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Abstract

INTRODUCTION: The established link between DNA methylation and pathophysiol-

ogy of dementia, along with its potential role as a molecular mediator of lifestyle and

environmental influences, positions blood-derived DNA methylation as a promising

tool for early dementia risk detection.

METHODS: In conjunctionwith an extensive array ofmachine learning techniques, we

employedwhole blood genome-wideDNAmethylation data as a surrogate for 14mod-

ifiable and non-modifiable factors in the assessment of dementia risk in independent

dementia cohorts.

RESULTS: We established a multivariate methylation risk score (MMRS) for iden-

tifying mild cognitive impairment cross-sectionally, independent of age and sex

(P = 2.0 × 10−3). This score significantly predicted the prospective development of

cognitive impairments in independent studies of Alzheimer’s disease (hazard ratio for

Rey’s Auditory Verbal Learning Test (RAVLT)-Learning= 2.47) and Parkinson’s disease

(hazard ratio forMCI/dementia= 2.59).

DISCUSSION:Our work shows the potential of employing blood-derived DNAmethy-

lation data in the assessment of dementia risk.

KEYWORDS

aging, Alzheimer’s disease, dementia, DNA methylation, epigenetics, machine learning, mild
cognitive impairments, Parkinson’s disease, risk prediction

Highlights

∙ Weusedwhole bloodDNAmethylation as a surrogate for 14 dementia risk factors.

∙ Created amultivariate methylation risk score for predicting cognitive impairment.

∙ Emphasized the role of machine learning and omics data in predicting dementia.

∙ The score predicts cognitive impairment development at the population level.

1 BACKGROUND

Over the past decades, the most precise models for predicting demen-

tia and Alzheimer’s disease (AD) have relied on molecular information

derived from cerebrospinal fluid (CSF) and neuroimaging modalities.1

More recently, advancements in the development of blood-based

biomarker assays for neurodegenerative disorders, including amy-

loid beta (Aβ) isoforms, phosphorylated tau (p-tau) proteins, neuro-

filament light (NfL), and glial fibrillary acidic protein (GFAP), have

prompted a notable transition toward emphasizing the importance

of blood-based biomarkers in AD research.2 The adoption of a reli-

able blood-based assay offers potential solutions to longstanding

challenges, such as the relative invasiveness of CSF sampling, and

the high costs and limited accessibility of specialized neuroimaging

facilities.

DNA methylation is a key epigenetic mechanism involved in the

molecular pathologyof dementia.3 Thismolecularmechanism is known

to mediate the impact of lifestyle and environmental factors on the

genome, by regulating gene expression.4 Notably, prior research has

demonstrated associations between peripheral DNA methylation pat-

terns and risk factors for dementia, such as smoking,5 obesity,6 and

blood pressure.7 Moreover, recent comprehensive DNA methylation

Quantitative Trait Locus (mQTL) analyses have confirmed a substantial

genetic influence on methylation patterns.8 This collective evidence

positions DNA methylation as an intriguing molecular biomarker with

the potential to capture both genetic and environmental information

at the individual level. However, previous endeavors to establish blood-

derived DNAmethylation-based predictions for AD have encountered

challenges in external validation, likely attributed to the heterogeneity

of the disease among different cohorts.9

Therefore, in this study, instead of utilizing DNA methylation for

predicting defineddiagnostic labels for dementia and cognitive decline,

we sought to initially develop objective and precise DNAmethylation-

based predictionmodels for the “LIfestyle for BRAinHealth” (LIBRA)10

and “Cardiovascular Risk Factors, Aging, and Dementia” (CAIDE)11

scores. LIBRA and CAIDE are two established frameworks that
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underscore the significance of modifiable (lifestyle-related) and non-

modifiable risk factors in the context of cognitive decline and dementia

prevention. In addition to developing the epigenetic score for CAIDE

and LIBRA total scores (i.e., epi-CAIDE and epi-LIBRA), we established

methylation profile scores (MPSs) for the individual dementia risk

factors involved in these two scores such as age, sex, apolipoprotein E

(APOE) ε4 genotype, smoking,12 alcohol intake,13 plasma cholesterol

levels,14 physical activity,15 education,16 and diet17 in amidlife general

population cohort. Next, we employed these individual models to gen-

erate a multivariate methylation risk score (MMRS) for prediction of

AD dementia and mild cognitive impairment (MCI) in a cross-sectional

pre-dementia and AD cohort. Last, we validated the performance

of the generated scores in predicting the cross-sectional status and

the prospective development of cognitive impairments and dementia

in three independent cohorts of aging, AD, and Parkinson’s disease

(PD).

2 METHODS

2.1 Study design

The applied methodology consists of four main steps (Figure 1): (1)

The model generation using the DNA methylation data obtained from

the Exeter 10,000 project (EXTEND) cohort18 and the European

Medical Information Framework for Alzheimer’s Disease multimodal

biomarker discovery (EMIF-AD MBD) study,19 (2) Model validation

in the independent test set of the EMIF-AD MBD study, Parkin-

son’s ProgressionMarkers Initiative (PPMI),20 the Alzheimer’s Disease

Neuroimaging Initiative (ADNI),21 and Berlin Aging Study-II (BASE-II)

cohorts,22 (3) Model interpretation in terms of variable importance,

gene ontology (GO) overrepresentation analysis, and the influence of

genetic variation, and (4) Model extension by adding genetic and CSF

biomarkers to themodel.

2.2 Study cohorts

An overview, including a description, sample size, and sex and age dis-

tribution, of the five cohorts used in the current research is provided in

Table S1.

2.2.1 The EXTEND cohort

The EXTEND study is a UK-based National Institute for Health and

Care Research (NIHR) funded project aiming to collect blood samples

along with extensive health information from people with and with-

out health conditions.18 In the current study, we used a subset of the

EXTEND cohort, comprising 1076 individuals with available genotyp-

ing and blood-derived DNA methylation data. This subset exclusively

comprised phenotype data from individuals aged 40–75, denoted as

themidlife age group.

