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Abstract— In recent years, methods estimating the
spatial distribution of tissue speed of sound with pulse-
echo ultrasound are gaining considerable traction. They
can address limitations of B-mode imaging, for instance
in diagnosing fatty liver diseases. Current state-of-the-art
methods relate the tissue speed of sound to local echo
shifts computed between images that are beamformed
using restricted transmit and receive apertures. However,
the aperture limitation affects the robustness of phase-
shift estimations and, consequently, the accuracy of
reconstructed speed-of-sound maps. Here, we propose a
method based on the Radon transform of image patches
able to estimate local phase shifts from full-aperture images.
We validate our technique on simulated, phantom and
in-vivo data acquired on a liver and compare it with a
state-of-the-art method. We show that the proposed method
enhances the stability to changes of beamforming speed of
sound and to a reduction of the number of insonifications.
In particular, the deployment of pulse-echo speed-of-sound
estimation methods onto portable ultrasound devices can
be eased by the reduction of the number of insonifications
allowed by the proposed method.

Index Terms— Pulse-echo ultrasound, Radon trans-
form, speed-of-sound imaging, inverse problem, liver
imaging.
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I. INTRODUCTION

THE biomarker underlying brightness (B)-mode pulse-
echo ultrasound imaging is the tissue reflectivity function

(TRF). Whereas B-mode imaging is able to indicate the
presence of a wide range of conditions, it can suffer from
both non-specific contrast and low sensitivity to certain disease
types. In recent years, there has been a rise in methods seeking
to image other biomarkers that can potentially address the
shortcomings of B-mode imaging. An excellent example is
the elastography techniques that reveal spatial variations of
tissue stiffness [1].

Methods to image local tissue speed of sound (SoS) are
also gaining considerable attention. For instance, through-
transmission techniques are able to estimate the spatial
distribution of SoS [2], [3], [4], [5], [6] and have led
to promising results in diagnosing breast tumors [7],
[8]. However, they acquire data using transducer arrays
surrounding an acoustically transparent medium, limiting their
application mostly to breast imaging. They also involve a
dedicated heavy system that cannot leverage the advantages
of low cost and portability that are generally associated with
ultrasound imaging.

To circumvent this limitation, various techniques estimating
SoS from pulse-echo measurements have recently been
developed. Methods assuming a uniform SoS in the imaged
medium are well mastered and have shown to be particularly
useful for diagnosing fatty liver disease [9], [10], [11].
However, this assumption is restrictive and does not capture
the actual tissue complexity. In an attempt to reconstruct
the spatial distribution of tissue SoS, several techniques
proposed to approximate the imaged tissues as a series of
horizontal layers with uniform SoS [12], [13], [14], [15]. With
regard to liver imaging, this approximation is justified for
locations where the different tissues of the abdominal wall
and the liver are parallel. However, it cannot be extended
to a more realistic scenario with lateral variations of tissue
composition. Moreover, such methods cannot image inclusions
with inhomogeneous SoS, occurring typically in the case of
tumors.

Tomographic pulse-echo ultrasound methods drop the
assumption of lateral uniformity to fully recover the tissue SoS
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distribution. They require a localized detection of aberration
phase shifts—or equivalently displacements between images—
and inverting a linear model that relates these measurements
to tissue SoS, assuming straight rays.

Such a procedure was first proposed by Jaeger et al. [16],
[17], who computed phase shifts by cross-correlating images
corresponding to different transmit (Tx) angles and recon-
structed the SoS image in the spatial frequency domain. Since
then, several improvements have been proposed, such as a
spatial model able to increase the spatial domain of the
SoS reconstruction [18]. Particularly relevant to our work is
the approach developed by Stähli et al. [19], [20], recently
extended to curved arrays [21], [22]. Here, phase shifts
are detected by jointly limiting the Tx and receive (Rx)
angular apertures and comparing images with Tx/Rx angle
pairs grouped around a set of common mid angles. However,
the limitation of Tx and Rx angular apertures restricts the
number of signals combined to reconstruct an image. The
sensitivity to phase errors occurring in each signals is thus
worsened. As a result, the robustness of aberration phase-shift
estimation is reduced, along with the quality of SoS images
reconstructed in practice. In particular, this fact increases the
number of insonifications the method requires and hinders its
implementation on portable devices since they have limited
power, memory and data transfer bandwidth.

To circumvent this limitation, we recently investigated a
method to estimate aberration phase shifts based on the Radon
transform of the cross-correlation between patches extracted
from different images [23]. The use of the Radon transform to
estimate aberration phase shifts is supported by the change of
basis from the canonical receiver basis to plane waves (PWs)
basis—sometimes denoted as Radon domain—that has been
investigated recently [24], [25], [26]. The rationale behind our
approach is to express data in a local PW basis rather than
in a global PW basis to take into account the locality of the
aberration phase shifts. Based on this reasoning, we recently
introduced an adaptive beamformer for ultrafast ultrasound
able to correct for SoS aberrations [27].

In this article, our aim is to propose an improved version
of the technique presented in [23]. In particular, we want to

• establish the mathematical formalization of the use of
the windowed Radon transform for the computation of
aberration phase shifts,

• demonstrate that the proposed method is able to provide
meaningful results when data is acquired using both large
and limited numbers of insonifications,

• quantify the robustness of the proposed method and
compare it to a state-of-the-art method [19].

II. THEORY

In this section, we detail the theoretical aspects of the
proposed method. We begin by characterizing a novel complex
radio-frequency (CRF) image beamforming procedure referred
to as constant-dif-angle beamforming. Then, we show that
the windowed Radon transform of images reconstructed using
constant-dif-angle beamforming can be used to estimate phase
aberrations caused by SoS variations in the imaged tissues.

A. Plane-Wave Measurement Model

The theory developed in this section relies on several
assumptions. First, we assume that the transducer emits a PW
steered at an arbitrary Tx angle θTx and measures, for each
time instant t , the radio-frequency (RF) signals associated with
a PW steered at Rx angles θRx. Therefore, we can define
a function mPW(θTx, θRx, t) ∈ C describing the CRF echo
signals scattered within the insonified medium and measured
by the transducer.

According to [28], we can model the measured echo signals
expressed in a PW basis mPW as

mPW(θTx, θRx, t) = vpe(t) ∗t

∫
r[

h̃Tx(θTx, r, t
)
∗t h̃Rx(θRx, r, t

)]
γ (r) dr. (1)

We denote by γ (r) the complex and continuous TRF
generating the echo signals, with r = [x, z] a point in the
insonified medium. Functions h̃Tx and h̃Rx refer to the Tx and
Rx spatial impulse responses (SIRs), respectively. Temporal
convolution is denoted by ∗t . Finally, vpe stands for the
pulse-echo wavelet, a term including the electromechanical
impulse response of the transducer and the electric excitation
waveform. It is assumed to be a complex analytic signal.

