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Abstract 

Impacts of current climate change on flora of alpine and nival summits are well known, but they are less 

understood in subalpine-alpine vegetation types. Moreover, at such elevations, only a few studies are 

describing soils, humus forms, and factors controlling their distribution. The impact of climate change 

on the soil organic matter (OM) component is currently under debate. In this context, the identification 

of ecosystem factors governing OM dynamics in soils is essential. The present research aims to 

investigate (i) the reaction of main subalpine-alpine vegetation types to recent climate changes, (ii) their 

associated soil and humus forms, (iii) the ecosystem controls on humus forms and OM stability in the 

alpine ecosystem. 

Three study sites were selected in the Northern Alps and Western Central Alps of Switzerland. Eight 

vegetation types, typical of the subalpine-alpine belt and spanning a gradient of soil acidity and 

moisture, were targeted. Recent plant surveys were compared with historical ones (25-50 years), 

corresponding soils and humus forms were described, and the stability of the OM component was 

assessed thermally using Rock-Eval pyrolysis.  

Both calcareous and siliceous grasslands showed high stability in terms of plant species composition and 

cover. On the other hand, vegetation types related to long snow cover (snowbeds) changed. Several 

species, coming from the surrounding grasslands, increased in frequency and cover, likely as a 

consequence of earlier melting dates and longer growing seasons.  

The eight vegetation types displayed a large diversity of soil types and humus forms. But, the plant’s 

community type played a secondary role in the humus form distribution, which was in contrast, mostly 

determined by the lithology of the soil’s parent material, the climate, and the topography. Mull forms 

were observed all along the whole elevation gradient (1698-2697 m), but mostly at the lowest elevations 

and on calcareous parent material. Instead, Moder and Mor forms were associated to the highest 

elevations and siliceous parent materials. The concave topography was determinant for the occurrence 

of Anmoor forms. Roots were abundant in the investigated soils, particularly on steep slopes. The 

existing keys for the identification of humus forms proved partly unsuitable for the alpine ecosystem 

and some adaptations are suggested. Ecosystem controls on soil OM dynamics differed substantially 

according to the soil layer considered. The vegetation type influenced OM thermal stability in the litter 

layer, but not in the topsoil and subsoil. Indeed, the supply rate of fresh organic material and the physical 

and chemical characteristics of the pedogenic environment appeared to control OM stability. This study 

confirms that factors influencing the outcome of OM in soils are numerous, horizon and soil specific, 

and highly interconnected. Vegetation shifts, induced by recent climate changes, will likely have limited 

impact on soil OM dynamics in subalpine-alpine belts.   
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Résumé 

L'impact des changements climatiques sur la flore des sommets alpins est bien connu, mais il l’est 

beaucoup moins sur la végétation subalpine-alpine. De plus, à ces altitudes, les études décrivant les sols 

et les formes d’humus, ainsi que les facteurs contrôlant leur distribution, restent très peu nombreuses. 

L’impact des changements climatiques sur la matière organique (MO) du sol est actuellement débattu 

dans la littérature scientifique. Dans ce contexte, il est nécessaire d’identifier les facteurs écosystémiques 

régulant la dynamique de la MO du sol. Le but de cette recherche est d’étudier (i) la réaction des 

principaux types de végétation subalpins-alpins aux changements climatiques récents, (ii) les sols et les 

formes d’humus auxquels ces types sont associés, et (iii) les facteurs écosystémiques qui contrôlent la 

distribution des formes d’humus et la stabilité de la MO dans l’environnement alpin. 

Trois sites d’étude ont été sélectionnés en Suisse dans les Alpes du Nord et les Alpes internes 

occidentales. Huit types de végétation, représentatifs de l’étage subalpin-alpin et couvrant un gradient 

d’acidité et d’humidité du sol, ont été sélectionnés. Des relevés floristiques récents ont été comparés avec 

des relevés historiques (25-50 ans), les sols et les formes d’humus correspondantes ont été décrits, et la 

stabilité de la MO a été étudiée thermiquement (pyrolyse Rock-Eval).  

La composition et le recouvrement spécifique des pelouses calcaires et acides sont restés très stables. En 

revanche, les communautés dépendantes d'un long enneigement (combes à neige) ont changé. Plusieurs 

espèces, arrivant des pelouses avoisinantes, ont augmenté en fréquence et recouvrement, probablement 

en raison des fontes des neiges progressivement plus précoces et des saisons végétatives plus longues.  

Une grande diversité de sols et de formes d’humus caractérise les huit types de végétation. Cependant, 

la distribution des formes d’humus reste surtout contrôlée par le matériel parental du sol, le climat, et 

la topographie. La végétation ne jouerait donc qu’un rôle mineur. Les formes d’humus de type Mull ont 

été observées sur tout le gradient altitudinal (1698-2697 m), mais plus spécifiquement aux altitudes 

inférieures, sur calcaire. Les Moders et Mors, par contre, sont associés aux altitudes élevées et aux 

matériaux parentaux siliceux. Une topographie en cuvette est déterminante pour la présence des formes 

Anmoor. Les racines sont abondantes dans les sols étudiés, surtout sur les pentes raides. Les clés de 

détermination des formes d’humus actuellement disponibles se sont montrées en partie inappropriées 

pour le milieu alpin et des adaptations sont suggérées. Les facteurs écosystémiques qui contrôlent la 

dynamique de la MO sont apparus comme dépendants de l’horizon considéré. Le type de végétation 

influencerait la stabilité thermique de la MO dans la litière mais pas dans les autres horizons du sol. 

Dans les horizons organo-minéraux et minéraux, le taux d’approvisionnement en matériel organique 

frais et les caractéristiques physico-chimiques du milieu pédologique contrôleraient la stabilité 

thermique de la MO. Cette étude confirme que les facteurs affectant le destin de la MO du sol sont 

nombreux, spécifiques au type d’horizon et de sol considérés, et hautement interconnectés. L'évolution 

de la végétation induite par les changements climatiques récents va probablement avoir un impact limité 

sur la dynamique de la MO des sols aux étages subalpins-alpins.   
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 Introduction 

 

 

1.1 State of the art 

1.1.1 The alpine climate 

The term alpine, even if originated from the mountain range of the European Alps, refers to the life zone 

occurring above the natural treeline on mountains worldwide. In the European Alps, the natural treeline 

is located between 1900 (Northern Alps) and 2400 m (Inner Alps) and defines the uppermost limit of 

the subalpine vegetation belt (Favarger, 1995; Körner, 2003), naturally dominated by phanerophytes 

(woody plants higher than 50 cm). Above the treeline elevation, climatic conditions become 

physiologically too harsh to allow tree growth and only low stature vegetation develops. This vegetation, 

dominated by swards, low heaths, cushion plants, and with sporadic annual plants, is defined as alpine 

(Theurillat et al., 1998). The uppermost boundary of the alpine life zone is represented by the occurrence 

of permanent snow cover on flat ground (“snowline”; Ozenda, 1985; Schröter, 1926). The closed alpine 

vegetation progressively turns into fragmented plant cover (Körner, 2003), mostly concentrated in 

favourable rocky places (Theurillat et al., 1998). This transition is observed between 2600 and 3100 m 

(Northern and Inner Alps, respectively) and determines the lower boundary of the nival zone (Theurillat 

et al., 1998). 

During the Atlantic period (7.5-5 ka BP), climate was warmer and wetter than today, allowing for the 

uppermost tree limit to be 250 ± 100 m higher than today’s potential treeline (Carnelli et al., 2004; 

Favilli et al., 2010; Holtmeier and Broll, 2005). A combination of decreasing temperatures since 6.9 ka 

BP (Tinner et al., 1996), and the beginning of extensive clearing and grazing at the Bronze period (ca 4 

ka BP), followed by important deforestations during the Middle Age, led the alpine grasslands to extend 

downwards (Favilli et al., 2010; Gobet et al., 2003; Tinner et al., 1996). The process of forest opening 

continued until the middle of XIXth century and substantially lowered the treeline (Favilli et al., 2010). 

In the Swiss Central Alps, the present treeline elevation is around 12 to 180 m lower than the natural 

treeline during the Holocene (Tinner and Theurillat, 2003). Thus, the alpine vegetation belt expanded 
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downwards and now occupies a space that would climatically correspond to the upper subalpine 

vegetation belt.  

In the present chapter, climatic conditions characterizing the alpine belt are discussed. The following 

considerations are valid also for the upper-subalpine belt that, despite less severe climatic conditions, 

shows very similar trends to the alpine belt. 

The alpine climate results from two main components (Ozenda, 1985): (1) the elevation gradient that 

modulates a series of parameters similarly on many mountain ranges and (2) the complexity of the 

Alpine chain and its geographical position determining local precipitation regimes and wind currents. 

The present chapter focuses on the first component (the effect of elevation), while the local climates 

characterizing the study sites are discussed separately in Chapter 2. 

 

1.1.1.1 Atmospheric pressure 

Atmospheric pressure decreases almost linearly with increasing elevation. As an example, the 

atmospheric pressure at the sea level is around 1013 hPa (average for a standard atmosphere), while it 

is 750 hPa (26% lower) at 2600 m (Körner, 2003). A decrease in pressure is supposed to increase 

molecular diffusivity and therefore stimulate evapotranspiration (De Saussure (1779-1796) in Barry 

1978). However, the concomitant decrease in temperatures at higher elevations reduces the rate of 

molecular diffusion and thus hamper evapotranspiration. The partial pressure of CO2 and oxygen are 

reduced with increasing elevation by the same amount as the total pressure (Körner, 2003). 

Nevertheless, alpine plants evolved towards high photosynthetic efficiency of CO2 utilization per unit 

leaf area (Körner, 2003) and the low CO2-pressure occurring at the alpine belt does not result in 

decreased photosynthesis rates. 

 

1.1.1.2 Temperature 

Mean air temperature declines, in average, by 0.57°C per 100 m increment in the European Alps 

(Schröter, 1926). This year average gradient is however higher in summer (0.7 °C per 100 m) than in 

winter (0.4 °C per 100 m; Ozenda 1985). The elevation lapse rate of temperature is influenced by the 

slope aspect as well, being around 0.1°C higher on South-facing slopes than on North-facing slopes 

(Ozenda, 1985). The annual temperature amplitude (temperature difference between the warmest and 

the coldest month) declines with elevation (Ozenda, 1985): according to Schröter (1926) is around 

13,8°C at 2500 m, while it reaches 19,4°C at 460 m. 

The difference between the actual water vapour pressure and the saturation water vapour pressure (the 

“vapour pressure deficit”) is positively linked to the temperature and, therefore, decreases with 

elevation. This means that in the alpine belt, the capacity of the air to take more moisture is very limited 

and the saturation vapour pressure is more easily reached than at lower elevations (Körner, 2003). 

https://en.wikipedia.org/wiki/Vapour_pressure_of_water


3 

 

Therefore, the absolute atmospheric water content at higher elevations is generally lower than in the 

lowlands (Körner, 2003). 

  

1.1.1.3 Solar radiation  

As a consequence of decreased atmospheric pressure, the solar radiation is intense in the alpine 

belt.Moreover, as air turbidity declines with elevation, the solar radiation undergoes little diffusion by 

the air particles and reaches directly the soil. This determines high thermic contrasts between sun and 

shadow exposed surfaces (Sauberer and Dirmhirn, 1958 in Körner, 2003), and between day and night. 

