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ABSTRACT 

Toxicokinetic modeling is a useful tool to describe or predict the behavior of a chemical 

agent in the human or animal organism. A general model based on four compartments was 

developed in a previous study in order to quantify the effect of human variability on a wide 

range of biological exposure indicators.     

The aim of this study was to adapt this existing general toxicokinetic model to three organic 

solvents, which were methyl ethyl ketone, 1-methoxy-2-propanol and 1,1,1,-trichloroethane, 

and to take into account sex differences. We assessed in a previous human volunteer study the 

impact of sex on different biomarkers of exposure corresponding to the three organic solvents 

mentioned above. Results from that study suggested that not only physiological differences 

between men and women but also differences due to sex hormones levels could influence the 

toxicokinetics of the solvents. In fact the use of hormonal contraceptive had an effect on the 

urinary levels of several biomarkers, suggesting that exogenous sex hormones could influence 

CYP2E1 enzyme activity. These experimental data were used to calibrate the toxicokinetic 

models developed in this study. 

Our results showed that it was possible to use an existing general toxicokinetic model for 

other compounds. In fact, most of the simulation results showed good agreement with the 

experimental data obtained for the studied solvents, with a percentage of model predictions 

that lies within the 95% confidence interval varying from 44.4 to 90 %. Results pointed out 

that for same exposure conditions, men and women can show important differences in urinary 

levels of biological indicators of exposure. Moreover, when running the models by simulating 

industrial working conditions, these differences could even be more pronounced.  

In conclusion, a general and simple toxicokinetic model, adapted for three well known 

organic solvents, allowed us to show that metabolic parameters can have an important impact 

on the urinary levels of the corresponding biomarkers. These observations give evidence of an 
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interindividual variablity, an aspect that should have its place in the approaches for setting 

limits of occupational exposure. 

 

 

 

INTRODUCTION 

Toxicokinetic (TK) modeling is a useful tool to describe or predict the behavior of a 

chemical agent in the human or animal organism. Interest in it arose from the need to relate 

internal concentrations of active compounds with the external exposure conditions.
(1)

 Data-

based pharmacokinetic models were first developed in the 1920’s and several disciplines like 

inhalation anesthesia, chemical engineering, toxicology or computer sciences, contributed to 

their maturation throughout the last decades.
(2)

 Fiserova-Bergerova for example contributed 

intensively to the development of toxicokinetic models for inhaled organic solvents in 

humans.
(3-5) 

Depending on the substance, the complexity of the kinetics and the literature data 

available, two types of models can be used.
(6)

 Classical pharmacokinetic/toxicokinetic 

(PK/TK) models, represented by compartments within which the chemical is assumed to be 

homogeneously distributed, are suitable when limited toxicological data is available. Various 

data-dependent parameters, as for example the volume of distribution or the half-life, can be 

derived from the analysis of classical compartments models. They are limited from a 

structural point of view but can be used to make generalizations. Physiologically-based 

toxicokinetic (PBTK) models, which rely on the anatomical and physiological structure of the 

body, are preferred when the purpose is to know the substance’s concentration in different 

tissues or organs. They are more informative and usually allow for a better extrapolation 
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processes but they require a more intensive input data, which can raise more complex 

statistical issues.  

Several authors investigated the quantification of biological variability through TK/PBTK 

modeling. Droz et al.
(7)

, for example, developed a PBTK model for different workers under 

variable industrial environments while Pierrehumbert et al.
(8) 

tried to develop a general 

compartmental based TK model. The variability extent index and the main parameters 

affecting biological indicators were investigated by Truchon et al.
(9)

 while the impact of 

environmental variability was quantified by Berthet et al.
(10)

. Clewell et al.
(11)

 have described 

the contribution of age and sex to biological variability by developing a physiologically based 

pharmacokinetic model model to determine the tissue concentration as a function of time of 

some xenobiotics. 

The influence of sex on toxicokinetics may involve female-male differences in physical 

constitution (body water space, muscle mass, body fat, and blood flow), physiology 

(menopause and menstruation cycle), hormones (contraceptive pill) as well as metabolising 

enzymes (Löf et al., 1998).
(12) 

Although we can establish a list of contributing factors, as 

shown in a framework for sex differences by Gochfeld
(13)

, their relative importance is 

unknown for different chemicals of occupational interest.  

