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•  Background and Aims  Plant reproductive traits are widely understood to be responsive to the selective pres-
sures exerted by pollinators, but there is also increasing evidence for an important role for antagonists such as 
herbivores in shaping these traits. Many dioecious species show leaky sex expression, with males and females 
occasionally producing flowers of the opposite sex. Here, we asked to what extent leakiness in sex expression in 
Mercurialis annua (Euphorbiaceae) might also be plastically responsive to simulated herbivory. This is important 
because enhanced leakiness in dioecious populations could lead to a shift in both the mating system and in the 
conditions for transitions between combined and separate sexes.
•  Methods  We examined the effect of simulated herbivory on the sexual expression of males and females of 
M. annua in two experiments in which different levels of simulated herbivory led to enhanced leakiness in both sexes.
•  Key Results  We showed that leaky sex expression in both males and females of the wind-pollinated dioecious 
herb M. annua is enhanced in response to simulated herbivory, increasing the probability for and the degree of 
leakiness in both sexes. We also found that leakiness was greater in larger females but not in larger males.
•  Conclusions  We discuss hypotheses for a possible functional link between herbivory and leaky sex expression, 
and consider what simulated herbivory-induced leakiness might imply for the evolutionary ecology of plant repro-
ductive systems, especially the breakdown of dioecy and the evolution of hermaphroditism.

Key words: Herbivory, sexual system, reproduction, leakiness, sex inconstancy, hermaphroditism,  
wind pollination, self-fertilization, mating system, size-dependent sex allocation, monoecy, dioecy.

INTRODUCTION

Floral morphology and other reproductive traits are often 
strongly influenced by selection due to interactions with pol-
linators (Willmer, 2011). However, reproductive traits can also 
be shaped by selection due to antagonists such as herbivores 
(Ashman, 2002; Steets and Ashman, 2004; Carr and Eubanks, 
2014; Johnson et al., 2015). For instance, the strength of se-
lection due to herbivores was found to be equal to or stronger 
than that due to pollinators in 67 % of species in which the role 
of both mutualists and antagonists had been studied (Johnson 
et al., 2015). There is also growing evidence for the co-ordinated 
evolution of plant defensive and reproductive traits (Strauss and 
Whittall, 2006; Rausher, 2008; Ågren et  al., 2013; Campbell 
and Kessler, 2013; Carr and Eubanks, 2014; Campbell, 2015; 
Johnson et  al., 2015). Specifically, herbivores, and plant re-
sponses to them, have been found to affect the floral display 
(Strauss et al., 1996, 1999; Herrera, 2000; Parachnowitsch and 
Caruso, 2008; Ågren et al., 2013), flower colour (Strauss et al., 
2004; Vaidya et al., 2018), flowering time (Parachnowitsch and 
Caruso, 2008), floral morphology (Galen, 1999; Galen and 
Cuba, 2001; Santangelo et  al., 2019), floral scents and pol-
linator rewards (Kessler and Halitschke, 2009; Kessler et al., 
2011; Ramos and Schiestl, 2019; Aguirre et al., 2020), mating 

systems (Steets and Ashman, 2004; Ivey and Carr, 2005; Penet 
et al., 2009; Kessler et al., 2011) and sex allocation (reviewed 
by Ashman, 2002). Yet despite the increasing evidence for the 
importance of herbivory in the ecology and evolution of plant 
reproduction, very little attention has been given to the effect 
of herbivory on sex allocation and other traits that might be 
important in evolutionary transitions between hermaphroditism 
and dioecy.

Herbivores can affect sex allocation patterns either directly 
via plant size or indirectly via effects on pollinator behaviours. 
By reducing plant size and resource availability, herbivory in 
dioecious populations may directly increase mortality of indi-
viduals with the more costly sex function, potentially leading 
to or enhancing sex ratio biases (Cornelissen and Stiling, 
2005; Sánchez-Vilas and Pannell, 2011b; Geber et al., 2012). 
For similar reasons, herbivory in hermaphroditic species can 
cause individuals to shift their investment towards the least 
costly sexual function (Diggle, 1994; Seger and Eckhart, 1996; 
Ashman, 2002; Zhang and Jiang, 2002; West, 2009; Hirata 
et  al., 2019). A  particularly interesting and important possi-
bility is that herbivory could influence the sex allocation of 
males and females of dioecious species by altering their ten-
dency to produce flowers of the opposite sex through ‘leaky’ or 
‘inconstant’ sex expression.

