
Genome analysis

l� PBWT: a lightweight r-indexing of the PBWT for storing

and querying UK Biobank data

Davide Cozzi 1, Massimiliano Rossi2, Simone Rubinacci 3, Travis Gagie 4, Dominik Köppl5,6,

Christina Boucher2, Paola Bonizzoni 1,*
1Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan 20126, Italy
2Department of Computer & Information Science & Engineering, Herbert-Wertheim College of Engineering, University of Florida, Gainesville,
Florida 32611, United States
3Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
4Faculty of Computer Science, Dalhousie University, Halifax B3H 4R2, Canada
5M&D Data Science Center, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
6Department of Computer Science, University of Muenster, Muenster 48149, Germany

*Corresponding author. Department of Informatics, Systems and Communication, University of Milano-Bicocca, Italy. E-mail: paola.bonizzoni@unimib.it

Associate Editor: Peter Robinson

Abstract
Motivation: The Positional Burrows–Wheeler Transform (PBWT) is a data structure that indexes haplotype sequences in a manner that enables
finding maximal haplotype matches in h sequences containing w variation sites in OðhwÞ time. This represents a significant improvement over
classical quadratic-time approaches. However, the original PBWT data structure does not allow for queries over Biobank panels that consist of
several millions of haplotypes, if an index of the haplotypes must be kept entirely in memory.

Results: In this article, we leverage the notion of r-index proposed for the BWT to present a memory-efficient method for constructing and
storing the run-length encoded PBWT, and computing set maximal matches (SMEMs) queries in haplotype sequences. We implement our
method, which we refer to as l� PBWT, and evaluate it on datasets of 1000 Genome Project and UK Biobank data. Our experiments
demonstrate that the l� PBWT reduces the memory usage up to a factor of 20% compared to the best current PBWT-based indexing.
In particular, l� PBWT produces an index that stores high-coverage whole genome sequencing data of chromosome 20 in about a third of the
space of its BCF file. l� PBWT is an adaptation of techniques for the run-length compressed BWT for the PBWT (RLPBWT) and it is based on
keeping in memory only a succinct representation of the RLPBWT that still allows the efficient computation of set maximal matches (SMEMs)
over the original panel.

Availability and implementation: Our implementation is open source and available at https://github.com/dlcgold/muPBWT. The binary is
available at https://bioconda.github.io/recipes/mupbwt/README.html.

1 Introduction

Improved haplotype phasing in large cohorts is facilitating the
comprehensive collection and study of variations at the chro-
mosome level for genome evolution and clinical applications.
This has been demonstrated by the haplotype-resolved whole-
genome sequence data collected from hundreds of thousands
of individuals for projects such as the UK Biobank
(Halldorsson et al. 2022) and TOPMed projects (Taliun et al.
2021). In the field of phased genomics, the Positional
Burrows–Wheeler Transform (PBWT) is a data structure that
stores a set of h sequences containing w variation sites in a
h�w binary matrix M½1::h�½1::w�, where the rows of M are
sorted in co-lexicographic order (i.e. sorted order from right
to left). It was initially proposed by Durbin (2014) as a means
to find maximal haplotype matches in OðhwÞ-time, which ab-
stractly can be seen as finding set maximal exact matches
(SMEMs) in M, i.e. the longest common matching substrings

between an external sequence P and any other sequence of the
same length in M.

Despite the advantages of the PBWT for analyzing pange-
nomic haplotype data, it is relatively unknown in the data
structures community. Efficient construction and representa-
tion of the PBWT on large datasets is in a relatively nascent
stage by comparison to the BWT. Nonetheless, the PBWT has
been applied and extended in numerous ways. It has been
used for genotype imputation (Rubinacci et al. 2020), and to
create a genotype database search method that is privacy-
preserving (PBWT-sec) (Shimizu et al. 2016). Novak et al.
(2017) and Sirén et al. (2020) used the PBWT to encode a
graph for haplotype matching (g-PBWT) and graph pange-
nome indexing (Baaijens et al. 2022). Sanaullah et al. (2021)
replaced all arrays with linked lists to define a dynamic ver-
sion of the PBWT (d-PBWT). The original PBWT has been
used to compute all-pairs Hamming distances (Mäkinen and

Received: 5 April 2023; Revised: 7 July 2023; Editorial Decision: 16 August 2023; Accepted: 7 September 2023
VC The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2023, 39(9), btad552
https://doi.org/10.1093/bioinformatics/btad552

Advance Access Publication Date: 9 September 2023

Original Paper

https://orcid.org/0000-0003-2439-0608
https://orcid.org/0000-0002-7725-4813
https://orcid.org/0000-0003-3689-327X
https://orcid.org/0000-0001-7289-4988
https://github.com/dlcgold/muPBWT
https://bioconda.github.io/recipes/mupbwt/README.html


Norri 2019) and for finding all maximal perfect haplotype
blocks in linear time (Alanko et al. 2020). Notwithstanding
the prior developments on the PBWT, analysis of large haplo-
type data—such as the UK Biobank data—using the PBWT
remains a challenge. In November 2022, Jared Simpson
tweeted: What is the largest publicly available haplotype ref-
erence panel 1000 genomes? I’m looking for a pre-built
PBWT index but don’t want to go through dbGAP to get the
HRC panel. Unfortunately, there are no sufficient solutions to
this question.

