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Although flood forecasting and warning system is a very important non-structural measure in flood-
prone river basins, poor raingauge network as well as unavailability of rainfall data in real-time could
hinder its accuracy at different lead times. Conversely, since the real-time satellite-based rainfall prod-
ucts are now becoming available for the data-scarce regions, their integration with the data-driven mod-
els could be effectively used for real-time flood forecasting. To address these issues in operational
streamflow forecasting, a new data-driven model, namely, the wavelet-based non-linear autoregressive
with exogenous inputs (WNARX) is proposed and evaluated in comparison with four other data-driven
models, viz., the linear autoregressive moving average with exogenous inputs (ARMAX), static artificial
neural network (ANN), wavelet-based ANN (WANN), and dynamic nonlinear autoregressive with exoge-
nous inputs (NARX) models. First, the quality of input rainfall products of Tropical Rainfall Measuring
Mission Multi-satellite Precipitation Analysis (TMPA), viz., TRMM and TRMM-real-time (RT) rainfall prod-
ucts is assessed through statistical evaluation. The results reveal that the satellite rainfall products mod-
erately correlate with the observed rainfall, with the gauge-adjusted TRMM product outperforming the
real-time TRMM-RT product. The TRMM rainfall product better captures the ground observations up to
95 percentile range (30.11 mm/day), although the hit rate decreases for high rainfall intensity. The effect
of antecedent rainfall (AR) and climate forecast system reanalysis (CFSR) temperature product on the
catchment response is tested in all the developed models. The results reveal that, during real-time flow
simulation, the satellite-based rainfall products generally perform worse than the gauge-based rainfall.
Moreover, as compared to the existing models, the flow forecasting by the WNARX model is way better
than the other four models studied herein with the TRMM and TRMM-RT rainfalls at 1–3 days lead times.
The results confirm the robustness of theWNARX model with only the satellite-based (TRMM-RT) rainfall
(without use of gauge data) to provide reasonably good real-time flood forecasts. The utility of the
TRMM-RT solves the real-time flood forecasting issues, since this is the only rainfall product dissemi-
nated in real-time. Hence, the WNARX model with the TMPA rainfall products can offer an exciting
new horizon to provide flood forecasting and early warning in the flood prone catchments.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

In a changing global climate, there is an increase in frequency of
flood extremes worldwide (Trenberth, 1999; Petra and Naef, 2010;
Jena et al., 2014; Ezer and Atkinson, 2014) in both urban and rural
watersheds, increasing the severity of flood hazards manifolds.
Hence, streamflow forecasting in real-time always becomes impor-
tant for water resources management and flood risk analysis
(Perumal and Sahoo, 2007; Perumal et al., 2011). Real-time flood
monitoring requires dense gauge-based observed precipitation
data, the dominant forcing component, which may not be available
in real-time at the desired spatial and temporal resolutions. Partic-
ularly, in India and other developing countries, the sparse rain-
gauge networks and data unavailability in remote areas are the
prime obstacles.
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In the recent past, many devastating floods occurred in India,
such as, the 2005Mumbai flood in the Mithi River, 2008 Bihar flood
in the Kosi River, the 2013 cloudburst in Uttarakhand, the 2014
flood havocs in Jammu and Kashmir and the 2015 Chennai flood.
Hence, a reliable real-time flood forecasting method to transform
rainfalls into runoff is needed; for which the satellite-based real-
time availability of rainfalls could be more useful. The high resolu-
tion Tropical Rainfall Measuring Mission (TRMM) – Multisatellite
Precipitation Analysis (TMPA) gridded rainfall products (Huffman
et al., 2007) offer a promising aid for real-time flood forecasting
and warning system in data-scarce regions worldwide with varied
accuracy levels, when compared with observed rainfalls. However,
since the uncertainties involved with the discharge data are much
smaller than those with the precipitation data, the precipitation
products need to be evaluated through their utility in hydrological
streamflow modeling (Lammers et al., 2001). In hydrological mod-
eling, the potential of satellite rainfall data in comparison with the
observed rainfalls has been evaluated by many researchers (Artan
et al., 2007; Asante et al., 2007; Hopson and Webster, 2010; Yong
et al., 2010, 2012; Kneis et al., 2014; Tong et al., 2014). Kneis et al.
(2014) found that the real-time rainfall product from the TMPA
project is less preferable for hydrological analysis as compared to
its gauge-adjusted estimate. Hence, to reduce the rainfall bias
while making it reliable for operational flood forecasting in real-
time, there is a scope to further evaluate the real-time satellite-
based rainfall product with different data-driven techniques (e.g.,
ASCE, 2000a,b; Coulibaly et al., 2000; Khu et al., 2001; Kisi, 2009;
Napolitano et al., 2010; Tiwari and Chatterjee, 2010a,b, 2011).
Moreover, during flood period, one of the difficult tasks is inflow
forecasting for real-time reservoir operation to protect the dam
from failure and to reduce the magnitude of the downstream flood
and to increase the time of translation (Coulibaly et al., 2000;
Mohammadi et al., 2005; Valipour et al., 2013). Hence, in the situ-
ation where the real-time high resolution satellite precipitation
products are available, the neural network (NN)-based flood fore-
casting at higher lead times can become more reliable (Akhtar
et al., 2009). However, the NN-based models may not be able to
cope up with the non-stationarity in input data, if pre-processing
of input and/or output data is not performed (Cannas et al.,
2006). In order to address this issue of non-stationarity, integration
of discrete wavelet transform (DWT) techniques with the data-
driven models have been advocated for rainfall–runoff modeling
(Nourani et al., 2009, 2013; Tiwari and Chatterjee, 2011; Sehgal
et al., 2014a,b; Seo et al., 2015). Furthermore, for larger basins,
the past information on rainfall and discharge together contains
more information on memory of the catchment response than
rainfall only. Hence, the performance in discharge forecasting
could be improved by either considering previous discharge as an
input also or using the first level model output as the feedback
input into the network for forecasting at the second level. For flow
forecasting, the regression-based linear models, viz., the autore-
gressive moving average (ARMA), autoregressive integrated mov-
ing average (ARIMA), autoregressive moving average with
exogenous inputs (ARMAX), and autoregressive integrated moving
average with exogenous inputs (ARIMAX) models are found to be
useful (Chang and Chen, 2001; Nourani et al., 2013; Valipour
et al., 2013). Similarly, the nonlinear autoregressive with exoge-
nous inputs (NARX) based recurrent NNs (Lin et al., 1996) are also
used for flood forecasting (Kumar et al., 2004; Kisi, 2009; Besaw
et al., 2010; Chang et al., 2014a,b).

Although most of the validation projects reveal that the precip-
itation radar of TMPA produce errors within the acceptable range
after the gauge-adjustment, however, the real-time satellite rain-
fall product is not acceptable for flood forecasting due to the high
bias involvement (Kneis et al., 2014; Tong et al., 2014). Although
the TRMM-RT estimates proved to give promising flow forecasts
by incorporating time-lagged observed streamflow in the input
(Akhtar et al., 2009; Nourani et al., 2013), however, streamflow is
seldom available on a real-time basis in many catchments world-
wide. Hence, to address this shortfall in flow forecasting, there is
a scope to use the time-lagged streamflows into the dynamic NARX
model, where the forecast flow can also be used as a feedback input
to the NN with the real-time satellite-based rainfall data. More-
over, the past studies have never verified the short- and
medium-range flood forecasting accuracy with reanalysis temper-
ature products available from the Climate Forecast System Reanal-
ysis (CFSR). As far as the authors are aware, limited studies have
been conducted to evaluate the utility of the satellite-based precip-
itation products in streamflow forecasting using NNs. Furthermore,
the non-stationarity in the meteorological timeseries could also be
reduced with multi-resolution analysis using wavelets that decom-
poses the input data into approximate and detail (noise) compo-
nents, and finally the noise is eliminated through correlation
analysis with the observed output data. However, the wavelet-
based ANN (WANN) does not use the past streamflow information
depicting the catchment and meteorological characteristics; due to
which this model may not be always useful with the meteorolog-
ical input data with high biases. Although, the NARX model has
the advantage of using the past streamflow information by
dynamic feedback inputs; however, non-stationarity in the rainfall
timeseries could limit its performance.

