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The TNF family ligand B cell-activating factor (BAFF, BLyS, TALL-1) is an essential factor for
B cell development. BAFF binds to three receptors, BAFF-R, transmembrane activator and
CAML interactor (TACI), and B cell maturation antigen (BCMA), but only BAFF-R is required
for successful survival and maturation of splenic B cells. To test whether the effect of BAFF
is due to the up-regulation of anti-apoptotic factors, TACI-Ig-transgenic mice, in which BAFF
function is inhibited, were crossed with transgenic mice expressing FLICE-inhibitory protein
(FLIP) or Bcl-2 in the B cell compartment. FLIP expression did not rescue B cells, while
enforced Bcl-2 expression restored peripheral B cells and the ability to mount T-dependent
antibody responses. However, many B cells retained immaturity markers and failed to
express normal amounts of CD21. Marginal zone B cells were not restored and the T-
independent 1gG3, but not IgM, response was impaired in the TACI-IgxBcl-2 mice. These
results suggest that BAFF is required not only to inhibit apoptosis of maturating B cells, but
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also to promote differentiation events, in particular those leading to the generation of mar-
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ginal zone B cells.
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1 Introduction

The TNF family ligand B cell-activating factor (BAFF, also
known as BLyS or TALL-1) binds three distinct receptors,
transmembrane activator and CAML interactor (TACI),
B cell maturation antigen (BCMA), and BAFF-R, whereas
the related ligand a proliferation-inducing ligand (APRIL)
binds only TACI and BCMA [1]. Newly formed B cells in
the bone marrow reach the spleen as transitional type-1
B cells that rely on BAFF and BAFF-R, but not TACI,
BCMA or APRIL, to further differentiate into transitional
type-2, follicular and marginal zone B cells [1]. However,
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Abbreviations: BAFF: B cell-activating factor BCMA:
B cell maturation antigen TACI: Transmembrane activator
and CAML interactor APRIL: A proliferation-inducing
ligand FLIP: FLICE-inhibitory protein Tg: Transgenic dTg:
Double-transgenic NP-CGG: NP*-chicken gamma globulin
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BAFF is not essential for the formation of B1 B cells that
populate the peritoneal cavity and develop indepen-
dently of B2 B cells [2-4]. BAFF has also been implicated
in survival of mature B cells, costimulation of BCR-
induced proliferation responses, and the CD40 ligand-
independent isotype switch [5-7]. TACI is not critically
involved in Bcell survival, but is required for T-
independent type-2 humoral responses against repeti-
tive antigens and also functions as a tumor suppressor in
controlling the size of the B cell compartment [8, 9]. In
contrast, no function has been assigned yet to BCMA,
although its expression pattern suggests a possible role
in plasma cells [3, 10].

BAFF-transgenic (Tg) mice experience a dramatic
expansion of B2 B cells, in particular the type-2 and mar-
ginal zone B cell compartments, and develop autoim-
mune symptoms resembling human systemic lupus ery-
thematosus and autoimmune Sjogren’s syndrome as
they age [11-14]. BAFF-blocking agents rapidly de-
crease the number of mature peripheral B cells in vivo

www.eji.de



510 A. Tardivel et al.

and have proved beneficial in treating models of autoim-
mune disease in the mouse [11, 15, 16].

The type-1 developmental block observed in the
absence of BAFF can be interpreted as the lack of a sur-
vival signal, or the absence of a differentiation signal, or
both. Results from in vitro studies rather suggest that
BAFF acts as a survival factor on transitional and mature
B cells [17, 18]. However, the study of BAFF function on
follicular or marginal zone B cells in vivo is hampered by
the fact that their precursors depend on BAFF.

Expression of cell death inhibitors in B cells should
bypass the requirement for BAFF-mediated survival
effects in vivo. We found that B cell-specific expression
of Bcl-2 in a BAFF-low environment rescued peripheral
B cells and humoral responses to T-dependent antigens,
confirming the anti-apoptotic nature of BAFF. However,
marginal zone Bcells and T-independent type-2
responses were not or only partially rescued in this
model, revealing a hitherto unidentified marginal zone
B cell differentiation role for BAFF in vivo.