The aim of this study was to adapt an existing general toxicokinetic model to three organic 

solvents, which were methyl ethyl ketone (MEK), 1-methoxy-2-propanol (1M2P) and 1,1,1,-

trichloroethane (111TCE), and to take into account sex differences. The influence of sex on 

different biological indicators values had been evaluated in a previous human volunteer 

study
(14)

 by exposing volunteers to the three organic solvents mentioned above. Experimental 

data from that study was used to calibrate the present models. 

 

MATERIAL AND METHODS 
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Model description 

Pierrehumbert et al.
(8)

 have developed a compartmental based toxicokinetic model in order 

to quantify the effect of human variability on a wide range of biological exposure indicators. 

By applying it to four chemicals (toluene, phenol, lead and mercury), they showed its 

potential to be used for further substances. We actually underline this potential of the model 

by adapting it to three other compounds which are MEK, 1M2P and 111TCE.  

The general compartmentally based toxicokinetic model developed by Pierrehumbert et 

al.
(8)

 consists of four compartments and takes into account only absorption by inhalation.  The 

mass rate of chemical absorption into the central compartment from inhaled air is equal to the 

product of the chemical’s mass concentration in air, the alveolar ventilation rate scaled to 

body weight, and the fraction of the chemical absorbed by the lungs (pulmonary retention). 

The chemical is distributed between the central compartment and the peripheral one, or 

storage compartment. These compartments can be illustrated by different tissues, depending 

on the chemical. The distribution can be either flow or diffusion limited and includes the 

permeability and affinity of the tissue for the chemical. For transfer between central and 

peripheral compartments, mass rates are expressed as a function of blood flow, affinity and 

permeability. The metabolism, described with Michaelis–Menten kinetics, can give one or 

more metabolites, and can occur by serial or parallel metabolism. Elimination is represented 

by excretion in expired air, feces and urine, or by metabolism. For excretion, estimated mass 

rates are based either on the half-life of the chemical/metabolite, or on its clearance (e.g. bile 

flow for feces, urine flow for urine, alveolar ventilation for expired air) and volume of 

distribution. Mathematical equations describing the general model can be found in 

Pierrehumbert et al.
(8)

.  
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This general model was adapted to MEK, 1M2P and 111TCE using toxicokinetic data 

available in literature.
(15-21)

 The simulation software used for the development of the TK 

models was Berkeley Madonna (version 8.0.1.), developed by Robert Macey and George 

Oster of the University of California at Berkeley (USA). 

 

Model parameters 

     The group arithmetic means for weight, height and body fat were used in the model. 

Values for general physiological parameters like alveolar ventilation, cardiac output or organ 

blood flows corresponded to the values of a reference man. These were scaled in function of 

body weight. Otherwise, values were taken from literature, like partition coefficients or 

metabolic parameters.  

 

Sensitivity analysis 

Sensitivity analysis was performed in the same way as did Pierrehumbert et al.
(8)

 for 

determining the potential parameters with an important impact on the studied biological 

determinants. Changes in the model output values were calculated after increasing each initial 

toxicokinetic parameter value by 10 % for a given time. In this study, calculations were done 

for one time of interest, which was at the end of exposure (t=6).  

Likewise, the simulation software Berkeley Madonna also allowed to carry out a 

sensitivity analysis of a toxicokinetic model. Thus, this tool option was used in order to 

identify parameters of interest in the model during other time phases as for example during 

the elimination phase. 

 

Model analyses 
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The toxicokinetic models obtained for MEK, 1M2P and 111TCE were first calibrated with 

the experimental data obtained for these three solvents in a previous human volunteer 

study
(14)

.  

Briefly, in this previous study, controlled human exposures were carried out in a 12 m
3
 

exposure chamber for each solvent separately, during six hours and at half of the threshold 

limit value (TLV). The human volunteers groups were composed of ten young men and 

fifteen young women. The latter were separated into two sub-groups by taking into account 

the use or not of hormonal contraceptive. Following biological indicators of exposure were 

determined: urinary MEK, urinary 1M2P (conjugated and total), 111TCE in blood and in 

expired air, metabolites of 111TCE (trichloroethanol (TCOH) and trichloroacetic acid (TCA)) 

in urine. The corresponding biological exposure indices (BEIs) are summarized in Table I. 