To reduce the complexity of the measurement model and
ease its mathematical analysis, we follow the simplifications
proposed in [29], [30], where the authors reduce the
convolution with the SIRs h̃Tx / Rx to a temporal shift according
to the Tx and Rx propagation times and a multiplication with
real functions hTx / Rx. To do so, the authors posit that the
entire medium is located in the far-field of an element of the
transducer. Under this assumption, we rewrite (1) as

mPW(
θTx, θRx, t

)
≈

∫
r

hTx(θTx, r
)
hRx(θRx, r

)
vpe

(
t − τ

(
θTx, θRx, r

)
− 1τ

(
θTx, θRx, r

))
γ (r) dr. (2)

Here, the propagation times are expressed as the sum of two
distinct terms. The first term τ is the expected round-trip time
associated with Tx and Rx PWs. Assuming a uniform SoS c0,
it is defined as

τ
(
θTx, θRx, r

)
=

1
c0

〈
uθTx , r

〉
+

1
c0

〈
uθRx , r

〉
=

2
c0

cos
(
θdif) 〈

uθmid , r
〉
, (3)

with

uθ =

[
sin

(
θ
)

cos
(
θ
)] , θmid

=
θTx

+ θRx

2
, θdif

=
θTx

−θRx

2
, (4)

and where ⟨·, ·⟩ denotes the dot product. Throughout this
article, we refer to the angles θmid and θdif as the mid
angle and dif angle, respectively. The second term 1τ is
the aberration delay caused by deviations of local SoS from
c0 along both the Tx and Rx paths. Our model of 1τ will
be detailed in Section III-D. A summary of the proposed
configuration is depicted in Fig. 1.
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Fig. 1. Studied configuration. A linear transducer emits a plane wave
with steering angle θTx. The data reflected at a point r in the medium is
received by the transducer with an angle θRx. An inclusion with a speed
of sound c different from the assumed speed c0 introduces an aberration
delay ∆τ .

The far-field hypothesis introduced in (2) is not entirely met
in practice, since we do also consider echo signals scattered
in the near field of the transducer’s elements. Therefore,
the frequency content of such signals differ from the ones
predicted by (2). However, as long as their center frequencies
do not deviate significantly from the center frequency of vpe,
the far-field hypothesis bears only a limited impact on the
validity of our mathematical analysis.

B. Constant-Dif-Angle Beamforming
We now introduce constant-dif-angle beamforming. The

basic principle of the method is to reconstruct images by
taking into account only signals mPW with the same difference
between their Tx and Rx angles. We propose to reconstruct
a series of N dif constant-dif-angle images ydif

k corresponding
to dif-angles θdif

k , with k = 1, . . . , N dif. They are defined
mathematically as

ydif
k (r ′) =

∫
θmid

a
(
θdif

k , θmid, r ′
)

mPW
(

θmid
+ θdif

k , θmid
− θdif

k ,
2 cos

(
θdif

k

)
c0

〈
uθmid , r ′

〉)
dθmid,

(5)

with r ′ denoting the position in the image. In (5), we delay
the signals mPW according to the propagation times defined
in (3). We denote by a arbitrary apodization weights applied
to each signal at each position r ′ of the beamformed image.
Finally, we assume implicitly in (5) that we have access to
mPW for a continuous interval of θTx and θRx.

As implied in [31], [32], DAS and coherent compounding
only improve image resolution when signals corresponding
to different mid angles θmid are summed. In turn, the
summation of signals corresponding to different dif angles
but the same mid angle provides robustness to artifacts—
for example, multiple scattering and clutter—since the signals
are redundant. The suggested constant-dif-angle beamformer
aims at decoupling explicitly the two effects of beamforming,

namely focusing and artifact reduction, so as to only exploit
the former. We ultimately propose an alternative way to exploit
the redundancy existing between constant-dif-angle images,
namely to estimate aberration phase shifts rather than to reduce
artifacts.

C. Windowed Radon Transform
Given the constant-dif-angle images ydif

k , we want to
estimate a quantity linked to the aberration delays at an
arbitrary point r0 in the medium. To do so, we first propose
to multiply each image ydif

k by a window wRad centered in r0.
The windowing allows us to restrict the image to the vicinity
of r0. In a second step, we compute the Radon transform of
the result. The full operation is a windowed Radon transform,
and we define it mathematically as

yRad
k

(
θRad, d, r0)

=

∫
r ′

wRad(r ′
− r0)

δ
( 〈

uθRad , r ′
− r0

〉
−d

)
ydif

k
(
r ′

)
dr ′, (6)

where d is the offset along uθRad with respect to r0, and θRad

is the Radon filtering angle.
We now introduce two fundamental assumptions. First,

we assume that the point-spread function (PSF) of ydif
k is

sufficiently small with respect to the size of the window.
It allows us to approximate the value of the window at the
image position r ′ with the value of the window at the medium
position r

wRad(r ′
− r0)

≈ wRad(r − r0). (7)

Second, we assume that hTx, hRx, and 1τ vary slowly in the
medium and can be assumed constant in the vicinity of r0—
defined as {r ′

: wRad(r ′
− r0) > 0}. Likewise, we restrict the

choice of a in (5) to slowly-varying functions such that it can
also be assumed constant in the vicinity of r0.

To recover the aberration phase-shifts, we propose to
estimate the Fourier transform ŷRad

k of yRad
k with respect

to d , given the two hypotheses detailed above. Consider-
ing (2) and (5) and after a series of algebraic manipulations
detailed in Appendix A, we obtain

ŷRad
k

(
θRad, ξ, r0)

=
2πc0

2 cos(θdif
k )ξ

gk
(
θRad, r0)

v̂pe

(
c0ξ

2 cos(θdif
k )

)
e
− j

c0ξ

2 cos(θdif
k )

1τ
(
θdif

k ,θRad, r0
)
γ̂ w

(
ξuθRad , r0),

(8)

where ξ is the frequency coordinate associated with the
variable d . In (8), gk denotes a positive function encompassing
the effects of hTx / Rx and a, v̂pe is the Fourier transform of
vpe, and γ̂ w represents a two-dimensional complex function
factoring in the reflectivity map γ and the window w.

Two key insights can be inferred from (8). First, the Radon
angle θRad used in the windowed Radon transform allows us
to recover the signals associated exactly with a mid angle θmid.
From now on the two angles are thus considered equivalent.
Second, each signal yRad

k
(
θRad, ·, r0) is associated with a
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specific value of the aberration delay 1τ
(
θdif

k , θRad, r0). The
value of the aberration delay is parameterized by the dif angle
θdif

k associated with the CRF image ydif
k , the Radon angle θRad

of the windowed Radon transform and the position r0 of the
window.

D. Zero-Lag Cross-Correlation
Unfortunately, the value of 1τ cannot be directly deduced

from yRad
k according to (8), since it is impossible to know the

phase of γ̂ w a priori. To circumvent this issue, we propose to
follow [16], [19] and compute the phase of the zero-lag cross
correlation between the signals associated with two different
dif angles θk and θk+1

1φk→k+1
(
θRad, r0)

= arg
{ ∫

d

(
yRad

k+1

)∗ (
θRad, d, r0)

yRad
k

(
θRad, d, r0) dd

}
, (9)

where ∗ denote the complex conjugate. Upon inserting (8)
into (9) expressed in the frequency domain, we obtain

1φk→k+1
(
θRad, r0)

= arg
{ ∫

ξ

1
ξ2

e
− j

c0ξ

2 cos
(
θdif

k

)1τ
(
θdif

k ,θRad,r0
)
e

j
c0ξ

2 cos
(
θdif

k+1

)1τ
(
θdif

k+1,θ
Rad,r0

)
v̂pe

(
c0ξ

2 cos
(
θdif

k

))
v̂∗

pe

(
c0ξ

2 cos
(
θdif

k+1

)) ∣∣γ̂ w
(
ξuθRad , r0)∣∣2 dξ

}
.