2 Results

To investigate whether anti-apoptotic proteins can sub-
stitute for the function of BAFF as a survival and/or mat-
uration factor of B cells in vivo, we forced expression of
Bcl-2 and FLICE-inhibitory protein (FLIP) in the B cell
compartment and investigated their ability to counteract
the effects of a BAFF deficiency. Bcl-2 is a potent inhibi-
tor of various pro-apoptotic stimuli converging at
mitochondrial-induced cell death, and a Tg mouse line
expressing Bcl-2 in B cells has been previously charac-
terized [19]. FLIP is another anti-apoptotic protein that
inhibits activity of death receptors by interfering with the
activation of pro-caspase-8 [20].

We generated mice expressing FLIP under the B cell-
specific promoter of CD19. Expression of the transgene
was several-fold higher than that of endogenous FLIP in
B cell-rich lymphoid organs such as spleen and lymph
nodes (Fig. 1A). In contrast, no Tg FLIP could be
detected in the thymus, which mainly contains T cells
and stromal cells. Both endogenous and Tg FLIP were
detected as full-length molecules and as a processed
43-kDa fragment that is diagnostic of FLIP recruitment
into death-inducing signaling complexes of various
death receptors [20]. A shorter 22-kDa fragment of the
Tg FLIP was also apparent in spleen extracts. According
to its size and to the epitope recognized by the antibody,
this fragment contains the two death effector domains of
FLIP and is also predicted to interfere with apoptosis
[20]. Splenic B cells stimulated by LPS in vitro are sensi-
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Fig. 1. Generation of B cell-specific FLIP-Tg mice. (A) West-
ern blot analysis of thymus, spleen and lymph node tissue
extracts from Tg mice expressing the long form of a Flag-
tagged version of FLIP under the control of the CD19 pro-
moter, and from non-Tg littermate (wt). FLIP was detected
with the Dave-2 mAb, which recognizes an epitope within
the N-terminal portion (death effector domains) of FLIP.
DED: death effector domains. Molecular mass standards are
in kDa. (B) B cell blasts of FLIP-Tg mice resist deleterious
effects of FasL. Two-day-old LPS-induced B cell blast cul-
tures were treated for 24 h with the indicated amounts of
recombinant FasL, and proliferation was assessed by thymi-
dine incorporation. Data are normalized to untreated con-
trols. Counts were 19,000 and 19,700 cpm for untreated wt
and FLIP-Tg mice, respectively.

tive to cell death triggered by recombinant FasL. As
expected, B cell blasts from FLIP-Tg mice were entirely
resistant to FasL (Fig. 1B). We conclude that CD19-FLIP-
Tg mice express sufficient amounts of FLIP in the B cell
compartment to prevent Fas-mediated apoptosis of
B cell blasts.

The B cell-specific Bcl-2-Tg and FLIP-Tg mice were
crossed with TACI-Ig-Tg mice. TACI-Ig mice secrete into
their circulation a soluble form of a receptor that binds to
both BAFF and APRIL, resulting in a peripheral B cell
maturation defect resembling that of BAFF-deficient
mice [2-4]. Consequently, lymph nodes of TACI-Ig mice
are severely depleted in mature B cells (Fig. 2). Enforced
expression of FLIP did neither rescue the deficit of
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Fig. 2. Enforced expression of Bcl-2 but not FLIP rescues
lymph node B cells in TACI-Ig-Tg mice. TACI-Ig-Tg mice
were crossed with FLIP-Tg or Bcl-2-Tg mice. B and T cell
content of F1 littermate lymph nodes was analyzed by
FACS. The indicated percentages refer to gated lympho-
cytes.

mature B cells in lymph nodes of TACI-Ig-Tg mice, nor
affect its splenic B cell populations (Fig. 2 and data not
shown). However, expression of Bcl-2 in B cells restored
a close to normal ratio of B to T cells in lymph nodes of
TACI-Ig-Tg mice (Fig. 2). These results were corrobo-
rated by immunohistochemistry. Lymph nodes of TACI-
Ig-Tg mice were practically devoid of B cells, whereas
lymph nodes of TACI-IgxBcl-2 double-Tg (dTg) mice dis-
played distinct B cell follicles as in wild-type mice
(Fig. 3).