Curve fitting has been performed with the software Berkeley Madonna, which can 

automatically find the values of one or more parameters in the model by minimizing the root-

mean-square between simulated and experimental data. The sensitivity analysis allowed the 

identification of the main parameters that could potentially influence the urinary 

concentrations of the studied biomarkers of exposure. These parameters were fitted to the 

experimental data obtained form the previous human volunteer study
(14)

.  

From these models, it is also possible to predict the concentration of the studied substances 

in other biological matrices, as for example in blood which corresponds to the concentration 

in the central compartment of the model. 

In a second step, calibrated models were used to evaluate their predictive ability, by 

simulating the concentration of the studied substances in other biological matrices, as for 

example in blood, or by changing the exposure conditions. Simulations were performed to 

mimic an occupational exposure at the TLV (8 h per day, 5 days per week, physical activity of 

50 W for 12 h per day and at rest for the remaining 12 hours).  
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Statistics 

A goodness-of-fit between experimental data and simulated data was assessed by 

calculating the percentage of model predictions that lie within the 95% confidence interval of 

each corresponding data point for each model and by linear regression analysis assuming that 

the slope yields the value of 1 in the case of perfect agreement. 

 

RESULTS 

 

Toxicokinetic models for MEK, 1M2P and 111TCE 

In most occupational exposure settings, the primary intake route for the three studied 

solvents is inhalation. The different compartmental TK models for the studied solvents, all 

metabolized via the cytochrome P450 mixed-function oxidase system, are illustrated on 

Figure 1. 

MEK is metabolized to 2,3-butanediol, 2-butanol and 3-hydroxy-2-butanone (major 

metabolite), all excreted in urine. A low fraction of unchanged solvent is excreted in the 

exhaled air. The urinary concentration of MEK at the end of the shift has been recommended 

as the most appropriate biological exposure indicator. MEK is nearly equally distributed 

between water and fat containing tissues.
(22)

 Thus the model is composed by a central 

compartment representing the total body water (TBW) and a peripheral compartment for the 

fatty tissues. 

1M2P belongs to the family of the propylene glycol ethers (PGE) which exists under the 

form of two isomers, alpha-isomer and beta-isomer. The latter one, considered as an impurity 

in commercial use, is first transformed into 2-alkoxy acetaldehydes by alcohol 
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dehydrogenases, and then into alkoxyacetic acids by aldehyde dehydrogenases, a toxic 

metabolite. Alpha-PGE are primarily metabolized to propylene glycol, carbon dioxide and 

glucuronide as well as sulfate conjugates of the parent compound. The urinary 1M2P 

concentration at the end of the shift is an appropriate biomarker. A central compartment 

equivalent to TBW and a second compartment illustrating the conjugation of 1M2P constitute 

the TK model for 1M2P. 

111TCE is metabolized to TCOH and TCA, both excreted in urine. Other minor 

metabolites (carbon dioxide, acetylene) are excreted in the exhaled air. The corresponding 

biological exposure indices are the urinary concentration of both metabolites and the blood 

concentrations of the parent compound and TCOH. The 111TCE concentration in the exhaled 

air can also be considered as a biomarker of exposure because the majority is excreted 

unchanged in the expired air and it can be measured several days after exposure due to its 

long half life in expired air. As the exposure scenarios were carried out during one day, 

urinary TCOH is the most appropriate biomarker for the model calibration with the 

experimental data. TCA concentrations are very low due to its long half life. Accumulation is 

possible during the week and thus,  it is not an appropriate biomarker for reflecting a daily 

exposure. Measurements of the indicators of exposure in blood or in expired air would be 

more suitable in the case of a chronic exposure to the chlorinated solvent. Consequently the 

TK model includes a central compartment equivalent to TBW, a peripheral one constituting 

the fatty tissues because of its high liposolubility, and a third compartment for the considered 

metabolite. 

The general physiological parameters used in the simulations are presented in Table II 

whereas the chemical specific parameters for each TK model are represented in Table III. 