RESEARCH INCONTEXT

1. Systematic review: Although DNA methylation data is

regarded as a molecular mediator that links lifestyle to

health and disease, after a careful evaluation of the liter-

ature, we did not find any study that successfully utilized

blood-derivedDNAmethylationdata to identify people at

risk of developing dementia.

2. Interpretation: Constructing a blood-derived DNA

methylation-based model with cross-sectional cognitive

impairment status as the target variable, we associated

the risk score with both the current status and the future

onset of cognitive impairments in independent dementia

cohorts.

3. Future directions: Our work establishes a framework for

future studies aiming to enhance predictive performance

by (a) assessing a broader array of machine learning algo-

rithms, (b) modeling the trajectory of cognitive decline

rather than relying solely on the cross-sectional state of

cognitive function, (c) utilizing larger risk factor-specific

datasets to improve prediction, and (d) incorporating

additional omics layers for further enhancement of pre-

dictive performance.

2.2.2 The EMIF-AD MBD study

The EMIF-AD MBD study is a European research initiative focused

on collecting and collating comprehensive medical and health-related

information from individuals affected by AD and related cognitive

disorders.19 In the present study, we excluded the individuals outside

the midlife age range (i.e., age < 40 or age > 75). We also excluded

individuals who were initially cognitively healthy but later developed

MCI or AD (mean follow-up time± standard deviation [SD] ≈ 2.3± 1.2

years). This exclusion helps in limiting ambiguous cases in the model

training process. The outcome of this process was a final dataset com-

prising 110 individuals with AD, 293 individuals with MCI, and 220

healthy controls with available blood-derived DNA methylation data,

genotyping data, and/or CSF protein markers.

2.2.3 The ADNI cohort

The ADNI cohort21 contains genetic and blood-derived DNA methy-

lation data from cognitively normal individuals, as well as individuals

diagnosed with MCI and AD dementia recruited by institutions from

theUnitedStates andCanada. In addition to theDNAmethylationdata,

ADNI also has extensive individual-level information on various psy-

chometric biomarkers measured at multiple time points. To validate

themodels, we used the baseline DNAmethylation data of 251midlife

individuals (40≤ age≤ 75).
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F IGURE 1 Overview of themodel generation pipeline. Themodel generation workflow consists of model training in the EXTEND and
EMIF-AD cohorts using two different approaches. In the first approach, models for the prediction of CAIDE and LIBRAwere trained in the
EXTEND cohort (n= 1076). Furthermore, in the second approach, the DNAmethylation data obtained from the EXTEND cohort was used to
predict 14 known dementia risk factors. The 14 predicted risk scores (i.e., methylation profile scores; MPSs) were next used as variables for the
prediction of AD andMCI status in the training set of the EMIF-AD cohort (n= 436). The resultingmultivariate methylation risk scores for AD
(MMRS-AD) andMCI (MMRS-MCI) were evaluated in terms of AD andMCI classification performance in the independent test set in the EMIF-AD
cohort (n= 187). Themodel with the best performance was also validated in the ADNI (n= 223), PPMI (n= 129), and BASE-II cohorts (n= 1017).

2.2.4 The PPMI cohort

The PPMI cohort20 includes blood-derived DNA methylation data

from individuals of multiple nationalities who have recently been

diagnosed with PD. For validation, only samples from individu-

als aged 40 to 75 were included, resulting in 129 samples with

available baseline DNA methylation data and cognitive impairment

outcome information. Publically available data used in the prepa-

ration of this article were obtained on May 17, 2023 from the

PPMI database (https://www.ppmi-info.org/access-data-specimens/

download-data), RRID:SCR_006431. For up-to-date information on

the study, visit http://www.ppmi-info.org.

2.2.5 The BASE-II cohort

The BASE-II cohort is a German multi-institutional longitudinal study

characterizing individual changes in the aging process (described in

detail elsewhere).22 Briefly, the BASE-II core cohort (n ≈ 2200) with

multi-dimensional data available comprises a group of elderly (n ≈

1600, age ≥ 60) and younger participants (n ≈ 600, age = 20-35). For

this study,we included the group of elderly participants only. The effec-

tivedataset investigatedhere comprised1,017elderly adults forwhom

whole blood DNA methylation data at baseline, and cross-sectional

cognitive phenotypic data at baseline were available. For 984 indi-

viduals in this baseline sample, longitudinal cognitive follow-up was

available (follow-up time≈ 7.5 years).

2.3 Data pre-processing

2.3.1 Clinical outcomes

The cognitive status of individuals in the EMIF-AD MBD study was

defined as described previously.19 In summary, cognitively healthy

individuals were defined by a normal neuropsychological assessment

score. The MCI diagnosis in nine of the EMIF-AD MBD subcohorts

was based on the criteria of Petersen,23 while for two subcohorts, the

Winblad et al. criteria24 were used. Furthermore, the diagnosis of AD

dementia was defined based on the criteria of the National Institute of

Neurological and Communicative Disorders and Stroke–Alzheimer’s

Disease and Related Disorders Association (NINCDS-ADRDA).25

Due to the reported significant number of false positives MCI

diagnosis in ADNI,26 our analysis in the ADNI cohort shifted its

focus to examine baseline and longitudinal measures of various cog-

nitive domains assessed over four years. These measures included

Alzheimer’s Disease Assessment Scale (ADAS), Rey’s Auditory Verbal

Learning Test (RAVLT), Trail Making Test Part B Time (TMT), and

Mini-Mental State Examination (MMSE) scores. For the MMSE score,

cognitive impairments were defined as MMSE < 24. For the other

cognitive outcomes, impairment status was determined by a score of

either 2 SD below or above the mean of the control group, depending

on the direction of the score (Table S2).

In the PPMI cohort, dementia andMCI diagnoseswere based on the

MovementDisorders Society (MDS) recommended criteria.27 MCI and

PD dementia individuals recorded as having reverted to a cognitively
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TABLE 1 Risk factor definitions in the EXTEND cohort.

Risk factor Definition Risk factormodela CAIDEb LIBRAb

Low education A person is defined to be lowly educated if the individual

has none of the following educational achievements:
1. College or university degree.