We next assessed whether the B cells that are rescued
by Bcl-2 expression in the TACI-Ig environment are func-
tional. TACI-Ig-Tg mice immunized with the T-dependent
model antigen NP?-chicken gamma globulin (NP-CGG)
had a severely impaired anti-NP humoral response, con-
sistent with their deficit in mature B cells. In contrast,
TACI-IgxBcl-2 dTg mice readily mounted T-dependent
humoral responses, indicating that expression of Bcl-2
rescues not only the presence but also the function of
B cells (Fig. 4A). We conclude from these experiments
that expression of Bcl-2, but not FLIP, can circumvent
the need for BAFF in generating lymph node B cells and
T-dependent humoral responses.

It is presently unclear whether BAFF acts purely as a sur-
vival factor, enabling B cells to live long enough in order
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Fig. 8. Immunohistochemistry of frozen spleen and inguinal
lymph node sections. Sections were double-stained with
B cell (anti-B220, brown) and T cell (anti-CD3g, purple)
markers. Bar = 200 um.

to undergo a BAFF-independent differentiation program,
or actively in the differentiation of B cells. The TACI-
IgxBcl-2 dTg mice provide an interesting model to
address this question, because it is expected that Bcl-2
mimics the survival function of BAFF, but not its putative
differentiation effects.

Bcl-2-Tg, and to a lesser extent TACI-IgxBcl-2 dTg mice,
have a 2.5- to 5-fold excess of B cells in the spleen and
in the blood compared to wild-type mice (Table 1).
Spleen sections of these mice also reveal an expanded
B cell compartment (Fig. 3). Despite their elevated num-
ber of B cells, TACI-IgxBcl-2 dTg mice displayed an
unusually high proportion of immature splenic B cells
(defined as CD93"), which were enriched in the most
immature transitional type-1 and type-2 subsets (defined
as CD93", IgM"" (Fig. 5A). Markers of immaturity were
also evident in peripheral blood B cells, which were
dominated by IgM"" cells and contained a higher pro-
portion of L-selectin/CD62L-negative cells (Fig. 5B). A
similar observation was made in peritoneal B2 B cells of
dTg mice, which mainly displayed an immature pheno-
type (IgM"e", CD23") (Fig. 5C). Taken together, these
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Fig. 4. Enforced expression of Bcl-2 in TACI-Ig-Tg mice res-
cues T-dependent, but only partially T-independent type-2
antibody responses. Mice were immunized with NP-CGG or
NP-Ficoll. Antibody titers (IgG + IgM) were measured after
14 days for NP-CGG and after 8 days for NP-Ficoll (IgM,
total IgG, 1gG3). p values compared to wild type are indi-
cated; *p<0.05, **p<0.005.

results indicate that although Bcl-2 makes B cells sur-
vive, a concomitant depletion of BAFF impairs at least
some of the subsequent maturation steps.

In contrast to the B2 B cells, which are strongly affected
by the lack of BAFF or by the presence of Bcl-2, the peri-
toneal B1 B cells (B220™, CD5*, CD23") remained rela-
tively unaffected by Bcl-2 and TACI-Ig (Fig. 5C; Table 1).
Splenic marginal zone B cells (CD21"9", CD23"°") dis-
played yet another pattern of sensitivity to TACI-Ig and
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Bcl-2. This particular B cell population did not expand in
Bcl-2-Tg mice as the absolute number remained compa-
rable to that of wild-type mice (Table 1). In contrast,
TACI-Ig mice had virtually no marginal zone B cells, and
this population was not rescued in the dTg mice
(Fig. 6A). Interestingly, whereas the bulk of wild-type fol-
licular B cells express CD21, this expression is slightly
decreased in Bcl-2-Tg mice, and is even more reduced
in the spleen, blood and lymph nodes of TACI-Ig-Tg and
TACI-IgxBcl-2 dTg mice (Fig. 6A and data not shown).
Because the identification of marginal zone B cells relies
on CD21, a marker that appears to be sensitive to BAFF
and Bcl-2 expression levels, we reanalyzed marginal
zone B cells in a CD21-independent manner, based on
their IgM"", IgD"* and CD1b"™" phenotype [21], and
using CD93 to further differentiate these cells from
immature B cells. Using these criteria, the absence of
marginal zone B cells in TACI-Ig and dTg mice was con-
firmed (Fig. 6B), indicating that the generation of mar-
ginal zone B cells is critically dependent on a differentia-
tion signal provided by BAFF.