The radiative heat losses during clear nights are indeed high in the alpine belt (Körner, 2003) and soil 

may freeze even in summer (Taschler and Neuner, 2004). The intensity of solar radiation is also 

modulated by the snow, which increases radiation by reflection but, at the same time, reduces it under 

its cover. However, the relative frequency of local cloud cover also increases with elevation and it might 

counteract the radiation effect (Körner, 2003). 

The UV fraction, highly absorbed by the atmosphere at low elevations, represents an important fraction 

of total solar radiation at high elevations as the atmosphere thickness is lower than in lowlands. The UV 

intensity in the alpine belt may be up to 1,5-2 times higher than in lowlands in summer, and 3-4 times 

in winter (Favarger, 1995). This high intensity may have important effects on alpine plant 

morphogenesis (Körner, 2003). 

 

1.1.1.4 Precipitations 

Mountain ranges act as barriers to air flow and force it upwards. At higher elevations, temperature and 

vapour pressure deficit both drop leading to the formation of clouds and precipitations. The 

precipitation gradient increases by 50 to 200 mm per 100 m in elevation (Favarger, 1995). Contrary to 

temperature, the elevation precipitation gradient presents high local variability determined by the 

relative position on the mountain (windward vs leeward) and especially the wind direction. Oceanic air 

flows from the West and North-West or from the Mediterranean sea and continental winds from North-

East, importantly shape the local precipitation regimes of the European Alps (Favarger, 1995). 

As temperature decreases with elevation, the proportion of precipitation in the form of snow increases 

proportionally. At ca. 2000 m, snow represents between 50 and 60 % of annual precipitations and it 

represents their totality above 3600 m (Ozenda, 1985). The abundance of snow falls, combined to low 

air temperature, results in long snow cover periods in the alpine belt. The growing season of alpine plants 

is consequently very short and it is reduced by ca. 7 days per 100 m increment on north aspect (ca. 6 

days on south aspect; Gesler, 1946 in Favarger, 1995). The growing season period in the alpine belt varies 

from 147 days at 2440 m in the Valais Alps (Körner, 2003 p. 46) to 184 days at the lower alpine belt 

(2463 m) in the Dolomites (Erschbamer et al., 2009).  
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1.1.2 The climate plants experience 

Elevation per se, and the associated variation of climatic parameters, are poor predictors of life 

conditions of alpine plants (Gottfried et al., 1998; Körner, 2003). Despite of “hostile” climatic conditions 

occurring at high elevations, microclimatic conditions can be favourable to the growth of alpine plants. 

During clear sky days, air temperature, wind speed and relative humidity measured at 2 m above the 

surface and within compact leaf canopy at 1-2 cm high are largely decoupled (Körner, 2003). This 

decoupling depends on two main factors: the topography (slope and exposure) and the stature of the 

plants themselves.  

 

1.1.2.1 The role of slope and exposure  

The action of solar radiation and wind is strongly shaped by slope and exposure of the alpine terrain. 

Slope modulates the equatorial solar incidence angle and the duration of snow cover (Körner, 2003). 

Indeed, exposure being equal, snowmelt is anticipated on steeper slopes, while it will be delayed in 

depressions (Michalet et al., 2002).  

The micro-habitat exposure strongly participates to the decoupling between air and leaf surface 

temperatures (Körner, 2003). Moser et al. (1977, in Körner, 2003) measured the temperature on leaves 

of Ranunculus glacialis at contrasting exposures at 3184 m in the Tyrolean Alps during a clear day 

(Figure 1.1). Leaf temperatures were always higher than air temperature at any exposure, but the 

difference was much higher on south than north slopes. While leaf temperatures on the north slope were 

mainly in the -5 to 0 °C range for most part of the day, those on the south slope were mainly (61,5 % of 

hours) in the 0 to 15 °C range. Leaf temperature reached the highest values on ridges around noon, when 

solar incidence is at its maximum on a flat terrain. 

 

 

 

Figure 1.1 - Influence of microhabitat exposure on leaf temperature. Variations of air temperature and Ranunculus 

glacialis leaf temperatures at microhabitats differing in slope exposure during a clear day at 3184 m (July 12th, 

1968; Moser et al. 1977, in Körner, 2003 p. 33).  
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Moreover, exposure also influences the time of snowmelt and, consequently, the length of the growing 

season. According to soil temperature measurements at 10 cm deep on a lower alpine summit (2463 m) 

in the Southern Alps, Erschbamer et al. (2009) found that south-exposed slope displayed significantly 

longer growing seasons than north-exposed slopes. By defining the growing season as the period with 

mean daily soil temperature above 2 °C, this varied from 134 to 172 days from north to south exposure, 

respectively (3 years average).  

When cloud cover inhibits direct sun, as it is very often the case in the Alps, or during night, leaf 

temperature rapidly drops and reaches similar values to the air temperature (Körner, 2003). The 

importance of exposure on temperature experienced by plants is therefore limited to clear sky days. 

Not only exposure, but also the interaction between wind and relief strongly determines the pattern of 

snow distribution in alpine terrains (Figure 1.2).  

 

 

 

Figure 1.2 - Influence of relief and wind on the snow cover distribution in winter and at snowmelt. Arrows 

represent the wind direction. The most representative alpine plant species for each topographic situations are 

displayed in the bottom-right figure and they are indicated by different symbols (Reisigl and Keller, 1987; modified). 

 

 

Strong winds can remove snow from a windward slope and accumulate it on the leeward side and 

depressions. Windward- and leeward-snow patterns may change considerably according to wind 

direction and therefore show high inter-annual variability. On the contrary, snow accumulation in 

depressions and on north-exposed slopes is a quite conservative process and determines spatially 

constant snowmelt figures in the alpine landscape (Figure 1.3). Such places covered by high amounts of 

winter snow for much of the year are called snowbeds and are generally associated to species-poor and 

low productive plant communities (Bjork and Molau, 2007).  

Wind may influence life conditions of alpine plants also by transporting ice pellets and snow that 

physically damage plant tissues (Ozenda, 1985). For this reason, plants occurring on windy ridges are 

often prostrate (Körner, 2003). Moreover, wind affects the aerodynamic boundary layer enhancing the 

convective heat loss and evaporative cooling. The consequent dehydration may be lethal for some plant 

species that therefore concentrate in sheltered spots formed by the micro-reliefs.  
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Figure 1.3 - Snow cover distribution shaped by topography and exposure at the alpine – subnival belt of the Réchy 

Valley (July 1st 2015).  

 

 

The high micro-topography diversity, typical of the alpine terrain, induces large gradients of soil 

moisture, leaf temperature, wind exposure, snow cover and timing of snowmelt on a very short space 

scale. As the alpine plant species distribution is tightly coupled to the micro-climatic conditions 

(Michalet et al., 2002), the variation of slope and exposure induces a mosaic of plant communities within 

the same elevation range (Scherrer and Körner, 2011). 

 

1.1.2.2 The role of plants themselves 

Under similar conditions of slope and exposure, a prostrated dwarf shrub and a rosette plant show 

higher leaf temperatures than a taller shrub or an herbaceous plant with leaves along the stem (Körner, 

2003). Thus, the more plants are in contact with ground, the higher their leaf temperature and the 

decoupling with atmospheric temperature. With an air temperature of 22 °C, the centre of the rosette of 

a common alpine crassulacean plant, as Sempervivum montanum, were shown to warm up to 54 °C 

(Larcher, 1977 in Körner, 2003). The heat accumulation provides advantages for plant development, 

photosynthesis and especially reproduction, which largely depends on warm temperatures (Körner, 

2003). The compact life form, which also protects from strong winds and excessive evapotranspiration, 

is therefore characteristic of the alpine environment. Tussock grasses, dominant life form in the alpine 

grasslands, do not reach the same high leaf temperatures as in prostrate plants because of their taller 

size. However, the presence of standing dead leaves at their stem basis represents a protection against 

freezing, controls the nutrient cycling and avoids space occupancy by other plants (Körner, 2003). Such 

a litter trap life strategy can also avoid litter removal and transport by strong winds (Gavazov, 2010). It 

has been showed that strong wind and snowdrift are responsible for important litter redistribution in 

arctic landscapes, removing it from ridges and accumulating in depressions as snowbeds (Fahnestock et 

al., 2000).  
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1.1.3 The alpine soils and humus forms 

1.1.3.1 General features 

Mountain soils generate a significant diversity of ecosystem services, including physical support to 

plants, nutrient and organic carbon (C) cycling, biodiversity and biological activity (FAO, 2015). The 

formation and evolution of alpine soils is deeply connected to the nature of the parent material, the 

relief, the biosphere, the climate, and the time passed since the parent material deposition (Jenny, 1941). 

Contrarily to lowland environments, these factors present large variations in a very short space scale in 

the Alps, leading to a remarkable edaphic variability (Baruck et al., 2016).  

The steep topography and the harsh climatic conditions proper to the alpine environment lead to 

morphodynamic and cryogenic processes that are important drivers of alpine soils genesis (Körner, 

2003). However, the air temperature and its diurnal and annual variations are mostly reflected in the 

topsoil layer (5 cm deep), but are nearly completely damped at 50 cm deep (Schaetzl and Thompson, 

2015) Therefore, soil freezing may occur especially at surface, in diurnal or seasonal cycles, according to 

the slope exposure, the snow cover properties and the plant canopy (Körner, 2003). As alpine soils are 

mostly covered by snow in winter, topsoil freezing is more likely to occur in summer. During a freeze-

thaw cycle, the topsoil and the above vegetation are heaved and the substrate becomes periodically loose 

(Körner, 2003). This process, combined with sufficient moisture, leads to solifluction along steep slopes, 

or frost hummock formation, polygon soils, garland and stripe formations (Körner, 2003). Solifluction 

and active erosive processes on steep slopes commonly result in topsoil erosion, profile truncation, and 

burying of A horizons.  

The thermal conditions and the moisture availability not only play a role in cryogenic processes, they 

are also essential drivers of physical and chemical weathering of parent material (Egli et al., 2014) and 

organic matter (OM) decomposition (Ponge, 2013). Freeze-thaw cycles are important drivers of physical 

weathering in high-elevation soils, especially in late fall, before the first important snowfall (Dahlgren 

et al., 1997). Chemical weathering has often been assumed to be strictly related to temperature, and 

therefore to display low rates in cold high elevations sites. However, many studies evidence that 

weathering in cold regions may be similar or even higher than in warmer regions (Follmi et al., 2009; 

Hall et al., 2002). Instead of temperature, moisture availability seems to be particularly crucial for 

chemical weathering in the alpine regions (Egli et al., 2006).  

Moreover, the age of material, on which the soil develops, influences the weathering rates. Young 

geomorphic surfaces (10 to 104 years old) weather up to 3-4 orders of magnitude faster than older 

surfaces (105 to 106 years old; Egli et al., 2014). Thus, the abundance of fresh mineral surfaces and fine-

grained sediments provided by glacier erosion furtherly participate to the enhancement of the alpine 

weathering rates (Riebe et al., 2004).  

The alpine soils are not always the result of the in situ bedrock weathering, but very often they originate 

from surficial deposits made of terrestrial sediments reworked during Quaternary glaciations 

(Martignier et al., 2013). Present and past aeolian dusts belong to these deposits (Martignier et al., 2015) 

and, given their wide distribution in the Alpine chain and their present-day high deposition rates (up to 
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102 g m-2 yr-1; Kufmann, 2003), they can play a major role in alpine pedogenic processes (Martignier et 

al., 2013). 