2. O level, GCSEs, or equivalent.

3. NVQ, HND, HNC, or equivalent.

4. A-level, AS-level, or equivalent.

5. CSEs or equivalent.

6. Other professional qualifications

Training in EXTEND X

Physical inactivity A person is defined to be physically inactive if

self-reported to do exercise with an increased pulse of

more than 2.5 h per week.

Training in EXTEND X X

Unhealthy diet Self-reported consumption of three or less

fruits/vegetables per day

Training in EXTEND X

Depression Self-reported depression status Training in EXTEND X

Type II diabetes Self-reported type II diabetes status Training in EXTEND X

Heart disease Self-reported heart disease status Training in EXTEND X

Sex Sex Training in EXTEND X

Systolic blood

pressure

Mean systolic blood pressure (mmHg) Training in EXTEND X

Total cholesterol Log-transformed total serum cholesterol levels (mmol/L) Training in EXTEND X

Age Chronological age Zhang et al. (2019) model X

BMI Bodymass index Hillary &Marioni (2020) model X X

Smoking Self-reported current smoking status Hillary &Marioni (2020) model X

HDL cholesterol Log-transformed serumHDL cholesterol levels (mmol/L) Hillary &Marioni (2020) model X

Alcohol intake High alcohol intake is defined by the following criteria:
1. Once amonth, more than 10 alcoholic drinks per day.

2. 2-4 amonth, 5 or more alcoholic drinks per day

3. 2-3 a week, 5 or more alcoholic drinks per day

4. 4 or more a week, 3 ormore alcoholic drinks per day

Hillary &Marioni (2020) model X

Kidney diseasec Self-reported chronic kidney disease status NAc X

Note: The risk factors in the EXTENDcohortwere used for the calculation of theCAIDE and LIBRA scores and as target variables for the training or validation

of the DNAmethylation-based risk factor models. The risk factor weights and cutoffs used for the calculation of the LIBRA and CAIDE scores.
aThis column indicates the DNAmethylation-basedmodel that was used for the prediction of the corresponding dementia risk factor (approach 2).
bThis column indicates whether the corresponding risk factor was used in the calculation of the LIBRA and CAIDE score (approach 1). See Tables S3 and S4

for the exact risk factor weights.
cNo risk factor model was trained for kidney disease status due to the limited number of cases in the EXTEND cohort (i.e., 17 cases and 1059 controls).

normal status (absence of MCI and PD dementia) were excluded from

the analysis.28

Finally, the quantitative assessment of episodic memory, working

memory performance, spatial memory, and fluid intelligence of BASE-

II participants was conducted using seven neuropsychological tests

(Face-Profession Task, Verbal Learning and Memory Test, Number-N-

Back task, Spatial Updating Task, LetterUpdating Task,Object Location

Task, and Figural Analogies).29

2.3.2 Dementia risk factors

Dementia risk factors generated in the EXTEND cohort are listed

in Table 1. Specifically, 15 dementia risk factors were used for the

calculation of the CAIDE and LIBRA scores based on the previously

established weights10,11 (Tables S3 and S4). It should be noted that

information about a person’s cognitive activity was not available in

the EXTEND cohort and therefore was not used in the calculation of

the LIBRA score. Additionally, due to the small number of (chronic)

kidney disease cases, only 14 dementia risk factors were used as

target variables for the construction and/or validation of the DNA

methylation-based risk factor models.

2.3.3 Cerebral spinal fluid biomarkers

Z-scores for three CSF biomarkers, amyloid-β (Aβ), phosphorylated
tau181p (p-tau), and total tau (t-tau), were defined in the EMIF-AD

MBD study as previously described.19 In summary, the t-tau and p-

tau z-scores were defined by their local p-tau levels as measured by
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center-specific enzyme-linked immunosorbent assays (ELISAs), stan-

dardizedwithin assay according to themean and standard deviation of

the healthy controls. Furthermore, theAβ z-scoreswere specified to be
standardized scores for amyloid pathology. Specifically, this score was

standardized within-assay according to the mean and standard devia-

tion of the control group andwas based on theCSFAβ42/40 ratio from
central analyses, local CSF-Aβ42, and the standardized uptake value

ratio (SUVR) on an amyloid PET scan. In ADNI, the t-tau, p-tau, and Aβ
scores were determined as described by Shaw et al.30

2.3.4 Whole blood DNA methylation profiling

DNAmethylation for all samples in the four studied cohorts was quan-

tified using the Illumina Infinium Human Methylation EPIC BeadChip

Array (EPIC array) (Illumina), which interrogates over 850,000 methy-

lation sites throughout the genome. Sample filtering was performed

as a first step of the DNA methylation data pre-processing pipeline

and includes the removal of sampleswith amedian bisulfite conversion

rate below 80%, incorrect sex labels, and a lowmedian (un)methylated

intensity according to the minfi package’s guidelines (i.e., median

log2 unmethylated intensity + median log2 methylated intensity

≤ 21).31

In the normalization procedure, the combination of Noob (minfi

package (v1.46.0)31) and BMIQ (wateRmelon package (v2.6.0)32) nor-

malizationwas applied. This pipeline has previously been shown to be a

high-performingmethod for reducing type I/type II bias and enhancing

reproducibility.33 Furthermore, both Noob and BMIQ are within-

sample normalization methods, which avoid information leakage from

the training to the test set.

Before model training in the EXTEND cohort, previously reported

cross-reactive probes,34 probes with a detection P > 0.01 in at

least one sample, sex-chromosome probes, and probes with single

nucleotide polymorphisms (SNPs) at the single base extension and/or

CpG interrogation site were removed. Next, density plots and prin-

cipal component analysis (PCA) score plots were constructed to

assess the quality of the pre-processing and to identify possible out-

liers. Last, β-values were converted to M-values to account for the

inherently heteroscedastic nature of methylation data. The M-values

were used for the subsequent feature selection and machine learning

pipeline.