As marginal zone B cells are believed to be important for
T-independent type-2 responses [22], immunization with
NP-Ficoll was performed in the different mice. As
expected, antibody titers obtained were comparable in
wild-type and Bcl-2-Tg mice, but were much reduced in
TACI-lg-Tg mice (Fig. 4B). dTg mice had a normal IgM
response to NP-Ficoll, but yielded significantly lower
titers of total IgG, and in particular IgG3 (p<0.05)
(Fig. 4B). In contrast, no impairment of T-independent
type-2 responses was noted in BCMA-Ig-Tg mice, in
which only APRIL is blocked (Fig. 4B) [4].

3 Discussion

BAFF is a B cell survival factor for transitional type-2 and
other B cells in vitro [17, 18, 23]. In vivo, absence of
BAFF signaling results in a severe deficit of mature
Bcells in BAFF”, BAFF-R-deficient and TACI-Ig-Tg
mice [2-4, 24, 25]. Therefore we wondered whether the
cell death inhibitor FLIP could mediate the survival
effects of BAFF. Tg expression of FLIP was sufficient to
protect B cell blasts from FasL-induced death but was
unable to rescue B cells in the TACI-Ig-Tg mice. We con-
clude that BAFF is unlikely to mediate its survival func-
tion by blocking death receptor-induced apoptosis.

The death receptor Fas plays a role in the homeostatic
control of B cells, but most likely acts at a later stage [26,
27]. Consistent with our result, immature splenic B cells
are insensitive to Fas triggering [28]. In contrast to FLIP,
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Fig. 5. Enforced expression of Bcl-2 rescues B cells in TACI-Ig-Tg mice, but these cells retain some immature features. (A)
Spleen. Four-color FACS analysis of immature splenic B cell populations based on B220, CD93 (C1gRp), CD23 and surface IgM
expression. Im: immature B cells; T1: transitional type-1 B cells; T2: transitional type-2 B cells; T3: transitional type-3 B cells. (B)
Peripheral blood lymphocytes. Analysis of B cell populations based on the expression of B220, CD62L (L-selectin) and IgM. (C)
Peritoneal exudate lymphocytes. Four-color FACS analysis of B cell populations based on B220, CD5, CD23 and surface IgM
expression. The indicated percentages always refer to gated lymphocytes.

Tg expression of Bcl-2 restored B cell maturation and
function in TACI-Ig-Tg mice, as judged by the rescue of
mature lymph node B cells and the ability to mount a T-
dependent antibody response. Therefore, in a first
approximation, Bcl-2 can functionally replace BAFF. Ret-
roviral expression of Bcl-X, in BAFF-R-deficient animals
was also recently shown to increase B cell numbers in
short-term experiments [29]. This is also consistent with
the observation that BAFF induces Bcl-2 expression in
transitional B cells generated in bone marrow cultures
[23].

A straightforward hypothesis is that BAFF induces
expression of anti-apoptotic factors of the Bcl-2 family,
enabling apoptosis-prone transitional B cells to survive
long enough to receive and integrate differentiation sig-
nals, such as those leading to CD21 expression. This
maturation process is likely coupled to negative-
selection events, because BAFF-Tg and Bcl-2-Tg mice,
in which B cell survival is increased, develop signs of
autoimmunity [12, 13, 19]. Continuous BAFF signaling
may be required for maintenance of Bcl-2 family mem-
bers in mature B cells, as BAFF also promotes survival of
these cells in vitro [30]. However, this latter issue was not
addressed by our experiments.