(10)

To conclude, we first posit that θdif
k and θdif

k+1 are sufficiently
small such that

v̂pe

(
c0ξ

2 cos
(
θdif

k

))
v̂∗

pe

(
c0ξ

2 cos
(
θdif

k+1

))
≈

∣∣∣v̂pe

(
c0ξ
2

)∣∣∣2
. (11)

We also assume, for now, that vpe is narrow-band around its
center frequency ω0, such that ξ ≈ 2ω0/c0 in the second
line of (10). Under the two hypothesis introduced above, the
integrand in (10) becomes real and positive, allowing us to
reduce the value of the aberration phase shift to

1φk→k+1
(
θRad, r0)

≈
ω0

cos
(
θdif

k+1

)1τ
(
θdif

k+1, θ
Rad, r0)

−
ω0

cos
(
θdif

k

)1τ
(
θdif

k , θRad, r0). (12)

In practice, however, the pulse-echo wavelet vpe must possess
a fractional bandwidth large enough to limit the size of the
PSF of beamformed images—in the order of 50% to 100%.
Fortunately, a simple mathematical argument shows that (12)
also holds if the function multiplying the complex exponential
in the integrand of (10) is real and symmetric around the
center spatial frequency 2ω0/c0. A similar argument is set
forth in previous works on local SoS estimation [16], [19]
and aberration correction [33]. The symmetry property does
not hold exactly in practice due to variations in γ̂ w and the
presence of 1/ξ2 in (10). Therefore, the phase estimation is
expected to suffer from a certain amount of noise.

According to (12), the phase shift 1φk→k+1 measured
between two signals yRad

k+1 and yRad
k is eventually given

by a weighted difference of the local aberration delays
1τ associated with each signal. At last, constant-dif-angle
beamforming, windowed Radon transform, and zero-lag cross-
correlation successfully allows us to recover a quantity that
is directly linked to the local aberration delays. Importantly,
we must highlight that (12) is valid as long as the weighted
difference between the aberration delays is small. If the
difference is too large—namely, if its magnitude is greater
than π—, phase wrapping occurs, and we obtain inaccurate
phase-shift estimates. To minimize the risk of phase wrapping,
we must ensure during beamforming that adjacent dif angles
θdif

k and θdif
k+1 are always sufficiently close.

Following the mathematical analysis presented here, we
propose the following procedure to estimate a SoS map of
the insonified medium. First, we beamform constant-dif-angle
CRF images and compute their windowed Radon transform.
Second, we compute the zero-lag cross-correlation between
the windowed Radon transform of different images to estimate
a series of phase-shift maps 1φk→k+1. Third, we define
a measurement model relating the phase shift maps to the
aberration delays (12), which are in turn a function of the
SoS map. Ultimately, we solve a regularized inverse problem
to estimate the SoS map, given the phase-shift maps 1φk→k+1.

III. METHOD

In this section, we detail the practical aspects of the
proposed method, beginning with the ultrasound transducer,
system, and sequence used. Then, we present our imple-
mentation of both the constant-dif-angle beamforing and the
aberration phase shift estimation. Finally, we describe the
inverse problem used to recover the SoS map from the phase-
shift estimates.

A. Ultrasound System and Sequence

The experiments shown herein are performed using an L7-4
linear vascular transducer (ATL Philips, WA, USA) attached
to a Vantage 64 LE (Verasonics Inc., WA, USA) research US
system. The transducer consists of N s

= 128 piezoelectric
elements with 0.29 mm pitch and a bandwidth ranging from
4 MHz to 7 MHz, with a 4.8 MHz center frequency. We posit
that the transducer is aligned with the x-axis, such that
the piezoelectric elements are located at positions rs

j =[
x s

j , 0
]T

, j = 1, . . . , N s. We acquire data by emitting
sequentially N Tx

= 115 steered PWs ranging from −28.5◦

to 28.5◦ with a 0.5◦ angular step size. In practice, the data
acquisition of a single PW requires two insonifications since
we record the echo signals using two different 64 elements
sub-arrays. Furthermore, the measured real RF signals are
sampled at 19.2 MHz and the CRF signals are obtained by
computing the Hilbert transform of RF signals.

We also test the performance of the proposed method with
a reduced amount of data. Hence, we generate a second
data set by downsampling the set of steering angles by a
factor 10 prior to beamforming, simulating data acquisition
with only 11 PWs ranging from −25◦ to 25◦ with a 5◦

step.
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We must highlight that the maximum magnitude of the
steering angles is large with respect to the pitch of the
transducer. Therefore, non-negligible grating-lobe artifacts
appear in the beamformed images, affecting the accuracy of
phase-shift measurements. However, these errors are minor
compared to the benefits obtained with large steering angles in
mitigating the ill-posedness of the SoS inverse problem [16],
[18], [19].

B. Beamforming
Constant-dif-angle images cannot be computed directly

according to (5) for two important reasons. First, we do
not measure signals associated to Rx PWs since the signals
are acquired at specific sensor positions rs

j . Second, the Tx
angles θTx are inherently discrete since they correspond to the
steering angles of the PW insonifications. To circumcent these
issues, we propose an alternative method to estimate constant-
dif-angle images ydif

k . Following [19], we first reconstruct a
single image per insonification using DAS

yTx
i

(
r ′

)
=

N s∑
j=1

aRx(r ′
− rs

j
)

mi, j

(
1
c0

〈
uθTx

i
, r ′

〉
+

1
c0

∥∥r ′
− rs

j
∥∥)

, (13)

where mi, j denotes the continuous CRF signal associated
with steering angle θTx

i and sensor rs
j , and aRx denotes an

adpodization function. Since the signals mi, j are in reality
discrete, we implement (13) using cubic interpolation.

Then, we introduce a series of elementary images yTx,Rx
i, j ,

each one associated with the Tx angle θTx
i , i = 1, . . . , N Tx

and a Rx angle θRx
j , j = 1, . . . , N Rx , filt. The elementary

images yTx,Rx
i, j are obtained by filtering in the spatial frequency

domain the images yTx
i according to the mid angle of θTx

i and
θRx

j , namely

ŷTx,Rx
i, j (ν′) = δ

(〈
u⊥

θmid , ν
′
〉)

ŷTx
i (ν′),

θmid
=

θTx
i + θRx

j

2
, (14)

where ŷTx,Rx
i, j , ŷTx

i are the Fourier transform of yTx,Rx
i, j and yTx

i
respectively, ν′ refers to the spatial frequency associated with
r ′, and u⊥

θmid is a unit vector perpendicular to uθmid . Ultimately,
we estimate the dif-angle images ydif

k according to

ydif
k

(
r
)

≈

N Tx∑
i=1

N Rx , filt∑
j=1

wdif
(

θTx
i −θRx

j
2 − θdif

k

)

wmid
k

(
θTx

i +θRx
j

2

)
yTx,Rx

i, j (r), (15)

with

wdif(θ) =

{
cos2

(
πθ

2αdif

)
, if − αdif < θ < αdif

0, otherwise
, (16)

a Hann window of aperture αdif. We denote by wmid
k a

Tukey window of aperture maxi |θTx
i | − θdif

k and 0.25 cosine

fraction. This window discards elementary images ŷTx,Rx
i, j

corresponding to angles that are not considered in the phase
estimation.