It should be noted that not all features that are incorporated in

the generation of the risk factor models passed the described probe

filtering steps in the other cohorts. Therefore, when applying the risk

factor models in a different cohort, low-quality probes (i.e., detec-

tion P > 0.1) were imputed using the imputePCA function from the

missMDA package (v1.8).35 This function uses a regularized iterative

PCA algorithm to impute missing values. Specifically, this algorithm

first imputes all missing values with the feature’s mean after which it

iteratively performs PCA and imputes each missing value using the

low-rank representation until convergence is reached (i.e., a difference

of less than 1 × 10−6 between iterations). The optimal number of

principal components (PCs) for the low-rank representation was

found by removing and imputing 100 random values and choosing the

number of PCs that yields the lowest mean absolute error (MAE). This

iterative PCA imputation method has previously been shown to be

among the best-performing and computationally efficient algorithms

for missing value imputation of DNAmethylation data.36

DNA methylation data in BASE-II were processed as previously

described.37 For this study, sex discrepancies were assessed by com-

paring the genetically determined sex with the reported sex.

2.3.5 Polygenic score generation

The genotyping data from EMIF-AD MBD was pre-processed as

described previously.38 In short, this pre-processing pipeline includes

filtering of strand-ambiguous SNPs, aligning alleles to the human

genome assembly GRCh37/hg19, phasing, imputation based on the

Haplotype Reference Consortium (HRC) reference panel, pre- and

post-imputationquality control (QC), and filtering of SNPswith aminor

allele frequency (MAF)< 0.01.

The genotyping data of the EXTEND cohort underwent a similar

pre-processing pipeline including SNP filtering and alignment using

the HRC/1000Genomes imputation preparation and checking pipeline

(v4.2.7),39 imputation using the Michigan Imputation Server with the

1000Genomes reference panel (phase 3 v5 hg19, Population: EUR,

Phasing: Eagle, R-squared filter: 0.3),40 and post-imputation SNP filter-

ing (MAF<0.01,Hardy-Weinberg equilibrium (HWE)P<10−4,missing

call rate> 90%).

Subsequently, the LDAK tool (v5.2)41 was applied to calculate the

polygenic (risk) scores (PGSs) for 11 of the 14 dementia risk factors

as well as AD status (including the APOE region) using the HapMap

reference panel and the summary statistics of 12 genome-wide asso-

ciation studies (GWASs) listed in Table S5. In short, LDAK splits the

summary statistics in pseudo training and test summary statistics

and then uses a variational Bayes approach to estimate the regres-

sion coefficients of the SNPs.41 For the hyperparameter optimization,

multiple models are trained and evaluated on the test summary statis-

tics for different combinations of prior distribution parameters. This

methodology is available for six model types (i.e., bayesR, bayesR-

shrink, lasso, lasso-sparse, ridge, and bolt regression models) that

differ in the form of the prior distribution for the SNP effect sizes.

As the bayesR is the recommended method for PGS generation by

the developers of LDAK, all PGSs were generated using the bayesR

approach.

2.4 Model generation

Themodel generation consists of twoapproaches; the prediction of the

CAIDE and LIBRA scores in the EXTEND cohort as well as the predic-

tion of MCI and AD status in EMIF-AD MBD by 14 MPSs of dementia

risk factors (Figure 1).
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TABLE 2 The applied feature selection andmachine learningmethods.

Feature selectionmethod Machine learningmethod CAIDE/LIBRA Dementia risk factors

None ElasticNet x x

Correlation-baseda Random Forest x x

Correlation-baseda ElasticNet x x

Literature-basedb Random Forest x

Literature-basedb ElasticNet x

Note: For the prediction of nine dementia risk factors and theCAIDE and LIBRA scores in the EXTENDcohort, different combinations of feature selection and

machine learningmethods were used.
aIn the correlation-based feature selectionmethod, the 10,000 CpGs that have the highest absolute Spearman correlation coefficient with the target variable

(i.e., predicted dementia risk factor) in the training set were selected for model training (Text S1).
bIn the literature-based feature selection method, the CpGs that reached genome-wide significance in a previously performed epigenome-wide association

study (Table S7) for the corresponding risk factor were selected for model training.

2.4.1 Approach 1: Generation of methylation risk
scores for CAIDE and LIBRA

In the first approach, we aimed to construct an epigenetic model for

the prediction of the LIBRA score (i.e., epi-LIBRA model) and CAIDE

score (i.e., epi-CAIDE model). Before constructing these models, we

evaluated multiple supervised and unsupervised feature selection

methods to investigate which method is suitable for reducing the

large dimensionality of the DNA methylation data and found supe-

rior performance of the “correlation-based feature selection method”

(see Supplementary Information for a more detailed description of the

applied methodology and results). In short, in the correlation-based

feature selectionmethod, the 10,000CpGs that have the highest abso-

lute Spearman correlation coefficient with the target variable in the

training set were selected for model training.

Hence, for predicting both the CAIDE and LIBRA scores, we trained

an ElasticNet and Random Forest model on the 10,000 features

selected by correlation-based feature selection, as well as an Elastic-

Net model trained on all CpGs that passed QC (Table 2). Accordingly,

we applied five-repeated five-fold cross-validation to find the opti-

mal hyperparameter values that yield the minimal MAE (the searched

hyperparameter space is shown in Table S6).

2.4.2 Approach 2: Generation of MMRS

For the second approach, we first aimed at predicting 14 known

dementia risk factors included in the CAIDE and/or LIBRA scoring

systems (Table 1). Specifically, for the prediction of smoking, alcohol

consumption, high-density lipoprotein (HDL) cholesterol, and body

mass index (BMI), the corresponding DNA methylation-based models

from Hillary and Marioni (2020)42 were used. The epigenetic clock

model was adopted from Zhang et al.43 for the prediction of age and

for each of the remaining risk factors (i.e., low education, physical

inactivity, unhealthy diet, depression, type II diabetes, heart disease,

sex, systolic blood pressure, and total cholesterol), five models were

trained in the EXTEND cohort corresponding to different combina-

tions of feature selection and machine learning algorithms (Table 2).

These include an ElasticNet model without prior feature selection, an

ElasticNet and Random Forest model with correlation-based feature

selection, as well as an ElasticNet and random Forest model trained

on the CpGs that reached genome-wide significance in previously

performed epigenome-wide association studies (EWAS) (Table S6).