BAFF may transduce at least some of its survival or dif-

ferentiation signals via the NF-xB pathway, as B cells
with an intrinsic deficiency for both c-Rel and RelA do
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not mature past the type-1 stage in the spleen. This
block can be rescued by enforced Bcl-2 expression [31].
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Fig. 6. Marginal zone Bcells are not rescued by Bcl-2
expression in TACI-Ig-Tg mice. (A) Spleen. Four-color FACS
analysis of marginal zone B cells based on B220, CD21,
CD23 and surface IgM expression. Marginal zone B cells
were IgMP™" (data not shown). (B) Spleen. Four-color FACS
analysis of marginal zone B cells based on IgM, IgD, CD1d
and CD93 expression. FO: follicular B cells; MZ: marginal
zone B cells; MZ/Im: marginal zone and immature B cells.
Thirty-week-old mice were used in this experiment. Percent-
ages refer to gated lymphocytes.
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Table 1. Lymphocytes counts in wild-type, Bcl-2-, TACI-Ig- and Bcl-2xTACI-Ig-Tg mice

Bel-2
Cells (x108) %

193+ 23 100

259+56 13.4 £ 2.0
185+46 9.5 +1.6
6.4+09 3304
154+ 16 79.6£1.3
57+0.2 3.0+04
11.8+22 6.1 0.7
103+ 4.7 5217
108+ 1.1 571 +6.6
0,903 05+02
4603 100
23202 51.5 +4.0
14041 29.9 £3.0
0801 199 £1.5

21+03 459 =40

TACI Ig x Bel-2
Cells (x108) %
112 = 27 100
23.0 25 21779
145 +1.3 13.6+4.3
75 =17 73+35
B1.7 £ 28 TT£77
106 +2.5 9.6+15
9.6 +2.6 8.5+0.3
28 £1.0 26+03
56.3 + 16 500+ 5.2
0.06 £ 0.05 0.06+ 0.05
43 £1.2 100
28 08 659+ 2.0
1.6 0.4 38423
1.1 204 254138
1.3 +0.3 31.1+24

Wild type TACI lg
a b
Cells (x106) % Cells (x106) Y
Spleen
All cells 49.0 = 11 100 26012 100
T cells 16.3+39 33.3x06 12337 50.0+9.2
CD4+ 119+26 243+05 83+25 33.5+59
che+ 39=x12 79+09 3510 144233
B calls © 30.0£67 61.2+05 76x4.1 28.8x25
T1 1.4+02 3.0+05 19+1.4 B.7+20
T2 2303 4.9+09 0.6+ 0.6 2110
T3 2204 22+04 0.4£03 14205
FO 216+63 436+37 34+11 140+24
MZ 1.4+04 28+03 0022002 pos+0.04
Lymph node
All cells 29+1.7 100 32+13 100
T cells 1.7+£1.0 60227 28=x1.1 91.2+25
CD4+ 1.1+06 385=+25 1.7£0.7 55.4+ 2.1
coa+ 0.6 £0.4 203 +26 1.1£05 33929
B cells 11+086 373 +286 0.2+04 6.5+ 2.0
PELs
All cells 13720 100 118+ 4.4 100
T cells 37+04 273+24 6.6+ 2.1 57.2+3.8
CD4+ 29+02 213+18 4914 43.1+£48
cDa+ 0.7x0.2 5113 1.520.7 1221+ 1.0
B cells g1+£1.7 66.3+32 15+ 15 20314
Immat. B 0.4+0.1 27+07 0.9+04 TE=14
PEL's
All cells 3907 100 87x9 100
B1 0.4 0.1 102£19 0403 51£15
B2 16+03 40594 1.0+£09 13.6+4.1

45.2+16.3 100 434 £5.1 100

33+03 7.7 +1.8 38 =04 88+18
1.9201 44 £1.2 22 +£0.2 52+09
1203 27 +0.6 13 202 32+08
404+ 163 886x34 376 £5.2 86.6+22
45+18 10.0 £ 0.8 BD+23 18.2+3.3
B88+39 100 86 +4.7 100

0401 5309 03 +£02 39+£13
58135 62 =15 52 +3.0 B0 =11

a)

b)

Cell numbers are in million per organ. For LN, two inguinal LN. For PBL, numbers are for 1 ml of blood.
% refers to the total lymphocyte population. Three or four mice (9-12-week-old females) were analyzed in each group.