In practice, we evaluate (13) on a discrete grid of points
r ′

m,n, m = 1, .., N x,y, n = 1, . . . , N z,y , with N x,y
=

1400 and N z,y
= 1500. We define the grid spacing as

λ0/8 along both x and z axes, such that λ0 = c0/ f0, where
f0 is the center frequency of the transducer and c0 the
beamforming SoS. The grid spacing along z is determined
to ensure that the Nyquist criterion is fullfilled for spatial
frequencies corresponding to twice the center frequency of
the transducer. The grid spacing in the x direction is equal
to its z-axis counterpart since an isotropic grid eases the
implementation of the proposed method.

We define the apodization function aRx as a Tukey window
acting on the Rx angle, with a 60◦ angular aperture and
a 0.125 cosine fraction. The 60◦ aperture is chosen to
discard signals with Rx angles larger than the maximum
Tx angle—28.5◦ plus a 1.5◦ margin to account for the
cosine fraction—since these signals do not intervene in the
aberration phase shift estimation (c.f. Section III-C). Grating-
lobe artifacts are thus reduced [34], since their likelihood
decreases with the angular aperture considered. Respectively,
a non-zero cosine fraction is necessary for function aRx to
be smooth (c.f. Section II-C). The same reasoning applies
for wmid

k in (15). We consider N Rx , filt
= 581 Rx angles

ranging from −30◦ to 30◦ to cover the aperture of aRx. Such
a high number of Rx angles is required to cover the full
spatial spectrum of ydif

k
(
r
)

in (14). Detrimental grating-lobe-
like artifact can occur if N Rx , filt is too small.

In (15), we would ideally sum up only the elementary
images with dif-angles exactly equal to θdif

k . This is not
possible in practice for arbitrary values of θdif

k since θTx and
θRx are discrete. Therefore, we choose to weight the different
elementary images according to a Hann window. Its aperture
αdif needs to be large enough for two reasons. First, to ensure
a sufficient sampling of the frequency plane. Detrimental
grating-lobe-like artifacts can appear in ydif

k
(
r
)

if αdif is too
small compared to the Tx angle spacing. Second, to achieve
sufficient robustness to artifacts such as multiple scattering and
clutter, as discussed in Section II-B. However, the accuracy
of the phase shift estimation is reduced if αdif is too large
since the hypotheses introduced in Section II-C are mitigated.
We must therefore determine empirically the optimal value
of αdif. In particular, we set αdif

= 5◦. This value gave us
the best trade-off in terms of SoS contrast, SoS granularity,
and the noise level in phase-shift maps when 11 PWs in-
vivo data are considered. Eventually, we reconstruct N dif

=

21 constant-dif-angles images ydif
k with θdif ranging from

−20◦ to 20◦ with a 2◦ step in accordance with [19], [35].
We depict in Fig. 2 a visual summary of the beamforming
procedure.

C. Aberration Phase Shift Estimation

Once the constant-dif-angle images are computed,
we apply (6) and (9) to estimate the local phase-shift
maps 1φ.
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Fig. 2. Description of the beamforming process: a) Spatial filtering of beamformed single-insonification images according to a mid angle θmid
=(

θTx
+ θRx)

/2. b) Reconstruction of a single constant-dif-angle image by summing images weighted by a Hann window centered at dif angle θdif
k

with aperture αdif.

We must highlight that hypothesis (7) introduces a limit to
the resolution of yRad

k with respect to θRad. The limit stems
from the convolution in the frequency domain between the
spectra of the images and the window wRad. To maximize
the bound on the resolution of yRad

k with respect to θRad,
we choose a circular window wRad since it is characterized by
a narrow main lobe. In addition, the radius of the window RRad

must be sufficiently large to enforce (7) and provide robustness
to artifacts, but sufficiently small to posit that a, h, and 1τ

are constant within wRad. An excessive value of RRad would
result in overly smoothed phase-shift maps, thus reducing the
accuracy of the SoS reconstruction. Since the magnitude of
the spatial variations of 1τ and the amount of artifacts in the
images vary significantly with the imaged medium, we select
RRad using the same criteria as for αdif (c.f. Section III-B).
In particular, we set RRad

= 1 mm. As we will discuss in
Section VI, the mixing between different mid-angle signals
introduced by the windowing may explain the robustness of
the proposed method to wavefront aberrations.

In practice, we sample r0 from a grid with N x
= 124 and

N z
= 149 points along the x and z axes respectively. The

grid spacing of r0 is set to eight time the spacing of the
beamforming grid. Moreover, we evaluate (6) and (9) at a
series of N Rad

= 18 Radon angles ranging from −17◦ to
17◦ with a 2◦ spacing, identical to the dif-angle spacing.
In addition, the displacement with respect to the center of
the patch d ranges from −RRad to RRad with a discretization
step equal to the grid spacing. Finally, the phase-shift maps
1φk→k+1 associated with |θTx

| = |θRad
+ θRad

k/k+1| > 25◦ or
|θRx

| = |θRad
− θdif

k/k+1| > 25◦ are discarded to match the Tx
angle range used in the 11 PWs case.

As discussed in Section II-C, phase wrapping may occur
in (9) when |θdif

k+1 − θdif
k | is too large; thus, we must consider

small dif-angle differences. Considering such a high number
of phase-shift maps in our measurement model is however
redundant and can lead to a slow and memory demanding
inversion. To avoid this phenomenon, we accumulate phase
shifts between N acc successive dif-angle differences according
to

1φk→(k+N acc)

(
θRad, r0)

=

N acc∑
n=1

1φ(k+n−1)→(k+n)

(
θRad, r0), (17)

which corresponds to the phase shift associated with a larger
difference of dif angles. In our case, we accumulate N acc

=

4 consecutive dif-angle pairs, leading to phase-shift maps
associated with a dif-angle difference of 8◦.

Ultimately, we recover a series of Nφ
= 56 phase shift

maps that are gathered into a vector 1φ ∈ RNφ N x N z
. The final

phase shift maps are parametrized by a vector of mid angles
θmid

∈ RNφ
, a vector of initial dif angles θdif,0

∈ RNφ
, and a

vector of final dif angles θdif,1
∈ RNφ

. A summary of the phase
shift estimation is depicted in Fig. 3, along with examples of
phase shift maps generated by a 1560 m s−1 circular inclusion
embedded within a 1540 m s−1 background.