© The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company.
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Leaky sex expression has been described in at least 40 di-
oecious species, including gymnosperms and angiosperms 
(Ehlers and Bataillon, 2007; Cossard and Pannell, 2019), but 
it is probably more frequent. In some cases, it may simply re-
flect the rudimentary expression of hermaphroditism in species 
that have not completed the transition to fully separate sexes 
(Delph, 2003; Delph and Wolf, 2005). However, it may also be 
maintained by selection for reproductive assurance under con-
ditions in which mating opportunities are limited (Crossman 
and Charlesworth, 2014; Cossard and Pannell, 2021; Cossard 
et al., 2021). Mate limitation could arise from colonizing new, 
mate-less environments (Baker, 1965; Pannell, 2015) or from 
pollinator limitation caused by biotic (e.g. herbivory) or abiotic 
factors (e.g. environmental heterogeneity, such as across altitud-
inal gradients) (Kessler et al., 2011; Trøjelsgaard and Olesen, 
2013). Until recently, almost nothing was known about the 
developmental basis of leakiness, but several studies indicate 
that it may have a plastic component, with plants responding 
to biotic or abiotic factors (Freeman et al., 1980; Bierzychudek 
and Eckhart, 1988; Sakai et al., 1995). For example, in some 
species, cool and humid conditions at high altitudes have been 
found to favour males and strict dioecy (unisexuality), whereas 
warmer, drier conditions at lower altitudes favour hermaphro-
dites and enhanced leakiness, showing a leakiness response to 
environmental cues (Delph, 1990b; Sakai and Weller, 1991; 
Humeau et al., 1999; Venkatasamy et al., 2007). A recent study 
of leaky sex expression in the wind-pollinated dioecious plant 
Mercurialis annua found that leakiness can also respond plas-
tically to plant–plant interactions and population sex ratios 
(Cossard and Pannell, 2021), such that females deprived of 
pollen-producing mates are more likely to produce male flowers 
than comparable females receiving abundant pollen (Cossard 
and Pannell, 2021).

Here, we asked to what extent leakiness in sex expression 
in M. annua might also be plastically responsive to wounding 
through simulated herbivory and associated tissue loss. This is 
important because enhanced leakiness in dioecious populations 
could lead to a shift in both the mating system and the con-
ditions for transitions between combined and separate sexes. 
Our study also addresses a perceived gap in our understanding, 
identified by Johnson et al. (2015), of how herbivore-induced 
changes in phenotype might alter a species’ mating system. 
Most documented cases of the effect of herbivory on the mating 
system point to reduced selfing in hermaphrodite species (re-
viewed by Johnson et al., 2015), whereas enhanced leakiness 
in dioecious species would potentially allow selfing instead. 
Previously, Yampolsky (1930) and Kuhn (1939) found that 
pruning individuals of M. annua tended to enhance the produc-
tion of flowers of the opposite sex, but neither study character-
ized this response in any detail.

Wounding and tissue loss due to herbivory might affect 
leakiness in sex expression for a number of reasons. First, a 
plant’s response to herbivory might include altering its en-
dogenous hormone balance (Thaler et al., 2001; Ballaré, 2011; 
Robert-Seilaniantz et  al., 2011; Naseem et  al., 2015), with 
potential pleiotropic effects on its sex expression (Riemann 
et al., 2003; Wasternack et al., 2013; Yuan and Zhang, 2015). 
Second, wounding and tissue loss might affect a plant’s sex 
expression via effects on plant size or resource status, as 

predicted by theories of size- or resource-dependent sex allo-
cation (Ghiselin, 1969; Trivers and Willard, 1973; Charnov, 
1979, 1982; Freeman et al., 1980; Warner, 1988; de Jong and 
Klinkhamer, 1989; Klinkhamer et al., 1997; reviewed by West, 
2009). For instance, if physical injuries reduce an individual’s 
resource status, selection might favour a strategy that includes a 
shift in sex allocation towards the cheaper sex function. While 
studies of size- and/or resource-dependent sex allocation and 
gender (Lloyd, 1980) have tended to focus on hermaphrodites 
(Freeman et  al., 1980; Korpelainen, 1998; Vega-Frutis et  al., 
2014), the same ideas might apply to sex inconstancy in dioe-
cious species.