In this article, we aim to address this by providing a means
to efficiently build a compact PBWT in a manner that it
retains the analysis goals of Durbin (2014). Our solution is to
run-length encode the PBWT by exploiting in the PBWT
framework, the data structure proposed in Rossi et al. (2022)
for the BWT which allows efficiently finding SMEMs. Run-
length encoding is a concept that was originally created to
increase the space efficiency of the BWT, and is defined as
storing the BWT in space that is proportional to the number
of runs in the BWT. The number of runs is routinely denoted
as r, where r is usually significantly smaller than n on repeti-
tive input. Mäkinen and Navarro (2004) noticed that the
BWT can be stored in OðrÞ space while still efficiently sup-
porting some standard queries (i.e. count). Then, Gagie et al.
(2020) showed how to augment the run-length compressed
BWT with suffix array samples at the beginning or end of
each run, such that it can support U queries which, given a
suffix array entry, return the preceding suffix array entry;
they called their data structure the r-index. The r-index is able
to efficiently support the same queries as the FM-index and
requires OðrÞ space. Rossi et al. (2022) then demonstrate how
to make additions to the r-index to support finding SMEMs.
Here, we propose and implement a data structure for storing
the PBWT that is able to reduce the space of Durbin’s PBWT
indexing (which is OðnÞ-space) in a manner that efficiently
supports both finding and locating all SMEMs in the haplo-
type matrix.

In this article, we show how an r-indexing can be fully ex-
plored and extended to the PBWT of a panel of haplotype
data that allows for both compact storage and efficient sup-
port of SMEM queries.

We implement our solution, which we refer to as l� PBWT,
and compare l� PBWT to Durbin’s PBWT (Durbin 2014) and
the best current PBWT index that allows matching queries,
Syllable-PBWT (Wang et al. 2023) on 1000 Genome Project
(The 1000 Genomes Project Consortium 2015). We demon-
strate that l� PBWT produces memory requiring from 1.1 to
25 times less space than those produced by Syllabe-PBWT.
Compared to Durbin’s Algorithm 5, l� PBWT uses up to 80
times less space at the cost of up to 2� increase in construction
and query time for 100 queries, having a worst 6� increase in
time with 1000 queries.

The experiments show that the best performance of l�
PBWT is achieved on whole genome sequencing (WGS) data of
the UK Biobank. Indeed, l� PBWT produces an r-index of
11.06 GB for chromosome 20 data, originally stored in a 29.6
GB BCF file; thus, in a third of the space of the BCF file format,
which is already a significant compression of the input VCF file,
we are able to store the data and keep all the data structures
needed for computing SMEMs queries.

All these results show the scalability of l� PBWT to cur-
rent Biobank data when considering whole genome data, thus
demonstrating the effectiveness of our tool in building and

making easily available an index for downstream analysis of
large genomic datasets.

2 Preliminaries

2.1 Positional Burrows–Wheeler Transform

We define a sequence S over a finite, ordered alphabet R ¼
fc1; . . . ; crg of r characters to be the concatenation of n char-
acters S ¼ S½1::n�. We denote the empty sequence as e. We de-
note the ith prefix of S as S[1.i], the ith suffix as S[i.n], and the
sequence spanning position i through j as S[i.j], with S½i::j� ¼ e
if i > j.

The PBWT has been introduced by Durbin as a data struc-
ture for handling a matrix M, representing a set S ¼
fS1; . . . ; Shg of h sequences of length w and over a binary al-
phabet, simply called haplotypes, by updating two arrays for
each column j: the prefix array PAj and the divergence array
DAj. In this context, it is assumed that each variation site is
bi-allelic, meaning that there exist only two observed alleles at
a locus in the genome and no insertions or deletions.
Although this binary encoding of genetic information appears
to remove significant information, it is common practice in
the analysis of variations of diploid species, where variations
are filtered to only contain bi-allelic sites (Pinto et al. 2013,
Zhu et al. 2018).

1) PAj is the ordering of f1; . . . ;hg induced by the co-
lexicograph ordering of prefixes of S up to column j� 1,
i.e. formally PAj½i� ¼ k, if Sk½1::j� 1� is the ith element in
co-lexicographically ordered list of prefixes S1½1::j� 1�;
. . . ; Sh½1::j� 1�.

2) DAj½i� stores the length of the longest common suffix be-
tween the sequences of index PAj½i� and PAj½i� 1� up to
the ðj� 1Þth column.

The PBWT of M is another matrix PBWT½1::h�½1::w� that
has the first column identical to the one of M while the jth col-
umn of M with j > 1 is obtained by stably sorting the rows of
M½1::h�½1::j� 1� in co-lexicographic order. To ease the nota-
tion we denote the PBWT of M simply as PBWT. Assuming
to denote the jth column of a matrix M by colðMÞj, formally
colðPBWTÞ1 ¼ colðMÞ1 and colðPBWTÞj½i� ¼ colðMÞj½PAj½i��
for all i ¼ 1::h and j ¼ 2::w.

The main idea is that the prefix-array PA defined above
stores in each column j the permutation of the rows induced
by a co-lexicographic ordering of the previous columns up to
column j� 1 while the divergence array DA stores in column j
and position i the length of a longest common suffix between
row i and the previous one in the permutation induced by the
prefix array in column j. Together these two arrays allow to
efficiently compute matching queries over haplotype sequen-
ces. Observe that we frequently use n ¼ h �w to bound the
space- and time- complexity.