D. Model Inversion

To reconstruct the spatial distribution of SoS, we rely on the
procedure detailed in [19], [21]. In this section, we summarize
its most important aspects.

First, we introduce the slowness difference map defined as

1s(r) =
1

c(r)
−

1
c0

, (18)

where c0 denotes the beamforming SoS. Second, we define a
linear operator Tθ acting on the continuous slowness difference
map

Tθ {1s} (r) =

∫ 0

ζ=
−z

cos(θ)

1s
(
r + ζ uθ

)
dζ. (19)

The operator Tθ simulates the local aberration delay gained
by a θ -steered PW as it propagates through the medium.
To define it, we use a straight-ray approximation. Importantly,
this hypothesis implies that refraction effects are neglected.
The operator Tθ allows us to define a second operator Mn to
estimate the phase-shift map defined in (12), namely

Mn {1s} =
ω0

cos
(
θ

dif,1
n

) [
T

θmid
n +θ

dif,1
n

{1s} + T
θmid

n −θ
dif,1
n

{1s}
]

−
ω0

cos
(
θ

dif,0
n

) [
T

θmid
n +θ

dif,0
n

{1s}+T
θmid

n −θ
dif,0
n

{1s}
]
. (20)

In practice, we define multiple versions of Mn , one per
index n = 1, . . . , Nφ . We discretize the resulting operators and
gather them into a sparse matrix M ∈ RNφ N x N z

×N x,1s N z,1s
,

where N x,1s , N z,1s denote the size of the discretization grid
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Fig. 3. Left: Configuration of the phase-shift estimation. Black dots represent signals yk
(
θRad, ·, ·

)
. Grey lines indicate the dif angle θdif

k used in
constant-dif-angle beamforming. Blue lines indicate the values of θRad considered in the windowed Radon transform. Cross-correlation is performed
along blue lines between adjacent signals with constant θRad. Red arrows represent the accumulated phase-shift maps from which the speed-of-
sound map is estimated. Right: Three examples of phase-shift maps generated by a 1560 m s-1 inclusion embedded within a 1540 m s-1 background.
Black areas show the masks used in the inverse problem.

of the slowness difference map. Importantly, the slowness-
difference grid is not necessarily identical to the one used for
the phase shift maps. In particular, we set a 0.6 mm slowness-
difference grid spacing.

Due to the limited aperture of the transducer, some areas of
the medium are not insonified by Tx or Rx PWs, leading to
shadows. The phase shifts detected in these areas are therefore
invalid, and we need to mask the shadows accordingly. To do
so, we first define the mask for a single steered PW as

w
angle
θ (r) =

{
1, if x s

1 + xmar < x−z tan
(
θ
)

< x s
N s − xmar

0, otherwise,
(21)

where xmar denotes a margin required to discard inaccurate
phase-shift estimates appearing at the boundary of the PW,
typically occurring due to edge waves. Then, we define a
second series of masks

wn = w
angle
θmid

n +θ
dif,0
n

w
angle
θmid

n −θ
dif,0
n

w
angle
θmid

n +θ
dif,1
n

w
angle
θmid

n −θ
dif,1
n

, (22)

one per phase shift map index n = 1, . . . , Nφ . Ultimately, all
functions (22) are discretized according to the phase-shift grid
and gathered into a vector w ∈ RNφ N x N z

. The black areas in
the sample phase-shift maps of Fig. 3 illustrate masks wn .

We estimate the discretized slowness-difference map 1s
with the following inverse problem

min
1s

1
2

∥M1s − 1φ∥
2
w +

λx

2
∥Dx1s∥2

+
λz

2
∥Dz1s∥2. (23)

Here, Dx and Dz denote the forward finite-difference
derivative operators along x and z directions, respectively,
whereas λx and λz encode the strength of the regularization
along the two directions. We can find a closed-form solution
to (23):

1s =
[
MT Diag(w)M + λx Dx T Dx

+ λz Dz T Dz]−1

MT Diag(w)1φ. (24)

TABLE I
PARAMETERS OF THE PROPOSED METHOD

Since the regularization parameters λx , λz and the mask
w are known a priori, the inverse matrix in (24)
can be precomputed. Thus, the solution of (23) only
requires two matrix multiplications, leading to fast inversion
times.

Due to the difference in the number and nature of the
phase-shift maps considered here, we cannot use the same
regularization parameter than [19]. However, to provide a
meaningful comparison, we fix the same ratio between λx
and λz used in the reference method, namely 40. Moreover,
we determine the regularization parameters such that the
contrast and granularity of the SoS maps are as similar as
possible to the ones achieved by the reference method. Overall,
we set the regularization parameters to λx = 5 · 105 and
λz = 5 · 105/40, respectively. For clarity, Table I summarizes
all the relevant parameters introduced in this section.
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IV. EXPERIMENTS

We assess the performance of the proposed method using
three types of data: simulated data, data acquired on in-vitro
phantoms, and in-vivo data. For the phantom and in-vivo data,
we compare the proposed method with the reference method
proposed in [19]. We focus on liver imaging since SoS has
proven to be a relevant biomarker of fatty liver diseases thanks
to its correlation with the liver fat fraction [9], [11], [22].
In this section, we detail the data acquisition, the metrics used
to quantify robustness, and the implementation of the reference
method. In particular, we consider the same phantom and in-
vivo data used in [20].

A. Simulated Data
First, we assess the accuracy of the proposed method

with simulated data. We consider a geometric model of the
ultrasound transducer and simulate, with k-Wave [36], the
emission of the 115 PWs sequence and the reception of
echoes by the transducer elements. We model the imaged
medium to mimic a potential SoS distribution of the abdominal
wall. An interweave of three layers with SoS 1480 m s−1

and 1580 m s−1 is placed on top of a 1560 m s−1 layer.
Moreover, we suppose uniform Gaussian density variations
in the medium, such that a B-mode image of the medium
figures a uniform speckle. To test the dependency of the
proposed method to changes in speckle pattern, we repeat the
simulation 10 times with different realizations of the density
noise. We estimate the local SoS with the proposed method
with two different beamforming SoS c0, 1500 m s−1 and
1540 m s−1. We compare the results with the ground-truth SoS
map. Morevover, we compare the phase-shift maps estimated
by the proposed method to the result of the measurement
model (20) applied to the ground truth SoS map. Results are
eventually averaged over the 10 experiments.

B. Phantom Design and In-Vivo Data
We also test the proposed method on three different

gelatin phantoms—denoted as P1, P2, and P3—simulating the
abdominal wall and liver. A detailed explanation regarding
how the phantoms were built and how the quantitative
SoS values were determined can be found in [20]. Three
superficial layers mimicking respectively a subcutaneous fat
layer, a triangular-shaped muscle, and a peritoneal fat layer
were placed on top of a liver-mimicking layer with known
SoS. The SoS in the liver-mimicking layer is different for
each phantom, 1525 m s−1 for P1, 1555 m s−1 for P2, and
1585 m s−1 for P3.

We also consider 11 in-vivo data sets acquired on the liver of
a healthy volunteer from the same publication [20]. These data
sets correspond to four different transducer positions—denoted
by letters A to D—, with two to three position variations in
each case—denoted by digits.