We examined the effect of simulated herbivory on the sexual 
expression of males and females of M. annua in two experi-
ments in which different levels of simulated herbivory led to 
enhanced leakiness in both sexes. In females, we compared 
leakiness levels between control (undamaged) and damaged 
females. In males, we quantified leakiness of plants under a 
low and a high simulated herbivory treatment. We used the data 
from both experiments to address the following questions. (1) 
How does simulated herbivory affect the probability of leaki-
ness in males and females of a dioecious species? (2) How 
does simulated herbivory affect the number of opposite sex re-
productive structures produced by males and females of a di-
oecious species? (3) To what extent are the male and female 
changes in sex expression in response to simulated herbivory 
mediated by plant size?

In both of our experiments, our simulated herbivory treat-
ments involved the removal of a given proportion of the pri-
mary shoot through cutting, i.e. it involved both wounding 
and associated tissue loss. This treatment differs from natural 
herbivory in several important respects. For instance, experi-
mental cutting of the shoot is not associated with the potential 
chemical and/or microbial stimuli present in the herbivores’ 
saliva or mouth, to which plants are known to have evolved spe-
cific defence responses. Damage inflicted by a simple quick cut 
also differs from the protracted accumulative damage inflicted 
by certain invertebrates that may spend long periods on a given 
plant. Nevertheless, to a certain extent, our cutting treatment 
resembles the herbivory suffered by M. annua plants under field 
conditions: they are often damaged by slugs that prune off a 
section of the main axis before consuming all or part of it (pers. 
obs.). Previous experiments with M. annua subjected males and 
females to herbivory by snails and revealed sexually dimorphic 
responses (Sánchez-Vilas and Pannell, 2011b). Such experi-
ments are valuable, but natural herbivory treatments are also 
associated with potential effects of increased leaf temperature 
due to insect caging, and they also sacrifice the advantages of 
experimental control over the timing, intensity and uniformity 
of damage caused (Hjältén, 2008). Our experiment benefited 
from these elements of control, not least because they allowed a 
relatively uniform reduction of plant size and corresponding re-
source status. Nevertheless, it is important to recognize that our 
‘simulated herbivory’ treatment is probably a poor imitation of 
natural herbivory, even though mechanical wounding and tissue 
removal have been validated as a suitable approach to study 
biotic interactions at small scales, such as the consequences of 
herbivores on plant growth, defence, physiology and resource 
allocation (Hjältén, 2008).
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MATERIALS AND METHODS

Study system

Mercurialis annua is a polyploid complex of wind-pollinated 
ruderal herbs that occupy disturbed habitats across eastern, 
central and western Europe (Tutin et al., 1968; Obbard et al., 
2006). Diploid populations are dioecious, with an XY chromo-
somal system of sex determination (Russell and Pannell, 2015; 
Veltsos et al., 2018, 2019; Li et al., 2019). Males produce stam-
inate flowers on pedunculate inflorescences held above the 
plant. Females produce two- to three-ovulate flowers on sub-
sessile pedicels in the leaf axils (Tutin et  al., 1968). In add-
ition to these differences in the floral sex and inflorescence 
morphology between males and females, the sexes also differ 
in a number of vegetative characters, including plant and root 
biomass, patterns of resource allocation to growth and repro-
duction throughout their development and their competitive 
abilities (Sánchez Vilas and Pannell, 2011a; Sánchez-Vilas 
et al., 2011; Tonnabel et al., 2017). As in the case of many dioe-
cious plants (Ehlers and Bataillon, 2007; Cossard and Pannell, 
2019), dioecious M. annua shows leakiness in sex expression, 
with both males and females occasionally producing fully func-
tional flowers of the opposite sexual function (Pannell et al., 
2008; Cossard and Pannell, 2019, 2021).

In the field, M. annua plants are attacked mainly by gener-
alist herbivores. Within their native distribution range, between 
Morocco and the Iberian Peninsula, plants are subject to mod-
erate levels of herbivory, mainly by snails of the genus Cepaea; 
outside their native range, herbivores also include Helix aspersa 
snails (Sánchez-Vilas and Pannell, 2011b). As is common in spe-
cies with separate sexes (Ågren et al., 1999), M. annua shows 
male-biased herbivory, and plants display sexual dimorphism 
in response to wounding and tissue loss (Sánchez-Vilas and 
Pannell, 2011b) and other stressors (Sánchez Vilas and Pannell, 
2011a; Sánchez-Vilas et al., 2011; Orlofsky et al., 2016).