Alpine vegetation is affected by soil type and, at the same time, it has an effect on soil and, notably, OM 

properties. Acidic soils are characterized by high solubility of several potential toxic ions, such as Al3+, 

Mn2+, and Fe3+, and by deficiencies of important plant nutrients, such as PO4
3-, Ca2+, Mg2+, and K+. 

Calcareous soils are dominated by Ca2+ and HCO3
- ions instead, while they present low availability of 

Fe3+ (Lee, 1999). Plants tolerating high levels of Al3+ are able to grow on strongly acidic soils 

(“acidophilic” species), while those inhibited by Al3+ but tolerating deficiencies of Fe3+ and Ca2+ 

saturation levels  are thus mainly found on alkaline soils (“calcicole” species; Clymo, 1962; Lee, 1999; 

Rorison, 1986). By turn, vegetation influences the soil OM content and its vertical distribution through 

the root system (Jobbagy and Jackson, 2000). Furthermore, organic acids produced by litter, root 

exudates and root decomposition are likely involved in the chemical weathering of the parent material 

(Egli et al., 2008b) as well as in some processes of soil formation, such as podzolisation (Lundstrom et 

al., 2000).  

The role of the biosphere in the soil formation includes also the contribution of soil fauna and 

microorganisms. These organisms are responsible for litter fragmentation, mineralisation, and 

incorporation into the mineral soil, as well as soil structure, porosity, and water infiltration (Schaetzl 

and Thompson, 2015). Macrofauna comminuters, such as earthworms and large arthropods, however 

are considered to be absent in alpine soils due to the harsh climatic conditions (Jiang et al., 2015; O'Lear 

and Seastedt, 1994). Instead, microarthropods (oribatid mites and springtails) dominate in alpine 

tundra (O'Lear and Seastedt, 1994), as well as bacteria, fungi and some archaea (Hofmann et al., 2016). 

Moreover, according to a study of Blagodatskaya et al. (2010) in a forest ecosystem, the slope exposure 

influences the fungal-bacterial ratio: fungi would dominate on north-east facing slopes, colder and 

wetter, and bacteria would dominate instead on south-west facing slopes, warmer and drier.  

Climate is among the crucial parameters that determine rates of litter decomposition (De Deyn et al., 

2008) and rates of nutrient transfer from the parent material to the soil system (White and Blum, 1995). 

Given the harsh climatic conditions of the alpine ecosystem, both processes are expected to be slow and 

the alpine soils to be nutrient-poor (Körner, 2003). According to Seastedt et al. (2001), the full structural 

decomposition of high alpine forbs may take 2 years, 5 years for sedge leaves, and more than 10 years 

for evergreen dwarf shrubs.  

Alpine plants developed adaptations to the low availability of nutrients by reducing their growth rate 

and their aboveground biomass and developing important root systems (Körner, 2003). The litter 

produced by these slow-growing species is considered highly concentrated in organic C forms and poor 

in nutrients (Aerts and Chapin, 2000; De Deyn et al., 2008). As a result, these litters present high C/N 

ratio, which is generally considered as an indicator of poor quality and low potential degradability. 

Resistance forms, such as sclerophylly, succulence, and evergreen foliage make the litter recalcitrant to 

decomposition (Ponge, 2013), and furtherly enhance the nutrient limitation.  
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Besides vascular plants, cryptogams can also play a major role in the soil nutrient cycling. Bryophytes, 

and some lichen groups, can increase the soil nutrient content by hosting nitrogen-fixing bacteria or, in 

contrast, can decrease it by the accumulation of recalcitrant polyphenols (bryophytes notably; 

Cornelissen et al. 2007).  

Different decomposition rates according to the litter nutrient content might be the result of different 

microbial community composition. Barta et al. (2010) demonstrated that fungi (slow decomposer; 

Wardle et al., 2004) dominate when litter is rich in phenolics and poor in phosphorus (P), while bacteria 

(rapid decomposer) are prevalent in opposite conditions.   

Moreover, alpine plants develop an important root system, probably to supply the lack of nutriments 

and a reduced mycorrhization (Körner, 2003). Alpine forbs produce 62 m of fine roots per g of dry root 

matter in average, while comparable forbs at low elevations produce 41 m g-1 (Körner and Renhardt, 

1987). In terms of root biomass, Hitz et al. (2001) measured an increase from 7 to 13 t ha-1 (0-5 cm) from 

1665 m up to 2525 m in the Swiss Alps. The C investment in alpine plant species is therefore largely 

unbalanced in favour of belowground structures (Figure 1.4). Indeed, the annual C input from 

aboveground phytomass and roots in a Haplic Podzol at 2525 m amounted to 17.9 and 91.1 g m-2 year-1, 

respectively (Hitz et al., 2001). Similarly, a root : shoot ratio of 5.8 has been estimated in alpine 

grasslands of the Qinghai-Tibetan plateau (Yang et al., 2009). 

 

 

Figure 1.4 - Dry matter allocation in perennial herbaceous plant species from low and high elevations in the Alps 

in four plant compartments: stem plus flower, leaves, storage organs plus thick roots, fine roots. (Körner and 

Renhardt, 1987 in Körner, 2003).  
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Decomposability of roots has been poorly studied so far, but it appears to be lower than that of shoots, 

and thereby, roots represent a source of recalcitrant C pool (Craine et al., 2005; Tjoelker et al., 2005). 

However, high root production is also accompanied by higher concentrations of root exudates, which 

represent a source of labile C and stimulate the activity of some soil decomposers (priming effect; 

Kuzyakov, 2002).  

 

1.1.3.2 Humus forms 

Most of the plant-soil interactions take place within the humus form, i.e. the ensemble of organic layers 

and the organo-mineral horizon (usually the A horizon) of a soil profile. Being at the interface between 

vegetation, soil organisms, parent material, and under the control of climatic parameters (Ponge, 2003), 

the humus forms have been suggested as synthetic indicators of environmental variable interactions 

(Bonifacio et al., 2017).  

Soil parent material has been identified as a major determinant of humus forms at large scale to the 

same level as climate (Ponge et al., 2011). Indeed, in forest ecosystem of France, moder and mor forms 

were prevalently associated to neutral to acid soils, while eumull forms (the more active form among the 

mulls) were dominant in alkaline warmer soils (Ponge et al., 2011). 

Alpine soils and humus forms have been poorly studied compared to their lowland counterparts. Indeed, 

with the exception of Austria who developed its soil classification system in the Alpine environment, 

other Nations of the Alp chain did not take into account the specifics of high-elevation soils (Baruck et 

al., 2016). Similarly, humus form classifications originated in forest ecosystems and are only recently 

opening their identification keys to include other ecosystems (e.g. Zanella et al., 2017). 

In light of present knowledge, Moder and Mor humus forms are expected in the alpine life zone because 

of the low temperatures, the poor litter degradability and the absence of macrofauna comminuters, 

(Ponge, 2003). Mull forms would be limited to low elevations (Ascher et al., 2012; Bonifacio et al., 2017) 

and south facing slopes (Zanella et al., 2017). However, a description of alpine humus forms diversity, 

and of their relationship with vegetation, climate and soil parent material is still lacking for the alpine 

ecosystem.  

 

1.1.4 Effects of snowpack 

Alpine soils can be covered by snow for more than half of the year, up to ten months in depressions or 

north-exposed sites (snowbeds). The snow layer plays fundamental roles in alpine ecology, going from 

protection against low temperature extremes, winter desiccation, ice blast, solar radiation, and control 

on nutrient cycling (Körner, 2003). 

During winter, the soil temperature is highly dependent on the snow cover timing, thickness, density, 

and duration (Maurer and Bowling, 2014; Zhang, 2005). A snowpack thickness of 30-40 cm is sufficient 
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to maintain near zero temperatures at the topsoil (Brooks and Williams, 1999; Cline, 1995), even if the 

air temperature is -22 °C (Eckel and Thams, 1939 in Körner 2003). The snow insulation potential is 

inversely proportional to thermal conductivity, which, in turn, increases with high snow density (Zhang, 

2005). For instance, a fresh fallen, low density snow (0.1 g cm-3) displays a thermal conductivity tenfold 

lower than a compacted snow (density of 0.4 g cm-3, Körner 2003). In turn, the thermal conductivity of 

a dense ripened snow layer is 5 to 20 times lower than a mineral soil (Zhang, 2005). The thermal 

insulation by snow cover may avoid soil freezing for all winter season, provided that the snow cover is 

constant, thick, and occurs early enough in winter. 

 

1.1.4.1 On plants 

The snow cover allows the penetration of a certain amount of solar radiation to the ground, selecting for 

the less photosynthetically active part of the spectrum (blue-green range, Richardson and Salisbury, 

1977 in Körner, 2003). The fraction of total radiation reaching the ground is negligible under thick snow 

cover and it increases gradually during winter, with the decline of snowpack thickness and the increase 

of solar radiation (Körner, 2003). This process, accompanied by the thermal insulation, and the large 

water availability, permits some plants to be physiologically active and to achieve net photosynthetic C 

gains under thin snowpack in spring (Körner, 2003). It is the case of Soldanella alpina, species in genera 

Geum and Potentilla, and grasses such as Nardus stricta, whose leaves remain green over winter. 

Nevertheless, due to small radiation penetrating the snowpack, sub-snow photosynthesis seems to be 

limited and to only slightly contribute to the annual C balance (Körner, 2003). Rather, the overwinter 

green leaves have to be considered as an adaptation to short growing seasons, as they allow plants to 

rapidly develop following snowmelt.  

Snowbed plant species, spending around nine months below the snowpack in relatively warm 

temperatures, do not need to invest resources in cryoprotective measures (Larcher, 1980 in Körner, 

2003). Indeed, these species were shown to share some traits with plants from shady environments, 

such as soft leaves and a high chlorophyll content on a dry leaf mass basis (Körner, 2003). These 

characteristics may enhance the litter decomposition process in the snowbeds, compared to other more 

stressful environments, such as windy ridges, where discontinuous snow cover, and therefore possible 

soil freezing events, hamper the microbial activity.  

 

1.1.4.2 On microbes 

Similarly to photosynthetic activity, microbial activity also persists in snow covered alpine soils 

(Edwards et al., 2007; Salisbury, 1985). The thermal insulation allows microscopic films of free water to 

form between soil particles and this supports the proliferation of many cold-adapted (psychrophylic) 

microbial communities (Gavazov, 2010).  

More specifically, the subnivial heterotrophic activity highly depends on the duration of thawed soil and 

on the severity of frost events occurring before snowfall or during winter if the snow cover is 
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discontinuous (Brooks and Williams, 1999). At sites where snow cover occurs late in fall, early soil 

freezing is frequent and most biotic activities decline. Some alpine microbial communities are however 

resistant to freeze-thaw cycles (Lipson and Monson, 1998), as well as springtail and mite communities 

in sub-Arctic soils (Sjursen et al., 2005). Moreover, freeze-thaw events are particularly effective in 

physically disintegrating organic matter (OM) and releasing labile organic C, that then can stimulate the 

microbial activity once soils thaw under the winter snowpack (Schimel and Clein, 1996).  