 

Sensitivity analysis 
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The results of the sensitivity analysis, obtained after increasing each initial 

toxicokinetic parameter value by 10 % for a given time and summarized in Figure 2, showed 

that for the MEK model, urinary MEK concentration is especially sensitive to the metabolic 

parameters, the cardiac output and the liver blood flow. For the 1M2P model, the metabolic 

parameters and the cardiac output were identified to influence most the urinary 1M2P 

concentrations. Urinary metabolites values for 111TCE were mainly influenced by the 

metabolic parameters, the different partition coefficients and the TCOH urinary excretion rate. 

The sensitivity analysis carried out by the simulation software Berkeley Madonna 

indicated that for the MEK model, the partition coefficient between the central compartment 

and blood (at the beginning of the exposure as during the elimination phase) and the 

Michaelis-Menten maximum rate seemed to be  relevant parameters.  For the 1M2P model 

both Michaelis-Menten maximum rates, and for the 111TCE model the partition coefficient 

between the central compartment and air and the Michaelis-Menten maximum rate were 

influential. The exact values of the fitted parameters that have been identified by the 

sensitivity analysis are presented in Table III. 

 

Experimental data vs simulated data  

 

The percentage of model predictions that lies within the 95% confidence interval of each 

corresponding data point varies from 44.4 % to 87.5 % for the MEK model (44.4, 55.6 and 

87.5 % for the model fitted to the data obtained for men, for women with hormonal 

contraceptive and for women without hormonal contraceptive respectively), from 50 % to 90 

% for the 1M2P model (66.7, 80 and 50 % for the model fitted to the urinary free 1M2P data 

and 90, 72.7 and 55.6 % for the model fitted to the urinary total 1M2P obtained for men, for 

women with hormonal contraceptive and for women without hormonal contraceptive 
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respectively), and from 72.7 % to 88.9 % for the 111TCE model (80, 72.7 and 88.9 % for the 

model fitted to the data obtained for men, for women with hormonal contraceptive and for 

women without hormonal contraceptive respectively).   

Table IV summarizes the experimental data obtained at the end of exposure in the human 

volunteer study
(14)

 on one hand and the simulated values obtained at the end of exposure 

within the TK models on the other hand, for the considered biological determinants. Figures 3 

to 6 illustrate the comparison of experimental data with simulated data for the different 

urinary indicators of exposure considered. Data points on Figures 3 to 6 are arithmetic mean 

values ± SD (standard deviation). 

Regarding the goodness-of-fit between experimental data and simulated data, it can be 

assessed by linear regression analysis assuming that the slope yields the value of 1 in the case 

of perfect agreement. Thus a scatterplot of the predicted data versus the observed ones (see 

Figure 7) suggests that the toxicokinetic models seem adequate for the three studied 

substances, at least for the values obtained during exposure.  

The predictive ability of the model showed that in the case of 111TCE for example, the 

maximal blood concentration in each group of volunteers was equal to 0.28 mg/l, showing no 

differences between them. This observation can in fact be confirmed by the experimental data 

obtained in the previous human volunteer study
(14)

, where end-exposure values obtained for 

men, women with and without hormonal contraceptive, respectively were 362.97 (± 91.05), 

306.53 (± 152.27) and 371.13 (± 240.64) µg/l, with no statistically significant differences 

between the different groups.  

Predictive calculations were also done for estimating the urinary levels of the different 

biological biomarkers when workers were exposed during 8 hours per day, 5 days per week, 

at a 50 W work load, to the threshold limit value of each solvent studied. Results are 

illustrated in Figure 8 for each solvent and for each studied human volunteer group.  
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DISCUSSION 

Our results showed that it was possible to use an existing generic toxicokinetic model for 

other compounds by adapting it to three organic solvents. In fact, most of the simulation 

results showed good agreement with the experimental data obtained in a previous human 

volunteer study
(14)

..  

