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Abstract – Research examining mayfly ecology in karst streams and rivers has increased in recent years,
though microhabitat preferences remain poorly characterized. We examined mayfly assemblage
taxonomy, functional feeding groups and microhabitat preferences in two contrasting lotic Dinaric karst
catchments, one pristine and one anthropogenically impacted. At monthly intervals over a one-year
period, all major microhabitats (i.e. dominated by boulders, cobbles, sand, silt, mosses, or angiosperms)
were sampled at sites spanning springs, upper, middle and lower river reaches, and tufa barriers. In both
catchments, mayfly species richness was comparable among microhabitats, while mayfly abundance was
highest on mosses and lowest on silt. NMDS ordination did not group assemblages according to
microhabitat type, which may reflect the greater influence of physical and chemical water properties. In
both catchments and all microhabitats, mayfly assemblages were dominated by grazers/scrapers at
upstream sites and by detritivores at downstream sites. Active filter feeders were more abundant in
microhabitats with silt substrates and lower current velocities. This study demonstrated that certain mayfly
species strongly preferred a specific microhabitat type, reflecting their water current preferences and
feeding strategies, while other species shifted between microhabitats, likely in search of food resources
and shelter. The results emphasize the importance of habitat heterogeneity in supporting diverse
communities in karst rivers.
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Résumé – Choix des microhabitats et répartition des groups trophiques fonctionnels de larves
d'éphémères (Ephemeroptera) dans des milieux lotiques et karstiques. Ces dernières années ont vu un
accroissement des recherches menées sur l'écologie des éphémères dans les cours d'eau en milieux
karstiques, mais leurs préférences à l'échelle du microhabitat restent peu connues. Nous avons étudié la
composition taxonomique des éphémères, leurs groupes trophiques fonctionnels et leurs préférences pour
les microhabitats dans deux bassins versants du Karst dinarique très différents ; l'un intact, l'autre soumis à
des influences anthropogènes. Sur une période d'un an, mensuellement, les principaux microhabitats (par ex.
composés principalement de blocs, galets, sable, limon, mousses ou angiospermes) ont été échantillonnés
dans des stations couvrant les sources, le cours supérieur, moyen et inférieur des cours d'eau, ainsi que les
tufières. Dans les deux bassins, la richesse spécifique en éphémères est comparable entre microhabitats,
tandis que l'abondance est maximale dans les mousses et la plus faible dans le limon. Les représentations en
NMDS ne regroupent pas les assemblages suivant le type de microhabitats, suggérant ainsi que les
paramètres physico-chimiques jouent un rôle plus important. Dans les deux bassins et dans tous les
microhabitats la composition en éphémères est dominée par les brouteurs/racleurs dans les sites en amont, et
par les détritivores dans les sites en aval. Les filtreurs actifs sont plus abondants dans les microhabitats
composés de limon et à faible vitesse de courant. Cette étude confirme que certaines espèces d'éphémères
montrent une préférence marquée pour certains types de microhabitats, illustrant ainsi leurs affinités pour
certaines vitesses de courant ainsi que leurs préférences alimentaires, tandis que d'autres espèces passent
d'un microhabitat à l'autre, probablement à la recherche de nourriture ou d'un abri. Nos résultats mettent
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l'accent sur l'importance de l'hétérogénéité des habitats afin de maintenir des communautés diverses dans les
cours d'eau karstiques.

Mots clés : Substrat / vitesse du courant / profondeur de l’eau / composition en éphémères / groupes trophiques
1 Introduction

Microhabitat preferences of freshwater macroinvertebrates
are essential for studying correlations between species and
their environment, and in turn for creating an adequate
foundation for the conservation of aquatic habitats and their
biodiversity (e.g. Urbanič et al., 2005; Sarr et al., 2013;
Álvarez-Troncoso et al., 2017). Together with the physical and
chemical characteristics of water, microhabitat heterogeneity
is another key factor influencing the composition of benthic
macroinvertebrate assemblages, with individual species often
associated with particular microhabitat types (Corkum et al.,
1977; Giller and Malmqvist, 1998; Bauernfeind and Moog,
2000; Subramanian and Sivaramakrishnan, 2005; Arimoro and
Muller, 2010; Leitner et al., 2015; Milesi et al., 2016; Sroka
et al., 2016). Microhabitat preferences are closely related to
substrate type, water velocity and depth, organic matter
deposits, food availability, turbulence and hydraulic param-
eters (Gordon et al., 1992; Lampert and Sommer, 1997; Mili�sa
et al., 2006). The availability of appropriate microhabitats
allows macroinvertebrates, including mayfly larvae, to seek
refuge from predators and to acquire sufficient food resources
(e.g.Corkum et al., 1977; Hawkins, 1985; Dedieu et al., 2015).
Both organic substrates (especially macrophytes) and coarse
inorganic sediments support high mayfly species richness
(Bauernfeind andMoog, 2000; Baptista et al., 2001; Dinakaran
and Anbalagan, 2006; Bauernfeind and Soldán, 2012), as they
trap more organic matter and provide habitat for periphyton (e.
g. Rounick and Winterbourn, 1983; Webster et al., 1987;
Dedieu et al., 2015), an important food resource for mayfly
larvae.