Microbial activity and the nitrogen (N) immobilization in the microbial biomass, especially fungi 

(Schmidt and Lipson, 2004), gradually increase during winter (Brooks and Williams, 1999). The result 

is an accumulation of NO3
- (Heuer et al., 1999) and NH4

+ (Bowman, 1992) under the snowpack and a 

very limited N leaching (Brooks and Williams, 1999). At snowmelt, soil becomes water saturated, 

temperature increases and microbial biomass and activity decline sharply (Bardgett et al., 2005). 

According to Schmidt and Lipson (2004), the winter fungi community dies-off at snowmelt and is 

replaced by a summer bacteria-dominated community that can tolerate higher temperatures and mostly 

feed on root exudates.  

Moreover, snow itself acts as a nutrient reservoir by accumulating significant amounts of atmospheric 

depositions (aeolian dust) over winter, depending upon the provenance and direction of air fluxes 

(Edwards et al., 2007). These nutrients, together with those resulting from the microbial community 

shift, are released as a pulse during the spring snowmelt and could significantly participate to the annual 

N-uptake of alpine plants (Bilbrough et al., 2000). Hence, soil fertility in long snow covered areas seems 

to be relatively high (Körner, 2003), compared to other alpine and subalpine ecosystems with low snow 

cover. Moreover, the subnivial fluctuations in microbial activity may have important consequences on 

the C and N biogeochemical cycles of alpine ecosystems (Freppaz et al., 2008).  

 

1.1.4.3 On soils 

The snowmelt season is crucial also for soil pedogenesis. The related intense hydrological activity may 

result in considerable loss of organic acids from the soil system through leaching (Brooks et al., 1996). 

The large meltwater availability combined with the presence of organic complexing/chelating agents are 

considered to be responsible of intense podzolisation on well-drained parent material (Hiller et al., 

2005). On the contrary, moisture levels close to field capacity on less-permeable parent material may 

lead to reductive conditions (Hiller et al., 2005) and the oxygen limitation may reduce OM decay 

(Gavazov, 2010). 

 

1.1.5 Organic matter stability 

Soil OM provides essential ecosystem services as it contributes to soil fertility, water quality and 

retention, biodiversity, resistance to soil erosion, and could play a fundamental role in the mitigation of 

climate change (Adhikari and Hartemink, 2016). Therefore, it is necessary to understand the 
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mechanisms governing its stability, namely its preservation from mineralisation (Plante et al., 2011; 

Sollins et al., 1996; von Lutzow et al., 2006) in order to maintain soil OM stocks and their associated 

functions. 

 

1.1.5.1 Controlling factors 

It was previously widely held that mineralisation rates of soil OM reflected the kinetics of enzymatic 

reactions and were consequently largely dependent on the intrinsic molecular composition of plant litter 

entering the soil system (Davidson and Janssens, 2006). This concept had been formalised under the 

term “selective preservation” (Sollins et al., 1996), and assumed that soil microorganisms preferentially 

decomposed the inherently labile components of OM, causing the accrual of recalcitrant components 

(Aber et al., 1990; Melillo et al., 1982). 

Recent studies have however questioned the idea that organic molecules could be inherently “stable” or 

“recalcitrant” (Lehmann and Kleber, 2015; Marschner et al., 2008) by showing that potentially 

persistent organic molecules, such as lignin, could be mineralised relatively quickly in some soil 

conditions (Gleixner et al., 1999; Gleixner et al., 2002; Heim and Schmidt, 2007). Contrarily, 

supposedly labile compounds, such as polysaccharides and proteins, can persist in soil for several 

decades, centuries or even millennia before being mineralised (Derrien et al., 2006; Gleixner et al., 1999; 

Gleixner et al., 2002). These long residence times can be in large part attributed to protection or 

stabilisation by soil minerals (Gleixner et al., 2002; Spielvogel et al., 2008). 

These recent findings have led to the proposal of a new paradigm, most fully expressed by Schmidt et al. 

(2011). It suggests that selective preservation only plays an essential role in the initial stages of litter 

decomposition on the soil surface, while its importance becomes marginal when organic material is 

incorporated into the mineral soil. In the mineral soil, OM decomposition rates are instead mainly 

driven by its spatial accessibility to microorganisms and enzymes and by the type and number of 

interactions established with mineral surfaces (Figure 1.5; Lehmann and Kleber, 2015; Schmidt et al., 

2011; Sollins et al., 1996; von Lutzow et al., 2006). OM stability in the mineral soil is thus mainly 

governed by ecosystem properties such as climate, soil texture, mineralogy and geochemistry (Schmidt 

et al., 2011).  

Even though considerably high proportions (between 30 and 63%) of C are stored in the subsoil, between 

30 and 100 cm deep (Batjes, 1996), most of the studies on soil OM stabilisation mechanisms have 

focused on the topsoil (Rumpel and Kogel-Knabner, 2011). This may have resulted in a significant bias 

in our understanding of drivers of OM stability. Indeed, manipulative laboratory experiments suggest 

that factors controlling C dynamics in topsoil and subsoil may be substantially different. Fierer et al. 

(2003) and Salomé et al. (2010) incubated topsoil and subsoil material and found that water potential 

and supply of fresh organic material were important for surface horizons, while nutrient input, 

temperature and the physical accessibility of organic substrates appeared as the main regulatory 

mechanisms of C mineralisation in the subsurface soil layers. Whether this divergence of controls on 

soil OM stability is operative under field conditions remains however difficult to evaluate. 
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Figure 1.5 - Soil continuum model (SCM)recently proposed by Lehmann and Kleber (2015). Plant and animal 

residues are progressively decomposed by biotic agents, from intact fresh material to CO2. But stabilizing factors, 

such as organo-mineral interactions and occlusion by aggregates, may intervene at each step of the decomposition 

process. Dashed arrow lines represent mainly abiotic transfers, solid lines represent mainly biotic transfers; thicker 

lines indicate more rapid rates; larger boxes and ends of wedges illustrate greater pool sizes; all differences are 

illustrative. All arrows represent processes that are a function of temperature, moisture and the biota present 

(Lehmann and Kleber, 2015).  

 

 

1.1.5.2 Methods for the assessment of organic matter stability 

Soil OM stability can be assessed with different fractionation techniques based on physical, chemical, or 

biological properties of OM (see Kögel-Knabner et al., 2008 for a review). 

Physical and chemical fractionation techniques separate soil OM into operationally-defined pools whose 

relevance to field-scale OM dynamics may be difficult to assess (Popleau et al., in review). Investigations 

that consider the bulk sample without pre-treatment may allow for a more integrative assessment of OM 

stability. In this respect, biological mineralisation during long-term incubation experiments is generally 
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favoured (Plante et al., 2011), but the long durations of incubation required to be fully informative (up 

to several decades) represent an impediment for processing large numbers of samples efficiently.  

Thermal decomposition techniques offer a promising alternative to study soil OM stability. Results from 

thermal decomposition studies are consistent with those of incubation experiments (Plante et al., 2011) 

and some physical fractionation schemes (Saenger et al., 2015). The pertinence of thermal techniques is 

based on the assumption, validated by Plante et al. (2011), that thermal stability of OM is related to its 

biological or chemical stability, as the activation energy required for thermal bond cleavage correlates 

to the chemical energy required for enzymatic cleavage (Kögel-Knabner et al., 2008). Schiedung et al. 

(2017) recently showed that thermal oxidation between 200 and 400°C was a poor predictor of old (17 

years or older) versus recent vegetation inputs. 

Pyrolysis techniques appear better suited to assess biological stability, with higher temperatures 

reported for break-down of persistent versus labile OM (Barré et al., 2016). The Rock-Eval pyrolysis 

technique is now widely employed for routine analysis of OM in soil samples (see Sebag et al., 2016 for 

a review). The method quantifies total organic and inorganic C contents of a sample (either soil or litter) 

and provides a wide range of parameters that can be used to evaluate OM quality and its thermal 

stability. When compared to other methods used to quantify pools of recent C (as assessed using 14C 

dating), Rock-Eval analysis performed most effectively (Vinduskova et al., 2015). 

 

1.1.5.3 Specificities of the alpine environment 

Alpine soils are known to contain higher organic C concentrations than at lower elevations (Leifeld et 

al., 2009; Sjogersten et al., 2011). Many studies using fractionation techniques observed that the alpine 

OM is mainly composed of light particulate organic matter (POM) and less of heavier mineral associated 

organic matter (MaOM; Budge et al. 2011; Leifeld et al., 2009; Saenger et al., 2015; Zimmermann et al., 

2007) compared to temperate soils. However, this held especially true for the topsoil layers (0-5 cm), 

while the contribution of POM becomes very limited to the deep bulk OM (Leifeld et al., 2009). 

Apparently, plant roots are the major contributors to the POM fraction (Leifeld et al., 2009). The POM 

fraction is considered more labile and chemically more similar to the original plant input than the 

MaOM is (Six et al., 2001). The lability of the POM fraction is reflected in its shorter mean residence 

times (MRT), calculated using radiocarbon (14C) dating, compared to the MaOM, being around 500 

years (Budge et al., 2011; Leifeld et al., 2009). However, the MRT of POM is longer in high elevations 

soils (about 100 years) than in the lowlands (few years to few decades; Leifeld et al., 2009), thus 

indicating decreasing rates of plant litter decomposition with elevation. By contrast the MRT of the 

MaOM seems to be independent from elevation, but rather to correlate with the proportion of silt and 

clay fraction (Leifeld et al., 2009). 

The MRT of POM variate along the soil profile as well. According to Budge et al. (2011), POM in deep 

soil layers of several alpine Dystric Cambisols present longer residence times and lower transformation 

degrees (deduced from high C/N ratio) than in the topsoil. These results were interpreted by the same 

authors as a result of decreasing macronutrient content and increasing physical protection with soil 
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depth, both hampering the biological OM decomposition. The reason why POM preferentially 

accumulates at high elevation soils and displays long MRT is not clear yet. Besides of the limiting effects 

of low temperatures on OM decomposition, Budge et al. (2011) argue that also plant productivity, 

functional type of aboveground vegetation, and nutrient limitations due to low soil pH may be important 

controlling factors of alpine OM dynamics. 

The Rock-Eval pyrolysis has been applied to alpine soils only in the studies of Saenger et al. (2013; 2015). 

These authors compared the topsoil (0-10 cm) OM thermal stability among eleven different eco-units 

(i.e. plant communities) from 1300 to 2340 m. Among the alpine eco-units, mountain ridges (1980-

2341 m) showed high OM thermal lability and up to 69% of POM fraction. However, alpine meadows 

associated to Cambisols, even if located at the same elevations as mountain ridges, displayed among the 

highest thermal stabilities (Saenger et al., 2013). Greater mineral associations and aggregation in the 

alpine meadows than in mountain ridges were suggested by the authors to explain the observed 

differences.  

To date, the study of Saenger et al. (2013) is the first having addressed soil OM vulnerability at the 

landscape scale in mountain regions. However, the small panel of plant communities considered in the 

alpine belt (only two eco-units), as well as the lack of subsoil sampling, did not allow the authors to 

detect the major drivers of OM stability in the alpine ecosystem.  