9 Population definition: Spleen: T1 (220, 493*, CD23", IgM**); T2 (B220*, 493*, CD23*, IgM**); T3 (B220", 493", CD23", IgM*"):
MZ (B220*, CD23-, CD21**, IgM**); FO (B220*, 493°). PBL: Immature B (B220*, CD62L"). PEL: B1 (B220™, CD5%); B2 (B220",

CD5).

More direct evidences implicate the NEMO-
independent, alternative NF-kB pathway downstream of
BAFF and BAFF-R, because processing of NF-xkB2/p100
to p52 is inducible in immature B cells upon BAFF treat-
ment in vitro [32]. In addition, BAFF-induced differentia-
tion of B cells in bone marrow cultures is blocked in NF-
kB2~ cells [23], and BAFF signaling is impaired in cells
lacking NIK and IKKa, two components of the alternative
NF-xB pathway [23].

The TACI-IgxBcl-2 dTg model permits uncoupling of the
survival and differentiation functions of BAFF in vivo. Our
results suggest that BAFF does not solely act as a sur-
vival factor, but participates in the maturation of B2
B cells. Indeed, loss of the B cell immaturity marker
CD93 is impaired or retarded in TACI-IgxBcl-2 dTg mice
compared to Bcl-2-Tg mice. In addition, we found that
BAFF is required for normal CD21 expression in B cells

© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

and for the generation of marginal zone B cells. Im-
portantly, a Bcl-2 transgene rescued the marginal zone
B cell deficiency in CD197 mice, ruling out the hypo-
thesis that these cells could be unresponsive to Bcl-2
[33].

In B cells, CD21 (complement receptor 2) is part of the
B cell coreceptor complex. In marginal zone B cells, its
engagement by blood-borne antigens opsonized with
C3d is believed to provide the basis for T-independent
type-2 antibody responses, in particular of IgG2a and
IgG3 isotypes [22, 34]. The impaired IgG3 response to
NP-Ficoll in TACI-IgxBcl-2 dTg mice is consistent with
their lack of marginal zone B cells and is comparable to
that observed in the marginal zone B cell-deficient Pyk-
27" mice [34]. Neither Pyk-2 nor TACI-IgxBcl-2 mice
have significantly impaired IgM responses to NP-Ficoll,
and their IgG3 responses are reduced but not abolished.
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This suggests that cells other than marginal zone B cells
participate to T-independent type-2 responses.

In our model of TACI-Ig-Tg mice, both BAFF and APRIL
are inhibited by TACI-Ig. B cell survival and emergence
of marginal zone B cells are probably only dependent on
BAFF and BAFF-R, because TACI”~ and BCMA™ mice
have mature B cell and marginal zone B cell populations
[3, 9]. T-independent type-2 responses may, however,
depend on both BAFF and/or APRIL, because they are
mediated, at least in part, through TACI [9, 35] and are
enhanced in APRIL-Tg mice [36]. In addition, both BAFF
and APRIL induce CD40L-independent isotype switch in
human peripheral blood B cells in vitro [7]. However, the
unimpaired T-independent antibody responses found in
BCMA-Ig-Tg mice (which block APRIL but not BAFF)
argue against an essential, non-redundant role of APRIL
in this respect.

RelB and p50, two subunits of the NF-&B transcription
factor, are required for marginal zone B cell formation
[37, 38] and may mediate BAFF signaling in that respect.
RelB is likely to heterodimerize with NF-&B2/p52 and to
participate in the alternative NF-xB pathway. p50 may
also play role in this pathway, because the sustained,
NEMO-independent NF-kB response induced by the
TNF family ligand TWEAK contains not only p52 and
RelB, but also a prominent fraction of the NF-kB1/p50
transcription factor [39].