Accordingly, for each of these five models, five-repeated five-fold

cross-validationwas applied to find theoptimal hyperparameter values

that yield themaximal area under the receiver operating characteristic

curve (AUROC) (for discrete risk factors) or minimal MAE (for con-

tinuous risk factors) (the searched hyperparameter space is shown in

Table S7). From the fivemodels per risk factor, themodel that achieved

the highest average AUROC or R2 over all folds was considered the

best-performing risk factor model.

Subsequently, the predicted risk scores of each risk factor model

(for binary variables this is defined as log(1/1-p), where p is the

estimated class probability), referred to as MPSs, were used as vari-

ables for the construction of a MMRS for the prediction of “MCI

versus control” (i.e., MMRS-MCI model) and “AD versus control”

(i.e., MMRS-AD model) in the training set of the EMIF-AD MBD

study. For this, the Kennard-Stone algorithm44 was first applied to

the MPSs to split the data into a training (n = 436) and an indepen-

dent test set (n = 187) (Table S8). Accordingly, an ElasticNet (EN),

sparse partial least squares-discriminant analysis (sPLS-DA), and

Random Forest model with recursive feature elimination (RF-RFE)

models were trained by five-repeated five-fold cross-validation

to find the optimal hyperparameter combination that yields the

highest AUROC (the searched hyperparameter space is shown in

Table S9).

2.5 Model validation

Following the model performance estimation on the independent test

set of the EMIF-ADMBD study, we applied our top-performing model

to generate methylation-based risk scores in the ADNI, PPMI, and

BASE-II cohorts.
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2.5.1 Validation in ADNI

In ADNI, a linear regression model with age and sex as covariates was

fitted to assess the baseline association between the risk scores cal-

culated by our best-performing model and the cognitive outcomes and

CSF biomarkers.

Besides the cross-sectional validation, the predictive capability of

risk scores generated by our best-performing model for longitudinal

cognitive functioning was assessed using survival analysis. Specifically,

based on the risk scores calculated by our best-performing model, the

individuals of the ADNI cohort were divided into three equally sized

risk categories; low- (n = 74), intermediate- (n = 75), and high-risk

(n = 74). We accordingly assessed the statistical significance of the

difference in time-dependent conversion to cognitive impairments by

comparing the low- and high-risk groups using the log-rank test and

a Cox regression model with age and sex as covariates (survival pack-

age (v3.5.5)45). Furthermore, a Kaplan-Meier curvewas constructed to

visualize the probability of cognitive impairments over time for each

of the three risk categories. It should be noted that not all cogni-

tive measures were available for each individual; hence, the number

of samples per risk category was different per cognitive outcome

(Table S2).

To assess whether the expected direction of effect (i.e., hazard ratio

(HR) > 1 for the high-risk group) for all the nine cognitive outcomes

is observed more frequently than would be expected by chance, a

10,000-permutation analysis was performed. For each permutation,

the samples were randomly divided into three risk categories, and the

HR from the Cox regressionmodel was recorded.

2.5.2 Validation in PPMI

The PPMI cohort was used to assess the longitudinal prediction of our

best-performing model among the epi-LIBRA, epi-CAIDE, and MMRS

models. As for the ADNI cohort, the individuals of the PPMI cohort

were divided into three equally sized risk categories; low- (n = 43),

intermediate- (n= 43), and high-risk (n= 43).We accordingly assessed

the statistical significance of the difference in time-dependent conver-

sion toMCIorPDdementia by comparing the low- andhigh-risk groups

using the log-rank test and a Cox regression model with age and sex as

covariates (survival package (v3.5.5)45).

2.5.3 Validation in BASE-II

We incorporated our best-performing model into a publicly

available R Shiny app (https://github.com/Dementia-Systems-

Biology/DementiaRiskPrediction) and used this app to calculate

themethylationmodel’s risk scores for the pre-processedDNAmethy-

lation data of the BASE-II cohort. For the validation, we calculated

linear regression models of the available cognitive measures on the

risk scores. We adjusted for age, sex, and the first six genetic PCs. All

cognitive measures were tested cross-sectionally and longitudinally.

The longitudinal scores were calculated using the following formula:

score = (testFollow-Up – testBaseline)/time interval. The P-values were

false discovery rate (FDR) -adjusted to account for multiple testing.

2.6 Model interpretation

2.6.1 Variable importance

The importanceof variables contributing to thebest-performingmodel

was evaluated using mean absolute SHapley Additive exPlanations

(SHAP) values of the test set samples in the EMIF-AD MBD study as

calculated with the DALEX package (v2.4.3).46 To make the SHAP val-

ues comparable betweenmodels, the valueswere normalized such that

the absolute sum equals one. The scaled mean absolute SHAP values

can therefore be interpreted as the average proportional contribution

to the predicted score.

2.6.2 GO overrepresentation analysis

ThemissMethyl package (v1.34.0)47 was used to performGOoverrep-

resentation analysis on the union of the most important features of

the methylation-based risk factor models (i.e., MPS models) that were

used for the prediction by the best-performing model. For the Elastic-

Netmodels, themost important features are the CpGswith a non-zero

coefficient, while for the Random Forest models, the 1000 CpGs with

the largestGini indexwere considered as themost important variables.

2.6.3 Influence of genetic variation

To evaluate the genetic contribution to variation explained by DNA

methylation within the best-performing model, we quantified the joint

variation between the genetic determinants of the model’s CpGs

and the CpG beta values using the Joint and Individual Variation

Explained (JIVE) method.48 We obtained the genetic determinants

of the model’s CpGs from the Genetics of DNA Methylation Con-

sortium (goDMC) using the following parameters: clumped cis- and

trans-mQTLs, P < 1e-58 and the joint variation quantified using the

r.jive package (v2.4).