 

1.1.6 Impacts of global changes on the alpine environment 

During the end of the 20th century (1975–2004), the mean annual temperature in Switzerland increased 

by 0.57°C per decade with a stronger trend in spring and summer seasons (Rebetez and Reinhard, 

2008). After a gradual increase until the early 80’s, snow precipitation in Switzerland significantly 

decreased (Laternser and Schneebeli, 2003) with a particularly pronounced trend at lower elevations 

(501-800 m a.s.l., Serquet et al., 2013). Snowfall decreased above 1700 m as well, but only at the 

beginning and at the end of the winter season (Serquet et al., 2013). At such elevations, winter 

temperatures are generally much lower than the melting point and, even with warmer conditions, there 

is little potential for a decrease in snowfall days (Serquet et al., 2011). By contrast, the combination of 

higher temperatures and lower snowfalls during the spring season result in a thinner snow cover (IPCC, 

2014), earlier melt-out dates and longer growing seasons for plants (Dye, 2002). 

Future scenarios predict the continuation of this trend through the 21st century and indicate that 

vegetation of high latitudes and elevations are the most threatened (ACIA, 2005; IPCC, 2014). 

 

1.1.6.1 Impacts on vegetation  

Impacts of the recent climate change on alpine vegetation have been largely recorded by many long-

term studies on European upper alpine and nival summits. Authors observed an increase in species 

richness during the last century (see Stöckli et al., 2011 for a review), already noticeable on a short time 
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scale (2001-2008; Pauli et al., 2012). The newly arrived species are subalpine and lower alpine species 

(Matteodo et al., 2013; Vittoz et al., 2008a) and now, because of longer growing seasons, they are able 

to grow at higher elevations. Space on the summits is not a constraint to colonisation as it is widely 

available. However, the upward shift of plant species led, not only to higher species number, but also to 

a homogenisation of plant composition across Alpine Swiss summits (Jurasinski and Kreyling, 2007). 

Similarly, vegetation of the high northern latitudes has been changing over the past few decades and a 

general increase of biomass and proliferation of shrub species are responsible for the tundra “greening” 

(see Epstein et al., 2013 for a review).  

Many more uncertainties exist about the effects of climate warming at lower elevations. A shift of treeline 

northwards and to higher elevations is the most often observed change on European mountain ranges 

(see Garamvoelgyi and Hufnagel, 2013 for a review). In the Swiss Alps, the forest limit moved upward 

with a mean decadal increment of 28 m between 1985 and 1997 (Gehrig-Fasel et al., 2007). However, 

between treeline and the upper alpine-nival belt, there is a wide range of plant communities whose 

responses to altered temperatures and precipitations have been poorly investigated so far. This is 

unfortunate, as identifying the most threatened plant communities is very important to establish proper 

conservation measures. Some previous long-term surveys focused on changes of specific plant 

community, such as alpine siliceous grasslands (Dupré et al., 2010; Windmaißer and Reisch, 2013), 

calcareous grasslands (Kudernatsch et al., 2005; Vittoz et al., 2009), or snowbed communities 

(Carbognani et al., 2014; Pickering et al., 2014; Sandvik and Odland, 2014). However, only a couple of 

studies located in the Scottish highlands (Britton et al., 2009; Ross et al., 2012), one in the Austrian 

(Gritsch et al., 2016), and one in the Italian Alps (Cannone and Pignatti, 2014), looked at long-term 

vegetation changes in a variety of alpine plant communities.  

At these elevations, the effects of climate and land-use changes are difficult to disentangle. Indeed, 

seasonal grazing has been decreasing and many pastures have been abandoned since the end of the 

nineteenth century (Bätzing, 1991). This highly contributed to the forest expansion toward higher 

elevations (Gehrig-Fasel et al., 2007; Vittoz et al., 2008b) and favoured the arrival of plants from fallow 

and wood edge communities in the subalpine grasslands (Vittoz et al., 2009). Moreover, as a result of 

industrial, traffic, and agronomic emissions, tropospheric concentrations of nitrogen compounds have 

increased remarkably, reaching levels that are likely to affect the aboveground productivity of alpine 

plants (Bassin et al., 2007).  

It has been demonstrated that nitrogen deposition causes a decrease of species richness in the Swiss 

montane grasslands, with oligotrophic, and usually rare, species being particularly disfavoured (Roth et 

al., 2013). Subalpine and alpine grasslands are likely more vulnerable to negative effects of N deposition, 

as they have shorter growing seasons and generally thinner and nutrient poorer soils (Bowman et al., 

2012). However, increased N depositions may have different consequences between habitats: using a 

plant trait analysis, Maskell et al. (2010) showed that eutrophication and acidification occurred, both of 

which can be responsible for species loss. Indeed, in a moss-dominated alpine heath of Northern Europe, 

N deposition seems to trigger a decline of plant diversity and shrub, bryophyte and lichen covers, but an 

increase in the graminoid cover (Armitage et al., 2014).  
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1.1.6.2 Impacts on soils 

The time scale for soil development and evolution is considered to be ten times longer than that of 

vegetation (Theurillat et al., 1998). Even if some processes operate quite fast in subalpine and alpine 

climates, such as formation of podzolic soil layers (few centuries, Lundstrom et al., 2000), several 

thousand years is the time needed to form soils. Therefore, one can expect that the effects of recent 

climate changes are hardly detectable in terms of pedogenic processes. However, climate variables do 

exert both a direct and indirect influence on the amplitude of soil weathering that, in turn, controls the 

availability of reactive sites for OM stabilization (Doetterl et al., 2015). 

Directly, temperature and precipitations are supposed to have an effect on the kinetic rate of mineral 

dissolution (Egli et al., 2003). Furthermore, climate warming accelerates the glacier retreat and new 

deglaciated areas are becoming increasingly available. The contact between large amounts of meltwaters 

and fine-grained sediment, which are typical of the proglacial areas, allow for high weathering rates and 

rapid soil development (Mavris et al., 2011). Indirectly, climate may influence the soil weathering by 

controlling the microbial activity and the release of organic acids, which are major agents of mineral 

alteration, both in siliceous (Egli et al., 2008b; Egli et al., 2010) and calcareous soils (Egli et al., 2008a). 

The quality and amount of these organic acids is also dependent on the vegetation type, which is as well 

subject to change following climate variations.  

The soil OM component, with respect to the mineral one, is expected to track recent climate changes at 

a more comparable time scale (Theurillat et al., 1998), because of the temperature-sensitivity 

characterizing the decomposition process. Moreover, since the soil C stock is more than twice higher 

than the atmosphere one (Trumbore, 2009), its response to warming may have important consequences 

on the ecosystem C balance and, for this reason, it is raising increasing concerns among the scientific 

community (see von Lutzow and Kogel-Knabner, 2009 for a review). 

The understanding of climate-driven changes in the soil OM stock is particularly pertinent in mountain 

ecosystems. Alpine soils cover about 4 • 106 km2 worldwide (Körner, 2003) and, together with northern 

latitude soils, they represent the largest OM stock (Leifeld et al., 2009; Sjogersten et al., 2011). These 

ecosystems are expected to experience a more severe warming than temperate regions (Rebetez and 

Reinhard, 2008), and to display higher temperature sensitivities in the OM decomposition process 

(Hobbie et al., 2002; Leifeld et al., 2009).  

Global warming could have multiple and contrasting effects on OM permanence in soils (von Lutzow 

and Kogel-Knabner, 2009). Higher temperatures can potentially accelerate microbial respiration and 

therefore soil OM mineralisation, with a consequent increase of the potential CO2 source represented by 

the soils and a positive feedback on the atmospheric CO2 concentration (Bond-Lamberty and Thomson, 

2010). Conversely, higher temperatures and CO2 concentrations may increase plant net primary 

production and plant-derived C inputs to soil and, if this process dominates over OM mineralisation, a 

soil C sink potential has to be expected (Davidson and Janssens, 2006). In a short term, warming 

experiment (+4°C over one season), Hagedorn et al. (2010a) demonstrated that OM decomposition in 

alpine treeline soils increased much more than plant growth. However, it remains unclear if such trends 
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would be confirmed on the long term. The increase in OM mineralisation might also induce larger 

nutrient availability, which would enhance plant growth (Hagedorn et al., 2010b). Increasing 

temperatures, together with land-use changes, are also responsible of elevation shift of vegetation belts. 

This process is supposed to change the quality and amount of soil OM, with uncertain consequences on 

the decomposition rates (Hagedorn et al., 2010b). 

The decrease of snow precipitation, later snowfall and earlier snowmelts, may expose alpine soils to 

freezing temperature with higher frequency. This was shown in a Norwegian manipulative experiment 

(Kaste et al., 2008), in which the snow removal caused soil frost; however no systematic effects on N 

dynamics were observed. Changes in snow cover are more likely to affect OM decomposition rates by 

influencing the soil moisture content and duration of waterlogging conditions. Indeed, higher 

temperatures alone do not increase litter decomposition rates (Aerts, 2006). A certain soil water content 

is necessary for microbial activity, as extracellular enzymes and soluble organic C substrates need water 

films to encounter. The scarcity of water (summertime drought), or its occurrence in a frozen state (e.g. 

permafrost), may reduce the thickness of such water films and thus lead to spatial inaccessibility of the 

substrate (Davidson and Janssens, 2006; Thomsen et al., 2003).  

Permafrost soils are intensively studied in light of the recent warming, as their thawing could release 

large quantities of greenhouse gases, methane being of high concern (Anthony et al., 2012). Moreover, 

permafrost soils represent a large organic C reservoir potentially available for decomposition once 

frozen soil layers thaw (Schuur et al., 2008). It has been estimated that 15-30% of the permafrost area 

worldwide could thaw by 2050 (Anisimov and Reneva, 2006) and release about 100 Pg C by the end of 

the twenty first century (Gruber, 2004).  

Flooded soils are also vulnerable, as increasing drying trends may allow for aerobic decomposition and 

enhance C losses, as Bellamy et al. (2005) demonstrated in peat soils and bogs of England and Wales. 

Peatlands are generally a source of methane (CH4), which has a greenhouse warming potential on a per 

molecule basis 23 times higher than CO2 on a 100-year timescale (Ramaswamy et al., 2001 in Davidson 

and Janssens, 2006). Hence, the warming-induced CO2 losses from peatlands could be compensated by 

a reduction in CH4 emissions, and they will not necessarily enhance global warming (Whalen and 

Reeburgh, 1990).  

Besides the soil water content, also adsorption on mineral surfaces and occlusion in soil aggregates may 

reduce the access of the microbial community to OM (Sollins et al., 1996; von Lutzow et al., 2006). These 

processes are not directly related to temperature, but are rather proper of the pedogenic environment 

(Schmidt et al., 2011). Thus, the higher their influence in the OM dynamics, the lower the temperature 

sensitivity of OM as it would be expected from its molecular structure and the ambient temperature 

(“intrinsic temperature-sensitivity”; Davidson and Janssens, 2006). Contrasting results in global 

warming effects on decomposition rates may therefore stem from the intervention of such 

environmental constrains that dampen or obscure the response of OM decomposition rate to warming. 
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In conclusion, many ecosystem properties controlling OM dynamics, such as vegetation, soil moisture, 

microbial activity and reactive sites for OM stabilization, are all expected to respond to climate changes. 

The understanding of the extent, and the time scale, at which these ecosystem properties are affected by 

recent and future climate changes would be very informative about warming effects on soil OM 

dynamics.  