Regarding parameters that have been fitted in the three models, values indicate that 

differences between men and women can be explained by changes in metabolism, as  

suggested by a previous human volunteer study
(14)

. But the main conclusion of the latter one 

was that the differences observed between the human volunteers groups were due to an effect 

on the CYP2E1 activity by exogenous hormones. An analysis of variance in this study mainly 

showed an effect among women due to the use of hormonal contraceptive on the urinary 

levels of several biomarkers of exposure, with an increase of more than 50% in metabolites 

concentrations and a decrease of up to 50% in unchanged substances concentrations, 

suggesting an increase in their metabolism rate. This hypothesis can actually be confirmed 

with the obtained values when fitting the Michaelis-Menten maximum rates in the different 

models. The VM1 value for the group of women with hormonal contraceptive is 2.1, 2.3 and 

1.4 fold higher than the one for the group of women without hormonal contraceptive, in the 

MEK model, the 1M2P model and the 111TCE model respectively (see Table III notes). 

Concerning phase II metabolism, Miners et al.
(31)

 showed that glucuronidation was induced 

in women using oral contraceptives. In the previous human volunteer study
(14)

, women on 

hormonal contraceptives appeared to excrete a higher fraction as conjugate than those not 

taking hormonal contraception, indicating also that sex hormones levels may influence the 

enzyme activity of phase II reactions but differences were not statistically significant due to a 



13 

 

high variability. The VM2 value for the group of women with hormonal contraceptive is 2.5 

fold higher than the one for the group of women without hormonal contraceptive (see Table 

III notes). 

Physiological parameters are expressed in function of body weight and thus take into 

account possible male/female differences in pulmonary ventilation, cardiac output and organ 

blood flows, generally due to body size. Moreover the fact that differences are observed 

between women underlines Gochfeld’s hypothesis
(13)

 that toxicokinetic differences mainly 

involve metabolism. The author also stated that there is still a tendency to believe that most 

sex differences relate to morphology and body size. He pointed out that the differences in 

susceptibility between men and women need to be incorporated in risk assessments, as most 

toxicological studies still focus on only one sex.  

The predictive simulations done over a week within working conditions indicated that 

exposure for women without hormonal contraceptive can be overestimated in the case of 

MEK and 1M2P but underestimated in the case of 111TCE. For the latter, Truchon et al.
(9)

 

have estimated the extent of the variability for its biomarkers, indicating that TCOH urinary 

levels can vary from 11 to 80 mg/l due to biological variability, without taking into account 

differences due to sex and age. Urinary TCOH concentrations measured in the previous 

human volunteer study
(14)

 are even lower, meaning that in this case, sex differences could 

contribute to enlarge the extent of the variability for the considered biological indicator. 

Moreover, the urinary levels in biomarkers predicted with our TK models were compared 

to the existing BEIs. Interestingly, urinary levels following TLV exposures to MEK and 

1M2P were found to be higher than the current BEI (see Figure 8), suggesting that work load 

can have a significant impact on biological exposure indicators.
(35) 

The poorest fit of the model to data occurred in the elimination phases of the urinary 

biomarkers of exposure, mainly for urinary MEK and urinary 1M2P (free and total). In fact 
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agreement between observed and predicted values is weaker and this can lead to an over- or 

underestimation of the corresponding exposure level. In the case of MEK, an explanation 

could be the metabolic saturation, as in humans it begins at relatively low levels of 

exposure
(18)

, and greater amounts of MEK would be expected to be excreted via the kidney. 

For 1M2P, the high variability in glucuronidation observed in the previous human volunteer 

study
(14)

 could explain the differences observed between experimental and simulated data. 

These observations give rise to some limitations of our general model. First equations 

describing Michaelis-Menten kinetics were simplified by assuming that saturation would not 

occur for the selected biomarkers of exposure in Pierrehumbert et al.
(8)

. Another limitation of 

the model is the fact that it takes into account only the absorption of the chemicals by 

inhalation. Skin absorption could be relevant for some solvents when exposed to the liquid 

form or to aerosols but less when exposed to the vapours.  