For both phantom and in-vivo data, we reconstruct SoS
maps from the full (115 PWs) and reduced (11 PWs) data sets.
Additionally, we take into account 4 different beamforming
SoS c0, namely 1500 m s−1, 1520 m s−1, 1540 m s−1, and
1560 m s−1.

C. Robustness Metrics
We want to quantify the robustness of the proposed method

and compare it to the one of the reference method. To do
so, we test the variability of both methods to changes in
the number of insonifications and beamforming SoS. Indeed,
since the true SoS map does not depend on the number of
insonifications, a SoS map reconstructed by a robust method
with 11 PWs data is expected to be as close as possible
to a map reconstructed with 115 PWs. Similarly, we expect
a robust method to be agnostic to changes of beamforming
SoS [19]. Therefore, we assess the variability to reduction
of insonifications by the median absolute difference between
the 115 PWs and 11 PWs SoS maps. Similarly, the variability
to beamforming SoS is measured by the median of the pixel-
wise standard deviation over the four different beamforming
SoS tested. In both cases, we also compute the upper and
lower quartiles to estimate the uncertainty of the estimators.

A potential target of the proposed method in a clinical
context is to estimate the SoS inside the liver to quantify
its fat fraction. With this purpose in mind, we also estimate
the median SoS in the liver-mimicking layers and liver,
for the phantom and in-vivo experiments respectively. The
interquartile distance is computed as well to estimate the
spread of the SoS distribution. Regarding the phantom data,
we compare the values measured in the liver-mimicking layer
with the ground-truth values to assess the biases of the
proposed and reference methods. For in-vivo data, the true
liver SoS is expected to be very similar for the different
variations of a transducer position—A, B, C, and D. Similarity
between the liver SoS estimates within a transducer position
is therefore a sign of robustness. To quantify the similarity,
we compute the standard deviation of the liver SoS within
a given transducer position and average it over the four
positions. Moreover, we expect the liver SoS to be mostly
constant within the scale of an image. Therefore, we interpret
a low interquartile distance of the liver SoS as a sign of
robustness.

D. Reference Method
The reference method was implemented as in [19], but

parameters were adapted to best match the ones used in the
proposed method. The tracking Tx and Rx angles range from
−25◦ to 25◦ degrees with a spacing of 2.5◦, the Tx and
Rx angular apertures are set to 2.5◦ and the angles used
in the inverse problem after accumulation range from −25◦

to 25◦ with a 10◦ step. In addition, the ratio between the
regularization parameters λx/λz is kept equal to 40/1 but the
magnitude of the regularization was adapted to the grid of the
proposed method. For comparison with the proposed method
with reduced angles, the same angle reduction was also used
with the reference method.

V. RESULTS

In this section, we present the results of the proposed
method applied to simulated, phantom, and in-vivo data. In the
phantom and in-vivo cases, we compare them with the results
of the reference method.
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Fig. 4. Simulation results. a) Left: ground truth speed-of-sound (SoS)
map assumed in the simulation. Right, top row: Examples of SoS
maps reconstructed from 115 and 11 PWs data, using 1500 m s-1

and 1540 m s-1 beamforming SoSs, averaged over 10 measurement
realizations. Middle row: Mean error of the reconstructed SoS maps with
respect to the ground-truth map. Bottom row: Standard deviation of the
SoS maps over the 10 measurement realizations. b) Examples of phase
shifts estimated by the proposed method at x = 0 mm compared with the
phase-shift measurement model applied to the ground truth SoS map.
Three examples are presented using beamforming SoSs of 1500 m s-1

(top row) and 1540 m s-1 (bottom row). We depict the mean value over
10 measurement realizations and the standard deviation.

A. Simulated Data

We display in Fig. 4 examples of SoS maps and phase
shifts at x = 0 mm computed by the proposed method from
simulated data. The mean values over the 10 realizations of the
measurements are depicted, along with the standard deviations.

Regarding the mean SoS maps, we observe that their
dependency to the number of PWs or to the beamforming SoS
is limited. The SoS in the 1580 m s−1 and 1480 m s−1 layers
are under- and overestimated, respectively. This mismatch can
be attributed to the smoothing effect of the regularizer. The
median SoS values in the bottom layer amount to 1555.9 m s−1

and 1549.7 m s−1 with a beamforimg SoS of 1500 m s−1—for
115 PWs and 11 PWS—, whereas they are 1555.2 m s−1 and
1557.0 m s−1 with a 1540 m s−1 beamforming SoS. We can
see that the SoS biases remain limited—under 5 m s−1—except
with 11 PWs in the case where the SoS in the bottom layer
is the furthest from the beamforming SoS.

TABLE II
RELATIVE MEDIAN ABSOLUTE ERRORS OF THE PHASE SHIFTS

ESTIMATED FROM SIMULATED DATA

With respect to the standard deviation of the SoS estimation,
we observe it is small in absolute terms. Nonetheless, a
large number of insonifications reduces the dependency of
the results to the measurement realization. In particular,
the median standard deviation is improved by factors 2.6—
with a beamforming SoS of 1500 m s−1—and 2.9—with a
beamforming SoS of 1540 m s−1—when the number of PWs
is increased from 11 PWs to 115 PWs.

We can notice in Fig. 4b that the examples of estimated
and ground-truth phase-shifts coincide broadly. Nevertheless,
a small bias is observed in the leftmost case. It is independent
of the beamforming SoS but more pronounced with a reduced
number of PWs. In general, the phase-shifts reconstructed
with 11 PWs show a greater dependency to the signal
realization, as with SoS maps.

To quantify the phase-shift errors, we provide in Table II
the median absolute error of the estimated phase-shift maps,
normalized by the median absolute values of the ground-
truth phase-shift maps. We present the average over the
10 measurement realizations for the three examples depicted
in Fig. 4b and the full set of Nφ

= 56 phase-shift maps, with
the standard deviation between parentheses. We observe that
the errors nearly doubles when the number of PWs is reduced,
and that the standard deviation increases. Moreover, the error
is more important with large dif angles (first case) than with
small ones (second case). The error also increases with higher
mid angles (third case), even it is not clear from Fig. 4b due
to the low magnitude of the phase shifts.

Overall, the magnitude of the phase-shift normalized error
is limited, as well as its dependency to the measurement
realization. Moreover, the SoS maps recovered by the proposed
method are satisfactory in term of structure and amplitude,
even if they are overly smoothed compared to the ground truth
map due to the effect of the regularizer.