If we consider the PBWT shown in Supplementary Fig. S1b
and Column 5, then DA½5�½7� ¼ 3 because the co-
lexicographically 6th and 7th row prefixes (corresponding to
PA½5�½6� ¼ 18 and PA½5�½7� ¼ 16 rows in the input matrix) up
to Column 4 are 0100 and 1100 and their longest common suf-
fix 100 has length 3.

2.2 Run-length encoded PBWT

We denote the run-length encoded PBWT matrix as
RLPBWT. This extension is made by observing that the

2 Cozzi et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad552#supplementary-data


concept of run can be defined for the PBWT, i.e. the number
of runs in the PBWT as the number of binary substrings con-
taining occurrences of the same symbol which are maximal in
length. Given rj as the number of runs in RLPBWT Column j,
we denote r as

P
1� j�w rj. In the following, we will use the

term PBWT without a specific distinction with the RLPBWT,
as the RLPBWT distinguishes for the components it uses.

2.3 Set-maximal exact matches

One of the fundamental tasks of the PBWT is one-vs-all set-
maximal exact matches (SMEMs) finding: the main idea is
finding the longest common matching substrings between an
external sequence P and any other sequence of the same
length that are represented in the PBWT. Formally, given
w-length input sequences S ¼ fS1; . . . ; Shg (sorted in M) and a
pattern P[1.w], we define P[i.j], where 1 � i � j � w, to be
an SMEM if it occurs in one of the input sequences of S and
one of the following holds: (i) i ¼ 1 and j ¼ w; (ii) i ¼ 1 and
P½1::jþ 1� do not occur in S; (iii) j ¼ w and P½i� 1::w� do not
occur in S; and (iv) P½i� 1::j� and P½i::jþ 1� do not occur in S.

SMEMs between a pattern P and a PBWT of a matrix M

are illustrated in Fig. 1a and b: they are circled in both the
pattern and the input matrix M.

We next define two problems related to finding the
SMEMs. First, we define the problem of identifying the
SMEMs in the pattern P.

Problem 1 (SMEM finding) Given a set S ¼ fS1; . . . ; Shg of
h sequences of length w and a pattern P[1..w], compute
the list L of pairs ðp; ‘Þ such that for all ðp; ‘Þ 2 L, P½p::p
þ‘� 1� are the SMEMs between S and P.

Then, we define the problem of locating all the occurrences
of the SMEMs in the panel.

Problem 2 (SMEM locating) Given a set S ¼ fS1; . . . ; Shg
of h sequences of length w and a pattern P[1..w], find the
list L of triples ðp; ‘;OÞ such that for all ðp; ‘;OÞ 2 L, P
½p::pþ ‘� 1� is an SMEM between S and P where O is
the list of haplotypes where the SMEM occur.

Durbin’s Algorithm 5 (Durbin 2014) is able to solve Problem
2 in OðwÞ-time and OðnÞ-space, which corresponds to about
13n bytes. This memory consumption is the major downside of
this algorithm and the motivation that led us to develop a
run-length encoded PBWT that supports SMEMs finding and
locating. For example, in Fig. 1a, we have 9 SMEMs computed
by the pattern P in Fig. 1b.

3 Materials and methods

Our main contribution is a significant reduction in the mem-
ory used to store the PBWT via efficient sampling and storing
the PA and DA arrays. In particular, we reduce the space of
Durbin’s PBWT, which is OðnÞ space, to OðrÞ space. And
while most of the PBWT operations which require Oð1Þ time
in Durbin’s PBWT—which explicitly stores the input matrix
and the associated divergence and prefix arrays—take
Oðlog rÞ time, this runtime is not observed in practice. We
point to the experimental result for illustration of this fact in
Section 4. Lastly, we refer the reader to Bonizzoni et al.
(2022) for a more thorough evaluation of the data structures
for the PBWT that support different time/space trade-offs for
SMEM-finding.

3.1 Overview of l� PBWT and data structures

Our solution to Problem 1, i.e. SMEM finding, in OðrÞ space
requires three data structures: (i) a mapping structure to support
the navigation of the RLPBWT; (ii) the samples of the prefix ar-
ray (PA) in correspondence of the beginning and end of each
run in the RLPBWT; and (3) the thresholds identifying the posi-
tions of the first minimum divergence array (DA) value in each
run in the RLPBWT. We observe that the OðrÞ space is exactly
the memory bound for all these data structures. First, we observe
that the problem of finding SMEMs can be cast into the problem
of computing matching statistics for P (Bannai et al. 2020), as
described in the following. Let us first give the definition of
matching statistics of a pattern with respect to a set S of sequen-
ces. Given a pattern P[1.w], the matching statistics of P with re-
spect to the input set S ¼ S1; . . . ; Sh of sequences are an array
A[1.w] of ðrow; lenÞ pairs such that, for each position j, with
1 � j � w, A½j�:row is the index of a sequence in S whose pre-
fix ending in j has the longest suffix in common with P[1.j], and
A½j�:len is the length of that common suffix. More formally, we
have SA½j�:row½j� A½j�:lenþ 1::j� ¼ P½j� A½i�:lenþ 1::j� and for
all k Sk½j� A½j�:len::j� 6¼ P½j� A½i�:len::j�.