Plant culture

Plants of the diploid M. annua were sown and grown within 
a polytunnel under controlled conditions at the University of 
Lausanne, Switzerland. The experiment with female plants 
was established during March 2016, while the experiment with 
male plants was established in May of the same year. In both 
experiments, plants were sown and raised to maturity in seed-
ling trays. When plants reached reproductive maturity, plants of 
the desired sex for the respective experiment were repotted in 
pots with soil (Ricoter substrate 140) and slow-release fertilizer 
(Hauert Tardit 6M pellets; 5 g fertilizer L–1 of soil). Plants were 
subjected to the simulated herbivory treatments and allowed to 
regrow for 10 weeks in the male experiment and for 8 weeks in 
the female experiment. After this period, plants were harvested, 
and the numbers of male and female flowers were recorded. 
Plants were then dried and weighed.

Simulated herbivory treatments

For the male experiment, individuals were grown in pairs in 
pots to save space (with pot thus being the unit of replication; 

n = 828 pots). Both individuals in a given pot were subjected 
to the same low or high herbivory treatment. Over a period 
of 10 weeks of growth, plants under the low-herbivory treat-
ment were pruned once, removing all tissue above the first 
internode (3 cm above the soil surface), whereas plants under 
the high herbivory treatment were pruned twice within these 
10 weeks, on both occasions by removing all tissue above the 
first internode. For the female experiment, individuals were 
transplanted into individual pots (n = 219 plants). For plants 
under the herbivory treatment, the apical section (10 cm) of 
the main stem was pruned once, removing all plant tissue 
above the cut point; plants under the control treatment were 
left intact.

Our experiment on male plants involved a comparison be-
tween two treatments of simulated herbivory of contrasting 
intensity, but did not include undamaged plants. This is be-
cause it was initially part of a study that specifically aimed at 
generating males with leaky sex expression for the production 
of YY male plants (Li et  al., 2019). The absence of undam-
aged males means that our low vs. high herbivory comparison 
is a more conservative estimate of sensitivity to the intensity 
of herbivory, as confirmed by previously documented levels of 
leaky sex expression for undamaged males of the same popula-
tion (Cossard and Pannell, 2019; see the Discussion for details). 
The male experiment thus specifically asks how sensitive plants 
are in their leakiness to the degree of simulated herbivory rather 
than to herbivory as a categorical variable.

Statistical analyses

Statistical analyses were conducted in R version 3.6.1 (R 
Core Team, 2016). Models were fitted using ‘lme4’ R package 
(Bates et  al., 2015), unless otherwise stated, with residuals 
evaluated with the ‘DHARMa’ R package (Hartig and Hartig, 
2017).

To test whether the simulated herbivory treatment affected 
the probability of sex change in males and females, we fitted 
generalized linear binomial models. For males, the presence or 
absence of seeds was considered as the response variable, with 
the herbivory treatment and biomass fitted as predictors. For fe-
males, the presence or absence of male flowers was the response 
variable, and the predictors were the simulated herbivory treat-
ment, plant biomass and plant population.

To test the effect of simulated herbivory on the number of 
reproductive structures of the opposite sex, we fitted two sep-
arate Poisson models. We tested and accounted for zero infla-
tion in both models. Seed production in males was zero inflated 
and was consequently analysed with a Poisson zero-inflated 
mixed model using the ‘glmmADMB’ package (Skaug et al., 
2011). The number of seeds produced by males was fitted as 
the response variable, with the herbivory treatment and plant 
biomass fitted as fixed effects. To control for overdispersion, 
we also included an observation-level random effect (OLRE) 
(Hinde, 1982; Harrison, 2014). The model testing the effect of 
simulated herbivory on male flower production by females was 
not zero inflated. Here, we fitted the number of male flowers 
produced by females as the response variableand the herbivory 
treatment and plant biomass as fixed effects, and included an 
OLRE.
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RESULTS AND DISCUSSION

Patterns of leakiness in sex expression in M. annua

Simulated herbivory significantly increased the probability 
and the degree of leakiness in both males and females (Table 
1; Fig. 1; Supplementary data Table S1). Thus, males in pots 
under high herbivory were 15 % more likely to produce seeds 
than those under low herbivory (Fig. 1A) and they produced 
13 times more seeds on average (Fig. 1C; Table 1). Similarly, 
females under simulated herbivory were 26 % more likely to 
produce male flowers than control females (Fig. 1B), and they 
produced five times more male flowers than control females 
(Fig. 1D; Table 1). We also found that while females were 0.51 
% more likely to produce male flowers and produced 1.06 more 
male flowers per gram of additional biomass, male leakiness 
did not depend on plant size (Table 1).

