−30 HU, 7.5� 5mm/−30 HU,
5 mm/−45 HU, 5 mm/−30 HU, and 10 mm/−30 HU.
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phantom, the detectability was similar between 50 keV at 5 mGy and
65 keV at 2.5 mGy for hypoattenuating lesions and between 40 keV
at 5 mGy and 65 keV at 2.5 mGy for hyperattenuating lesions. This
offers radiation dose reduction if an optimal VMI energy is chosen
dependent on the clinical task.

The following limitations merit consideration. First, the study
was conducted using an anthropomorphic abdominal phantom that
may not accurately represent the complexity of the human body. The re-
sults found here need to be validated in patients with human readers (ie,
radiologists) assessing detectability, detection conspicuity, and subjec-
tive image quality. Second, scans were solely reconstructed using rou-
tine parameters. The impact of different kernels and quantum iterative
reconstruction strength levels on the detectability was not investigated.
Based on the findings of Graafen et al32 who demonstrated that soft re-
construction kernels yield the best overall quality for the evaluation of
hepatocellular carcinoma in PCD-CT, a soft kernel (Br36) was used.
Similarly, quantum iterative reconstruction was applied with a strength
level of 4 as this strength level is supposed to provide the best image
quality as suggested by previous studies.7,33 Third, scans were acquired
with a single tube potential. Booij et al34 indicated that the tube poten-
tial may have an impact on CNR. In the future, it will be interesting to
evaluate the impact of the tube potential combined with various VMI
energies on lesion detectability. Finally, this evaluation was limited to
the detectability of focal liver lesions. Future studies will be needed
to find the optimal VMI energy for other abdominal pathologies and
quantification tasks.35
© 2024 The Author(s). Published by Wolters Kluwer Health, Inc.
In conclusion, detectability of liver lesions depended on the radi-
ation dose and phantom size and was considerably improved by selecting
the optimal VMI energy. Based on our findings, we suggest VMI at 65 or
70 keV as the optimal VMI energy to detect hypoattenuating or
hyperattenuating liver lesions. These findings could serve as a basis to
optimize liver imaging protocols of PCD-CT in future clinical trials.
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