SMEMs can be computed from the matching statistics for the
PBWT as follows. We scan the matching statistics from right to
left, and report a SMEM at the column j� A½j�:lenþ 1 (of the
input matrix) of length A½j�:len if either j ¼ w, or

(a)

(b)

Figure 1. The input matrix M of 20 individuals of 15 bi-allelic sites (a), a

query pattern P and its matching statistics with respect to M (b), SMEMs

are circled in both the pattern and the input matrix M. (a) Input matrix M.

(b) Pattern P with matching statistics.

l� PBWT 3



A½j�:len � A½jþ 1�:len. Informally, A½j�:len � A½jþ 1�:len
occurs when we cannot extend to the right the current longest
common suffix (of length A½j�:len) shared by P and any row in
the input matrix. We show in Fig. 1b an example of matching
statistics for the input matrix M representing the set S of
sequences. Note that vector A is represented in two different
lines, one for the row values and one for the len values.

Next, we show how to compute the matching statistics in
OðrÞ space by storing the data structures mentioned before.
Finally, we show how to solve Problem 2 in OðrÞ space of a
small data structure that we refer to as U for the PBWT.

3.2 Finding SMEMs in l� PBWT

As previously mentioned, our solution to finding SMEMs in
OðrÞ space requires three data structures, which we now
describe.

3.2.1 Mapping structure
Given the position of a bit r in the PBWT, say the ith row and
jth column, our mapping data structure returns the positions in
the next column of the PBWT of the bits immediately to the
right in M. This is equivalent to forward stepping in the PBWT:

FL½i�½j� ¼
uj½i� þ 1 if r ¼ 0

vj½i� þ c½j� þ 1 if r ¼ 1

(

where (i) uj½i� is the number of zeros until i in colðPBWTÞj; (ii)
vj½i� is the amount of ones until i in colðPBWTÞj; and (iii) c[j]
is the total amount of zeros in colðPBWTÞj, as in Durbin’s
paper.

This mapping allows us to step from one column to the
next one (to the right) in the PBWT. Here, we remind
the reader that due to the co-lexicographical ordering on the
PBWT, it follows that FL mapping and forward stepping is
the analogous counterparts of the LF mapping and the back-
ward stepping in the BWT. Summarizing, for each column j in
the RLPBWT, we store (i) the rj run head indices pj, (ii) a
single r-length data structure uvj for both uj and vj, (iii) the
integer c[j], and (iv) a Boolean value of b storing the symbol
of the first run. Therefore, we demonstrate that mapping
structure requires OðrÞ space.

In particular, the representation uvj for both uj and vj con-
sists of an interleaved representation for each integer i, with
1 � i � r of the value vj (or uj, respectively), up to the start
of run i, if the ith run consists of zeros (or ones, respectively).
For example, given colðPBWTÞj ¼ 00101111000000000000
(with r ¼ 5), we store: (i) pj ¼ ½1;3;4; 5; 9�, (ii)
uvj ¼ ½0;2;1;3; 5�, (iii) c½j� ¼ 15, and (iv) bj ¼ >.

3.2.2 PA samples and thresholds
Given the RLPBWT, we store the positions of the first mini-
mum divergence array (DA) value for each run in each column
of the RLPBWT. We refer to these as thresholds. More for-
mally, let colðPBWTÞk½i::j� be a maximal run in the kth col-
umn of the PBWT, we store the PA sampled at run
boundaries, i.e. the values of PAk½i�, PAk½j�. We used bit-
compressed integer vectors to store both PA samples and
thresholds in OðrÞ space.

3.2.3 Computing the matching statistics
Given our data structure, we show how to compute the
matching statistics using an algorithm similar to the one used

by Rossi et al. (2022), which computes the matching statistics
in the BWT. In particular, we compute the matching statistics
in a two-pass algorithm over the input pattern P. During the
first scan, we process the pattern P from left to right, storing
for each position the row component of the matching statis-
tics. In the second scan, we process the pattern P from right to
left, and, with the use of a random access data structure on
the binary array M, we compute the len component of the
matching statistics. We assume that we computed the match-
ing statistics component up to position k� 1 and are process-
ing the kth column. We let i be the row of the PBWT that
matches the longest suffix of P½1::k� 1� that is the suffix of
S1½1::k� 1�; . . . ; Sh½1::k� 1�, and let p be the corresponding
row in M, i.e. for all j 2 ½1::h�, lcsðP½1::k� 1�; SPAk½i�½1::k�
1�Þ � lcsðP½1::k� 1�; SPAk½j�½1::k� 1�Þ with p ¼ PAk½i� where
lcsðS;TÞ denotes the longest common suffix between two
sequences S and T. Then, we distinguish two cases: match in
kth column, i.e. when colðPBWTÞk½i� ¼ P½k� and mismatch in
kth column, i.e. when colðPBWTÞk½i� 6¼ P½k�. If we have a
match, then row i can be used to extend the suffix of P½1::k�
1� to P[1.k]; hence, we can assign A½k�:row ¼ p,
A½k�:len ¼ A½k� 1�:lenþ 1, i ¼ FL½i�½k�, and p does not
change. Otherwise, if we have a mismatch, it means that for
extending the suffix of P½1::k� 1� to P[1.k], we need to move
to a run before or after the one containing row i in
colðPBWTÞk, as the value P½k� 6¼ colðPBWTÞk½i�. Thus, let
colðPBWTÞk½s::e� be a maximal run containing position i,
then the longest suffix of P[1.k] that is a suffix of
S1½1::k�; . . . ; Sh½1::k� is either the one corresponding to the pre-
ceding end or following start of a run of value P[k] in
colðPBWTÞk with respect to position i, i.e. either
SPAk½s�1�½1::k� if s > 1 or SPAk½eþ1�½1::k� if e < n. Since for each
run we have stored the samples of PA at the beginning and at
the end of each run, and we have the value of p, we can
use the thresholds to decide which candidate to choose. Let t
be the position of the threshold in the current run. Indeed the
thresholds by definition report the positions of the first mini-
mum divergence array (DA) value in each run. More precisely,
if the position t is such that i < t it means that
lcsðP½1::k�; SPAk½s�1�½1::k�Þ � lcsðP½1::k�; SPAk½eþ1�½1::k�Þ and we
can assign A½k�:row ¼ p ¼ PAk½s� 1� and i ¼ FL½s� 1�½k�.
Otherwise, lcsðP½1::k�; SPAk½s�1�½1::k�Þ � lcsðP½1::k�; SPAk½eþ1�
½1::k�Þ hence we can assign A½k�:row ¼ p ¼ PAk½eþ 1� and
i ¼ FL½eþ 1�½k�.