In light of the above discussion, in this study, a novel hybrid NN
model, namely, the wavelet-based non-linear auto regressive
modelwith exogenous inputs (henceforth, called asWNARX)model
is proposed, that utilizes the advantage of NN, wavelet-based error
decomposition and memory of the catchment in terms of the
dynamic feedback inputs. The multi-step ahead river flow forecast
accuracy by the proposed WNARX model is compared with the
ARMAX, static ANN,WANN and NARXmodels. The developed mod-
els are tested herein for real-time flood forecasting in the upper
Mahanadi River basin, upstream to the Hirakud reservoir, in eastern
India. According to the flood scenario of the Mahanadi River basin,
very frequent floods occur at the downstream end of the river
(Tiwari and Chatterjee, 2010a,b, 2011; Jena et al., 2014). Hence,
prior forecast of high river discharges at the upper catchment out-
lets would contribute to the operation of the Hirakud reservoir,
which eventually controls the downstream flood discharge.

This paper is organized as follows: succeeding to the Introduc-
tion section, Section 2 describes the details of the study site and
data used; the methodology used is described in Section 3; the out-
comes of the inter-comparison of the ARMAX, ANN, WANN, NARX
and WNARX models with input of different rainfall products and
assessment of their feasibility in flood forecasting at 1–3 days lead
times are presented in Section 4; and Section 5 concludes the study
with future scope of research.
2. Study area and data used

The models developed in this study are applied for streamflow
forecasting at the Basantpur gauging station on the Mahanadi River
in eastern India. This river basin is one of the largest river basins of
India covering an area of 141,000 km2 in the states of Chhattisgarh
and Odisha. In the upstream of this flood prone river basin, the
multi-purpose Hirakud dam provides some amount of flood relief
by storing part of flood water. Of the tributaries in upstream to
the Hirakud dam, the catchment of Basantpur gauging site con-
tributes the maximum inflow into the dam. It encompasses a
catchment area of 59200.10 km2 which spans from 19.50� to
23.80�N latitudes and 80.00� to 83.00�E longitudes (Fig. 1). The
study area is characterized by tropical monsoon receiving the
maximum precipitation in the months of July–September.



Fig. 1. Index map of the Mahanadi River basin at Basantpur showing location of raingauges and streamflow gauge.
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Daily rainfall data of 75 raingauge stations in the Basantpur
catchment for the period 2000–2010 are collected from the India
Meteorological Department (IMD). Moreover, with the initiative
of different satellite-based rainfall information, especially, the
TMPA, real-time flood prediction could become possible in this
flood prone area. The TMPA rainfall products are obtained at
0.25� � 0.25� (latitude � longitude) spatial and 3-h temporal reso-
lutions. The TMPA products are available in two versions: post
real-time research product, 3B42 from <ftp://dis-
c2.nascom.nasa.gov/data/s4pa/TRMM_L3/TRMM_3B42> (hence-
forth, called as TRMM) and near real-time, 3B42RT from <ftp://
trmmopen.gsfc.nasa.gov/pub/merged/3B42RT> (henceforth, called
as TRMM-RT). In this study, the TMPA V7 of both 3B42 and
3B42RT rainfall products (Huffman and Bolvin, 2013) are used.
The 6-h maximum (Tmax) and minimum (Tmin) temperature data
are obtained from the coupled National Centers for Environmental
Prediction (NCEP) and CFSR products from <http://rda.ucar.edu/
datasets/ds093.1/> in grid format with resolution of
0.3125� � 0.3125�. Thereafter, the rainfall and temperature data
are aggregated temporally to obtain these products at 1-day tem-
poral resolution for their use in the developed models. Since all
the data-driven models developed herein use the mean areal rain-
fall as one of the inputs, the mean catchment rainfall at daily-scale
is computed by using the dynamic Thiessen polygon method. By
this method, depending on the available station-specific rainfall
data on a particular day, the Thiessen weights are reconstructed
on a daily-scale to account for the missing rainfalls at a specific sta-
tion. As the available IMD gauge-based rainfall data are having a
temporal resolution of 1-day, the 3-h satellite rainfalls are aggre-
gated to daily-scales. Daily discharges at the Basantpur gauging
site in the Mahanadi River observed by the Central Water Commis-
sion (CWC), New Delhi is collected from <www.indiawris.com>.
Although daily discharge and IMD rainfall data are available for
longer durations, these data for the period from 2000 to 2010 are
chosen since the TMPA products are only available after the year
2000. Table 1 shows the statistical characteristics of ranges, means
and standard deviations of the data records used for training
(2000–2007) and testing (2008–2010) the models. Only the mon-
soon climate–streamflow data (from 15 June to 15 October) are
used, as the study aims to develop an efficient flood forecasting
model which is operated during the high flow periods. Moreover,
as compared to high flows, the low flows are mostly contributed

http://rda.ucar.edu/datasets/ds093.1/
http://rda.ucar.edu/datasets/ds093.1/
http://www.indiawris.com


Table 1
Statistical parameters of data sets used for training and testing of models.

Dataset Range Mean Stdev

Rainfall (mm/day) Training

IMD 0–96.65 8.14 10.99
TRMM 0–104.00 8.86 12.25

TRMM-RT 0–100.29 7.76 10.57
Testing

IMD 0–69.12 7.49 10.05
TRMM 0–92.09 9.12 12.68

TRMM-RT 0–67.16 8.58 11.33

Discharge (m3/s) Training 9–33087.95 1736.46 2394.97
Testing 3.61–16826.73 1362.83 2022.38
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by base flow, rather by the rainfall occurring on previous days or in
real-time. At the same time, it is common to develop separate NNs
over distinct hydrological seasons to improve the forecasts (Singh
and Deo, 2007); and thus, to show the proof-of-concept, the mon-
soonal streamflow events are modeled to reduce the influence of
low flow events.
3. Methodology

3.1. Input selection

The data-driven models studied herein are trained and verified
for daily discharge (Q) prediction using the areal estimate of daily
rainfall (R) and daily average temperature (T), calculated as the
average of daily Tmax and Tmin. The performance of these rainfall–
runoff models is dependent on the selection of appropriate input
vector a priori. The time-lag for the independent inputs of R and
T is decided based on the maximum cross-correlation function
(CCF) between the inputs and the observed discharge (Q); and for
the dependent variable (Q), it is decided based on the auto-
correlation function (ACF) and partial auto-correlation function
(PACF) of the Q timeseries (Tiwari and Chatterjee, 2011; Sehgal
et al., 2014a). Fig. 2a–d shows the CCFs between the input variables
(IMD, TRMM and TRMM-RT rainfalls, and temperature) and dis-
charge; and Fig. 2e and f shows the ACF and PACF for the discharge
variable, respectively, indicating the 95% confidence limits with
‘bound 1’ and ‘bound 2’. The cross correlation analysis illustrated
in Fig. 2a–d reveals the temporal climate (rainfall, temperature)-
flow dependency of R and T up to a delay time of 4-days and 3-
days, respectively. Similarly, it is observed from Fig. 2e–f that the
magnitudes of ACF and PACF at lag times of 1- to 4-days are high;
hence, discharge variables up to 4-days lag is considered to be sig-
nificant. Therefore, to simulate daily discharge, the developed NN-
based models are provided with these significant time-lagged
inputs of R and T and significant time-lagged discharge feedback
to the network.