In addition, a Bayesian colocalization method (coloc package

(v5.2.2)49) was performed to test for common genetic variants asso-

ciated with DNA methylation and the genomic loci reported in the

latest AD GWAS.50 For this analysis, the latest GWAS summary

statistics were downloaded from the European Bioinformatics Insti-

tute GWAS Catalog (https://www.ebi.ac.uk/gwas/) under accession

no. GCST90027158. We defined AD-associated loci as the physical

region containing correlated SNPs (r2 > 0.6) within 250K bp up and

downstream of the 88 index SNPs reported by Bellenguez et al.51 Non-

clumped cis-mQTLs with P < 1e-5 associated with the contributing

MPSs to the best-performing MMRS model, were extracted from the

GoDMCdatabase.8
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2.7 Model extension

To compare the performance of models based onMPSs, PGSs, and CSF

biomarkers individually or in combination, we re-trained the EMIF-AD

MBD data using the 14 MPSs along with 12 PGSs (Table S5) and/or

three CSF biomarkers (i.e., Aβ1-42, t-tau, and p-tau z-scores) as addi-

tional variables. For this, the same machine learning strategy was

applied as described earlier.

3 RESULTS

3.1 Generation and validation of the epi-CAIDE
and epi-LIBRA scores

In the EXTEND cohort, the Random Forest model demonstrated

a relatively effective prediction of the CAIDE score (cross-

validation R2 = 0.47). However, the prediction of the LIBRA score

proved challenging, with a maximal cross-validation R2 of 0.04

(Table S10).

Within the EMIF-ADMBD study, a robust correlationwas observed

between the epi-CAIDE score and chronological (R2 = 0.45) as well

as epigenetic (R2 = 0.55) age, underscoring the predominant influence

of age on the epi-CAIDE score. Nevertheless, with an AUROC ≤ 0.61,

both the epi-CAIDE and epi-LIBRA scores as predicted by the best-

performing random Forest models were shown to be poor estimators

of bothMCI and AD status in the independent test set of the EMIF-AD

MBD study (Figure 2 and Table S11).

3.2 Generation and validation of MMRS models

Besides age (R2 = 0.92) and sex (AUROC = 1), the best-predicted

dementia risk factors by blood-derived DNA methylation data in

the EXTEND cohorts included notable performance for smoking

(AUROC = 0.91), type II diabetes (AUROC = 0.89), and heart disease

status (AUROC ≈ 0.80) (Tables S12 and S13). Nine out of the 14 risk

factors were also recorded in EMIF-ADMBD. Performance of the nine

corresponding MPSs demonstrated weaker yet statistically significant

predictive capability. Particularly, similar to the findings in the EXTEND

cohort, age (R2 = 0.87), sex (AUROC = 1), smoking (AUROC = 0.80),

and heart disease status (AUROC = 0.67) were identified as the best-

predicted risk factors by the methylation data of the EMIF-AD MBD

study (Table S12).

As shown in Figure 2 and outlined in Table S11, our MMRS-AD

models, incorporating the 14 MPSs as variables, did not show signifi-

cant predictive capability for AD status in the independent EMIF-AD

MBD test set (AUROC ≤ 0.60 However, our MMRS-MCI model (RF-

RFE) demonstrated anotable ability to predictMCI status, achieving an

AUROC of 0.68 (P = 2.0 × 10−3 for a linear regression model adjusted

for age and sex). This performance significantly surpassedMCI predic-

tion based solely on epigenetic age (DeLong’s P= 8.0 × 10−3).

3.3 Validation in independent dementia cohorts

3.3.1 Validation in the PPMI cohort

To validate our MMRS-MCI (RF-RFE) model in the PPMI cohort, we

performed a survival analysis. Specifically, we stratified the popula-

tion into three equally sized risk categories based on the baseline risk

score predicted by the MMRS-MCI model and monitored their con-

version to cognitive impairments (i.e., MCI or PD dementia) over time.

Notably, we observed a higher incidence of conversion to cognitive

impairments within the high-risk group compared to the low-risk cat-

egory (HR = 2.59, Cox regression P = 0.036). These findings suggest

that the baseline risk score predicted by the MMRS-MCI model in

this PD cohort is indicative of the likelihood of developing cognitive

impairments, as illustrated in Figure 3A.

3.3.2 Validation in the ADNI cohort

To validate our MMRS-MCI (RF-RFE) model in the ADNI cohort, our

initial assessment focused on examining the association between

the MMRSs and various cognitive outcomes at baseline. Notably, at

baseline, the risk score of our MMRS-MCI (RF-RFE) model demon-

strated associations with all cognitive outcomes and CSF biomarkers

in the anticipated direction (Table S14). Following FDR adjustment, sig-

nificant associations were observed for ADAS-Q4, TMT, tau, and p-tau

(FDR-adjusted P= 0.03, 0.03, 0.02, and 0.02, respectively). These find-

ings underscore the robustness of the MMRS-MCI model in capturing

relevant cognitive and biomarker variations in the ADNI cohort.

To further validate our best-performing MMRS model in the ADNI

cohort, we conducted a survival analysis to assess the conversion to

cognitive impairments across three risk categories based on the base-

line MMRS-MCI (RF-RFE) scores. Notably, within the high-risk group,

we observed a greater incidence of conversion to cognitive impair-

ments, as assessed by various cognitive tests. This reached nominal

statistical significance for RAVLT – learning (HR = 2.27, P = 0.01)

and RAVLT – percent forgetting (HR = 1.73, P = 0.045) (Figure 3B,

Table S15, and Figure S1). While not all cognitive tests in the ADNI

cohort reached statistical significance, the consistent direction of

effect (HR > 1 for the high-risk group, adjusted for age and sex) was

observed across all nine cognitive tests, surpassing what would be

expected by chance (permutation P= 0.048). These results strengthen

the evidence supporting the predictive capability of our MMRS-MCI

model in forecasting cognitive impairment in the ADNI cohort.

3.3.3 Validation in the BASE-II cohort

In the BASE-II cohort, our association analyses of MMRS-MCI

(RF-RFE) with the seven cognitive test scores, both cross-sectional and

longitudinal, revealed a statistically significant association specifically

with the longitudinal Face-Profession Task score. This particular score
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KOETSIER ET AL. 6691

F IGURE 2 ROC curves of cross-sectional
AD andMCI status prediction in the
independent test set of the EMIF-ADMBD
study. TheMMRSmodels (red) are trained on
the 14MPSs for the prediction of AD (A) and
MCI (B). The epi-LIBRA and epi-CAIDE scores
(blue) are both predicted by the RandomForest
model with a correlation-based feature
selectionmethod (i.e., the best-performing
model) from the EXTEND data. The 95%
confidence intervals of the AUROC values are
indicated between brackets. EN, ElasticNet;
sPLS-DA, sparse partial least
squares-discriminant analysis; RF-RFE, random
Forest with recursive feature elimination.

serves as a measure of episodic (associative) memory (FDR-adjusted

P = 2.0e-3). However, the MMRS score did not exhibit evidence for

association with any of the other cognitive scores analyzed (Table

S16). These findings highlight a notable and specific link between our

MMRS-MCI model and episodic memory performance in the BASE-II

cohort.