Once we have collected all the occurrences of maximal
matches between the pattern and the matrix, we can compute
the lengths of those matches by scanning (using the reverse of
the FL mapping) the pattern P from right to left and by com-
paring the characters in the pattern P and in the matrix in cor-
respondence of row A½i�:row.

Having that mapping structure, thresholds, and PA samples
require OðrÞ-space, and matching statistics computation
requires OðrÞ-space. An illustration of the computation of the
matching statistics is shown in Supplementary Fig. S1a.

3.3 Locating SMEM in l� PBWT

We note that although it is reasonably straightforward to re-
port the number of occurrences of a given SMEM in S, it is
more challenging to find the location of all the occurrences in
S. To accomplish this, we store a small data structure that
answers queries of the form: given a column index k and a
prefix array value j, return the previous and the next prefix

4 Cozzi et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad552#supplementary-data


array value in that column, that is the row preceding and
following j in co-lexicographic ordering up to column k� 1.
We observe that these two values correspond to rows that we
need to consider for finding common suffixes with row j—
and thus, the occurrence(s) of a SMEM in S. We refer to these
as U-queries in the PBWT and the inverse of U, respectively,
that will be denoted as U�1. More formally, given a value of
PAk in position i, the U function returns the preceding value
of PAk in position i� 1, and the U�1

k function returns the
value of PAk in position iþ 1. Our contribution is the imple-
mentation in PBWT of the U function (Kärkkäinen et al.
2009) and its inverse by storing the smallest information to
compute them. As an example of U, assuming PA6 ¼
½15;16; 18;1;5; 6;7;8; 10; 11;17;9; 12;13;14;19; 20;2;3; 4�
and the PA value 19, we have that U6ð19Þ ¼ 14 and
U�1

6 ð19Þ ¼ 20.
Since our goal is the computation of the U function by

keeping only PA samples, we show how performing the FL

mapping allows to compute the values of the U that are of
interest. We observe that if we perform the FL mapping in a
column of the PBWT of two consecutive equal symbols (0 or
1), the resulting positions of the haplotypes in the PBWT are
consecutive in the next column after the mapping and their
relative order is preserved.

Formally, for all 1 � j < w and for all 1 � i < h, if
colðPBWTÞj½i� ¼ colðPBWTÞj½i� 1� then FL½i�½j� ¼ FL½i� 1�
½j� þ 1 ¼ l, for some row l, and therefore, PAj½i� ¼ PAjþ1½l�
and PAj½i� 1� ¼ PAjþ1½l � 1�. This implies we can compute
the value of UðPAj½i�Þ—i.e. compute the value of PAj½i� 1�—
by performing an FL mapping as long as the corresponding
PBWT values are the same. By the above observation, we
only need to store the PA sample at the beginning and at the
end of each PBWT run since this position will correspond to
the first mismatch in the PBWT occurring by performing a FL

mapping. More precisely, assuming that k is the column to
the right of j and i0 is the row corresponding to the PBWT val-
ues mismatch reached by FL mapping, i.e. colðPBWTÞk
½i0� 6¼ colðPBWTÞk½i0 � 1�, then, we have that PAk½i0� ¼ PAj½i�
and PAk½i0 � 1� is sampled since it is at the end of a run.
Therefore, by the above observation, we can retrieve the value
of PAj½i� 1� ¼ PAk½i0 � 1�.

An example of iterative FL mapping to perform U queries is
depicted in Supplementary Fig. S1b, with brown rounded boxes.
Suppose that in column 6 we have the prefix array value 19 (at
i ¼ 16) and we want to compute U6ð19Þ ¼ 14. As in
Supplementary Fig. S1a, we have that colðPBWTÞ6½16� ¼
colðPBWTÞ6½15� but we do not have PA6½15� in memory.
Performing FL mapping starting from row 15th and from row
16th in Column 6, we reach Row 10 and Row 11, respectively,
in Column 7, having that colðPBWTÞ7½10� ¼ colðPBWTÞ7½11�.
The same happens when moving from Column 7 to Column 8
(colðPBWTÞ8½10� ¼ colðPBWTÞ8½11�). At this point, we do not
yet know PA7½10� and PA8½10�. Instead, reaching Column 9,
we have colðPBWTÞ9½10� 6¼ colðPBWTÞ9½11�. In detail, in Row
10, we have the tail of a run of bits r ¼ 1 and in Row 11 the
head of a run of bits r ¼ 0 and, as explained above, we store
PA values at round boundaries, so we can get the value 14 from
PA samples, being the prefix array value that preceded the value
19 also in Column 6 (as well as in Columns 7 and 8).