However, it is challenging to identify the pre-event precipita-
tion that triggers flood peaks. It is also difficult to determine the
average time-lag between the most intense rainfall rate and the
discharge peak for a particular catchment for all the flood events.
Therefore, cumulative rainfall over a particular period before the
flood day could be used as the antecedent rainfall (AR). As
Figs. 2a–c indicate that rainfall in the catchment still correlates dis-
charge well up to about 8-days lag, the sum of rainfalls before
4–8 days of the flood event is considered as AR in the input
scenario. The efficacy of the models is tested for four different sets
of input options given by: Option [1] with only time-lagged rainfall
variables (only R), Option [2] with time-lagged rainfall variables
and antecedent rainfall (R and AR), Option [3] with time-lagged
rainfall and temperature variables (R and T), and Option [4] with
time-lagged rainfall and temperature variables, and antecedent
rainfall (R, AR and T). Before performing the NN-based modeling,
the input and output variables are normalized and scaled between
[0 1] in order to ensure that all the variables receive equal atten-
tion during the training of a model.

3.2. Neural network (NN)-based models

Since data-driven models are based on learning and pattern
recognition, it is very common in NN-based rainfall–runoff models
to use time delay inputs in addition to the current information. A
brief detail of the developed static and dynamic NN-based models
are presented in the following sections.

3.2.1. Multilayer perception (MLP) ANN model
Multilayer perception (MLP), a class of NN, is a multilayer series

of nodes or neurons of input, hidden, and output layers. Of the vari-
eties of NN structures available, the commonly used feed-forward
NN used herein is given by

bQ ¼ f o
X
h

woh � f h
X
i

whixi þ bh

 !
þ bo

" #
ð1Þ

where xi is the independent input variables of R and T; whi is the
weight from input to hidden layer; who is the weight from hidden
to output layer; fh and fo are the transfer functions for hidden and
output layers, respectively; and bh and bo are the bias for the hidden
and output layers, respectively. The network uses a logistic sigmoid
transfer function in the hidden layer and a linear transfer function is
used for the output layer.

3.2.2. NARX model
For flood forecasting, the NARXmodel predicts the future values

of streamflow timeseries, Q(t) by regressing from the past predic-
tion values of Q and the past values of exogenous (external) input
timeseries of rainfall and temperature, x(t). The form of the NARX
model is expressed as (Lin et al., 1996)

bQ ðtÞ ¼ f xðt � 1Þ; . . . ; xðt � dÞ; bQ ðt � 1Þ; . . . ; bQ ðt � dÞ
� �

ð2Þ

where t is the current time-step, d = time lag; the terms x(t), . . ., x
(t � d) are the time lagged exogenous inputs of R and T. Similarly,bQ (t � 1), . . ., bQ (t � d) are the endogenous inputs that are being
produced with any time delay d, and f(�) is a nonlinear function that
estimates the next forecast value.

3.2.3. WANN model
Considering the analogy of input signals with the hydro-

meteorological timeseries data, the Wavelet Transform (WT)
method (Morlet et al., 1982) is used to express the asymmetric
and irregular input data signals or waves as sum of the sub-
signals or wavelets. This transform is based on a mother wavelet
function that constructs a family of wavelets of finite interval,
mainly characterized as the continuous and discrete wavelet
transforms. Considering the discrete nature of observed hydro-
meteorological timeseries data, the discrete wavelet transforma-
tion (DWT) is preferred in most hydrological forecasting problems.
The DWT operates on two sets of functions viewed as high-pass
and low-pass filters to produce discrete wavelet coefficients
(DWC). For an input signal x, the first step produces two sets of
DWCs: high pass approximation coefficients, A1 (low frequency)
and low pass detail coefficients, D1 (high frequency). The next step
splits the approximation coefficient A1 into two parts using the
same scheme, replacing x by A1, and producing A2 and D2, and so
on. The wavelet decomposition of the input x analyzed at level n
has the structure of [An, Dn, Dn�1, . . ., D2, D1]. Recent studies on



Fig. 2. Lag correlation analysis of the input variables used in the study.
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coupling of any data-driven technique with the wavelet transform
have been proved to improve the rainfall–runoff modeling perfor-
mance (Tiwari and Chatterjee, 2011; Badrzadeh et al., 2015; Sehgal
et al., 2014a,b; Shoaib et al., 2014). Hence, the simple ANN is
coupled with the wavelet decomposition method to develop the
wavelet-based ANN.

3.2.4. Development of the proposed WNARX model
Since the TRMM-RT rainfall product has very high biases, gener-

ally this product is not found to be very much useful for real-time
flood forecasting with the existing rainfall–runoff models. To make
this rainfall product useful for operational flood forecasting, there
is a need to develop an ANN model framework which has the capa-
bility to minimize the random error component associated with
the input data with the dynamism to incorporate the catchment
behavior involving the catchment response in real-time due to
the exogenous inputs of rainfall and temperature. Generally, the
DWT has the capability to minimize the random error associated
with the input data using the high pass and low pass filtering
approaches. However, for incorporating the catchment dynamism
in real-time due to the meteorological forcings, the streamflow
data is not available in real-time. Consequently, the model simu-
lated streamflow in real-time could be used as the feedback input
to the model to improve forecast efficiency of the proposed model.
Using this philosophy, the WNARX model is developed herein that
couples the concepts of ANN, wavelet analysis and NARX model.
This hybrid WNARX model integrates the NARX model with the
DWT of the input variables (see Fig. 3). The framework of DWT is
given by

Tða; bÞ ¼ 1ffiffiffi
a

p
XN�1

t¼0

f ðtÞg� t � b
a

� �
ð3Þ

where T(a,b) are the wavelet coefficients; g⁄ corresponds to the
complex conjugate; g is the wavelet function or mother wavelet;
and the variables a and b are the scale factor and time factor,
respectively. For DWT, the available wavelet functions, varying
from smaller vanishing moment ‘Haar’ to higher vanishing moment
‘Daubechies’ (db) functions (Sehgal et al., 2014b), are tested to
achieve the best wavelet function. For any input timeseries xN of
length N, the DWT consists of log2N stages at most, but it is valid
for fully autoregressive data without considering the seasonal
variation of hydrological processes. If the level of decomposition
is increased, more temporal and spectral variation in input data
could be achieved (Shoaib et al., 2014); and the input timeseries
is decomposed into a large-scale approximation and small-scale
detail coefficients. In order to obtain the optimum level of decom-
position, the DWT is tested by varying the decomposition level.
For the current input datasets of rainfall and temperature, db25
wavelet function with nine-level of decomposition is found to be
the best. At the first step, data pre-processing procedure is applied,
in which the rainfall and temperature timeseries is decomposed to
produce DWCs. After decomposition, the significant DWCs or wave-
lets are selected by correlation analysis between the DWCs and the
observed discharge; and the sum of these selected wavelets forms
the new timeseries (e.g., Tiwari and Chatterjee, 2010b, 2011).
Finally, the new timeseries of rainfall and temperature variables
are used as input to the NARX model (Eq. (2)). The model output
is the undecomposed discharge timeseries which produces the
feedback input to the network. The model is developed using the
MATLAB toolbox. The difficulties arising from the timeseries of river
discharge with different frequency components could be overcome
by the proposed WNARX model as this model accounts for both the
long-term seasonality of the meteorological inputs through DWT as
well as the memory of the catchment through the autoregressive
components of the output discharge variable.

3.3. ARMAX model

The dynamic timeseries-based linear ARMAX model is a com-
monly used method which is used for comparison purposes in this
study. This model is capable of incorporating an exogenous input
variable unlike the static ARMA model. The form of the ARMAX
model is given by

AðqÞQðtÞ ¼ BðqÞxðt � dÞ þ CðqÞeðtÞ ð4Þ
where x(t � d) = time delay input variables of R and T; Q(t) = output
discharge variable; e = white noise; d = time delay between input
and output; and A(q), B(q), and C(q) are the polynomials of the
regression equation. The time lagged inputs of R and T are used
herein as exogenous input variables to predict the future discharge.
The degree of individual polynomials is decided by trial and error
approach.