While leakiness in sex expression can affect both sexes of 
dioecious species, generally males are more likely to be leaky 
than females, a pattern that may reflect incomplete transitions 
from hermaphroditism to dioecy via gynodioecy, with males 
retaining a residual female function (Ehlers and Bataillon, 
2007; Cossard and Pannell, 2019). Against this background, the 
greater probability of leakiness in females of M. annua is un-
usual. Our results confirm greater leakiness in females than in 
males in M. annua, and they also indicate that under simulated 
herbivory this pattern of enhanced leakiness is maintained and 
even accentuated. Previous findings on the baseline percentage 
probability of sex inconstancy in undamaged M. annua males 
of the same source population were 3 % (Cossard and Pannell, 
2019), compared with 4.5 % in males under the low herbivory 
and 23.8 % under the high herbivory treatment.

Dioecy is ancestral and well established across the genus 
Mercurialis, and there is no indication that separate sexes 
evolved via gynodioecy (though they might have done so). 
Greater leakiness in females than males might reflect selec-
tion for reproductive assurance, which would favour the main-
tenance of leaky sex expression in females rather than males, 
because a small amount of pollen produced by females might 
suffice for the production of a large number of seeds, in con-
trast to the few seeds produced by males (Pannell and Barrett, 
2001; Cossard and Pannell, 2019). This might also explain why 
we found that males, when leaky, tend to express a greater de-
gree of leakiness than females, as found previously by Cossard 
and Pannell (2019). These patterns of leakiness in M. annua are 
thus consistent both with the expectations of range expansion 

or metapopulation models, in which new populations are fre-
quently established by single individuals, and with the ruderal 
habit and metapopulation structure of M. annua across Europe 
(Pannell and Barrett, 2001; Obbard et  al., 2006; Eppley and 
Pannell, 2007).

Our results shed further light on the expression of leakiness 
in sex expression in M. annua, to our knowledge the only plant 
to date whose leakiness has been investigated experimentally 
in quantitative terms, showing that antagonists can affect this 
reproductive trait. Leaky sex expression is common in dioe-
cious species, but the basis of variation in leakiness among 
individuals has remained almost entirely obscure. Our current 
and previous studies of leaky sex expression in M. annua indi-
cate that the phenomenon cannot be attributed only to develop-
mental instability or poorly canalized separation of the sexes. 
Rather, leakiness is clearly a more complex trait, with compo-
nents of variation attributable not only to genetic differences 
among individuals (Cossard et al., 2021) but also to phenotypic 
plasticity. Previous work found that females of M. annua were 
more likely to express a male function when growing under 
conditions of pollen (or mate) limitation (Cossard and Pannell, 
2021). By showing that leaky sex expression in M. annua also 
responds to simulated herbivory, our current study now adds 
further evidence for the contribution of phenotypic plasticity 
to phenotypic variation in sex expression and highlights the 
role that antagonists can have in shaping reproductive traits in 
angiosperms. Our findings also provide evidence reinforcing 
the idea of co-ordinated evolution between defensive and re-
productive traits in angiosperms showing herbivory-induced 
leakiness in male and female plants.

Even though simulated herbivory or plant wounding differs 
from natural herbivory in several aspects, controlled, simulated 
herbivory has been a significant research tool to understand 
plant responses to damage, mainly by disentangling stimuli 
types and intensities (Hjältén, 2008; Lehtilä and Boalt, 2008; 
Waterman et al., 2019). A meta-analysis comparing the effects 
of natural and simulated herbivory on plant responses reported 
no significant difference in a considerable proportion of studies 
and statistical tests, leading the authors to endorse simulated 
herbivory as a valid methodological approach (Lehtilä and 
Boalt, 2008). Yet they found that not all plant responses were 
equally sensitive to the type of herbivory. Phytochemicals and 
defensive compounds were the most sensitive responses to the 
type of herbivory treatment (85 % of studies showed significant 
differences), whilst plant growth and reproduction were among 
the least sensitive plant responses to natural and simulated 

Table 1.  Model output for the effects of simulated herbivory on leakiness in sex expression in males and females of Mercurialis annua

Response variable Sex Fixed effects n LRT P-value Random effects Variance Error distribution

Probability of leakiness Males Herbivory 828 35.49 2.55−09 *** NA NA Binomial
Biomass 0.002 0.96 n.s.