Based on their feeding strategies and exposure to predation
risk, most mayfly species depend on certain microhabitats
during their larval stages. Grazers and scrapers prefer
microhabitats dominated by macrophytes and/or inorganic
sediments coated in diatom-rich biofilms, whereas shredders
and gatherers/collectors occur in substrates containing
decomposing coarse and fine particulate organic matter
(FPOM; e.g. Lamp and Britt, 1981; Buffagni et al., 1995;
Bauernfeind and Soldán, 2012). Filter feeders also consume
decomposing FPOM either deposited or suspended in the
water column. Active filter feeders inhabit fine-grained
inorganic substrates associated with lower water velocities,
where their gill movements create a water current that actively
traps the suspended FPOM. In contrast, passive filter feeders
require current velocities to be sufficient to distribute FPOM
food particles directly to the larvae (e.g. Bae and McCafferty,
1994, Schmedtje and Colling, 1996; Moog, 2002; Bauernfeind
and Soldán, 2012).

The present study was conducted in the Dinaric karst, the
largest continuous karst landscape in Europe (Mihevc et al.,
2010) extending over approximately 60,000 km2. Dinaric karst
habitats are recognized as a biodiversity hotspot (Bãnãrescu,
2004; Bonacci et al., 2008; Previ�sić et al., 2009; 2014; Ivković
and Plant, 2015), though freshwater habitats in southern
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Europe are increasingly impacted by anthropogenic activities
including river regulation, resulting in a rapid decline in
freshwater biodiversity (Freyhof, 2012; Schwarz, 2012).
Habitat alterations have a negative impact on mayfly
assemblages leading to the rapid disappearance of many
species (e.g. Bauernfeind and Moog, 2000; Brittain and
Sartori, 2003; Monaghan et al., 2005). River regulations
change hydrological, physical and chemical habitat conditions,
and microhabitat composition, which shifts from heteroge-
neous to homogeneous, becoming dominated by fine-grained
substrates (Baxter, 1977; Ward and Stanford, 1979; Graf,
2005). Over the past decade, an increasing number of studies
have examined the diverse aquatic insect assemblages of the
Dinaric karst (e.g. Previ�sić et al., 2007; Popijač and Sivec,
2009; Šemnički et al., 2012; Ivković and Plant, 2015), however
to date, mayflies have mainly been studied in relation to habitat
preferences determined by physical and chemical water
characteristics (Vilenica et al., 2014; 2016a; 2016b; 2017),
whereas information regarding their microhabitat preferences
remains scarce (e.g. Savić et al., 2010). Due to the specificity
of karst habitats, several interesting mayfly taxa have been
recorded (Vilenica et al., 2016a; 2016b; 2017). Moreover,
comprehensive data on microhabitat preferences are so far
known for just 58.1% of European mayfly species (see in
Buffagni et al., 2017). Thus, collecting the missing data and
comparing microhabitat selection of widely distributed species
in karst habitats with literature data (Buffagni et al., 2017)
represent an interesting subject of research. Therefore, the
main aim of this study was to examine the taxonomic and
functional feeding group composition of mayfly assemblages
in microhabitats located in different habitats types/river
reaches of two contrasting lotic catchments in the Dinaric
karst, one pristine and one impacted by anthropogenic
activities.
2 Methods

2.1 Study area

The study was conducted in two catchments spanning two
biogeographical regions in the Dinaric Western Balkan region
of Croatia: Plitvice Lakes National Park in the Alpine region
(44°510 N, 15°340 E), and the Cetina River and its tributary, the
Ruda River, in the Mediterranean region (43°260 N, 16°410 E;
Fig. 1) (EEA, 2008). The Plitvice Lakes catchment has a
temperate humid climate with warm summer, while the Cetina
River catchment has a temperate humid climate with hot
summer (Köppen climate classification; Šegota and Filipčić
(2003)).