3.4. Multi-time-step-ahead discharge forecasting

For discharge simulation at several time-steps ahead, the
selected time-lagged input variables (see Section 3.1) are used in
the developed models for generating medium-range forecasts with
lead times of 1-, 2- and 3-days to predict Q(t + 1), Q(t + 2), Q(t + 3),



Fig. 3. Architecture of the WNARX model.
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respectively. The models are applied and tested with the observed
(IMD) and satellite-based (TRMM and TRMM-RT) rainfall products
as forcings to forecast the discharge up to 3-days lead times.
3.5. Criteria for performance evaluation

First, the accuracy of the satellite rainfall products of TRMM and
TRMM-RT are evaluated with respect to the benchmark IMD rain-
falls by using the performance evaluation measures of correlation
coefficient (r), percent bias (PBias), probability of detection (POD)
and false alarm ratio (FAR) expressed as

r ¼
Pn

i¼1 ðOi � OÞðPi � PÞ
h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðOi � OÞ2

� � Pn
i¼1ðPi � PÞ2

� �h ir ð5Þ

PBias ¼
Pn

i¼1ðPi � OiÞPn
i¼1Oi

� 100 ð6Þ

POD ¼ No of hits
No of hitsþmisses

ð7Þ

FAR ¼ No of false alarms
No of hitsþ false alarms

ð8Þ

The POD is the ratio of number of extreme rainfall events that
are correctly forecast to the total number of extreme rainfall
events at a given threshold, which varies from 0 to 1, 1 being
when 100% of the storms are detected. FAR is the measure of fail-
ure of the forecaster to exclude the non-extreme events that var-
ies from 0 to 1, 0 being the best case in which no false alarms are
issued.

Second, the efficacy of the developed models with different
rainfall products are compared using seven performance evalua-
tion measures of: (i) Correlation coefficient (r), (ii) Nash–Sutcliffe
efficiency (NSE) (Nash and Sutcliffe, 1970), (iii) ratio of root mean
square error (RMSE) to standard deviation of measured data
(RSR), (iv) mean absolute error (MAE), and (v) error in volume
(Evol), (vi) error in peak flow (Epeak) and (vii) error in time to peak
flow (Et). These error measures are expressed as
NSE ¼ 1�
Pn

i¼1ðOi � PiÞ2Pn
i¼1ðOi � OÞ2

" #
� 100 ð9Þ
RSR ¼ RMSE
STDEVOBS

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðOi � PiÞ2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðOi � OÞ2
q ð10Þ
MAE ¼ 1
n

Xn
i¼1

jOi � Pij ð11Þ
Evol ¼
Xn
i¼1

Pi

Xn
i¼1

Oi

,
� 1

 !
� 100 ð12Þ
Epeaki ¼ ðQpi=Qoi � 1Þ � 100 ð13Þ
Eti ¼ ðTpi=Toi � 1Þ � 100 ð14Þ

where Oi and Pi are the observed and predicted discharge values for
ith day, respectively; O is the mean of the observed discharge val-
ues; n is the number of data points; Qoi and Qpi are the observed
and predicted peak flood values, respectively; and Toi and Tpi are
observed and predicted time to peak flood values, respectively.

Analysis indicates that, unlike RMSE, MAE is the most natural
and unambiguous measure of average error magnitude (Willmott
and Matsuura, 2005). However, RSR incorporates the benefits of
error statistics (RMSE) and includes a scaling/normalization factor
(Akhtar et al., 2009) so that the resulting statistics can be applied
to different variable types. Evol is a very important index, espe-
cially in flow prediction, since it indicates the conservation of flow
volume; but it is seldom used by researchers in ANN-based rain-
fall–runoff models. Moreover, for any hydrological model, the
volume conservation ability of the model is very much needed to
test its suitability for field application. Similarly, since the
simulated output may not always fall on the 1:1 plot of the
observed-simulated values, even with high r values, only using
the correlation coefficient as the single most error measure does
not guarantee the best performance of the model.



Fig. 4a. Scatter plots for the satellite-based rainfall products against IMD rainfall.
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4. Results and discussion

4.1. Comparison of TRMM and TRMM-RT rainfall estimates with
respect to the observed data

First, the satellite rainfall products of TRMM and TRMM-RT are
evaluated with respect to the observed IMD rainfall, by inter-
comparing the magnitudes. Fig. 4a shows the scatter plots of the
areal rainfall timeseries of the TRMM and TRMM-RT against the
IMD gauge-rainfall during the monsoon seasons (15 June to 15
October) from 2000 to 2010. The TRMM rainfall product has a cor-
relation of 0.83 with the IMD-gauge rainfall; whereas, the TRMM-
RT product is found to be moderately correlated (r = 0.74) with the
IMD rainfall. The TRMM performs better than the TRMM-RT in
which the former explains about 70% rainfall variability as com-
pared to 55% variability by the latter.

The discrepancy or bias in rainfall magnitudes are separately
computed for low (R < mean), medium (mean < R < mean + stan-
dard deviation) and high (R > mean + standard deviation) rainfall
regimes in the box and whisker plots as illustrated in Fig. 4b. For
low rainfall events, the TRMM is relatively less biased than
TRMM-RT, although both the products over-predict the rainfalls
(PBias > 0). For the medium rainfall events, the TRMM shows
slightly more positive bias indicating over-prediction than the
TRMM-RT. The high rainfall events are better estimated by TRMM
with PBias < 5%, whereas, TRMM-RT is negatively biased implying
under-prediction. In essence, it is clear that the TRMM performs
better than the TRMM-RT for all kind of rainfall regimes considered
herein. This is because, the TRMM-RT product is a multi-satellite
rainfall product disseminated in real-time and it is not bias cor-
rected. On the other hand, the bias corrected TMPA product is com-
bination of multiple satellites as well as gauge analyses (Huffman
et al., 2007). The TRMM product is bias corrected by the TMPA
using the Global Precipitation Climatology Project (GPCP)’s
monthly rain gauge analysis and the Climate Assessment and Mon-
itoring System (CAMS)’s monthly rain gauge analysis (Huffman
et al., 2007; Yong et al., 2010); and the same cannot be carried
out for the TRMM-RT during real-time flood forecasting. However,
for real-time flood forecasting, the TRMM-RT rainfall is only useful
since this product is available at near real-time for field applica-
tion, whereas TRMM is available at a time lag of 2–3 months mak-
ing it non-usable.

Fig. 5 illustrates the POD and FAR values of daily-scale TRMM
and TRMM-RT rainfall products for the specified threshold levels
of 0–100 mm/day. The results reveal that the POD values diminish
with increase in threshold showing that the high intensity rainfall
events are deviated from the gauge-based counterparts. However,
the high rainfall events with 30.11 mm/day (95 percentile) are bet-
ter detected by the TRMM with a high POD of 80% as compared to
that of 45% by the TRMM-RT. For extremely high rainfall
(>80 mm/day), neither the TRMM nor the TRMM-RT captures the
observed rainfall magnitudes. Similarly, as envisaged from Fig. 5,
FAR increases with increase in rainfall thresholds for both the
TRMM and TRMM-RT rainfalls. At high precipitation (30.11 mm/-
day), the FAR is about 50% for both TRMM and TRMM-RT. In gen-
eral, there is no significant difference between the FARs for
TRMM and TRMM-RT, except for 60–70 mm/day rainfall threshold
ranges (common in monsoon period), when TRMM-RT creates 80%
false alarm as compared to 60% by TRMM. The patterns of POD and
FAR indicate poor reflection of IMD gauge-based areal rainfall by
the TRMM and TRMM-RT products. Hence, the effect of these
satellite-based rainfall products has to be further evaluated for
flood forecasting, being used as the basic forcing input into the
NN-based models.
4.2. Hydrological evaluation of the developed models with different
rainfall products