 

1.2 Motivation and aims of the study 

The present study fundamentally aims at improving our knowledge of the subalpine-alpine ecosystem 

and its vulnerability to recent climate changes. Two main components of the alpine ecosystem and their 

interactions are investigated in detail, vegetation and soil. Within the soil compartment, a special 

attention is delivered to the organic component that is supposed to be the center of plant-soil 

interactions. 

This study develops in the subalpine-alpine ecosystem for many reasons: 

 it is among the most exposed and vulnerable to recent climate changes; 

 many vegetation changes have been already observed in response to warming at high alpine and 

nival belts, but poor knowledge is available on how different subalpine and lower alpine plant 

communities reacted to the same changes; 

 soils, humus forms, organic matter dynamics, and their determinants have been scarcely 

investigated at these elevations; 

 the Alps provide a unique natural experimental framework because climatic conditions, plant 

species, productivity and soil properties change dramatically within short distances.  

  

Therefore, the following questions are targeted in separate chapters: 

 Chapter 4: (1) are there observable changes in the subalpine-alpine vegetation over the last 25-

50 years in species richness and community composition in the Alps? (2) Do the magnitude and 

direction of changes vary across different plant communities and how? (3) What environmental 

factors best explain the observed changes? 

 Chapter 5: (4) which soils and humus forms are associated to the main subalpine-alpine plant 

communities? (5) What are the determinants of their distribution in the alpine environment? 

(6) Are the existing classification criteria adapted to the alpine humus forms? 

 Chapter 6: (7) what are the major determinants of OM thermal stability? (8) How does their 

significance vary with soil depth? 

The answers to these questions will allow evaluating how future climate changes may affect vegetation, 

soil properties, humus forms, and OM persistence in the subalpine-alpine belt. A better anticipation of 
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such changes is needed to implement proper conservation measures. Moreover, the identification of OM 

stability determinants (Chapter 6) is essential for the preservation of soil organic C stock, also beyond 

alpine ecosystem boundaries.  

 

Hereafter, for practicality’s sake, I will refer to the above-mentioned three study sections as: 

Chapter 4: “the vegetation study” 

Chapter 5: “the soil study” 

Chapter 6: “the OM study”. 

 

A synthesis of the main results of the three studies and their relationships is furnished in the Chapter 7.

 

 

  



22 

 

 



23 

 

 
 

 

 Study sites 

 

 

2.1 Location 

Three study sites were selected in the Northern Alps and Western Central Alps of Switzerland (Figure 

2.1 and Appendix A): the Morteys area, the Réchy area and the Grimsel area. The study sites were 

selected because of the availability of historical vegetation records (see Chapter 3 for detailed methods). 

All study sites are located above the present treeline, between 1698 and 2697 m (Table 2.1). However, 

because of extensive grazing and deforestations in the Middle Age, the present treeline elevation is lower 

than the potential one (Favilli et al., 2010; Gehrig-Fasel et al., 2007). The Morteys study site is located 

around the potential treeline (upper subalpine and lower alpine belt) and the Grimsel and Réchy sites 

are slightly above it (lower alpine and alpine belt; Table 2.1).  

 

 

Figure 2.1 - Location of the study sites in Switzerland. Stars represent the three study sites and triangles the 

corresponding meteorological stations (Château-d'Oex for Morteys, Grimsel Hospiz for Grimsel, Evolène for 

Réchy).   
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Table 2.1 - Characteristics of the study sites. Coordinates, mean annual temperatures (MAT), mean annual 

precipitations (MAP), elevation ranges (with median between brackets), elevational belt, lithology, and number of 

vegetation records performed and soil profiles excavated at each study site. MAT and MAP are from 

www.MeteoSwiss.ch and extrapolated according to Zimmermann and Kienast (1999) with a 25 m grid cell size.  

 

 Morteys Grimsel Réchy 

Coordinate North 46°32’N 46°32’N 46°10’N 

Coordinate East 7°09’E 8°16’E 7°30’E 

MAT [°C] 2.1 -0.44 -0.53 

MAP [mm] 1650 2071 1480 

Elevation [m] 1698–2232 (1884) 2310–2650 (2329) 2328–2697 (2567) 

Vegetation belt 
Upper subalpine - 

Lower alpine 
Alpine Alpine 

Lithology Limestone 
Granite, gneiss, 

granodiorite 

Gneiss, micaschists, 

quartzite, calcshists, 

marble, cornieule 

No. of vegetation 

records 
12 25 26 

No. of soil profiles 18 11 17 

 

2.2 Climate 

The climatic conditions slightly differ between the three study sites in relationship to their biogeographic 

region and elevational belt. Due to its internal position in the Alps, the climate of the Réchy area tends 

towards continental conditions, while Morteys and Grimsel have a more oceanic climate.  

In the Morteys site, the mean annual temperature is about 2.1 °C and the annual precipitations are 1650 

mm (Zimmermann and Kienast, 1999). The annual sum of fresh snow thickness decreased by 34.1 cm 

per decade between 1964 to 2011, while the mean summer temperature (from June to September) 

increased by 0.47 °C per decade during the same period at the closest meteorological station (Château-

d'Oex, 1029 m; Figure 2.2 and Figure 2.3).  

The plots of the Grimsel site are characterized by mean annual temperature and precipitations of -

0.44°C and 2071 mm, respectively (Zimmermann and Kienast, 1999). The annual sum of fresh snow 

thickness decreased by 71.2 cm per decade in average, and the mean summer temperature rose by 0.41°C 

per decade between 1964 and 2011 (Grimsel Hospiz, 1980 m; Figure 2.2 and Figure 2.3).  

http://www.meteoswiss.ch/
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Figure 2.2 – Variation of the annual sum of the fresh snow thicknesses in the study sites. Measured daily at 5:40 

a.m. from 1964 to 2011 at weather stations of Château-d’Oex - CHD (Morteys site) and Grimsel Hospiz - GRH 

(Grimsel site) ; and from 1987 to 2011 at Evolène (EVO, Réchy site) weather station (MeteoSwiss network, Begert 

et al., 2005). The overall decrease of the snow amount amongst the three stations is significant (ANCOVA test, p-

value < 0.001).  

 

 

The Réchy area is as cold as the Grimsel, but is the driest amongst the three study sites, with a mean 

annual temperature of -0.53°C and 1480 mm of annual precipitations (Zimmermann and Kienast, 

1999). The annual sum of fresh snow thickness decreased by 24.1 cm, whereas the mean summer 

temperatures increased by +0.25 °C per decade (Evolène, 1825 m; Figure 2.2 and Figure 2.3) during the 

1987-2013 timespan (no data available before).  

 

 

 

Figure 2.3 – Variation of the mean summer temperatures in the study sites. Mean temperatures recorded from 

June to September during the 1950-2013 period at Château-d’Oex - CHD (Morteys site) and Grimsel Hospiz - GRH 

(Grimsel site) weather stations and from 1987 to 2013 at Evolène (EVO, Réchy site). All the stations belong to the 

MeteoSwiss network (Begert et al., 2005)  
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2.3 Geology and geomorphology 

The Morteys valley belongs to the Median Plastiques Prealps Nappe (Appendix B), originated in the 

Pennic zone and thrust towards NNW during the setting of alpine orogeny. This nappe is formed of 

limestone and marls, deposited from the Dogger (Middle Jurassic period) 170 Ma ago up to the 

Valanginian (Lower Cretaceous) 100 Ma (Bonzanigo, 1996; Lehmann, 2006). The Morteys valley is a 

synclinal basin, therefore the oldest Jurassic rocks form the external valley slopes, while the younger 

Cretaceous rocks form the valley axis.  

The Grimsel area belongs to the Aar massif, which is part of the Helvetic zone thrusted towards the 

northwest during late Alpine tectonics (Appendix B; Stampfli, 2001). The Aar massif is part of the 

Variscan basement and more precisely of the external crystalline massifs (such as Argentera, Pelvoux, 

Bellondonne, Mont Blanc, Aiguilles Rouges and Gothard massifs). It consists of granodiorite and granite 

rocks, intruded during the late Variscan orogeny in a pre-Variscan gneiss and Palaeozoic migmatite and 

amphibolite (Abrecht, 1994).  

The Réchy area consists of three different zones, having distinct geology (Stampfli, 2001; WWF Valais, 

1986). The Houillère zone is formed of rocks metamorphized during the alpine orogeny (e.g. 

quartzite).The Siviez-Michabel nappe (Middle Penninic or Briançonnais s.l.) is a Paleozoic basement 

covered by a Permo-Carboniferous to tertiary sedimentary sequence. This nappe contains Permian 

granitic intrusions. The Tsaté nappe (Upper penninic zone) represents the ophiolite sequence of the 

Alpine oceanic crust metamorphized during the alpine orogeny (serpentinites, metagabbros, 

metabasalts, and prasinites). The associated sediments are represented by calcschists, some from the 

Upper Cretaceous (Série Grise, grey flysch type series and the Série Rousse). Some “cornieule” (a 

dolomite-gypsum greywacke) and gypse are also present, especially around the Roc d’Orzival summit. 

The three study sites were covered with glaciers during the late Pleistocene glaciation (Würm). The onset 

of the melting of the Rhone glacier in Switzerland is dated circa 21'000 years BP and continued to the 

oldest Dryas, around 16’000 years BP (Ivy-Ochs et al., 2004). This must be considered as the maximum 

soil age in the study sites. However, many morphodynamic processes triggered the removal, transport, 

and accumulation of material during the Quaternary, leading to a complex mosaic of sediments of 

different ages (Baruck et al., 2016; Theurillat et al., 1998). Loess deposits are also very likely in each 

study area.  

Beside this general framework, each study area presents some geomorphologic peculiarities, listed 

hereafter. 

The Morteys valley is characterized by a karstic system that drains soils and produces an underground 

hydrological network. Grykes and dolines are the surficial traces of such a karstic system.  

In the Grimsel area, the Oberaar glacier deposited various moraines between 1860 and 1920, at the end 

of the Little Ice Age (Ammann, 1979). The 1860 moraine is the parent material of two soil profiles in this 

study (G350 and G421; Table 5.1). Other moraine deposits of the Grimsel area are most probably older 

(post Last Glacial Maximum). 
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The Rechy area offers a wide variety of geomorphological processes related to glaciers (two rock glaciers 

- Lona and Becs-de-Bossons), gravity movements (gelifluction and solifluction), and cryoturbation (soil 

polygons, stone stripes). The ensemble of these periglacial features led the Réchy and Lona areas to be 

nominated “Swiss geotope” by the Swiss Academy of Sciences (Reynard et al., 2012). Some dolines 

formed by the dissolution of gypsum are also encountered. 

 

2.4 Soils and humus forms 

To date, no information on the diversity of soil types and humus forms exists for the three study sites. 

According to Bonzanigo (1996), soils in the Morteys area might be homogeneous because of the uniform 

climate and lithology existing in the valley. However, Richard et al. (1977) suggested the presence of 

accumulations of aeolian acidic sands in the Morteys valley that would favour the development of 

siliceous snowbeds. In this case, soils would be less uniform than expected. From the geological and 

geomorphological descriptions of the two other sites, acidic soils are expected in the Grimsel area and a 

mosaic of acidic and alkaline soils in the Réchy area. If the lithology is known to play a fundamental role 

in pedogenic processes, determinants of the distribution of humus forms are still poorly known, 

especially at the alpine belt. Therefore, any proposal relating to the humus forms occurring at the study 

sites would be uncertain in light of current knowledge.  