We observe that we can use at this point the DA samples to-
gether with the information of the current row of an SMEM
and the next/previous row retrieved by U function, to directly
check if also the latter shares the same SMEM. If we have an

SMEM in column k, we can follow the A[k].pos to column
kþ 1 and we can analyze the rows adjacent to it in the co-
lexicographic order, which is up to column kth, to compute
which other rows share the same SMEM, having that all the
rows that share the same SMEM in k will be consecutive in
PAkþ1. Therefore, if we store the DA sample at the beginning
of each PBWT run, while computing the U function for
PAj½i�, we can recover the value of DAj½i� as DAk½i0� � ðk� jÞ,
that is removing from the sampled value DAk½i0� the distance
traveled by the repeated application of the FL mapping.

For example, consider the SMEM in Fig. 1b identified by
A½6�:pos ¼ 14 and A½6�:len ¼ 6. Assume PA7 ¼ ½15;16;
1;10;11;17;9;12;13;14;19; 20; 2; 3;4;18;5; 6;7;8� and DA7

¼ ½0;6;2; 4;6;6; 1;6;6; 6;3;6;2; 6;6;0; 2;6;6; 6� (full prefix
array set available in Supplementary Fig. S1). Since U7ð14Þ ¼
13 and DA7½10� ¼ 6 (having PA7½10� ¼ 14) then it follows that
we know 13th row shares the same SMEM, similar to Row 12
and Row 9. Then, we iterate until U7ð9Þ ¼ 17, having that
DA7½7� ¼ 1. Using U�1

7 , we reach 19th row (U�1
7 ð14Þ ¼ 19) but

DA7½11� ¼ 3, which is less than A½6�:len ¼ 6—so we do not
have any other row that shares this SMEM.

More details on the computation of the U function are
given in the Supplementary Material.

We observe that the space-bound OðrÞ follows from the
fact that the information needed to compute U function is
given by a sparse bitvector representation of the PA and DA

samples.

4 Results

We demonstrate the performance of l� PBWT by comparing
l� PBWT with: Durbin’s Algorithm 5 (implemented as
matchIndexed in the official source code) and Syllable-
PBWT (Wang et al. 2023). More precisely, for Durbin’s
Algorithm 5, we will evaluate (i) the memory usage peak and
(ii) the time required for SMEM finding. For Syllable-PBWT,
we will evaluate (i) the memory usage peak for index con-
struction and (ii) the size of the index. We could not compare
l� PBWT performance in SMEMs-finding with Syllable-
PBWT since Syllable-PBWT implementation allows to com-
pute only L-long matches that are matches length at least L
sites. Therefore, L-long matches are a superset of SMEMs.
Finally, we report some statistical results on l� PBWT. We
note that a compact file format for storing haplotype sequen-
ces based on the PBWT was proposed in Li (2016); however,
the proposed format does not support SMEM queries for ex-
ternal haplotypes.

4.1 Implementation details

l� PBWT is implemented in Cþþ17 using standard library
data structures and relying on the Succinct Data Structure
Library (sdsl) (Gog et al. 2014) for succinct data structures
implementations such as int_vectors and sd_vectors
with rank and select support. VCF and BCF files input
files are supported using the htslib library (Bonfield et al.
2021).

4.2 Experimental setup

We demonstrate the performance of l� PBWT on real-world
datasets. We report the time and memory used for construc-
tion and SMEM-locate queries.

We ran experiments on a machine with an Intel Xeon CPU
E5-2640 v4 (2.40 GHz), 756 GB RAM, and 768 GB of swap,

l� PBWT 5

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad552#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad552#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad552#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad552#supplementary-data


running Ubuntu 20.04.4 LTS (64 bit, kernel 5.4.0). The com-
piler was gþþ version 9.4.0 with -O3 option. The running
time and the maximum resident set size were computed by /
usr/bin/time.

4.3 Datasets

We first tested l� PBWT on all chromosome panels from the
1000 Genome Project. The VCF files were downloaded (pub-
licly available at https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/re
lease/20130502/) and converted to contain only bi-allelic sites
via bcftools view -m2 -M2 -v snps (Danecek et al.
2021). The resulting chromosome panels have 5008 haplo-
types and a number of bi-allelic sites ranging from �1 million
to �6 million. Statistics of the 1000 Genome project panels
are in Supplementary Table S3. Experimentally, we observed
these panels are sparse, having indeed fewer ’1s compared to
’0s. The sparsity of data is confirmed by the average number
11 of runs per column in the run-length encoded PBWT.

We used UK Biobank high-coverage WGS data on chromo-
some 20 (Bycroft et al. 2018). More precisely, we consider
data available on the UK Biobank research analysis platform
(Halldorsson et al. 2022) recently processed and phased by
the SHAPEIT5 authors (Hofmeister et al. 2023), for a total of
300 238 haplotypes and 13 780 193 bi-allelic SNPs and indels
on chromosome 20. For the UK Biobank WGS dataset, we
applied our method independently to 13 regions of at least 4
megabases and 4 centimorgans on chromosome 20.
Additional results on simulated data are reported in the
Supplementary Material.