4.2.1. Modeling catchment runoff at daily time-scale
Since the discharge estimation by the rainfall–runoff models

developed herein are subjected to uncertainties due to error in
rainfall inputs, the satellite-based rainfall estimates are evaluated
based on their performances in estimating the corresponding dis-
charges at catchment-scale by all the developed models. For each
input scenario (Options [1]–[4]), as detailed in Section 3.1, the
ARMAX and the NN-based models are trained and tested for the
three sets of rainfall products of IMD, TRMM and TRMM-RT.
4.2.1.1. Effect of different input scenarios on real-time discharge
simulation. Fig. 6 shows the comparison of Nash–Sutcliffe effi-
ciency (NSE) for discharge simulation by the models developed
herein for all the four sets of inputs. Based on the NSE measures,
it is noticed from Fig. 6 that, in general, the model efficiency
increases in the order ARMAX < ANN <WANN < NARX <WNARX
in simulation mode. The model performances may be considered
satisfactory for streamflow prediction when NSE is >50% (Moriasi
et al., 2007). The plots of NSE of the models show that the flow pre-
diction performance increases from a minimum value with only R
as input in Option [1], and is the best in Option [4] that accounts
for R, T and AR. Further, Fig. 6 reveals that the linear ARMAX model
performance improves substantially in Option [4] for the IMD and
TRMM-driven simulations; however, with the TRMM-RT-driven
simulations, the model does not show large improvement for the
Option [4] over Option [1]. This indicates the limited efficacy of
the ARMAX model, even while accounting for more input informa-
tion to quantify the non-linear rainfall–runoff process. Further-
more, it is found that the static NN models are more input
specific than the dynamic NNs. With this effect, the model effi-
ciency increases by 8.79%, 14.86% and 13.68% by the ANN model;
and 13.66%, 13.10% and 8.92% by the WANN model for the IMD,
TRMM and TRMM-RT-driven simulations, respectively. Moreover,
for the WNARX and NARX models, Option [4] has little improve-
ment in real-time flow prediction as compared to that with Option
[1]; hence, the model efficiencies are found to be acceptable with
Option [1] also. Overall, the results demonstrate that the strong
influence of additional inputs, such as, the previous antecedent
rainfall and time-lagged temperature improves the model efficien-
cies of all the models. This finding can be attributed to the fact that
the catchment produces floods when soil is saturated after meeting
the losses (Berthet et al., 2009; Froidevaux et al., 2015). The inclu-
sion of AR accounts for soil moisture, and temperature accounts for
evapotranspiration loss. However, for large river basins like
Ganges, studies have found that large number of input parameters
are not always responsible for reliable flood forecasting, rather the
most correlated inputs, if available in real-time, solves the problem
(Akhtar et al., 2009). Moreover, from Fig. 6, it is found that for the



Fig. 4b. Comparison of TRMM and TRMM-RT products with IMD rainfall for (a) low (R < mean), (b) medium (mean < R < mean + standard deviation) and (c) high (R > mean
+ standard deviation) rainfall regimes.

Fig. 5. Probability of detection (POD) and false alarm ratio (FAR) for TRMM and TRMM-RT rainfall products at different thresholds.

Fig. 6. Comparison of performance of the models for different input combinations to reproduce observed discharges during testing (2008–2010).
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ARMAX and static NN models of ANN and WANN, Option [3] pro-
duces satisfactory results as compared to Option [2] for both the
observed and satellite-based rainfall products. In case of Option
[3], inclusion of temperature as a separate timeseries in the model
indicates significant improvement in model results; however, the
same is not significant in the WNARX and NARX models. This
observation can be attributed to the fact that inclusion of temper-
ature as a separate timeseries in the model includes four additional
input variables of T (t � 3) up to T (t); whereas, inclusion of AR adds
only one variable. The analysis evidences relatively weak linkage of
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the catchment to the rainfall forcing one week prior to flood. This
corresponds with the previous finding that the correlation of trig-
gering antecedent rainfall to produce flood is region-specific, and
3–4 days previous rainfall is significant to produce flood
(Froidevaux et al., 2015). Comparison of Options [3] and [4] reveal
that real-time discharge simulation efficiency increases by NSE of
�5% in case of Option [4] (with R, AR and T timeseries) over the
Option [3], especially with the ANN and WANN models. From the
overall observation of the plots, it is anticipated that for long-
term flow forecasts, the antecedent catchment wetness long before
the flood day may trigger flood. Hence, for assessment of the multi-
step ahead streamflow forecasts, the Option [4] is considered to be
the most suitable scenario for all the models.
Fig. 7. Scatter plots of observed and simulated discharges usin
4.2.1.2. Effect of observed and satellite-based rainfall data on real-time
discharge simulation. The inter-comparison of rainfall products for
real-time discharge simulation with Option [4] is illustrated in
Fig. 7 for testing dataset, and the corresponding error measures
are given in Table 2. It can be surmised from Table 2 that, for train-
ing datasets, the WNARX and NARX models always perform with
NSE > 80%, r > 0.90 and |Evol| 6 6%. Table 2 and Fig. 7 reveal that,
for the testing datasets, the models perform similarly as in case
of the training datasets with NSE > 80%, r > 0.90 and |Evol| 6 9%.
However, in general, during training phase, all the models are quite
acceptable with the TRMM and TRMM-RT-driven simulations
(Table 2). During testing with the ARMAX and static NN-based
models, the high RSR values with the TRMM and TRMM-RT-
g different rainfall products during testing (2008–2010).
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driven flow predictions are quite noticeable, indicating higher
RMSE. However, with the ANN models, the flow prediction error
is within the acceptable limit of RSR < 0.7 (e.g., Moriasi et al.,
2007). The lower accuracy of the conventional ARMAX model as
compared to the NN-based models can be attributed to the linear-
ity associated with the ARMAX model in modeling the nonlinear
rainfall–runoff process. The satellite-based rainfall when passes
through the NN optimization, the weighted magnitude of rainfall
could reproduce the catchment flow timeseries after the non-
linear transformation. This factor can be attributed to the correc-
tion of rainfall bias by the NN schemes to some extent. In the
WANN model, the pre-processing of input data moderately
improves the performance over the ANN model with respect to
some medium and high flow predictions due to correction of data
for non-stationarity (e.g., Badrzadeh et al., 2015). While the hydro-
graphs produced with the IMD (observed) rainfalls seem to outper-
form the satellite-based counterparts, the scenario is different for
WNARX and NARX models. With the WNARX and NARX models,
the satellite rainfalls reproduced the desired hydrograph with very
small magnitude of RSR and MAE and high value of r (Table 2), and
NSE in the range of 80–90%. Despite the slight under-estimation,
the TRMM-RT rainfall conserves the catchment flow volume with
Evol = �1.16% and �2.63% by the WNARX and NARX models,
respectively. In the NARX and WNARX models, the consideration

of the short-term autoregressive features (bQ (t � 1), bQ (t � 2), bQ
(t � 3), bQ (t � 4)) surpassed over the weakness of the NN models.
More interestingly, it is found herein that the WNARX model, with
the long-term seasonality being taken into account through wave-
let transform, is efficient to transform the satellite-derived rainfall
into runoff in simulation mode.