 

2.5 Vegetation 

The Morteys area has an extremely rich flora, counting more than five hundred plant species 

(http://www.pronatura-fr.ch/vanil-noir) and more than 20 plant communities were recorded by 

Richard et al. (1977) in its vegetation survey. Vegetation types occurring above the present treeline show 

substantial differences according to the slope exposure. On the south-exposed slopes, thermophilous 

grasslands dominated by Laserpitium latifolium (Caricion ferrugineae) are found at lower elevations, 

while mesophilous and xerophilous facies of calcicolous alpine grasslands (Seslerion caeruleae) are 

distributed in mosaic at higher elevations. On the north-exposed slopes, calcicolous meso-hygrophilous 

sedge grasslands (Caricion ferrugineae), ridges dominated by graminoid tundra (Elynion) and 

subalpine tall-herb vegetation (Adenostylion) are observable in mosaic (Richard et al., 1977). Heathland 

belonging to the Rhododendro-Vaccinion are found at lower elevations. In the piedmont, at Morteys-

Dessus and Morteys-Dessous localities, subalpine pastures (Poion alpinae) are present because of cattle 

grazing. The present treeline (around 1800 m) is formed by maple forests (Lunario-Acerion) and 

Norway spruce forests (Vaccinio-Piceion). 

The left-hand side of the Grimsel Oberaar lake has been studied by Ammann (1974), whereas no data 

exist (to my knowledge) about the eastern part of the study area (between the Oberaar lake and the 

http://www.pronatura-fr.ch/vanil-noir
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Triebtenseelicken Pass, and beyond the pass). Ammann (1974) reported 20 vegetation types 

(associations or species groups), which distribution is highly influenced by the last glacier advance. 

Youngest moraines are covered by the pioneer alliance Epilobion fleischeri, whereas older ones are 

characterized by siliceous subalpine grasslands (Nardion strictae) mixed with the siliceous alpine 

grasslands (Caricion curvulae), mostly located on convex topography. On flat terrains, probably more 

fertile, the Nardion strictae grasslands are dominated by the grass Agrostis schraderiana. Wet 

depressions and wetlands are characterized by the alliance Caricion fuscae, and snowbeds by the 

Salicion herbaceae. Subalpine shrublands (Juniperion nanae) and some willow species belonging to the 

Salicenion waldsteinianae are found in patches between the subalpine grasslands. The present treeline 

(around 2000 m) is formed by larch and Norway spruce (Vaccinio-Piceion). 

The higher part of the Réchy valley, even if less than 15 km2, contains the majority of alpine ecosystems 

(WWF Valais, 1986) and around 25 plant communities (Richard et al., 1993). Among them, some alluvial 

wetlands, situated between the Réchy river meanders, are of particular interest because of their fragility 

and rarity. Such ecosystems harbour a variety of vegetation types, such as Caricion lasiocarpae, 

Caricion fuscae and Caricion davallianae, respectively distributed along a gradient of decreasing 

humidity. One of the six Swiss stations of the rare plant grass Hierochloë odorata is also located in the 

same area. On sandy-gravelly alluvions, reworked during the river floodings in spring, a rare vegetation 

type is encountered: the Caricion bicolori-atrofuscae. Rare arctic species, sheltered in the alpine 

nunataks during the Riss and Würm glaciations, are harboured in this vegetation type. Snowbed 

vegetation is found above 2300 m, and it is typically represented by the Salicion herbaceae. Some 

calcareous snowbeds (Arabidion caeruleae) are also present on alkaline parent material. Among 

grasslands, the alliances Nardion and Caricion curvulae dominate on quartz, gneiss and micaschists, 

whereas the Elynion myosuroidis is found on calcschists, cornieule and dolomie. The present treeline 

(around 2200 m) is constituted by larches and Swiss stone pines (Larici-Pinetum cembrae).  

 

2.6 Management 

The three study sites have been partially included in natural reserves for several decades. Except for 

Grimsel, where there has been no cattle grazing since 1953 (year of the Oberaar dam construction), the 

two other sites are currently pastured in some parts. Thanks to the natural reserve management in 

Morteys, the land-use (cow and sheep grazing) has barely changed during the last 40 years. In Réchy, 

the type and amount of cattle fluctuated since the 1970s, with alternating cow and sheep grazing, the 

proportions depending on both elevation and location.  

The total nitrogen deposition in Morteys and Grimsel areas for the year 2007 amounted to 10.4 and 6.8 

kg N ha-1 yr-1 on average, respectively (according to Roth et al., 2013; data from FOEN Federal Office for 

the Environment). Data for the Réchy area were not calculated, but are probably comparable to those of 

Grimsel area because of the similar elevations and distance to main towns.
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 General methods and sampling 

strategy 

 

 

3.1 Vegetation data  

3.1.1 The vegetation study 

The first scope of this study was to investigate the reactions of different subalpine-lower alpine 

vegetation to recent climate changes (i.e. “the vegetation study”, Chapter 4). 

To target this aim, historical vegetation records covering a variety of vegetation types were necessary to 

be compared with recent ones. Therefore, the first step of this study consisted of identifying the historical 

plant inventories available in the Swiss Prealps and Western Central Alps (easily accessible from 

Lausanne University). Moreover, these plant inventories had to be representative of the main vegetation 

types encountered in the subalpine-alpine ecosystem. Amongst the available data, a selection of the most 

promising historical records was performed according to criteria of reliability and possibility to relocate 

them. The historical records were achieved by several botanists from 1965 to 1990, with most data being 

collected during the 1970s (1980s in the case of wet snowbeds). The inventories were only partly 

published (Ammann, 1974; Richard et al., 1977; Richard et al., 1993), but field books were available for 

most of them and they represented the main information source. Because of their localization on 

topographic or vegetation maps (1:25'000 or more precise), the plot areas were approximately localized 

in the field, with a precision of ± 10-50 m. 

Each area was extensively visited in the field and, on the basis of information contained in the historical 

field books (site description, elevation, surface, slope and exposure), the possible plot sites were defined. 

The exact plot location was selected in order to have a species composition as close as possible to the 

historical one. When no area corresponded to the historical description, or when vegetation was 

markedly different, other factors than climate (for example: landslides, major human interventions, 

erroneous plot localisation by the historical botanist) were likely responsible of the observed 
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discrepancies. Such sites were thus discarded in order to not overestimate the climate change impacts 

on vegetation. A new exhaustive record of all vascular plants was performed during summers 2013 or 

2014 at the phenological optimum, within the same area as the historical one. The nomenclature of 

species is according to Aeschimann et al. (1996). Species cover was visually estimated, as in historical 

inventories, according to cover classes of Braun-Blanquet (1964; see Table 4.1 for details).  

The plots were permanently marked with metal plates in soil (Figure 3.1) and the four corners measured 

with a high precision GPS (GeoXT, Trimble, Sunnyvale, CA, USA) in order to enable their future use as 

permanent plots.  

 

 

 

Figure 3.1 – Plot marker. Example of a metal plate used to mark diametric opposite corners of the vegetation 

survey surface. Picture: S. Messerli.  

 

 

For very small plots (<4 m2), or when the GPS precision was lowered down by cloudy weather or 

mountain features, only the GPS coordinate of the plot centre was taken. Two metal plates per plot were 

used and, looking towards the mountaintop, they were placed on the bottom left and upper right corners, 

respectively. Eleven plots stand out as exceptions to this rule and metal plates are located on the two 

other corners or on the ridge top. 

In total, 89 vegetation records, including five replicates, were performed. However, not all of them were 

retained for the vegetation study. The replicates were done when several plot locations were possible 

according to available information. Finally, the most reliable plot in each replicate pair (i.e. the one 

whose species composition was the closest to the historical record) was retained. Only records separated 

by a distance > 10 m were retained in order to avoid spatial autocorrelation, and other records were 

dropped out because their re-localisation was considered not reliable enough. Finally, 67 plots were 

localised with a high confidence level (Appendices C1, C3, C4, C5). Details of the 22 discarded vegetation 

records, and their plant species lists, are given in Appendix C2 and C6, respectively. 

A clustering analysis (using the Hellinger distance and the Ward aggregation algorithm) of cover-

weighted historical and recent inventories together (i.e. 67 x 2 =134 records) allowed to group vegetation 

records with similar species composition and cover. Then, an indicator value was assigned to each 

species representing its specificity and fidelity for a certain group of records. The function Indval of the 
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R package labdsv was used. Large mean abundance of a species within a group compared to the other 

groups, and high frequency of that species among records of that group, produced high indicator values 

for that species (Borcard et al., 2011; p. 97). Then, a permutation test provided the statistical significance 

of the species indicator values. Species, whose indicator value was significant for a certain group of 

records, were considered as characteristic of that group. Finally, each group of records was associated 

to a specific plant community type of the Swiss vegetation classification system (Delarze et al., 2015), 

based on its characteristic species (Appendix C3, C4 and C5). 

In total, seven vegetation types were identified, each corresponding to a phytosociological alliance given 

between brackets: calcareous grasslands (Seslerion); subalpine pastures (Poion alpinae); windy ridges 

(Elynion); siliceous subalpine grasslands (Nardion); siliceous alpine grasslands (Caricion curvulae); 

typical snowbeds (Salicion herbaceae) and wet snowbeds (Caricion bicolori-atrofuscae). The 

description of these vegetation types is given further. The subalpine pasture group was discarded from 

the vegetation study (Chapter 4), because it contained an insufficient number of records (n=4) to draw 

solid conclusion. Therefore, 63 pairs of inventories, distributed among 6 vegetation types, were retained 

in the vegetation study (Table 3.1). 

 

3.1.2 The soil and OM studies 

Among the 89 vegetation records performed, 46 were accompanied by a soil description (Table 5.2 and 

Appendix D). These 46 vegetation records, and their associated soil profiles, were all considered in the 

soil (Chapter 5) and OM (Chapter 6) studies. With some exceptions, the vegetation records were 

associated to the same plant community types as determined in the vegetation study, without repeating 

the cluster analysis. Among the 46 vegetation records, 7 were discarded from the vegetation study 

because of their not-reliable re-location (see above), and were thus considered in the soil and OM studies 

only. As these records were not included in the cluster analysis, their attribution to a plant community 

type was performed by considering their species composition and cover, on the basis of personal 

knowledge, and without the support of statistical methods. 

Among these seven vegetation records, two could not be attributed to any plant community type defined 

in the vegetation study. Their species composition and cover were typical of an additional vegetation 

type: the calcareous snowbeds (Arabidion caeruleae). Other two records, considered among the windy 

ridges (Elynion) in the vegetation study but with a species composition closer to the calcareous 

snowbeds than to windy ridges, were associated to this vegetation type for the soil and OM studies. 

The four vegetation records belonging to the subalpine pastures (Poion alpinae), firstly discarded in the 

vegetation study, were considered at this step. In total, 46 plant inventories, distributed among 8 

vegetation types, were retained for the studies of soils and OM stability (Table 3.1). 
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3.1.3 The vegetation types 

Hereafter, the eight vegetation types, object of this study, are briefly described according to the Swiss 

vegetation classification (Delarze et al., 2015) and are associated to the corresponding phytosociological 

alliance name (Table 3.1, Delarze et al., 2015). Moreover, the characteristic species identified by this 

study within each vegetation type are mentioned. 