The Plitvice barrage lake system is located in the area of
Plitvice Lakes National Park, designated as a UNESCO natural
World Heritage Site in 1979 (IUCN, 1979). The Plitvice Lakes
catchment consists of 16 oligotrophic and oligo-mesotrophic,
dimictic, fluvial lakes interconnected by lotic tufa barriers
(second stream order; Stahler, 1952) (Fig. 1a). Two small
f 12



Fig. 1. Location of the study area in Croatia with study sites of microhabitat sampling. a) Plitvice Lakes National Park: Upper lotic habitats: BS
� Bijela Rijeka River spring, BUR � Bijela Rijeka River upper reaches, CS � Crna Rijeka River spring, CMR � Crna Rijeka River middle
reaches, CLR� Crna Rijeka River lower reaches; Tufa barriers: KM� Tufa barrier Kozjak-Milanovac, LB� Tufa barrier Labudovac, NOB�
Tufa barrier Novakovića Brod; Lower lotic habitats: KR � Korana River, PS � Plitvica Stream. b) Cetina and Ruda Rivers: Springs: CRS �
Cetina River spring (Glava�s), RRS � Ruda River spring; Upper reaches: PM � Preočki Most, CM � Crveni Most, RUR � Ruda River upper
reaches; Middle reaches: OS�Obrovac Sinjski, TR1� Trilj1, TR- Trilj2; Lower reaches: CL� Čikotina Lađa, RM� Radmanove Mlinice. PP
� power plant; (dashed line shows subterranean water channel). Figures are modified from Vilenica et al. (2014) and Vilenica et al. (2016b).
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mountainous rivers (first stream order) upstream of the barrage
lake system, Bijela Rijeka River and Crna Rijeka River, join to
form theMatica River (second stream order), the main surface-
water supplier of the lakes (Stilinović and Božičević, 1998).
Mean annual air temperature during the study period (year
2007) was 11.4 °C, with a mean minimum temperature of
�0.5 °C in December, and a mean maximum of 21.1 °C in July.
Annual rainfall during the study period was 1661mm, with a
minimum of 12mm in April and maximum of 228mm in
October (Meteorological and Hydrological Institute of Croatia;
www.meteo.hr).

The Cetina River (first and second stream order) stretches
for 105 km from its spring source to its mouth at the Adriatic
Sea (Fig. 1b). It is characterized by the inflow of numerous
lateral springs (UNEP/MAP/PAP, 2000) along its course,
including the Ruda River encompassed within this study.
Mean annual air temperature during the study period (year
2004) was 12.9 °C, with a mean minimum temperature of
2.5 °C in December, and a mean maximum of 23.2 °C in July.
Annual rainfall during the study period was 1347mm, with a
minimum of 8mm in July and a maximum of 214mm in April
(Meteorological and Hydrological Institute of Croatia;
www.meteo.hr). The Cetina River catchment is impacted
by anthropogenic pressures including five hydropower plants,
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the inflow of untreated domestic and agricultural effluents,
and groundwater abstraction for public water supply (UNEP/
MAP/PAP, 2000; see also Vilenica et al., 2016b).

2.2 Sampling strategy

Microhabitats were sampled at ten study sites in each
catchment. In the Plitvice Lakes catchment, sites encompassed
the following habitat types: i) springs (BS, CS) and
downstream sections (BUR, CUR, CLR) of small mountainous
rivers (first stream order); Bijela Rijeka River and Crna Rijeka
River located upstream of the barrage lake system (upper lotic
habitats); ii) tufa barriers (LB, KM, NOB) (second stream
order); and iii) the canyon-type mountainous Plitvica Stream
(PS) (first stream order) and the mid-altitude large Korana
River (KR) (second stream order), located downstream of the
barrage lake system (lower lotic habitats) (Fig. 1a; for details,
see Vilenica et al., 2017). In the Cetina River catchment, the
ten study sites represented the following habitat types: i)
springs (CRS, RS); ii) upper reaches (PM, CM, RUR) (first
stream order); iii) middle reaches (OS, TR1, TR2); and iv)
lower reaches (CL, RM; Fig. 1b) (second stream order).

Sampling in the Plitvice Lakes catchment was conducted
monthly from February 2007 to February 2008, and in the
f 12
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Cetina River catchment between August 2004 and August
2005 to capture taxa with diverse and contrasting life cycles
(Vilenica et al., 2016c).