Furthermore, the impact of the rainfalls is assessed based on
reproduction of peak flow events by different models. Fig. 8 shows
the reproduction of the discharge hydrograph for two typical peak
flood events that occurred in 2008 (event [1]) and 2009 (event [2])
driven by all the rainfalls. The event [1] has an observed peak of
16826.73 m3/s precedent by heavy rainfall. Similarly, event [2]
has a peak of 16117.48 m3/s precedent by heavy rainfall with dual
flood peaks. For the event [1], the magnitude of peak error is quite
significant in the static NNs, but the simulations show no error in
time to peak discharge (i.e. Et = 0%). It is evident that this peak
event is quite closely reproduced by the WNARX model (Epe
ak = �7.83%) as compared to the NARX model (Epeak = �14.57%)
while using the IMD rainfalls. In event [1], the simulated peak
Table 2
Performance evaluation measures of different models in simulation mode with input Opt

ARMAX ANN

Training Testing Training Testing Trai

IMD
r (�) 0.79 0.81 0.74 0.83 0
NSE (%) 63.14 63.24 53.90 66.65 66
RSR (�) 0.72 0.61 0.80 0.58 0
MAE (m3/s) 852.47 791.48 887.81 622.76 790
Evol (%) �0.75 �8.53 �2.32 �3.66 �0

TRMM
r (�) 0.77 0.75 0.80 0.79 0
NSE (%) 60.02 48.68 63.63 62.74 65
RSR (�) 0.75 0.72 0.71 0.61 0
MAE (m3/s) 910.08 980.93 856.46 659.26 824
Evol (%) �1.39 27.61 1.88 3.14 �1

TRMM-
r (�) 0.72 0.67 0.77 0.75 0
NSE (%) 51.52 26.15 58.45 55.48 57
RSR (�) 0.82 0.86 0.76 0.67 0
MAE (m3/s) 1029.95 1253.89 908.37 780.57 965
Evol (%) �1.73 46.63 7.20 7.02 1
discharge resembles the observed one with the IMD gauge as well
as TRMM and TRMM-RT-driven simulations by the WNARX and
NARX models. For this event there exists a phase lag in the peak
flow forecast by the ARMAX and the static NNs, which is a common
problem in data-driven methods that is still to be addressed during
NN optimization. However, it is not observed in case of event [2].
The peak flow during the event [2] is well predicted by the models
without time offsetting. The dynamic networks of WNARX and
NARX reproduced the peak flow closer to the observed one than
the static models. The NARX model resulted in underestimation
with Epeak of �14.19% with the IMD gauge rainfall. The error fur-
ther increases with the TRMM and TRMM-RT, since their hit rate
decreases for high rainfall intensity. The WNARX model produced
the simulated peak with Epeak of �15.34% and �15.33% by the
TRMM and TRMM-RT rainfalls, respectively, as compared to that
of 2.26% by the IMD rainfall. The sharp observed peak in event
[2] (Fig. 8) indicates the strong influence of heavy downstream
rainfall accumulated within short duration to cause the high out-
flow. Although this event is more or less influenced by the antece-
dent rainfall, the inclusion of recurrent discharge into the network
of WNARX model reproduced the peak very well with the TRMM
and TRMM-RT rainfall products as compared to other models.
4.2.2. Performance of the developed models for multi-step-ahead
discharge forecasting

Since the input scenario of Option [4] with all the input vari-
ables of R, T and AR results in the best performance of all the mod-
els in simulation mode with the gauged and satellite-based rainfall
products, this scenario is only used for real-time flood forecasting.
The NN-based models developed herein are extended for forecast
at 1- to 3-days lead times for monsoonal climate-flow events (15
June to 15 October). The ARMAX model is not further considered
for discharge forecasting because of its relatively poor
performance.

The typical discharge reproductions by the models are evalu-
ated for 1- to 3-days ahead forecasts, and the same are illustrated
in Figs. 9 and 10. The performance measures of all the models in
forecasting mode with all the rainfall products are summarized
in Table 3. It is evident from Figs. 9 and 10 and Table 3 that the flow
forecasting efficiency of all the models reduces gradually with
increase in lead times. However, in the WANN, NARX and WNARX
models, the forecasting performances do not deteriorate signifi-
cantly for up to 3-days lead times. With all the rainfall forcings
ion [4] during training and testing.

WANN NARX WNARX

ning Testing Training Testing Training Testing

.82 0.88 0.92 0.94 0.92 0.94

.44 72.82 83.83 86.84 83.28 88.89

.68 0.52 0.48 0.36 0.48 0.33

.80 538.49 510.33 396.53 466.75 334.81

.30 �9.23 �4.64 �6.90 1.65 �4.83

.81 0.84 0.92 0.92 0.94 0.94

.76 66.47 83.68 83.01 87.60 88.95

.69 0.58 0.48 0.41 0.42 0.33

.46 596.24 443.75 413.28 448.89 354.21

.65 �9.68 �5.65 �9.08 1.12 �1.03

RT
.76 0.80 0.93 0.92 0.94 0.91
.27 61.07 86.49 83.51 87.58 85.12
.77 0.62 0.43 0.41 0.42 0.40
.17 784.74 438.88 410.34 425.95 409.06
.35 �1.29 0.83 �1.16 �2.71 �2.63
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and lead times, the WNARX model performs with NSE > 78%, |Evol|
< 9%, r > 0.89, RSR 6 0.47 and MAE < 501 m3/s; whereas the NARX
model performs with NSE > 74%, |Evol| < 16%, r > 0.86, RSR 6 0.51
and MAE < 631 m3/s. The WANN model performs with NSE > 45%,
|Evol| < 12%, RSR 6 0.74, MAE < 782 m3/s, and r > 0.74; and the
ANN model performs with NSE > 31%, |Evol| < 9%, RSR 6 0.82,
MAE < 911 m3/s, and r > 0.58. Hence, this analysis along with Figs. 9
and 10 reveal that theWNARX is the best model under all the input
and forecasting scenarios followed by NARX, WANN and ANN
models. Moreover, the NARX model gives comparable performance
with the WNARX model; and the ANN and WANN models may not
be used for field application due to their poor performance levels.
Fig. 8. Simulation of two peak flood events by all the mode
As envisaged from Table 3, at 1-day ahead forecasting, the var-
ious error measures for the ANN model for all rainfall products
considered herein varies with NSEP 59.07%, |Evol| 6 4.72%,
rP 0.77, RSR 6 0.64, and MAE 6 727.38 m3/s; whereas for the
WANN model, these are: NSEP 55.83%, |Evol| 6 6.52%, r > 0.76,
RSR 6 0.66, and MAE 6 716.01 m3/s; which may not be acceptable
for field condition. However, for the NARX model, these ranges
are: NSE = 80.52–82.07, |Evol| = 4.06–12.79%, r = 0.90–0.92,
RSR = 0.42–0.44, and MAE = 378.81–541.43 m3/s; and for the
WNARX model, these are: NSE = 82.01–88.02, |Evol| = 4.41–8.67%,
r = 0.91–0.94, RSR = 0.35–0.43, and MAE = 354.55–453.39 m3/s.
Overall, it is surmised that, for 1-day ahead forecasting lead time
ls for input Option [4] with different rainfall products.
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with the use of different rainfall products, the performance of both
the ANN and WANN model decreases in the order:
IMD > TRMM > TRMM-RT; whereas for the NARX model it is:
TRMM > TRMM-RT > IMD; and for the WNARX, model it is:
IMD > TRMM > TRMM-RT. Since only the TRMM-RT product is
available in real-time, this product is only useful for real-time
streamflow forecasting than other two rainfall products. Although
both the NARX and WNARXmodels give comparable performances
for 1-day ahead forecasting with the TRMM-RT product, however,
the WNARX model is preferable over the NARX model due to its
consistent performance in terms of various error measures (see
Table 3). Such a best performance of the WNARX model may be
attributed to the ability of this model to account for the long-
term memory of the rainfall–runoff transformation process of the
catchment, in terms of the dynamic recurrent input to the network
Fig. 9. Scatter plots for lead time monsoonal discharge forecasts for the testing
that has the combined properties of ANN and wavelet transform to
minimize the bias with the rainfall and runoff inputs.