3.4 Model interpretation

As shown in Figure 4, the best-performingMMRS-MCI (RF-RFE)model

relies on 10 out of the 14MPSs for its prediction. Moreover, the mean

absolute SHAP values indicate that theMMRS is predominantly driven

by depression, HDL cholesterol, physical inactivity, and low education

MPSs (Figure 4). The distribution of the MPSs among the diagnostic

groups is shown in Figure S2.

“AMPA glutamate receptor clustering (GO:0097113)” stands out as

the most overrepresented GO term by the union of the CpGs used in

these 10 risk factor models (7,571 CpGs, unadjusted P= 4.2e-4) (Table

S17). Notably, the model’s CpGs that are associated with this GO term

reside within the untranslated region (UTR) or gene body of the APOE,

DLG, NLGN1, SHANK3, SHISA6, SHISA7, SLC7A11, and SSH1 genes

(Figure S3). However, the JIVE analysis indicated that only minimal

joint information is captured by the model’s CpGs and their associated

genetic variants. Particularly, for PRS, less than 3% of the variance in

DNA methylation data is explained by genetic variation (Figure S4).

Finally, the colocalization analysis indicated that only 11 CpGs out of

7,571 CpGs, forming the 10 contributingMPSs to the best-performing
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6692 KOETSIER ET AL.

F IGURE 3 Kaplan-Meier curves of cognitive impairments in the ADNI and PPMI cohorts. The risk categories were defined based on the
baseline score predicted by theMMRS-MCI (RF-RFE) model. The shaded area around the line indicates the 95% confidence interval. ADAS,
Alzheimer’s Disease Assessment Scale; RAVLT, Rey’s Auditory Verbal Learning Test; TMT, Trail Making Test Part B Time;MMSE,Mini-Mental State
Examination.

 15525279, 2024, 10, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.14061 by B

cu L
ausanne, W

iley O
nline L

ibrary on [25/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://alz-journals.onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Falz.14061&mode=


KOETSIER ET AL. 6693

F IGURE 4 Radar chart of the scaledmean absolute SHAP values.
The scaledmean absolute SHAP values indicate the variable
importance of the 14MPSs in the threeMMRS-MCImodels. The
values for each of themodels are scaled such that the sum equals one.
EN, ElasticNet; sPLS-DA, sparse partial least squares-discriminant
analysis; RF-RFE, random Forest with recursive feature elimination.

MMRS model, are likely to share a common genetic basis with AD

risk loci, with a posterior probability larger than 0.99. (Table S18).

Collectively, these results suggest that our best-performing model

incorporates distinctive information from DNAmethylation data, with

a limited influence from genetic factors. This underscores the unique

contribution of epigenetic information in the predictive capacity of the

model, providing valuable insights into the distinct molecular features

associated with AD risk.

3.5 Model extension

Despite the significant associations observed between most PGSs

and their corresponding dementia risk factors in the EXTEND and

EMIF-AD MBD cohorts, their predictive performance remains poor,

characterized byR2 values of 0.1 or lower (Table S18). Furthermore,we

found lowcorrelations, as indicatedbyPearson correlation coefficients

consistently below 0.1, between most PGSs and their corresponding

MPSs (Figure S5).

The addition of the 14 MPSs as additional variables alongside

the initial 12 polygenic PGSs resulted in a significant increase in

the AUROC for predicting MCI in the EMIF-AD MBD test set.

Specifically, the AUROC increased from 0.64 (when only PGSs were

utilized as variables) to 0.69, showcasing the added predictive value

brought about by the inclusion of MPSs into the model. Similarly,

incorporating MPSs into the CSF biomarkers further enhanced the

MCI predictive performance, raising the AUROC from 0.76 to 0.88

(Figure 5).

4 DISCUSSION

In this study,we leveragedwhole-blood-derivedDNAmethylationdata

obtained from a midlife general population to construct molecular

scores serving as a surrogate for modifiable and non-modifiable risk

factors for dementia. We used the LIBRA and CAIDE total scores,

along with the 14 individual risk factors contributing to these scores,

as outcomes for training of methylation-based risk score models (i.e.,

epi-LIBRA, epi-CAIDE, and 14 MPS models). We further trained mul-

tivariate models in the EMIF-AD MBD training set using the MPSs as

variables for the cross-sectional prediction of AD and MCI status (i.e.,

MMRS-AD andMMRS-MCI, respectively) (Figure 1). Our findings indi-

cated that despite the poor predictive performance of the epi-CAIDE

and epi-LIBRA models for AD and MCI statuses within the EMIF-AD

MBD cohort, the MMRS model, leveraging individual MPSs, demon-

strated a notable predictive capacity for MCI status, achieving an

AUROC score of 0.68 (Figure 2). This predictive ability was further val-

idated through its application in the prospective and/or cross-sectional

prediction of cognitive impairments at a population level, as evidenced

by its effectiveness across three independent cohorts: PPMI, ADNI,

and BASE-II (Figure 3). Moreover, our analysis revealed that incorpo-

rating the 14MPSs as supplementary variables enhanced the precision

of cross-sectional MCI predictions, when compared to traditional

genetic and/or CSF biomarkers in the EMIF-ADMBD study (Figure 5).