At each site and in each month, triplicate samples were
taken in all microhabitat types accounting for ≥5% of the
channel area. In the Plitvice Lakes catchment, microhabitat
types comprised those dominated by submerged native
angiosperms, mosses, cobbles, sand, and silt mixed with leaf
litter; while in the Cetina River, catchment microhabitat types
consisted of those dominated by submerged native angio-
sperms, mosses, boulders, sand, and silt (Tab. 1).
2.3 Mayfly sampling and identification

In association with collection of each individual sample,
inorganic substrate categorieswere defined based onWentworth
(1922). Water velocity was measured using a P-670-M
velocimeter (Dostmann electronic) and depth was measured
using a depth-meter.

At most sampling points, macroinvertebrates including
mayfly larvae were collected using Surber samplers (mesh
size: 0.5mm; surface area in the Cetina River catchment
33� 33 cm; surface area in the Plitvice Lakes catchment
14� 14 cm on mosses [due to very high macroinvertebrate
abundance] and 25� 25 cm in other microhabitats). At sites in
the lower reaches of the Crna Rijeka River (CLR) in the
Plitvice Lakes catchment and two sites in the Cetina River
catchment (TR1, TR2), deep water prevented Surber sampling
and macroinvertebrates were collected over a comparable
surface area using a D-frame hand net (mesh size 0.5mm).
Samples were preserved in 80% ethanol.

Mayflies were identified to the lowest possible taxonomic
level (species, genus, or occasionally family, depending on the
instar) using resources listed in Vilenica et al. (2015). All
voucher specimens were deposited at the Department of
Biology, Faculty of Science, University of Zagreb, Croatia.
Each taxon was enumerated and abundance expressed as
individuals m�2 to allow comparison of different-sized
samples.
2.4 Data analysis

One-way ANOVA tests with the unequal N HSD post hoc
test were used to identify differences in water velocity and
depth between microhabitat types.

The studied catchments differ in terms of key environ-
mental influences on mayfly assemblages (i.e. habitat
complexity, habitat diversity, and water physical and chemical
properties) and therefore support contrasting assemblages
(Bauernfeind and Soldán, 2012). All analyses were therefore
conducted separately for samples collected from the Plitvice
Lakes and Cetina River catchments, to allow comparison of
patterns based on samples containing distinct but overlapping
mayfly assemblages. Only species data were included in the
analyses.

Hierarchical cluster analysis (HCA) and non-metric
multidimensional scaling (NMDS) ordination based on a
Bray-Curtis similarity matrix were used to examine variability
in mayfly assemblage composition among microhabitats
(Ramette, 2007). HCA results were superimposed on the
f 12



Fig. 2. Water depth and velocity (mean ± SD) in different microhabitat types measured over a one-year period in a) the Plitvice Lakes catchment
and b) the Cetina River catchment.
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NMDS ordination, to determine similarity percentage between
microhabitats located in different study sites. Data were log-
transformed prior to analysis.

The functional feeding group composition of mayfly
assemblages in different microhabitats was classified using
Buffagni et al. (2009), Buffagni et al. (2017) and Bauernfeind
and Soldán (2012). The functional feeding group of each
individual species is presented as a proportion of the
assemblage. Since most taxa do not exclusively feed on a
single food resource, the assignment of taxa to a particular
category is based on the ten-point assignment scale (Schmidt-
Kloiber and Hering, 2015). Using the given points and
percentage of each species within the assemblage, the
functional feeding group composition of mayfly assemblages
at each microhabitat type was calculated.

To determine differences among microhabitats in species
richness, total abundance, the abundance of individual species
and feeding group proportions, non-parametric Kruskal-Wallis
H tests were used, followed by multiple-comparison post hoc
tests.

Indicator Value Analysis (IndVal; Dufrêne and Legendre,
1997) was used to identify species indicative of a microhabitat
type. This analysis is based on the specificity and fidelity
measured for each taxon in an assemblage, with indicator
values ranging from 0 to 100% and reaching a maximum when
all individuals of a taxon are recorded in only a single
microhabitat type (high specificity) and when the taxon is
present in all samples of that microhabitat type (high fidelity).
Thus, species indicative of a particular microhabitat, have high
and significant percentage IndVals (>55%) and were consid-
ered symmetrical indicators. The indicator values were tested
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for statistical significance using Monte Carlo tests with 4,999
permutations.

Spearman's rank correlation coefficients were used to
assess the correlation of species richness, total abundance, and
the abundance of individual species with water velocity and
water depth.

NMDS analysis was conducted in Primer 6 (Clarke and
Gorley, 2006). One-way ANOVA, Kruskal-Wallis H test and
Spearman's rank correlation coefficient were calculated in
Statistica 13.0 (Dell Inc., 2016), and IndVal was performed
using PC-ORD version 5.0 (McCune and Mefford, 2006).