The balance between marginal zone versus follicular
B cell development is also regulated by Aiolos and Btk
[21], whereas CD19 is important for the survival and dif-
ferentiation of several B cell populations, including B1
and marginal zone B cells [33]. Inactivation of the repres-
sor activity of RBP-J by Notch signaling promotes mar-
ginal zone Bcell formation, whereas the Notch-
antagonizing protein MINT prevents it [40, 41]. Lack of
marginal zone B cells is also observed upon deficiencies
of Pyk-2, DOCK-2 and Lsc, three proteins implicated in
migratory responses to chemokines [34, 42-44], and of
the transcriptional co-activator BOB.1/OBF.1/OCA-B
[45]. Interestingly, neither BOB.1/OBF.1/OCA-B, nor
RBP-J or BAFF deficiencies affects the B1 B cell popula-
tion [2, 3, 41, 45]. It will be of interest to assess whether
and how the aforementioned proteins are related to
BAFF signaling.

In conclusion, our results indicate that BAFF is both a
survival and a differentiation factor for B cells, and that
these two functions can be distinguished. In particular,
BAFF allows differentiation of marginal zone B cells inde-
pendently of its survival activity.
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4 Materials and methods

4.1 Transgenic mice

TACI-Ig- and BCMA-Ig-Tg mice have been described previ-
ously [4]. These mice express the transgenes under the con-
trol of the human a1 anti-trypsin promoter and display a
serum concentration of 5 ug/ml of TACI-Ig and up to 100 ug/
ml of BCMA-Ig [4]. The C57BL/6-TgN(BCL2)22Wehi mice
were obtained from the Jackson Laboratories. This line
expresses Bcl-2 under the control of the En promoter in the
B cell compartment [19]. Transgene was detected by PCR
on tail genomic DNA using oligonucleotides JT2519 5’-GGT-
CATGTGTGTGGAGAGCGTCA-3’ and JT2520 5’-TCACA-
CCACAGAAGTAAGGTTCC-3'.

The Tg vector, pCD19-FLIP, encoding Flag-muFLIP under
the control of the B cell-specific CD19 promoter was con-
structed in the pBSKS lI(-) vector and contained (a) in the
Notl site, a 6.4-kb Eagl fragment of vector CD19 XS (con-
taining nucleotides —6435 to —15 of hCD19) [46]; (b) in the
BamHI/Xhol sites, nucleotides 421-1592 of rabbit [3-globin
(comprising the end of exon 2, intron 2, exon 3 and the
poly A addition signal) [4]; (c) in the blunted EcoRl site of the
-globin sequence, a 1525-nucleotide sequence encoding
Flag-mouse FLIP. (MDYKDDDDKEFGL followed by amino
acid residues 2-481 of mouse FLIP,) [20]. Tg mice were gen-
erated by microinjection of the BssHII fragment of pCD19-
FLIP into fertilized (C57BL/6xDBA/2) F2 oocytes, and
screened by PCR using oligonucleotides JT1822 5’-TCA-
AGAGTGAGGCGGTTTGACC-3’ and JT1823 5’-TCCTGAT-
TCCTGGATGGATGTC-3'.

4.2 FACS analysis and monoclonal antibodies

The following antibodies were purchased from BD Biosci-
ences (San Jose, CA): anti-CD8a-PE (53-6.7), anti-CD5-PE
(63-7.3), anti-CD21-FITC (7G6), anti-CD23-PE (B3B4), anti-
B220-CyChrome (RA3-6B2), anti-CD1d-FITC (1B1) and
anti-IgM-biotin (1B4B1). Anti-CD3e-FITC (17A2), anti-CD4-
biotin (GK1.5), anti-B220-Cy5 (RA3.6B2), anti-lgD-Cy5
(11-26¢.2a) and anti-IgMb-PE (MB86) were produced and
conjugated in our laboratory. Anti-CD62L-PE (MEL-14) was
from Caltag (Burlingame, AL). Biotinylated anti-C1gRp (anti-
CD93) mAb 493 was used as described [30]. Streptavidin-
allophycocyanin (Molecular Probes, Leiden, The Nether-
lands) was used to reveal biotin conjugates. Cells were
treated with anti-CD16/CD32 (as hybridoma supernatants of
clone 2.4G2) prior to staining to block FcR binding and ana-
lyzed using a four-color FACSCalibur™ flow cytometer and
Cell Quest software (Becton Dickinson, San Jose, CA). Dead
cells and debris were gated out using FSC and SSC during
acquisition.
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4.3 Immunohistochemistry