Similarly, at 2-days ahead forecasting, various performance
measures indicate that, with the use of different rainfall products,
the performance in flood forecasting increases in the order
ANN <WANN < NARX <WNARX (see Table 3). The various error
measures for the ANN and WANN models with different rainfall
products reveal that these two models cannot be used for 2-day
ahead flood forecasting. Conversely, for the NARX model, the
corresponding ranges of error measures are quite satisfactory
with NSE = 75.15–77.03, |Evol| = 0.21–15.65%, r = 0.87–0.88,
RSR = 0.48–0.50, and MAE = 457.32–630.67 m3/s; whereas for the
WNARX model it is: NSE = 78.45–84.45, |Evol| = 0.96–6.27%,
r = 0.89–0.91, RSR = 0.40–0.47, and MAE = 382.32–501.01 m3/s. In
real-time discharge forecasting, the WNARX model is consistent
period (2008–2010) by different models with different rainfall products.



Fig. 10. A typical monsoonal discharge forecast for the year 2010 at lead-times of 1-, 2- and 3-days using the NARX and WNARX models with the TRMM-RT rainfall product.

Table 3
Error statistics of the multi-step-ahead discharge forecasts by the models during testing.

Models Criteria Lead time (day) Lead time (day) Lead time (day)

1 2 3 1 2 3 1 2 3
IMD TRMM TRMM-RT

ANN r (�) 0.82 0.75 0.58 0.77 0.71 0.59 0.77 0.72 0.60
NSE (%) 65.94 51.06 31.07 59.47 50.19 34.94 59.07 51.02 35.54
RSR (�) 0.59 0.68 0.82 0.64 0.71 0.81 0.64 0.70 0.80
MAE (m3/s) 686.67 724.97 910.64 694.25 764.68 862.3 727.38 790.16 866.18
Evol (%) 4.72 3.03 2.02 2.85 4.66 2.81 �4.42 1.98 �8.81

WANN r (�) 0.84 0.84 0.75 0.81 0.78 0.75 0.76 0.74 0.68
NSE (%) 68.90 61.36 60.54 63.48 56.70 51.91 55.83 54.00 44.92
RSR (�) 0.60 0.59 0.68 0.60 0.66 0.69 0.66 0.68 0.74
MAE (m3/s) 659.73 616.24 679.09 642.32 672.10 645.86 716.01 781.74 779.81
Evol (%) �6.52 �12.21 �11.08 �1.27 �3.36 �6.33 4.47 7.05 3.23

NARX r (�) 0.90 0.88 0.86 0.92 0.87 0.87 0.91 0.88 0.87
NSE (%) 80.52 77.03 74.62 82.07 75.64 74.60 81.16 75.15 76.15
RSR (�) 0.44 0.48 0.50 0.42 0.50 0.51 0.44 0.50 0.49
MAE (m3/s) 397.13 457.32 468.27 378.81 487.41 537.58 541.43 630.67 484.27
Evol (%) �4.06 0.21 0.50 �12.02 �1.47 5.17 12.79 15.65 0.58

WNARX r (�) 0.94 0.91 0.93 0.93 0.92 0.91 0.91 0.89 0.89
NSE (%) 88.02 82.31 84.69 85.53 84.45 80.80 82.01 78.45 78.69
RSR (�) 0.35 0.42 0.39 0.38 0.40 0.44 0.43 0.47 0.46
MAE (m3/s) 354.55 501.01 448.80 440.43 382.32 454.40 453.39 439.18 495.04
Evol (%) �8.67 6.27 3.20 �7.28 �5.35 0.92 4.44 0.96 �5.72
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Table 4
Probability of Detection (POD) and False Alarm Ratio (FAR) for lead time discharge forecasting using the TRMM-RT rainfall during testing.

Lead time (Days) Lead time (Days) Lead time (Days) Lead time (Days)

1 2 3 1 2 3 1 2 3 1 2 3
±10% error bound ±20% error bound ±10% error bound ±20% error bound

Q > Q90 Q75 < Q < Q90

WNARX + TRMM-RT WNARX + TRMM-RT

POD (%) 41.67 44.44 30.00 69.23 56.67 46.88 63.89 67.50 48.89 80.00 82.22 64.58
FAR (%) 54.55 42.86 40.00 35.71 26.09 21.05 45.24 35.71 29.03 31.91 21.28 16.22

NARX + TRMM-RT NARX + TRMM-RT

POD (%) 45.83 25.81 32.00 68.97 48.48 46.15 50.00 56.25 51.43 79.41 75.00 66.67
FAR (%) 52.17 38.46 57.89 25.93 15.79 45.45 69.05 56.10 51.35 43.75 41.30 36.59

Q denotes discharge; Q75 and Q90 are discharge value of 75th and 90th percentile.

Table 5
PBias of the multi-step-ahead discharge forecasting.

Lead time (Days) Lead time (Days)

1 2 3 1 2 3
WNARX NARX

Q > Q90

6.48 13.68 21.64 6.37 23.73 16.64

Q75 < Q < Q90

�7.62 �6.62 5.65 �16.09 �6.38 �3.27
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in its performance among the four models with the TRMM-RT
product.

At 3-days lead time discharge forecasting, the reproduction pat-
tern of typical hydrographs (Fig. 10) and the supporting perfor-
mance measures (Table 3) clearly indicate that there is a little
scope of using the real-time rainfall product of TRMM-RT in flood
forecasting with the ANN and WANN models. However, the 3-
days lead time flood forecast is obtained with NSE > 74% by the
WNARX and NARX models. The various performance measures
for all the rainfall products with the NARX model varies in the
ranges of: NSE = 74.60–76.15, |Evol| = 0.50–5.17%, r = 0.86–0.87,
RSR = 0.49–0.51, and MAE = 468.27–537.58 m3/s; whereas for the
WNARX model it is: NSE = 78.69–84.69, |Evol| = 0.92–5.32%,
r = 0.89–0.93, RSR = 0.39–0.46, and MAE = 448.80–495.04 m3/s.
These results indicate the potential of TRMM-RT to reproduce
streamflow with acceptable accuracy in the real-time up to 3-
days lead time. While using the TRMM-RT rainfall, Nourani et al.
(2013) and Akhtar et al. (2009) could only achieve reliable flood
forecasting up to 3-days lead time with preliminary spatial rainfall
data selection, and pre-processing by runoff travel time and flow
length, respectively. In these attempts, the TRMM and TRMM-RT
products performed well only when the time-lagged observed dis-
charge is used as one of the model inputs. However, the modeling
approaches proposed herein, without using upstream river flow
information and without any prior effort on spatial data selection,
offers promising outputs with the satellite-based rainfall data. The
overwhelming model performances reveal the reliability of the
satellite rainfall products for extended streamflow forecast hori-
zons with longer lead times.

The flow forecasting ability of the TRMM-RT rainfall product
with the WNARX and NARX models is also evaluated by using
the error statistics for high (>90th percentile) and moderate
(between the 75th and 90th percentile) flows separately (Table 4).
It can be surmised from Table 4 that for the high flows, the models
could forecast 1-day lead time discharge with POD < 50% within
the ±10% error bound; and within ±20% error bound, the corre-
sponding values of POD are �70%. Similarly, for different lead time
forecasts, the FAR varies from 40.00 to 57.89% within ±10% error
bound; and within ±20% error bound, it is 15.79–45.45%. For the
moderate flow range, POD varies from 48.89–67.50% within ±10%
error bound for the discharge forecasts; however, the correspond-
ing FAR is less for the WNARX model (FAR = 29.03–45.24%) as com-
pared to the FAR of 51.35–69.05% for the NARX model at 1–3 days
lead times. Table 4 reveals that, within ±20% error bound, the
WNARX and NARX models produce POD in the range of 64.58–
82.22% for the moderate flow range; and the FAR varies from
16.22 to 31.91% for the WNARX model as compared to 36.59–
43.75% by the NARXmodel, indicating slightly better flow forecast-
ing by the WNARX model at 1–3 days lead-times. Note that,
although 20% error bound of observed flow is towards the higher
side; however, this is corresponding to only about ±0.15 m of water
level (Central Water Commission, 1989; Tiwari and Chatterjee,
2010a) of the Mahanadi River studied herein, which is the largest
river in eastern India. Hence, consideration of 20% error level in
flow forecasting is justified for this river.