3 Results

3.1 Water depth and water velocity analysis

Water depth (one-way ANOVA, F= 5.72, df= 4.27,
p< 0.01) and velocity (F= 15.36, df= 4.27, p< 0.001) differed
among microhabitats in the Plitvice Lakes catchment. Depth
was lower in microhabitats with mosses compared to those
with cobbles, sand, and silt mixed with leaf litter (unequal N
HDS post hoc tests, p< 0.001; Fig. 2a). Velocity was higher in
mosses compared with all other microhabitats (p< 0.01).
Additionally, velocity was also higher in the cobbles
microhabitat compared to silt mixed with leaf litter (p< 0.05;
Fig. 2a).

In the Cetina River catchment, depth (F = 11.72, df= 4.21,
p< 0.001) and velocity (F = 8.40, df= 4.21, p< 0.001) also
differed among microhabitats. Depth was higher in the silt
microhabitat compared to sand, mosses (p< 0.001), boulders
(p< 0.01) and angiosperms (p< 0.05; Fig. 2b). Water velocity
f 12
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was higher in the mosses microhabitat compared to sand, silt
(p< 0.01) and angiosperms (p< 0.05), and was higher in the
boulders microhabitat compared to silt (p< 0.05; Fig. 2b).

3.2 Mayfly assemblages

A total of 14 mayfly species (Tab. 2) were recorded in the
Plitvice Lakes catchment. NMDS ordination (Fig. 3a) showed
that mayfly assemblages generally did not group based on
microhabitat type. Species richness was comparable among
microhabitats (Kruskal-Wallis H test, multiple comparisons
post hoc test, H [4, N= 31] = 6.25, p˃ 0.05), ranging between a
total of 11 species each in the microhabitats with angiosperms,
sand, and silt mixed with leaf litter, to eight species in moss
microhabitats. Abundance was highest in mosses and lowest in
silt mixed with leaf litter (H [4, N= 31] = 10.87, p< 0.05; Tab.
2). Mayfly abundance was negatively correlated with water
depth (Spearman's rank correlation, R=�0.17, p< 0.001) and
positively with velocity (R= 0.12, p< 0.05).

In the Cetina River catchment, a total of 21 mayfly species
(Tab. 2) were recorded. Assemblages generally did not group
based on microhabitat type in the NMDS ordination space
(Fig. 3b). Species richness (H [4, N = 25] = 0.17, p˃ 0.05) and
abundance (H [4, N = 25] = 8.15, p˃ 0.05) were comparable
among microhabitats, with a total of 19 species recorded on
sand, 17 on boulders, 16 on mosses, 11 on angiosperms and
eight on silt. Silt microhabitats had the lowest abundance,
while mosses had the highest, though these differences were
not statistically significant. Mayfly species richness (Spear-
man's rank correlation, R =�0.11, p< 0.05) and abundance
(R=�0.23, p< 0.001) were negatively correlated with water
depth and positively with water velocity (S, R= 0.32,
p< 0.001;N, R = 0.41, p< 0.001).

3.3 Microhabitat preferences of mayfly species

In both catchments, a high number of species were
collected from all microhabitats within the catchment (Tab. 2).
Yet, some species showed a significant preference for a
particular microhabitat type.

In the Plitvice Lakes catchment, Baetis cf. nubeculariswas
indicative of moss microhabitats (IndVal = 72.50, p< 0.01),
with no significant indicators identified for any other
microhabitat. Additionally, B. cf. nubecularis was more
abundant in mosses compared to silt mixed with leaf litter
(Kruskal-Wallis and multiple comparisons post hoc tests; H [4,
N = 22] = 16.28, p< 0.01) and sand (p< 0.05; Tab. 2). Baetis
rhodani was more abundant in mosses compared to silt mixed
with leaf litter (H [4, N = 28] = 14.53, p< 0.01), Ephemera
danica was most abundant in sand and absent from mosses (H
[4, N = 21] = 13.22, p< 0.05; Tab. 2), and Rhithrogena
braaschi was most abundant in cobbles and absent from silt
mixed with leaf litter (H [4, N = 19] = 10.19, p< 0.05; Tab. 2).