4.4 Results on 1000 genomes project data

In Fig. 2a, we report the memory peak during construction of
l� PBWT and Syllable-PBWT while in Fig. 2b the time.
Comparison with the construction of the PBWT has been ex-
cluded as most indices are calculated at query time. We note
that Syllable-PBWT performs slightly better than l� PBWT,

taking about half of the memory and computation time. We
note that our indices, as in Supplementary Table S3, require
only twice the memory compared to the input and they re-
quire 25% less memory than the indices of Syllable-PBWT.

To test the performance of computing SMEMs, 100, 500,
and 1000 haplotypes, respectively, were extracted from the
input panels (reduced to 4908, 4508, and 4008 haplotypes),
to use them as queries. In Fig. 3a, we report the memory peak
during SMEMs finding of l� PBWT and PBWT while in
Fig. 3b, the time. Comparison with the construction of
Syllable-PBWT has been excluded as it computes L-long
matches instead of SMEMs. Regarding l� PBWT, memory
usage increases as the number of queries increases, since the
entire set of queries is kept in memory. Our SMEMs-finding
algorithm is up to six times slower than the one proposed by
Durbin although as the number of queries decreases, it turns
out to require twice the time. Observe that for a fair compari-
son with Durbin, since Durbin’s PBWT builds most of the in-
dices at query time, we had to measure the time of l� PBWT

for building and querying the index. Increased time of l�
PBWT however comes with a significantly lower memory us-
age, as Durbin’s PBWT memory peak is up to 80 times the
one of l� PBWT.

Then we analyzed the stratification of the memory usage of
l� PBWT for the mapping structure, PA/DA samples, thresh-
olds, and U data structure. Note that the U data structure is
the component that requires slightly more amount of mem-
ory, about 40% of the total since it stores two sparse bitvec-
tors panels and three bit-compressed int-vectors that scale
with the total number of runs of the PBWT. Then we have
PA=DA samples requiring about 30% of memory, mapping
structure requiring about 20%, and finally thresholds requir-
ing about 10% of memory, as expected, being for each col-
umn a single bit-compressed intvector of length equal to the
number of runs.

(a) (b)

Figure 2. Comparison of the construction of the indexes on 1000 genome Project data with 4908, 4508, and 4008 haplotypes. In (a), we have maximum

memory usage and, in (b), we have time results. PBWT is excluded as most indices are calculated at query time

6 Cozzi et al.

https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad552#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad552#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad552#supplementary-data


Additional results on 1000 Genome Project data, including
BGT (Li 2016) comparison and multithreads l� PBWT, are
reported in the Supplementary Material.

4.5 Results on UK Biobank data

We also applied our method to the UK Biobank high-
coverage WGS data on chromosome 20. In this setting, our
method is able to build an index for the full chromosome 20
in 11.06 GB of space that represents an almost three times de-
crease compared to the original gzipped BCF files (stored in a
29.6 GB file), highlighting the potential of our method for
compressed genomics on next-generation datasets. Full results
are available in Supplementary Table S2. Syllable-PBWT
takes as input only raw (not gzipped) VCF files, preventing a
comparison with UK Biobank data due to BCF decompres-
sion time and the disk space required for storing the VCF file
required for using Syllable-PBWT (even if the panel was di-
vided into multiple regions).

All the indices generated by l� PBWT are loaded <30 s on
a commodity laptop (AMD Ryzen7 3700U and 16 GB
RAM), drastically reducing the hardware requirements for
data sharing and analysis of WGS data.

5 Conclusions

In this article, we present l� PBWT, introducing a light-
weight index for the PBWT data structure. It leverages the
run-length encoding paradigm to significantly reduce
the space requirements for solving two major problems: the
SMEMs finding (i.e. computing maximal matches) and
SMEMs location (i.e. finding occurrences). The main idea be-
hind our method is that l� PBWT stores only the informa-
tion needed to navigate the PBWT by leveraging the runs of
haplotypes. Compared to the investigation of the use of the
BWT for large genomics data, the PBWT has been

comparatively overlooked by the data structures community,
even though the increased demand of tools for managing large
phased datasets, such as the UK Biobank WGS data, for
which the PBWT has been originally proposed, making the
urgent need of space efficient solutions to store and use these
data. Results on UK Biobank WGS data suggest that l�
PBWT can scale on whole genome genotype data and it can
be used for applications on very large and repetitive datasets
that require SMEMs finding such as in phasing and imputa-
tion (Rubinacci et al. 2020).

Supplementary data

Supplementary data are available at Bioinformatics online.

Funding

The UK Biobank was accessed under UK Biobank project
66995. This work is supported in part by funds from the
National Science Foundation (NSF: # 1636933 and #
1920920). P.B. and D.C. are supported by funds from the
European Union’s Horizon 2020 Research and Innovation
Staff Exchange programme under the Marie Skłodowska-
Curie grant agreement No. 872539. P.B. is also supported by
funds from European Union’s Horizon 2020 ITN programme
under the Marie Skłodowska-Curie grant agreement No.
956229. D.K. is supported by JSPS KAKENHI Grant
Numbers JP21K17701, JP21H05847, and JP22H03551.
T.G. is supported by NSERC grant RGPIN-07185-2020 and
NIH/NHGRI grant R01HG011392 to Ben Langmead.