Probability of leakiness Females Herbivory  29.34 4.25−07 *** NA NA Binomial
Biomass 219 23.00 1.61−06 ***

 Population  0.93 0.81 n.s.
Number of seeds Males Herbivory 828 43.06 5.29−11 *** OLRE 0.64 Poisson  

zero inflatedBiomass 0.94 0.32 ns
Number of male flowers Females Herbivory  19.01 1.29−05 *** OLRE 4.96 Poisson

Biomass 219 32.32 1.30−08 ***
Population  5.16 0.16 n.s.

LRT, likelihood ratio test; OLRE, observation-level random effect, added to control for overdispersion in Poisson models. Text in bold indicates significant 
terms P < 0.05.
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herbivory (20–30 % of the studies/tests showed significant dif-
ferences) (Lehtilä and Boalt, 2008). This meta-analysis also 
showed that, in most cases, natural herbivory has stronger ef-
fects than simulated herbivory, so that effects observed through 
simulated herbivory probably represent underestimates of what 
could be expected in the wild (Lehtilä and Boalt, 2008). Our 
study evaluated the effects of simulated herbivory on plant 
sexual expression, a plant-level response linked to growth and 
reproduction. Although it would seem from the analysis of 
Lehtilä and Boalt (2008) that our experimental approach was 
likely to be suitable to address our questions, we expect that 
natural herbivory would have elicited somewhat different (and 
perhaps larger) responses. Further research with more natural 
herbivory treatments would be worthwhile.

Why should leakiness in sex expression be sensitive to simulated 
herbivory?

While it seems plausible that the sensitivity of leaky sex 
expression of unisexual plants to mate limitation might have 
evolved in response to selection for reproductive assurance in 
M. annua (Cossard and Pannell, 2021), a functional explanation 
for the sensitivity of leakiness to simulated herbivory is less 
obvious. Could it be that simulated herbivory-enhanced leaki-
ness functions as a reproductive assurance mechanism too, for 

example if herbivory compromised mate availability? In most 
dioecious species, herbivory is male biased (Ågren et al., 1999; 
Cornelissen and Stiling, 2005; Geber et al., 2012), including in 
M. annua (Sánchez-Vilas and Pannell, 2011b), so that at least 
females might gain from induced leakiness in heavily dam-
aged populations. Hesse and Pannell (2011) found that iso-
lated females of M. annua were indeed pollen limited in the 
field, but we have no evidence that herbivory frequently brings 
about such isolation in M. annua, nor indeed how effectively 
the observed levels of leakiness in our experiment would actu-
ally restore seed production to pollen-limited females. Another 
possibility is that enhanced leakiness in response to simulated 
herbivory might be a collateral effect of hormonal changes re-
sulting from the activation of plant defensive pathways. Plant 
hormones such as jasmonates are known to regulate both sex 
determination and defensive responses in a number of plants 
(Robert-Seilaniantz et al., 2011; Yuan and Zhang, 2015), and 
it thus seems plausible that damage-induced hormonal changes 
might have altered the balance of sex-determining hormones 
in our experiment with M.  annua. Although M.  annua has 
chromosomal sex determination (Russell and Pannell, 2015; 
Veltsos et al., 2018), its sex expression appears to be mediated 
by the endogenous levels of cytokinin and auxin (Hamdi et al., 
1987; Louis et al., 1990; Durand and Durand, 1991; Li et al., 
2019) as well as by its exogenous application (Hamdi et  al., 
1987; Durand and Durand, 1991).
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Larger females, but not larger males, were more likely to pro-
duce flowers of the opposite sex, or to produce more of them 
(Table 1). There would seem to be two potential implications 
for this differential relationship between plant biomass and 
leakiness in males and females. First, our result reinforces the 
idea that in M. annua male flower production is costlier than fe-
male flower and fruit production, possibly because of the high 
investment of nitrogen in pollen (Harris and Pannell, 2008; 
Van Drunen and Dorken, 2012; Wright and Dorken, 2014). In 
this context, the fact that we found lower levels of leakiness in 
smaller individuals only for females is consistent with maleness 
being the costlier sex in M.  annua, and with the expectation 
that larger individuals should allocate more towards the cost-
lier sex because of their greater budget (Delph, 1990a; Seger 
and Eckhart, 1996; Klinkhamer et al., 1997; Zhang and Jiang, 
2002; West, 2009). Second, because larger plants haver higher 
siring success in M.  annua (Tonnabel et  al., 2019), females 
might benefit from investing in pollen production only when 
large. In wind-pollinated herbs more generally, large size (in 
terms of height, which is correlated with biomass) may also 
directly benefit male function more than female function by 
promoting the dispersal of pollen from above the plant canopy 
(Klinkhamer et al., 1997; Friedman and Barrett, 2009; Harder 
and Prusinkiewicz, 2013; Tonnabel et al., 2019).