Serratella ignita (Spearman's rank correlation, R =�0.18,
p< 0.01), B. cf. nubecularis (R=�0.18, p< 0.01) and B.
rhodani (R=�0.12, p< 0.05) were negatively correlated with
water depth, whereas C. luteolum (R =�0.22, p< 0.01) and E.
danica (R =�0.20, p< 0.01) were positively correlated. Baetis
cf. nubecularis (R= 0.36, p< 0.001), B. rhodani (R = 0.14,
p< 0.05) and Rh. braaschi (R= 0.16, p< 0.05) were positively
correlated with water velocity, while C. luteolum (R =�0.49,
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p< 0.001), E. danica (R=�0.39, p< 0.001), Habrophlebia
lauta (R =�0.40, p< 0.001) and Paraleptophlebia submargi-
nata (R =�0.19, p< 0.01) were negatively correlated.

In the Cetina River catchment, Baetis lutheri was
indicative of moss microhabitats (IndVal = 87.00, p< 0.001;
Kruskal-Wallis and multiple comparisons post hoc tests; H [2,
N= 12] = 9.99, p< 0.01; Tab. 2) and Rh. braaschi of boulder
microhabitats (IndVal = 60.3, p< 0.01). Other mayfly species
had low IndVal values.

Baetis rhodani (Spearman's rank correlation, R=�0.12,
p< 0.05) was negatively correlated with water depth, while
Ecdyonurus macani (R = 0.18, p< 0.05) and S. ignita
(R = 0.14, p< 0.05) were positively correlated. Baetis lutheri
(R = 0.44, p< 0.001), Ecdyonurus venosus (R = 0.26,
p= 0.001), Epeorus assimilis (R= 0.32, p< 0.001), Rh.
braaschi (R = 0.32, p< 0.001), Baetis melanonyx (R = 0.28,
p< 0.05) and Ephemerella mucronata (R = 0.41, p< 0.05)
were positively correlated with water velocity while the
abundances of E. danica (R=�0.38, p< 0.001) and Ephemera
lineata (R=�0.18, p< 0.01) were negatively correlated.

3.4 Functional feeding groups

In the Plitvice Lakes catchment, microhabitats with cobbles
had a higher proportion of grazers compared to microhabitats
with silt mixed with leaf litter (Kruskal-Wallis H test, multiple
comparisons post hoc test; H [4,N= 31] = 11.34, p˂ 0.05) and a
lower proportion of gatherers/collectors compared to micro-
habitats withmosses (H [4,N= 31]= 14.49, p˂ 0.01). Addition-
ally, microhabitats with silt mixed with leaf litter had a higher
proportion of active filter feeders compared to microhabitats
with mosses (H [4, N = 31] = 12.32, p ˂ 0.05). Furthermore, all
microhabitats in the upper lotic habitats were dominated by
grazers/scrapers followed by gatherers/collectors. In the
lower reaches of the Crna Rijeka River, active filter feeders
also occurred in microhabitats on silt mixed with leaf litter.
Microhabitats located at tufa barriers and lower lotic habitats
had a higher proportion of gatherers/collectors while active
filter feeders were most numerous in microhabitats at tufa
barriers. In the latter two habitat types, mosses had the highest
proportion of gatherer/collectors, sand and silt mixed with
leaf litter were dominated by gatherers/collectors and active
filter feeders, while on the cobbles, all three feeding groups
occurred (Fig. 4).

Feeding group proportions were comparable among micro-
habitats in the Cetina River catchment (H [4, N=25] = 4.61,
p˃ 0.05). However, mayfly assemblages inmicrohabitats located
in springs and upper reaches were dominated by grazers/scrapers
followed by gatherers/collectors. All microhabitats in the middle
and lower reaches had the highest proportion of gatherers/
collectors. Active filter feeders appeared in the middle reaches
and were distributed in all microhabitats situated downstream,
with the highest proportion on sand (Fig. 5).

4 Discussion

Although the two studied catchments differed in the extent
of anthropogenic pressure, mayfly assemblages were relatively
diverse at both (Vilenica et al., 2016a; 2016b; 2017), while
some similarities were seen in microhabitat selection. In both
f 12
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Fig. 3. Non-metric multidimensional scaling (NMDS) ordination of
mayfly assemblages based on Bray-Curtis similarity coefficient
(group average linking) and their log transformed abundances based
on microhabitat type in: a) Plitvice Lakes catchment and b) Cetina
River catchment. Results are shown pooled per sampling point
(microhabitat).
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catchments, species richness was comparable among micro-
habitats, which could be related to flow conditions, oxygen and
nutrient availability (e.g. Ciborowski and Clifford, 1983;
Collier, 1994). These results are also a consequence of the
varying compositions of mayfly assemblages, with different
proportions of species exhibiting a range of substrate
preferences, i.e. from species found on a wide range of
substrates (e.g. S. ignita,B. rhodani) to microhabitat specialists
(e.g. E. assimilis, Rh. braaschi, E. danica) (Buffagni et al.,
2009; 2017). Additionally, previous studies showed that many
mayfly species shift between microhabitats during their life
cycles in search of adequate food resources and shelter
(Ciborowski and Clifford, 1983; Holomuzki and Messier,
1993; Collier, 1994; Bauernfeind and Soldán, 2012), and this
merits further detailed inspection in this study area.