In conclusion, a general and simple toxicokinetic model, adapted for three well known 

organic solvents, allowed us to show that metabolic parameters can have an important impact 

on the urinary levels of the corresponding biomarkers. Indeed, experimental data from a 

previous study pointed out that for same exposure conditions, men and women can show a 

difference of 50 % among the urinary biological indicators levels. Moreover, when running 

the models by simulating industrial working conditions, these differences could be even more 

pronounced. These observations give evidence of an interindividual variability, an aspect that 

should have its place in the approaches for setting limits of occupational exposure. 
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FIGURE 1. Illustration of the different compartmental based TK models for (a) MEK, (b) 1M2P and (c) 

111TCE, with the black arrows indicating the biological determinants considered in this study, and with 

following flow rates air absorption (AA), air excretion (AE), urinary excretion (UE), metabolism (Met) and 

conjugation (Conj) expressed as [mg/h]. 
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FIGURE 2: Normalized sensitivity coefficients (NSC) for the various parameters used in the TK models 
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FIGURE 3. Comparison of experimental data with simulated data for urinary MEK obtained (a) in men and (b) 

in women. Urinary MEK concentrations as function of time were obtained after 6 hours of exposure to 99.15 ( 

5.29) ppm MEK. Data points are arithmetic mean values  SD (standard deviation); n = number of volunteers. 
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FIGURE 4. Comparison of experimental data with simulated data for urinary free 1M2P obtained (a) in men and 

(b) in women. Urinary free 1M2P concentrations as function of time were obtained after 6 hours of exposure to 

53.22 ( 3.04) ppm of 1M2P. Data points are arithmetic mean values  SD (standard deviation); n = number of 

volunteers. 
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FIGURE 5. Comparison of experimental data with simulated data for urinary total 1M2P obtained (a) in men and 

(b) in women. Urinary total 1M2P concentrations as function of time were obtained after 6 hours of exposure to 

53.22 ( 3.04) ppm of 1M2P. Data points are arithmetic mean values  SD (standard deviation); n = number of 

volunteers. 
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FIGURE 6. Comparison of experimental data with simulated data for urinary TCOH obtained (a) in men and (b) 

in women. Urinary TCOH concentrations as function of time were obtained after 6 hours of exposure to 102.55 

( 3.19) ppm of 111TCE. Data points are arithmetic mean values  SD (standard deviation); n = number of 

volunteers. 
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FIGURE 7. Predicted data versus experimental data for the studied urinary biomarkers of exposure. Linear 

regression has been done for data obtained during the whole exposure scenario for each solvent.  
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FIGURE 8. Simulation of mean urinary levels of biological indicators of exposure in workers (by considering 

men, women with and without hormonal contraceptive) exposed during 8 hours per day, 5 days per week, at a 50 

W work load, to the threshold limit value of (a) MEK*, (b) 1M2P* and (c) 111TCE  

 
* The curve for men and the one for women with hormonal contraceptive are nearly overlapping. 
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TABLE I. Summary of the selected organic solvents and their corresponding urinary biomarkers of exposure, 

with the existing occupational exposure limit values and biological exposure indices for different countries 

(USA, Germany, Switzerland) 

 

   

Biological determinant TLV
*
/MAK

**
/VME

***
  BEI

*
/BAT

**
/VBT

***
 

  (ppm) 

urine  

(mg/l) 

blood  

(g/l) 

expired air  

(ppm) 

Methyl ethyl ketone (MEK) 200/200/200 2
a
/5

a
/5

a
 

  

        

1-Methoxy-2-propanol (1M2P) 100/100/100 -/15
a
/20

a
   

        

1,1,1-Trichloroethane (111TCE) 350/200/200  - 

-

/550
b,c

/550
b,c

 

40
b,c

/-/- 

Trichloroethanol (TCOH)   30
a,b

/-/-  1000
a,b

/-/-  

Trichloroacetic acid (TCA)   10
b
/-/-   

 

 

*
 The American Conference of Industrial Hygienists (ACGIH) sets threshold limit values (TLV) and 

biological exposure indices (BEI). 

 

**
  The German Research Foundation (Deutsche Forschungsgemeinschaft - DFG) sets “Maximale 

Arbeitsplatz-Konzentrationen”  (MAK) and “Biologische Arbeitsstoff-Toleranzen” (BAT). 

 

***
 The Swiss National Accident Insurance Fund (Schweizerische Unfallversicherungsanstalt - Caisse nationale 

suisse d'assurance en cas d'accidents - Istituto nazionale svizzero di assicurazione contro gli infortuni – 

(SUVA) sets “valeurs (limites) moyennes d’exposition” (VME) and “valeurs biologiques tolérables” 

(VBT). 

 

a
 ES: end of shift  

b
 EW: end of week  

c
 PS: prior to shift 
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TABLE II. General physiological parameters used for the TK models. Arithmetic mean values (±SD: standard 

deviation) are indicated for body weight, body height and body fat; n = number of volunteers. 