Implications for plant mating and sexual system evolution

Although we remain largely ignorant of how selection might 
have shaped the interaction between leakiness in sex expres-
sion in M. annua and its responses to simulated herbivory, there 
are nevertheless several implications of this interaction for 
the species’ mating system and potential transitions between 
sexual systems, which have been frequent in annual lineages 
of the genus Mercurialis (Pannell et al., 2008; Pannell, 2018). 
Most immediately, the induction of higher levels of leakiness 
by simulated herbivory in our experiment suggests that plant 
damage in natural populations may allow some degree of 
selfing (and thus mixed mating) in a species that would other-
wise be fully outcrossing, as dioecious species are.

Our results contribute to a growing picture of the co-ordinated 
or interacting nature of mating system and defence evolution in 
plants (Carr and Eubanks, 2014; Johnson et  al., 2015; Lucas-
Barbosa, 2016). For instance, Johnson et al. (2015) suggested that 
herbivory could shape the evolution of selfing from outcrossing 
as a result of herbivore-mediated inbreeding depression, and by 
affecting pollinator visitation via changes to flowers, potentially 
leading to pollen limitation. Most previous work has focused on 
species with combined sexes, and we are unaware of studies on 
how herbivory might affect reproduction in dioecious species, 
beyond the observation of (typically) male-biased susceptibility 
to damage (Ågren et al., 1999; Cornelissen and Stiling, 2005; 
Geber et  al., 2012). If herbivory commonly induces leakiness 
and facultative selfing, as seems to be the case in M.  annua, 
then the implications of herbivory for the mating system in di-
oecious species might differ from that in hermaphroditic species, 
in which herbivores have been found more typically to promote 
greater outcrossing (Johnson et al., 2015).

Transitions from hermaphroditism to dioecy were long seen 
as evolutionary dead ends (Heilbuth, 2000; Heilbuth et  al., 
2001; Käfer et  al., 2014, 2017), but a recent comparative 

analysis suggests that reversions to hermaphroditism may have 
been common (Muyle et al., 2020). In Mercurialis in particular, 
monoecy in polyploid populations is derived from ancestral 
dioecy, and a study using experimental evolution has demon-
strated the role that leakiness in sex expression has probably 
played in this transition (Cossard et al., 2021). Clearly, herm-
aphroditism could only ever evolve from dioecy if males or 
females occasionally expressed both sex functions, either as a 
result of recombination between sterility loci on a young sex 
chromosome, thereby regenerating the ancestral hermaphro-
dite phenotype (Dorken and Barrett, 2004; Spigler et al., 2008; 
Charlesworth, 2019; Massonnet et al., 2020), or through leaky 
sex expression. The expression of leakiness as a result of simu-
lated herbivory would thus represent a potentially interesting 
case of genetic assimilation, whereby a phenotypically plastic 
response first exposes a potentially advantageous phenotype 
to selection (Waddington, 1953). If the propensity to respond 
plastically varies genetically among individuals, as appears to 
be the case for leakiness in sex expression in M. annua (Cossard 
and Pannell, 2019), leakiness induced by simulated herbivory 
(or mate limitation: Cossard and Pannell, 2021) might then 
quickly become assimilated as established hermaphroditism in 
response to ongoing natural selection. Further work will be ne-
cessary to understand the details of this potential conversion 
from a plastic to an assimilated state.
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