Water velocity, depending on water discharge, is of
exceptional importance in microhabitat selection, as besides
directly influencing benthic invertebrates, it also controls the
distribution of substrate and food, and influences oxygen
concentration (Ciborowski, 1983). Thus, the highest mayfly
abundances in both studied catchments were recorded at
microhabitats such as mosses or coarse sized sediment
(i.e. cobbles, boulders) associated with higher water velocity,
smaller depth and higher amounts of available food resources
(Plenković-Moraj et al., 2002; Mili�sa et al., 2006; Špoljar
et al., 2007). The fine substrate is generally known to support
Page 8 o
relatively poor macroinvertebrate species richness (Minshall,
1984), which was confirmed for mayflies in the regulated
catchment of the Cetina River. However, this is most likely a
consequence of the generally poor environmental conditions
related to the accumulation of muddy sediment in the Cetina
River (see Vilenica et al., 2016b). On the contrary, though in
markedly lower numbers, a large part of the recorded species in
the pristine catchment of the Plitvice Lakes inhabited silt
mixed with leaf litter, which could have provided more
substantial food resources in the otherwise oligotrophic water
quality (Špoljar et al., 2007; Gligora Udovič et al., 2017).

The NMDS analyses indicated the lack of a specific
preference for microhabitat type among the mayfly assemb-
lages. Additionally, the majority of species showed no
exclusive preference for a specific substrate type. Vilenica
et al. (2016b; 2017) showed that mayfly assemblages in the
Plitvice Lakes catchment primarily grouped according to the
habitat type, and according to the particular river reaches in the
Cetina River catchment. This could indicate higher mayfly
preference for the specific physical and chemical water
properties important in defining river sections and/or habitat
types, rather than for a particular substrate.

Nevertheless, some mayfly species showed a distinct
preference for a specific microhabitat. For instance, in the
Cetina River catchment, B. lutheri preferred microhabitats
with mosses, which is not in agreement with its typical
preferences, as the species is listed as a mesolithal habitat
specialist, occasionally recorded from akal and macrophytes
(Buffagni and Desio, 1994; Buffagni et al., 2009; 2017). In the
Cetina River catchment, however, microhabitats with mosses
had the highest water velocities, which is possibly the reason
for the preference shown by this rheophilous species (see also
in Vilenica et al., 2016a). Though the eurytopic and
rheophilous B. rhodani inhabited all available microhabitats
in both catchments, it showed a preference for microhabitats
with higher water velocity (Buffagni et al., 2009; 2017). In
addition, it showed a significant preference for substrate type
in the Plitvice Lakes catchment, where it favoured micro-
habitats on mosses, and avoided microhabitats on silt mixed
with leaf litter. Moreover, as the highest abundance of young
larval instars of Baetidae was also recorded on mosses, this
was likely the most suitable substrate providing food and
shelter for younger instars. In accordance with literature data
(Buffagni et al., 2009; 2017), statistically supported specific
microhabitat dominance was also seen in E. danica in both
catchments and B. cf. nubecularis in the Plitvice Lakes
catchment. The rheo- to limnophilous and predominantly
psammal species E. danica preferred microhabitats on sandy
substrates associated with slower water current (Buffagni
et al., 2009; Bauernfeind and Soldán, 2012; Buffagni et al.,
2017), while B. cf. nubecularis favoured microhabitats on
mosses associated with the fastest current. Though the
taxonomical status of the latter species is not yet resolved,
the larvae of the Baetis alpinus group typically prefer lotic
habitats exposed to fast currents, and tend to inhabit stony
substrates from crenal to metarhithral sections of fast flowing
streams (Bauernfeind and Soldán, 2012). This could indicate a
species preference for higher water velocity rather than for the
mossy substrate, since these were the sites of significantly
higher water velocity. In both catchments, the rheophilous Rh.
braaschi preferred microhabitats on coarse sediment (cobbles,
f 12



Fig. 4. Percentage abundance of diverse functional feeding groups of mayfly assemblages and their distribution in various habitats and
microhabitats in the Plitvice Lakes catchment. Legend: S1 � cobbles; S2 � angiosperms; S3 � mosses; S4 � sand; S5 � silt mixed with leaf
litter. For abbreviations of study site names see Fig. 1.
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boulders) and faster water current, which is in accordance with
its typical microhabitat selection (Buffagni et al., 2009; 2017).