 

Parameters Symbol At rest/50 W 

Body weight [kg] 

 

 

Body height  [cm] 

BW 

 

 

BH 

 

70.7 ± 10.3 for men (n=10) 

60.1 ± 7.2 for women with hormonal contraceptive (n=10) 

65.6 ± 11.2 for women without hormonal contraceptive (n=5) 

177.5 ± 3.2 for men (n=10) 

167 ± 3.8 for women with hormonal contraceptive (n=10) 

163.4 ± 2.3 for women without hormonal contraceptive (n=5) 

Body fat [% of BW] 

 

 

Lean body mass [kg] 

 

Total body water [kg] 

bf 

 

 

LBM 

 

TBW 

11.3 ± 5.2 for men (n=10) 

19.8 ± 4.6 for women with hormonal contraceptive (n=10) 

26.6 ± 8.9 for women without hormonal contraceptive (n=5) 

LBM = BW – BFawith BF = bf * BW/100For a man : -12.86 

+ 0.1757 * BH + 0.3331 * BW a 

  For a woman : -2.097 + 0.1069 * BH + 0.2466 * BWa 

Cardiac output [l/(h*kg0.7)] 

Alveolar ventilation [l/(h*kg0.7)] 

Urinary excretion rate [ml/(h*kg0.82)] 

Creatinine excretion rate [mol/(h*kg0.9)] 

Qc 

Valv 

kur 

kcr 

18.0b at rest/30.8b at 50 W 

18.0b at rest/2.1951*Qc
b at 50 W 

1.848c 

12.06c 

 
a Fiserova-Bergerova(23) 

b Thomas et al.(24) 

c Laparé et al.(25) 

 

 

TABLE III. Chemical specific parameters used for the TK models 

 

Parameters Symbol At rest/50 W 

MEK 

Threshold limit value [mg/m3] 

Molecular weight [g/mol] 

Exposure concentration [mg/m3] 

 

TLV 

MW 

Cexp 

 

590 

72 

282.9 

Pulmonary retention [-] Rpulm 0.558a 

Volume of the central compartment expressed as a fraction of BW [-] 

Volume of the peripheral compartment expressed as a fraction of BW [-] 

Fraction of cardiac output in the peripheral compartment [-] 

Fraction of cardiac output in metabolism [-] 

Blood/air partition coefficient [-] 

Central/blood partition coefficient* [-] 

Peripheral/central partition coefficient [-] 

Metabolism 

Michaelis-Menten maximum rate* [mg/(h*kg0.75)]  

Michaelis-Menten constant [mg/l] 

FVc 

FVp 

BFp 

BF1 

Pblood_air 

Pc_blood 

Pp_c 

 

VM1 

KM1 

1*TBW/BW 

1*BF/BW 

0.06b/0.05b 

0.26b/0.16b 

125a 

0.856a 

1.296a 

 

5.44c 

0.63c 
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1M2P 

Threshold limit value [mg/m3] 

Molecular weight [g/mol] 

Exposure concentration [mg/m3] 

Pulmonary retention [-] 

Volume of the central compartment expressed as a fraction of BW [-] 

Fraction of cardiac output in metabolism [-] 

Blood/air partition coefficient [-] 

Central/blood partition coefficient [-] 

Metabolism 

Michaelis-Menten maximum rate** [mg/(h*kg0.75)]  

Michaelis-Menten constant* [mg/l] 

Conjugation 

Michaelis-Menten maximum rate** [mg/(h*kg0.75)]  

Michaelis-Menten constant [mg/l] 

Urinary excretion rate for conjugated 1M2P [h-1] 

 

111TCE 

Threshold limit value [mg/m3] 

Molecular weight [g/mol] 

Molecular weight of metabolite [g/mol] 

Molecular weight of creatinine [g/mol] 

Exposure concentration [mg/l] 

Pulmonary retention [-] 

Volume of the central compartment expressed as a fraction of BW [-] 

Volume of the peripheral compartment expressed as a fraction of BW [-] 

Volume of the metabolite compartment expressed as a fraction of BW [-] 

Fraction of cardiac output in peripheral compartment [-] 