Moreover, the percentage biases (PBias) in flow forecasting
using the TRMM-RT rainfall are calculated for different percentile
ranges of discharge at different lead times. Table 5 presents the
PBias values for forecasting of high (>90th percentile) and moder-
ate (between the 75th and 90th percentile) flows separately. As
envisaged from Table 5, for the moderate flow range, the WNARX
and NARXmodels forecast the discharge with PBias < ±10% (accept-
able) by the TRMM-RT rainfall (showing underestimation). For the
high discharges, both the models forecast 1-day ahead discharge
with PBias < 10%, and for 2- and 3-days ahead forecasts it is with
PBias > 14% (showing overestimation). Table 5 also reveals that,
in general, the WNARX model tends to give a better performance
as compared to the NARX model for both the flow ranges.

The NARX and WNARX solutions for the two extreme flood
events at 1–3 days lead times with Option [4] of input data
scenario are illustrated in Fig. 11, in which the corresponding
IMD observed rainfall is plotted in the secondary axis. It can be
surmised from Fig. 11 that the observed rainfall allowed a better
fit of the models than the satellite rainfall forcings for peak
flow forecasts. The event [1] is best reproduced by the WNARX +
IMD-driven forecast with slight over-prediction (Epeak = 0.91%).
However, the quality of simulation of event [1] by the NARX model
is not good as it produces a positive phase lag of one day. In the
NARX model, since the meteorological inputs are not accounted
with long-term seasonality, there is every possibility that the
network fits according to the recent input scenarios. This may
cause the shifting of the flow estimates by the model. Conversely,
the time to peak error is well-addressed by the WNARX model
(Et = 0%). The peak discharge in event [2], which seems to be a
sharp peak, is well captured by the NARX and WNARX models
with zero time to peak error (Et = 0%). The NARX + TRMM-RT com-
bination best-captures the peak flow (Epeak = �6.69%) at 1-day
lead time. The TRMM-RT rainfall, although, is underestimated
across the high range of intensities (PBias = �19.20%), still reliable
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forecast of peak flow is obtained by the WNARX and NARX models.
Further, the NARX + TRMM-driven simulations produce the 2-day
ahead peak flow forecast with very small underprediction
(Epeak = �0.91%) (Fig. 11). At 1-day lead-time, the WNARX model
provides significant peak forecast of Epeak = �10.16% and
Epeak = 3.75% with IMD and TRMM-driven simulations, respec-
tively. Basically, the peak events considered herein are not
captured by the TRMM-RT rainfall, as for high rainfall thresholds,
the TRMM-RT rainfall shows more discrepancy (POD of <20%) than
the TRMM rainfall (Fig. 5). It is noticed that most of the peak flow
forecasts are within acceptable limit while using the satellite-
based rainfall products driven with the WNARX and NARX models.
However, the magnitude of error increases for both the TRMM and
TRMM-RT-driven simulations at 3-day lead times, although there
is no error in time to peak. Once again these results demonstrate
that, for real-time flood forecasting with the hybridWNARXmodel,
Fig. 11. Reproduction of two peak flood events at diffe
the satellite-based rainfall offers consistent performances similar
to the observed rainfall.

In this study, the time lagged observed discharge is beyond the
requirement of the model inputs. Both the TRMM and TRMM-RT-
based rainfall–runoff modeling give better insight when used stan-
dalone. Hence, the short-term autoregressive features of the runoff
process are dominant in the WNARX and NARX models to improve
the model performances across the whole flow regime as well as
the peak events. As far as the validation projects suggested
(Huffman and Bolvin, 2013), the quality of rainfall estimates
accords with the advanced calibration of the microwave sensors
applied to the TMPA products. However, from February 27, 2014,
the TMPA satellite has been transitioned to the Global Precipitation
Measurement (GPM) with improved sensitivity to detect low
precipitation rates (<0.5 mm/h) and falling snow (Hou et al.,
2014). A few preliminary assessments of the GPM rainfalls over
rent lead times by the NARX and WNARX models.



72 T. Nanda et al. / Journal of Hydrology 539 (2016) 57–73
India and China (Prakash et al., 2015; Liu, 2015; Tang et al., 2016)
suggested an improvement in extreme rainfall detection, reduced
false alarms, better reproducibility of probability density functions
at various precipitation intensities and improved representation of
precipitation diurnal cycles. Hence, it is expected that with the
improved GPM-based rainfall products, the streamflow forecast
capabilities of the WNARX and NARX models would be further
enhanced. Moreover, the utility of rainfall forecasts from weather
models, such as, the ensemble forecast of the European Center
for Medium-range Weather Forecast (ECMWF) may improve the
streamflow forecast for higher lead times. As a future scope of
study, as carried out by Yuan et al. (2014, 2015) and Emerton
et al. (2016), the medium as well as long-term rainfall forecasts
could be evaluated in the developed data-driven models for
improved streamflow forecasting.
5. Conclusions

To address the issues of limited or non-availability of real-time
rainfall and discharge data, and satellite-based highly biased rain-
fall data products, a novel WNARXmodel is developed in this study
using the hybrid concepts of wavelet transform and dynamic NN.
For real-time flood forecasting in the upper Mahanadi River Basin
at Basantpur gauging station, the efficacy of the satellite-based
rainfall products, such as, TRMM and TRMM-RT, and observed rain-
fall product of IMD are tested for their use in the ARMAX, ANN,
WANN, NARX and WNARX models. The results of this study reveal
the following conclusions:

1. As compared to the IMD gauge-based rainfall, the satellite-
based TRMM and TRMM-RT rainfall products have significant
bias for low, medium and high rainfall magnitudes. The after-
real-time estimate of TRMM shows more compatibility with
the IMD observed rainfall as it is a gauge-rainfall-adjusted
estimate.

2. Regardless of the over- or under-estimations, the satellite-
based rainfall products-driven NN-models very well captured
the non-linear rainfall–runoff relationship of the basin studied
herein. In essence, the model performances based on the avail-
able rainfall products vary in the order of:
WNARX > NARX >WANN > ANN > ARMAX.

3. Interestingly, the quality of streamflow estimation by the
TRMM-RT rainfall product is highly appreciated using the pro-
posed hybrid wavelet-based dynamic NN model in simulation
mode. This efficiency of the WNARX model with the highly
biased satellite products may be attributed to the inherent nat-
ure of the non-linear transfer function which internally corrects
the rainfall bias when provided as the feedback to the dynamic
networks. Conversely, the conventional ARMAX model does not
cope up with the non-linear rainfall–runoff process efficiently
with the satellite-based forcings.

4. For simulating the peak floods, both the static ANN and WANN
models are not reliable. With the WNARX and NARX models,
the TRMM-RT product could be very much useful for opera-
tional flood forecasting due to its real-time dissemination.

5. Ultimately, it is concluded that the TRMM-RT rainfall does not
require any bias correction if used in the dynamic NN-based
rainfall–runoff models to predict river flow. Moreover, the per-
formance of the WNARX model is quite satisfactory for flood
event simulations as well as peak flow forecasting with the
TRMM-RT rainfall in comparison with other benchmark models.
Hence, the WNARX model driven by the highly biased satellite-
based TRMM-RT rainfall product could be reliably used for real-
time streamflow forecasting up to 3-days lead-time, although
the NARX model also performs almost equally well.
6. Overall, the developed WNARX hybrid model with only
satellite-based rainfall inputs performs as reliably as with
observed rainfall for multi-step-ahead streamflow forecasting.
However, for generality, these models have to be tested in other
world-river basins since the satellite rainfall products have var-
ied bias levels depending on the topography of the basin.
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