Finally, though several species did not show an exclusive
preference for a specific substrate type, they were found to
favour certain microhabitats. Thus, significant preferences for
microhabitats with higher current and lower water depth were
shown for the rheophilous B. melanonyx, rheo- to limnophilous
E. venosus and E. mucronata, and the rheobiont E. assimilis in
the Cetina River catchment (Buffagni et al., 2009; Bauernfeind
and Soldán, 2012; Buffagni et al., 2017). On the other hand,
several species favoured microhabitats with lower water
velocity and greater water depth, such as the limnophilous C.
luteolum, limno- to rheophilous H. lauta, rheo- to limnophi-
lous P. submarginata in the Plitvice Lakes catchment, as well
as the limno- to rheophilous E. lineata in the Cetina River
catchment (Buffagni et al., 2009; Bauernfeind and Soldán,
2012; Buffagni et al., 2017). Interestingly, in the pristine
Plitvice Lakes catchment, S. ignita preferred microhabitats
with smaller water depth, while in the regulated Cetina River
catchment, this species favoured microhabitats with greater
water depth, which could be related to its broad ecological
tolerance (Buffagni et al., 2009; 2017).

In both catchments, mayfly assemblages shifted from being
grazer/scraper-dominated in all microhabitats in the springs and
upstream sites to detritivore-dominated downstream. Due to the
morphology of the studied karst hydro-systems, which are
mainly characterized by high water velocity and presence of
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coarse sized sediment and aquatic vegetation with trapped
organic matter and overgrown with periphyton (e.g. Bonacci,
1987; Plenković-Moraj et al., 2002), the highest proportion of
grazers (e.g. Rh. braaschi, E. assimilis) and gatherers (e.g.C.
macrura, P. submarginata) (Buffagni et al., 2009; 2017) is not
surprising. In the Cetina River catchment and in the Bijela
Rijeka River in the Plitvice Lakes catchment, riparian vegetation
forms an open canopy. It enables algal growth that benefits
grazers, and macrophyte growth that benefits gatherers due to
the accumulation of organic particles on the vegetation (Mili�sa
et al., 2006). Active filter feeders (e.g. E. danica, E. lineata)
appeared in microhabitats located the middle reaches of the
Cetina River (see in Vilenica et al., 2016b) and lower reaches of
the Crna Rijeka River, especially on silty substrates, where
slower water velocity caused an accumulation of fine sediment
and organic matter (Vilenica et al., 2016b; 2017). In the Plitvice
Lakes catchment, tufa barriers � natural lake outlets, had the
highest proportion of active filter feeders in the majority of
microhabitats due to the accumulation of organic particles on
barrier substrates (Obelić et al., 2005).

In conclusion, as previously recorded for other aquatic
insects (e.g. Šemnički et al., 2012), the mayfly assemblage
composition and structure in both studied river systems are
influenced by microhabitat characteristics (i.e. water velocity,
water depth and substrate type) only to a certain degree, and are
more reliant on the availability of different food resources (e.g.
Plenković-Moraj et al., 2002; Mili�sa et al., 2006) and the
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Fig. 5. Percentage abundance of diverse functional feeding groups of mayfly assemblages and their distribution in various habitats and
microhabitats in the Cetina River catchment. Legend: S1� boulders; S2� angiosperms; S3�mosses; S4� sand; S5� silt. For abbreviations of
study site names see Fig. 1.
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physical and chemical water properties (Vilenica et al., 2014;
2016a, b; 2017). These are related to the position within the
barrage-lake system in the Plitvice Lakes catchment and to the
longitudinal distribution in the Cetina River catchment. Even
though still greatly under-studied, the Dinaric Karst area
represents one of the global biodiversity hotspots (Bãnãrescu,
2004; Griffiths et al., 2004; Ivković and Plant, 2015), which is
also highly threatened due to numerous anthropogenic
pressures (Štambuk-Giljanović, 2001; Obelić et al., 2005;
Chatzinikolaou et al., 2006; Tierno de Figueroa et al., 2013).
Since mayflies are widely used as bioindicators of freshwater
ecosystems (Landa and Soldán, 1991), data on mayfly ecology,
i.e. microhabitat preferences presented here, represent the
necessary background for further research and conservation
practices in karst streams and rivers.
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