Conflict of interest

None declared.

(a) (b)

Figure 3. Comparison on the 1000 genome Project data for finding SMEMs for 100, 500, and 1000 queries. In (a), we have maximum memory usage and,

in (b), we have time results. Syllable-PBWT is excluded as it does not compute SMEMs

l� PBWT 7

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad552#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad552#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad552#supplementary-data


References

Alanko J, Bannai H, Cazaux B et al. Finding all maximal perfect haplo-
type blocks in linear time. Algorithms Mol Biol 2020;15:2–7.

Baaijens JA, Bonizzoni P, Boucher C et al. Computational graph pange-
nomics: a tutorial on data structures and their applications. Nat
Comput 2022;21:81–108.

Bannai H, Gagie T, I T. Refining the r-index. Theor Comput Sci 2020;
812:96–108.

Bonfield JK, Marshall J, Danecek P et al. HTSlib: C library for reading/
writing high-throughput sequencing data. Gigascience 022021;10:
2047–17X.

Bonizzoni P, Boucher C, Cozzi D et al. Compressed data structures for
population-scale Positional Burrows–Wheeler Transforms. bioRxiv, 2022.
https://doi.org/10.1101/2022.09.16.508250.

Bycroft C, Freeman C, Petkova D et al. The UK Biobank resource with
deep phenotyping and genomic data. Nature 2018;562:203–9.

Danecek P, Bonfield JK, Liddle J et al. Twelve years of SAMtools and
BCFtools. Gigascience 02 2021;10:giab008. ISSN 2047-217Xdoi:
10.1093/gigascience/giab008. URL https://doi.org/10.1093/giga
science/giab008.

Durbin R. Efficient haplotype matching and storage using the Positional
Burrows–Wheeler Transform (PBWT). Bioinformatics 2014;30:1266–72.

Gagie T, Navarro G, Prezza N. Fully functional suffix trees and optimal
text searching in BWT-runs bounded space. J ACM 2020;67:1–54.

Gog S, Beller T, Moffat A et al. From theory to practice: Plug and play
with succinct data structures. In: 13th International Symposium on
Experimental Algorithms, (SEA), 2014, 326–337.

Halldorsson BV, Eggertsson HP, Moore KH et al.; DBDS Genetic
Consortium. The sequences of 150,119 genomes in the UK Biobank.
Nature 2022;607:732–40.

Hofmeister RJ, Ribeiro DM, Rubinacci S et al. Accurate rare variant
phasing of whole-genome and whole-exome sequencing data in the
UK biobank. Nat Genet 2023;55:1243–9.

Kärkkäinen J, Manzini G, Puglisi SJ. Permuted longest-common-prefix
array. In: Combinatorial Pattern Matching. Berlin/Heidelberg:
Springer, 2009, 181–192.

Li H. BGT: efficient and flexible genotype query across many samples.
Bioinformatics 2016;32:590–2.

Mäkinen V, Navarro G. Run-length fm-index. In: Proc. DIMACS
Workshop: “The Burrows-Wheeler Transform: Ten Years Later”,
Aug. 2004, 2004, 17–19.

Mäkinen V, Norri T. Applying the Positional Burrows-Wheeler
Transform to all-pairs Hamming distance. Inf Process Lett 2019;
146:17–9.

Novak AM, Garrison E, Paten B. A graph extension of the Positional
Burrows–Wheeler Transform and its applications. Algorithms Mol
Biol 2017;12:1–12.

Pinto N, Magalh~aes M, Conde-Sousa E et al. Assessing paternities with
inconclusive str results: the suitability of bi-allelic markers. Forensic
Sci Int Genet 2013;7:16–21.

Rossi M, Oliva M, Langmead B et al. Moni: a pangenomic index for
finding maximal exact matches. J Comput Biol 2022;29:169–87.

Rubinacci S, Delaneau O, Marchini J. Genotype imputation using the
Positional Burrows Wheeler Transform. PLoS Genet 2020;16:
e1009049.

Sanaullah A, Zhi D, Zhang S. d-PBWT: dynamic Positional Burrows–
Wheeler Transform. Bioinformatics 2021;37:2390–7.

Shimizu K, Nuida K, Rätsch G. Efficient privacy-preserving string search
and an application in genomics. Bioinformatics 2016;32:1652–61.

Sirén J, Garrison E, Novak AM et al. Haplotype-aware graph indexes.
Bioinformatics 2020;36:400–7.

Taliun D, Harris DN, Kessler MD et al.; NHLBI Trans-Omics for
Precision Medicine (TOPMed) Consortium. Sequencing of 53,831
diverse genomes from the NHLBI TOPMed Program. Nature 2021;
590:290–9.

The 1000 Genomes Project Consortium. A global reference for human
genetic variation. Nature 2015;526:68–74.

Wang V, Naseri A, Zhang S et al. Syllable-PBWT for space-efficient hap-
lotype long-match query. Bioinformatics 2023;39:btac734.

Zhu J, Wen D, Yu Y et al. Bayesian inference of phylogenetic networks
from bi-allelic genetic markers. PLoS Comput Biol 2018;14:
e1005932.

8 Cozzi et al.

https://doi.org/10.1101/2022.09.16.508250
https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.1093/gigascience/giab008

	Active Content List
	1 Introduction
	2 Preliminaries
	3 Materials and methods
	4 Results
	Conflict of interest
	References