Acetone-fixed 7-um frozen sections of spleen and inguinal
lymph nodes were stained with anti-CD3¢-biotin (145-2C11)
and anti-B220 (RA3-6B2) (both from BD Biosciences) as
previously described [4].

4.4 Immunizations

Nine-to-twelve-week-old F1 mice from TACI-Ig-TgxBcl-2-
Tg crosses, or BCMA-Ig-Tg mice were immunized i.p. with a
single injection of 50 ug of NP-CGG or 10 ug of NP**-Ficoll
in PBS (Biosearch Technologies). NP-CGG at 1 mg/ml in
water was precipitated for 30 min with one volume of 9%
alum (Sigma) at pH 8, recovered by centrifugation, washed
twice with PBS and resuspended in PBS for injection. Tail
vein blood was collected at days8 and 14 post-
immunization and specific anti-NP antibody titers in the
serum were determined by ELISA.

For this purpose, plates were coated for 16 h with 10 ug/ml
of NP25 BSA (Biosearch Technologies) in 50 mM sodium
carbonate buffer pH 9.6, blocked with 4% skimmed milk,
0.5% Tween-20 in PBS, washed and incubated with serum
(1:100 and threefold dilutions in block buffer; for TACI-Ig
mice, the first serum dilution was 1:50). Bound antibodies
were revealed with goat anti-mouse IgG (1:2,000; Jackson
ImmunoResearch, West Grove PA), goat anti-mouse IgG+M
(1:2,000; Caltag), biotinylated goat anti-mouse IgM (1:500;
Caltag), or horseradish peroxidase-coupled goat anti-IgG3
(1:750; Caltag). When required, secondary reagents were
horseradish peroxidase-coupled mouse anti-goat and
horseradish peroxidase-coupled streptavidin (1:4,000;
Jackson ImmunoResearch). Enzymatic activity was mea-
sured at 490 nm with o-phenylenediamine reagent (Sigma).
Titer was defined as the dilution giving half-maximal signal.
p values were determined on log of titers using the paired t-
test.

4.5 Splenocyte survival assay

Spleens of FLIP-Tg and non-Tg littermates were mechani-
cally disrupted using loose-fitting Dounce homogenizer.
Splenocytes (triplicates of 150,000 cells/well, 100 ul, 96-well
plate) were cultured in RPMI, 10% FCS, 50uM f-
mercaptoethanol in the presence of 10 ug/ml LPS (Sigma).
At time 48 h, Flag-hFasL was added at the indicated con-
centration, in the presence of anti-Flag at 1 ug/ml (Apotech,
Lausen, Switzerland) for an additional 24 h. At that time,
0.5 uCi [*HJthymidine was added to each well, and cells
were harvested 16 h later. [°PH]Thymidine incorporation was
determined by scintillation using a TopCount counter (Pack-
ard). Values were expressed as mean + standard deviation
and normalized to that of cells without FasL treatment.

© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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4.6 Western blot

Spleen, inguinal lymph nodes and thymus of FLIP-Tg mice
and non-Tg littermates were collected. Cell extracts were
prepared in lysis buffer [20 mM Tris-HCI pH 7.5, 150 mM
NaCl, 1% NP40, Complete™ protease inhibitor mix (Roche)]
and 30 ug of extracts were analyzed by Western blotting.
FLIP was revealed using the rat mAb Dave-2 (2 ug/ml, 16 h
incubation), followed by horseradish peroxidase-coupled
goat anti-rat antibodies (1:4,000; Southern Biotechnologies
Associate) and ECL (Amersham).
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