B. Phantom Data
We display in Fig. 5 the results of the proposed method

applied to phantom data, along with the results of the reference
method and B-mode images of the medium. We only depict
the SoS maps reconstructed using 1500 m s−1 and 1540 m s−1

as beamforming SoS. We present the variability values in
Table III, with the variability to changes of insonifications on
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Fig. 5. Phantom results. a) B-mode images displayed with a 60 dB
dynamic range, with the white dashed lines indicating the top of the
liver-mimicking layers. b) Speed-of-sound (SoS) maps reconstructed
using a 1500 m s-1 beamforming SoS, with the reference method by
Stähli et al. [19] with 115 plane waves (PWs) (first row), the reference
method with 11 PWs (second row), the proposed method with 115 PWs
(third row), and the proposed method with 11 PWs (fourth row). c) SoS
maps reconstructed using a 1540 m s-1 beamforming SoS.

the top—for the four beamforming SoSs—, and the variability
with respect to beamforming SoS on the bottom—for both
the full and reduced data sets. The lower and upper quartiles
are indicated in-between parenthesis, and we indicate by a
bold number which of the proposed or reference method
achieves the lowest variability in each case. In addition,
we show the median SoS in the liver-mimicking layer in the
left part of Table IV, with the interquartile distance in-between
parenthesis. We indicate the top of the areas used to compute
the median SoS by dashed lines in Fig. 5a.

Regarding first the results using 115 PWs, the SoS maps
estimated by the two methods are qualitatively similar, as it can
be seen in Fig. 5. The variability to changes of beamforming
SoS—presented in the fifth row of Table III—is overall
very low for both the proposed and the reference methods.
Moreover, both variability values only differ by 0.1 m s−1.

TABLE III
VARIABILITY TO DATA REDUCTION (TOP ROWS) AND CHANGES OF

BEAMFORMING SOS (BOTTOM ROWS) IN THE PHANTOMS

Regarding the SoS in the liver, we observe in Table IV a
stronger bias in the liver-mimicking layer of P1 with the
proposed method compared to the reference one. However,
the biases in the liver-mimicking layers of P2 and P3 are more
pronounced with the reference method.

When 11 PWs are used, Fig. 5 shows that the proposed
method is more robust than the reference method against
changes of beamforming SoS. For the latter, artifacts appear
in the SoS map, and they are especially severe with a
beamforming SoS of 1540 m s−1. The improvement allowed
by the proposed method is also confirmed by the quantitative
measures shown in the last row of Table III. The overall
variability nearly doubles with the reference method compared
to the proposed one.

We observe in Table IV that a reduction of the number
of PWs generally increases the bias and variance of the SoS
inside the liver-mimicking layers. In the case of the proposed
method, this bias is larger when the difference between the
beamforming SoS and the ground-truth SoS in the liver-
mimicking layer increases. However, the biases are in the large
majority of cases more important with the reference method
in the 11 PWs case, irrespectively of the beamforming SoS.

Finally, the overall variability to a reduction of the number
of insonifications is substantially smaller with the proposed
method compared to the reference method, as it can be seen
in the first four rows of Table III. Regarding the proposed
method, the variability to insonification reduction generally
decreases the closer the beamforming SoS is to the ground-
truth SoS of the liver-mimicking layer. This observation,
along with the increase in bias highlighted above, show
that additional care must be taken to determine the optimal
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TABLE IV
SPEED OF SOUND IN THE LIVER

Fig. 6. In-vivo results. a) B-mode images displayed with a 60 dB dynamic range, with the white dashed line indicating the top boundary of zone
used to compute liver speed of sound (SoS) b) SoS maps reconstructed using a 1500 m s-1 beamforming SoS, with the reference method by
Stähli et al. [19] with 115 plane waves (PWs) (first row), the reference method with 11 PWs (second row), the proposed method with 115 PWs (third
row), and the proposed method with 11 PWs (fourth row). d) SoS maps reconstructed using a 1540 m s-1 beamforming SoS.
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TABLE V
IN-VIVO VARIABILITY TO DATA REDUCTION (TOP ROWS) AND CHANGES OF BEAMFORMING SoS (BOTTOM ROWS)

beamforming SoS when a 11 PWs sequence is used by the
proposed method. In contrast, we can notice in Table III
that the variability of the reference method to data reduction
generally increases with larger beamforming SoSs.

In conclusion, both methods show similar performance
when 115 PWs are used. However, the proposed method
achieves significantly better results with 11 PWs, in term
of bias, variability to SoS beamforming, and variability to
insonification reduction.

C. In-Vivo Data
Fig. 6b and Fig. 6c depict the SoS maps reconstructed

from the in-vivo data with 1500 m s−1 and 1540 m s−1 as
beamforming SoSs c0, respectively. We display in Fig. 6a
the B-mode images of the medium for each data set, where
a dashed line indicates the top boundary of the area used
to compute the liver SoS. Table V details the quantitative
variability values, in the same format as in Table III. The
right part of Table IV presents the medians and interquartile
distances of the SoS in the liver, for each data set. In addition,
the first row of Table VI (*) displays the standard deviation of
the liver SoS over a single transducer position—i.e. A, B, C,
or D—, averaged over the four positions. Finally, the second
row of Table VI (**) presents the median SoS interquartile
distance in the liver over the 11 data sets.

Addressing first the variability to insonification reduction,
we notice in the first four rows of Table V that the overall
relative improvement allowed by the proposed method varies
from 25% (c0 = 1500 m s−1) to 40 % (c0 = 1560 m s−1).
Moreover, the cases where the reference method dominates
the proposed one are all occurring when we image media

with simpler geometries, namely with transducer positions
B and C. The SoS maps in cases A and D show stronger
lateral and axial variations than cases B and C. There, the
proposed method often largely dominates the reference method
regarding variability to insonfication reduction. The variability
to beamforming SoS—presented in the last two rows of
Table V—is also consistently improved by the proposed
method, achieving overall relative improvements of 48% and
41% for the 115 PWs and 11 PWs cases, respectively. This
improvement can be observed visually as well in Fig. 6.
Artifacts similar to the ones observed in the phantom appear in
the SoS maps reconstructed with the reference method using
c0 = 1540 m s−1.

Regarding the SoS in the liver, the standard deviation
within a transducer position is reduced with respect to the
proposed method. This phenomenon occurs irrespectively of
the beamforming SoS or number of PWs as it can be seen
in the first row of Table VI. In contrast, the interquartile
distance achieved by the proposed method—second row
of Table VI—is worse than the reference method with
c0 = 1500 m s−1. Nonetheless, the difference between the two
methods is small and the opposite observation can be made
with c0 = 1540 m s−1, with a larger difference.

Overall, all the in-vivo metrics concur with a general
robustness improvement allowed by the proposed method with
respect to the reference method. Interestingly, the gain in
stability to insonification reduction is larger with the phantom
experiments compared to the in-vivo experiments. In-vivo data
are expected to suffer from more severe levels of phase noise
compared to data acquired on a phantom. We can hypothesise
that this phase noise has two effects. First, the larger amount of
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TABLE VI
AVERAGE VARIABILITY OF THE IN-VIVO LIVER SOS FOR A

TRANSDUCER POSITION (*) AND AVERAGE INTERQUARTILE DISTANCE

OF THE IN-VIVO LIVER SoS ESTIMATES (**)

phase noise generally affect the performances of both methods.
The relative improvement allowed by the proposed method
with respect to the reference one is thus expected to be
reduced. Second, the phase noise probably have a regularizing
effect on the phase-shift estimation of the reference method,
alleviating errors induced by wavefront distortion and reducing
major artifacts.