The poor performance of the epi-CAIDE and epi-LIBRA models for

MCI and AD prediction might be partly attributed to the fact that

the CAIDE and LIBRA scores do not consider the weights of risk fac-

tors estimated by DNA methylation data, whereas an ideal epigenetic

model would give more weight to the factors best predicted by the

DNA methylation data. Furthermore, it is possible for individuals to

share the same CAIDE or LIBRA score while exhibiting different con-

tributing risk factors. For instance, one person may have a high CAIDE

score due to a combination of high BMI and low physical activity,

while another individual may attain the same CAIDE score solely due

to advanced age. The discrepancies in the contributions to the total

scores might not be adequately captured by our molecular-based epi-

CAIDEandepi-LIBRAmodels,which could potentially account for their

poorperformance. Lastly, the reportedpoorperformanceof theCAIDE

and LIBRA scores in individual-level dementia risk prediction may be

partially reflected in our findings.10,11

TheMMRSmodels generated from 14methylation-based dementia

risk factor models, could not be used to significantly predict AD sta-

tus in the independent test set of the EMIF-AD MBD study, though it

demonstrated better performance in predicting MCI status (Figure 2).

This might be attributed to the prevalence of cardiovascular-related

risk factors in our analysis such as BMI, systolic blood pressure, heart

disease, type II diabetes, physical activity, diet, smoking, as well as

HDL and total cholesterol. These factors might exhibit stronger asso-

ciations with non-AD types of dementia, like vascular dementia, as

compared to AD.52 This was further confirmedwhen theMMRSmodel

for MCI showed promising predictive capabilities for cognitive impair-

ment, both cross-sectionally and prospectively in newly diagnosed PD

(Figure 3).
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F IGURE 5 ROC curves ofMCI prediction. MCI status was predicted in the independent test set of the EMIF-ADMBD study using the PGSs
(top right), CSF biomarkers (bottom left), and both (top left) with andwithout theMPSs as additional variables. EN, ElasticNet; sPLS-DA, sparse
partial least squares-discriminant analysis; RF-RFE, random Forest with recursive feature elimination.

The enhanced prediction of MCI status by adding MPSs to the

CSF and genetic risk factors for AD dementia in comparison to using

only CSF or genetic biomarkers as variables (Figure 5) indicates that

the MPSs provide unique information beyond the already established

genetic and CSF biomarkers. This was further confirmed with low cor-

relation between corresponding PGSs and MPSs (Figure S6) and the

outcomes of the JIVE analysis and colocalization analyses, which col-

lectively underscored the limited impact of genetic variation on the

predictive capacity of themodel (Figure S4 and Table S18).

The genes associated with the CpGs contributing to our best-

performing MMRS model were significantly overrepresented in the

“AMPA glutamate receptor clustering (GO:0097113)” GO term. Inter-

estingly, AMPA glutamate receptors are known to play an important

role in synaptic transmission. It is worth mentioning that previous

studies have demonstrated an association between AD pathology

and increased removal of these receptors from the post-synaptic

membrane.53 Although the methylation changes in these processes

were measured in the blood, they may resemble the alterations that

occur in AD-affected brain.54 Specifically, the CpGs in our model

that are associated with this GO term are located within known

dementia-related genes. Notably these genes include APOE,55

DLG1,56 NLGN1,57 SHANK3,58 SHISA6,59 SHISA7,60 and SSH1.61

One notable strength of the present study is reducing the dimen-

sionality of the DNAmethylation data into 14 interpretable latent fea-

tures (i.e., MPSs). This approach enabled the construction of a robust

and replicable model and overcoming the lack of replication of CpG-

levelmodels in assessing the risk of dementia and cognitive impairment

as described previously.9 Importantly, the MPSs have a clear biologi-

calmeaning,which contrastswith themore difficult-to-interpret latent

features generated by other commonly used dimensionality reduction

methods such as (s)PLS, PCA, and autoencoders. This way, our model

can provide direct information about which risk factors contribute to

an (elevated) dementia risk.

In assessing the findings andmethodologies presented in this study,

it is imperative to consider certain limitations that may influence

the interpretation and potential clinical applications of the results in

the future. First, an AUROC of 0.68 for our MMRS model indicates

limited accuracy for individual-level predictions. This is comparable
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to the AUROC of 0.65 reported by Decker et al. for the predictive

performance of the midlife LIBRA score.62 However, in contrast to

questionnaire-based risk scores (e.g., CAIDE and LIBRA), the MMRS

model allows for a more objective assessment of dementia risk

across multiple independent cohorts using only blood samples. Sec-

ond, although MCI is a well-established dementia risk factor, it is not

a perfect predictor of the future onset of dementia. Specifically, a sig-

nificant proportion of MCI individuals revert to a cognitively healthy

status.63 Therefore, modeling the prospective cognitive outcome (e.g.,

the trajectory of cognitive decline) may result in a better model for the

prediction of the future development of cognitive impairments instead

of using the cross-sectional MCI status as the dependent variable.

The lack of (baseline) DNA methylation data in large-scale prospec-

tive studies, however, makes this approach currently not feasible, and

future initiatives should aim to collect such data, allowing for more

sophisticated analyses. Last, it should be noted that in the current

study, all themodels have only been trained and validated in a predom-

inantly Caucasian population and, hence, the reported performance

might be different for other ethnicities.

In conclusion, our established MMRS model demonstrates utility in

the population-based prediction of cognitive impairment and demen-

tia. This model serves as a foundation for future studies with the

potential to enhance predictive performance through the exploration

of novel feature selection and machine learning methods, integra-

tion of additional omics layers, and training on larger (prospective)

datasets. Such endeavors could significantly contribute to improving

the accuracy of existing blood-based models for the early identifica-

tion of individuals at risk of developing dementia, a crucial step for the

implementation of effective intervention strategies. As DNA methy-

lation profiles have previously been shown to be modifiable through

lifestyle changes, the information provided by our model possibly

allows for targeted intervention strategies, aimed at maximally reduc-

ing the patient-specific risk scores. Future studies should investigate

how, and to what extent, these MPSs can be best modified by, for

example, lifestyle interventions.
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Additional supporting information can be found online in the Support-

ing Information section at the end of this article.
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APPENDIX 1: COLLABORATORS

Data used in preparation of this article were obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu). As such, the investigators within the ADNI

contributed to the design and implementation of ADNI and/or

provided data but did not participate in analysis or writing of this

report. A complete listing of ADNI investigators can be found at:

https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_

Acknowledgement_List.pdf
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