Fraction of cardiac output in metabolite compartment [-] 

Blood/air partition coefficient [-] 

Central/air partition coefficient*** [-] 

Peripheral/air partition coefficient [-] 

Metabolite/air partition coefficient [-] 

Metabolism 

Michaelis-Menten maximum rate*** [mg/(h*kg0.75)]  

Michaelis-Menten constant [mg/l] 

Metabolic rate TCOH  TCA [1/(h*kg-0.3)] 

Excretion 

TCOH urinary excretion rate [1/(h*kg-0.3)] 

 

 

TLV 

MW 

Cexp 

Rpulm 

FVc 

BF1 

Pblood_air 

Pc_blood 

 

VM1 

KM1 

 

VM2 

KM2 

kconj 

 

 

TLV 

MW 

MW1 

MWcr 

Cexp 

Rpulm 

FVc 

FVp 

FV1 

BFp 

BF1 

Pblood_air 

Pc_air 

Pp_air 

PM1_air 

 

VM1 

KM1 

kM1_M2 

 

ku1 

 

 

360 

90.12 

177.1 

0.9d 

1*TBW/BW 

0.26b/0.16b 

12383e 

12280e 

 

22f 

45f 

 

0.2f 

80f 

0.2d 

 
 

1080 

133.40 

149.40 

113.12 

545.6 

0.25g 

1*TBW/BW 

1*BF/BW 

0.026h 

0.06b/0.05b 

0.26b/0.16b 

2.53i 

2.53i 

263i 

8.6i 

 

0.42i 

5.75i 

0.069j 

 

 

0.093j 

 
a Liira et al.(22) 

b Thomas et al.(24) 

c Thrall et al.(19) 

d   Devanthéry(26) 

e    Johanson et al.(27) 

f  Corley et al.(20) 
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g  Nolan et al.(28) 

h Tardif et al.(29) 

i  Reitz et al.(15) 

j  Caperos et al.(30) 

 
* For the MEK model, fitted parameters with their corresponding values are following:  

- Pc_blood = 2.106, 2.817 and 2.662 for men, women with hormonal contraceptive and women without 

hormonal contraceptive respectively ; 

- VM1 = 2.13, 1.80 and 0.86 mg/l for men, women with hormonal contraceptive and women without 

hormonal contraceptive respectively. 

** For the 1M2P model, fitted parameters with their corresponding values are following: 

- VM1 = 35.94, 44.56 and 19.37 mg/(h*kg0.75) for men, women with hormonal contraceptive and 

women without hormonal contraceptive respectively ; 

- VM2 = 0.09, 0.15 and 0.06 mg/(h*kg0.75) for men, women with hormonal contraceptive and women 

without hormonal contraceptive respectively. 

*** For the 111TCE model, fitted parameters with their corresponding values are following: 

- Pc_air = 7.28, 4.74 and 4.00 for men, women with hormonal contraceptive and women without 

hormonal contraceptive respectively ; 

- VM1 = 0.13, 0.24 and 0.17 mg/(h*kg0.75) for men, women with hormonal contraceptive and women 

without hormonal contraceptive respectively. 

 

TABLE IV. Summary of the different biomarkers values (experimental and simulated) obtained at the end of 

exposure. Arithmetic mean values ( SD: standard deviation) are indicated for experimental data.  

 

 Biological indicators levels at the end of exposure 

 
CMEK,urine  

[mg/l] 

Cfree1M2P,urine  

[mg/l] 

Ctotal1M2P,urine  

[mg/l] 

CTCOH,urine  

[mg/g creatinine] 

Men 
    

   Experiment 1.00 ± 0.13 2.99 ± 0.49 4.36 ± 1.76 5.42 ± 2.19 

Simulation 1.12 3.15 3.91 5.68 

 

Women with hormonal contraceptive 

    

Experiment 0.97 ± 0.23 2.61 ± 0.96 4.17 ± 1.58 6.46 ± 1.73 

Simulation 1.13 2.86 4.09 6.54 

 

Women without hormonal contraceptive 

    

Experiment 1.44 ± 0.76 3.81 ± 1.68 4.85 ± 0.97 3.77 ± 1.24 

Simulation  1.51 4.89 5.64 3.69 

 