VI. DISCUSSION AND CONCLUSION

In this article, we propose a new tomographic method
to reconstruct the local SoS of soft tissues from pulse-
echo ultrasound measurements. We confirm the accuracy
of the proposed method with simulated and in-vitro data.
We also establish with in-vitro and in-vivo experiments that the
proposed method is more stable to changes of beamforming
SoS and to a reduction of the number of insonifications in
comparison with a state-of-the-art method. Moreover, we show
that the proposed method leads to more robust estimates of
SoS in the liver, thus demonstrating a potential use of the
method to diagnose fatty liver diseases.

A major difficulty occurring when we image a medium
with spatial and lateral SoS variations—in opposition to a
medium with constant or constant-by-layers SoS—stems from
wavefront distortions. Such distortions mitigate the straight-
ray hypothesis and introduce amplitude variations along the
wavefront. Our experiments tend to characterize the proposed
method as more resilient to wavefront distortions than the
reference method. Indeed, the stability gap between the
proposed and reference methods is more important with
complex media—cases P, A, and D—than with media closer to
a constant-by-layer structure—cases B and C. We believe that
the windowed Radon transform explains this improvement.
The reference method reduces the Tx-Rx aperture of the
images, thus limiting the amount of input signals taken
into account to estimate the phase-shift maps. According to
the hypothesis introduced in Section II-C, the result of the
windowed Radon transform should be equivalent to signals
obtained by limiting the aperture of the images. However,
in practice the windowing of the images prior to the Radon
transform introduces a mixing of the signals associated with
different angles θRad. We believe that it introduces a smoothing
effect which leads to a more robust phase-shift estimation
and mitigates the negative effects of wavefront distortions and
phase noise.

However, strong outliers can still appear in the phase-shift
maps. For example, phase wrapping may occur, especially if
the signals in (9) are only weakly correlated due to noise or

artifacts. An ℓ1 norm could therefore improve the robustness
of the model inversion to outliers, as proposed in [18]
with block-matching estimation of aberration delays. More
generally, we believe that the most significant improvement
to our method can be provided by an adaptation of the
inverse problem. For instance, a total-variation (TV)-norm-
based regularizer [18] could enforce piece-wise constant
SoS maps. Thus, it could provide a prior that is more
representative of the real SoS distribution in human soft-
tissues than the proposed regularizer. In particular, a change of
regularizer could alleviate the loss of SoS constrast observed
in the experiments with simulated data (c.f. Section V-A).
Furthermore, more elaborate regularization schemes such as
a Bayesian soft-prior [20] have been proposed to factor in
information from B-mode image. A neural network based
inversion similar to [37] could also enforce a learned prior
on the reconstructed SoS maps and improve the accuracy
of reconstruction. Overall, we believe that we can close the
remaining performance gap between the 115 PWs and 11 PWs
cases by updating the inverse problem.

Unfortunately, our non-optimized prototype implementation
of the proposed method requires 1.5 to 4 hour to run, depend-
ing on the amount of PWs considered. However, we must
highlight that the constant-dif-angle beamforming and the
windowed Radon transform—the two most computationally
demanding steps of the proposed method—can be easily
parallelized. Currently, we can neither confirm nor deny that
the computation time can be brought down in the future
to allow real-time imaging. Nonetheless, we believe that an
optimized GPU implementation of the proposed method can
provide a time-to-solution suitable for clinical practice.

The results presented in this article target liver SoS
determination. Curved arrays are generally more adapted to
this imaging configuration compared to linear arrays. Thus,
it would be meaningful to adapt the proposed method to this
type of array [21]. In principle, the application domain of the
proposed method can be extended to other organs where SoS
has proven to be relevant. This may include, for instance,
breast imaging [38] as already hinted in our previous work
showing phantom-based preliminary results [23].

However, we believe that the main practical interest of the
proposed method is its applicability to portable ultrasound
devices. Indeed, they are often limited in terms of power
consumption, data transfer bandwidth, memory capability,
and propensity to overheating. There are therefore strong
incentives to reduce the number of insonifications as much
as possible. Finally, our framework could, in principle,
be extended to 3D to reconstruct volumetric images of tissue
SoS since the large memory requirements would also benefit
from the reduced number of insonifications that the proposed
method may permit.

APPENDIX A
WINDOWED RADON TRANSFORM—

DETAILED COMPUTATION

Taking into account (2), (5) and the two assumptions
introduced Section II-C, the Fourier transform of (6) with
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respect to d can be written as

ŷRad
k

(
θRad, ξ, r0)

≈

∫
θmid

gk
(
θmid, r0)∫

r
γ w

(
r, r0) f̂k

(
θmid, θRad, ξ, r, r0) dr dθmid, (25)

where ξ is the frequency associated with d, with

γ w
(
r, r0)

= w
(
r − r0)γ (

r
)
, (26)

gk
(
θmid, r0)

= a
(
θdif

k , θmid, r0)
hTx(θmid

+ θdif
k , r0) hRx(θmid

− θdif
k , r0), (27)

a term encompassing magnitude effects, and

f̂k
(
θmid, θRad, ξ, r, r0)

=

∫
r ′

e− jξ
〈
u

θRad ,r ′
−r0〉

vpe

(
2
c0

cos(θdif
k )

〈
uθmid , r ′

− r
〉
− 1τ

(
θdif

k , θmid, r0)) dr ′. (28)

If we express vpe in function of its Fourier transform, we can
rewrite (28) as

f̂k
(
θmid, θRad, ξ, r, r0)

=

∫
ω

v̂pe(ω)

e
− j

〈
ω

2
c0

cos(θdif
k )u

θmid , r
〉
e jξ

〈
u

θRad , r0〉
e− jω1τ

(
θdif

k ,θmid, r0
)

1
2π

∫
r ′

e
− j

〈
ξu

θRad−ω
2
c0

cos(θdif
k )u

θmid , r ′

〉
dr ′ dω, (29)

with ω the frequency associated with the time coordinate t .
We can recognize in the last line of (29) the Fourier transform
of a two-dimensional Dirac delta distribution. If we express
the Dirac delta distribution in polar coordinates and evaluate
the outer integral in (29), we obtain

f̂k
(
θmid, θRad, ξ, r, r0)

= v̂pe

(
c0

2 cos(θdif
k )

ξ

)
δ
(
θmid

− θRad)
2πc0

2 cos(θdif
k )ξ

e− j
〈
ξu

θRad ,r−r0〉
e
− j c0

2 cos(θdif
k )

ξ1τ
(
θdif

k ,θmid, r0
)
.

(30)

Introducing (30) back into (25) and evaluating the outer
integral leads to

ŷRad
k

(
θRad, ξ, r0)

=
2πc0

2 cos(θdif
k )ξ

gk
(
θRad, r0)

v̂pe

(
c0

2 cos(θdif
k )

ξ

)
e
− j c0

2 cos(θdif
k )

ξ1τ
(
θdif

k ,θRad, r0
)
γ̂ w

(
ξuθRad

)
,

(31)

with

γ̂ w
(
ν, r0)

=

∫
r

e− j
〈
ν,r−r0〉

γ w
(
r, r0) dr, (32)

the two-dimensional Fourier transform of γ w, shifted by r0.
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