 

 

Table 3.1 – List of vegetation types object of this research, correspondence with the phytosociological alliances, 

and number of plots retained in each study. (*): among the four vegetation records composing the calcareous 

snowbeds in the soil and OM studies, two were considered as windy ridges in the vegetation study.  

 

Vegetation type Phytosociological alliance 

No. of plots  
in the 
Vegetation 
study 

No. of plots  
in the Soil 
and OM 
studies 

Calcareous grasslands Seslerion caeruleae 10 10 

Subalpine pastures Poion alpinae - 4 

Windy ridges Elynion myosuroidis 13 4 

Calcareous snowbeds Arabidion caeruleae - 4* 

Siliceous subalpine grasslands Nardion strictae 12 4 

Siliceous alpine grasslands Caricion curvulae 11 9 

Typical snowbeds Salicion herbaceae 8 7 

Wet snowbeds Caricion bicolori-atrofuscae 9 4 

 

 

3.1.3.1 Calcareous grasslands (Seslerion caeruleae Br.-Bl. 26) 

This vegetation type is characterized by a high species richness and large abundance of Leguminosae 

family (Figure 3.2). Tussock species, as Sesleria caerulea and Carex sempervirens, dominate and often 

form rungs parallel to contour lines as a consequence of solifluction. It is generally located on very steep, 

south exposed slopes, with shallow, stony soils on calcareous parent material. This alliance in 

Switzerland has its optimum at the alpine belt (2000-2500 m), but it often reaches lower elevations, 

replacing forests under grazing. Among the characteristic species of the alliance (Delarze et al., 2015), 

Bupleurum ranunculoides and Hieracium villosum were found in this study. Moreover, Laserpitium 

siler, L. latifolium, Carex sempervirens and Helianthemum nummularium ssp. grandiflorum were very 

frequent and covered large surfaces.  
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Figure 3.2 - Seslerion caeruleae, plot M3128, 1843 m. 

 

 

3.1.3.2 Subalpine pastures (Poion alpinae Oberdorfer 50) 

This vegetation type is often situated on flat terrains, in a concave topography leading to the 

accumulation of snow and percolating water (Figure 3.3). Pasture occurs, and therefore, several 

nitrophilous species, such as Poa alpina and Phleum rhaeticum, dominate. The permanence of this 

alliance at the subalpine belt is linked to the pasturing, which avoids the colonisation by trees. The soils 

are relatively wet and deep. In this study, the alliance was characterized by Cerastium fontanum ssp. 

vulgare, Crepis aurea, Phleum alpinum aggr., Alchemilla vulgaris aggr. and Plantago alpina.  

 

 

 

Figure 3.3 - Poion alpinae, plot M2980, 1945 m. 
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3.1.3.3 Windy ridges (Elynion myosuroidis Gams 36) 

The dense tussocks of Elyna myosuroides (Cyperaceae family), interposed by low-stature plants and 

many terricolous fruticose lichens, dominate this plant community type (Figure 3.4). This vegetation 

type is situated at the alpine belt, between 2200 and 2800 m, on ridges exposed to wind. Besides erosion 

and physical damages, strong winds determine also irregular snow cover thereby exposing soils to 

freezing temperatures (-30 °C according to Ozenda, 1985). E. myosuroides is able to survive such harsh 

conditions by means of leaf and root resistance techniques (Ozenda, 1985). Soils can be either acidic or 

alkaline, corresponding to different plant associations within the same alliance. In addition to E. 

myosuroides, other characteristic species encountered in this study were Antennaria carpatica, Draba 

aizoides, Gentiana tenella and Agrostis alpina.  

 

 

 

Figure 3.4 - Elynion myosuroidis, plot R3901, 2697 m. 

 

 

3.1.3.4 Calcareous snowbeds (Arabidion caeruleae Br.-Bl. 26) 

This vegetation type is generally found on north-exposed slopes and calcareous parent material (Figure 

3.5) at the alpine belt. As snowbeds in general, the snow cover is long and the growing seasons short (3-

4 months). Soils are rich in scree deposits and quite unstable and permeable. In the most humid part of 

the snowbed, there is a discontinuous carpet of small-stature plants, mostly rosette hemicryptophytes, 

whereas dwarf shrubs as Salix retusa and Salix reticulata dominate in the periphery. The four plots 

belonging to this vegetation type were characterized by the presence of Salix retusa, Ranunculus 

alpestris, Soldanella alpina and Dryas octopetala. Adenostyles alliariae was also covering large 

surfaces in two plots.  
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Figure 3.5 - Arabidion caeruleae, plot M2716, (left) under snow on 24.7.2013 and (right) on 3.09.2013, 1966 m. 

 

 

3.1.3.5 Siliceous subalpine grasslands (Nardion strictae Br.-Bl. 26) 

These grasslands, dominated by the grass Nardus stricta, are widespread at the subalpine-lower alpine 

belt on acidic and nutrient-poor soils (Figure 3.6). The absence of manuring, a regular pasture, or 

mowing, favor this vegetation type. The development of N. stricta is especially enhanced by the pasture, 

since the stiff, silica-rich leaves of this grass are avoided by cattle (Massey et al., 2007). At the alpine 

belt, several intergrades between the Nardion and the Caricion curvulae (see below) are frequent. The 

species richness of Nardion is generally lower than subalpine calcareous grasslands. In this study, the 

following plant species were significantly associated to Nardion: Ajuga pyramidalis, Arnica montana, 

Campanula barbata, Gentiana acaulis, Geum montanum and Hypochaeris uniflora. Poaceae species, 

such as N. stricta and Festuca rubra aggr., were dominant in cover.  

 

 

 

Figure 3.6 - Nardion strictae, plot G295bis, 2329 m. 

 

 

3.1.3.6 Siliceous alpine grasslands (Caricion curvulae Br.-Bl. 26) 

This plant community type grows in the same conditions as the Nardion (acidic and poor soils), but at 

the alpine belt where it corresponds to the climax (Figure 3.7). The long-lived clonal sedge Carex curvula 

dominates this vegetation type. This species forms dense tussocks, among which lichens are very 
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frequent. Transitions stages with the siliceous snowbed (Salicion herbaceae, see below) or alpine heaths 

(Loiseleurio-Vaccinion) are possible in places of long snow cover and on windy ridges, respectively. 

Besides C. curvula, characteristic species of this alliance were: Festuca halleri, Hieracium piliferum 

aggr., Senecio incanus s.str. and Trifolium alpinum. Some individuals of the rare Gentiana alpina were 

found in one plot (R4209).  

 

 

 

Figure 3.7 - Caricion curvulae, plot G335, 2410 m. 

 

 

3.1.3.7 Typical snowbeds (Salicion herbaceae Br.-Bl. 26) 

This vegetation type is found from the subalpine to the subnival belt where the snow cover lasts for 9-11 

months per year and soils are wet also during summer (Figure 3.8). That long snow cover is the result 

of slow melting because of north exposure or concave topography, with accumulation by wind. Generally 

associated to siliceous parent materials, this vegetation type can grow on calcareous substrates when the 

accumulation of decalcified fine earth and/or OM is important enough to acidify the surface soil layer 

(Ellenberg, 1988). The dwarf willow Salix herbacea, other small stature plants generally reproducing by 

stolons and mosses dominate such plant community type. Species as Alchemilla pentaphyllea, Carex 

foetida and Sibbaldia procumbens were almost exclusively found in this alliance. 
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Figure 3.8 - Salicion herbaceae, Réchy valley, below “Col de Cou”, 2440 m ca. 

 

 

3.1.3.8 Wet snowbeds (Caricion bicolori-atrofuscae Nordhagen 37) 

This vegetation unit is associated to alluvial deposits bordering lakes and alpine streams, or located 

downstream of firns (Figure 3.9). In comparison with the typical snowbeds, this plant community type 

is linked to the presence of running water, which does not directly result from the duration of snow 

cover, but rather on its amount and melting patterns. The plant cover is never dense and mosses are 

dominant. Soils are water saturated all year long and water is often alkaline (pH 7 to 8), although poor 

in carbonates. Even if its elevation range is wide (from 1600 to 2800 m), this alliance is rare in the Alps 

as it was frequently destroyed by the hydroelectric dam constructions. Most of the characteristic plant 

species of this vegetation type are pioneer post-glacial relicts and are considered vulnerable or near 

threatened by the IUCN criteria. In this study, characteristic species of this vegetation unit were Carex 

bicolor, Juncus triglumis and Equisetum variegatum. The more vulnerable species, such as Carex 

atrofusca and Carex microglochin, were absent in the studied plots but they were observed in the Réchy 

valley (WWF Valais, 1986).  

 

 

 

Figure 3.9 - Caricion bicolori-atrofuscae, plot R5061, 2650 m. 
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3.2 Soil data 

3.2.1 Soil description and characterization 

Soil description was performed following the guidelines provided by the Food and Agriculture 

Organization of the United Nations (FAO, 2006). Depth, colour (according to the Munsell soil colour 

chart), relative abundance of calcium carbonate (established by 10% HCl test), structure, percentage of 

skeleton (> 2 mm), and fine roots (< 2 mm in diameter) of each soil horizon were estimated in the field. 

Organic (Oi, Oe and Oa), mineral topsoil (A), and mineral subsoil horizons (E, B, and C) have been 

named in the field according to Baize and Girard (2009) and then converted to the international FAO 

nomenclature (FAO, 2006). The nomenclature of soil references is according to IUSS Working Group 

(2015) and that of humus form follows Jabiol et al. (2013).  

 

3.2.2 Sampling  

Samples were collected almost in each described horizon, including the organic ones, for a total of 231 

samples. They were collected in summer, within the three months following snow melt, irrespective of 

the vegetation type. A part of the plant species composing the aboveground biomass were totally 

decomposed during fall and winter, and their litter could not be collected. Therefore, the plants 

composing the litter samples were the most resistant to decomposition, and not the ensemble of plant 

species. Most of the times, dead leaves composing the litter were from Cyperaceae and Poaceae, and 

were still fixed at the base of living plants. This was typical for plant species growing in turfs, such as 

Carex sempervirens and Nardus stricta. In some calcareous grasslands, different layers of such leaves 

were observed on the basis of colour variations. This probably indicates different litter ages and thus its 

accumulation through time.  

Among the plant species whose litter could not be sampled, there were mainly forbs. This may indicate 

their higher degradability compared to graminoids, or their removal by external agents, such as wind 

and snow. 

 

3.2.3 Routine analyses 

Samples were dried at 45°C. The mineral soil samples were then sieved at 2 mm (fine earth fraction) and 

a part of the sieved sample was crushed to powder in an agate mortar. The organic samples were ground 

to 0.12 mm mesh size with a pulveriser (14 Fritsch Tracomme AG).  

The pH H2O was measured with a lab pH meter (Metrohm SA) fitted with a double-junction combined 

glass electrode. The measurement was conducted in a suspension of fine earth in deionized water (1:2.5 

soil water ratio) after 2 h of agitation.  
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The texture of the fine earth fraction was assessed by laser diffraction (Malvern™ Mastersizer 2000) 

operated in manual mode. Prior to analysis, calcium carbonate was removed by reaction with 10% HCl 

and rinsed several times until a pH > 6 was reached. The OM was then removed with 10-35% hydrogen 

peroxide (H2O2). During and after the OM digestion, the pH was neutralized with sodium hydroxide 

(NaOH) 0.1 - 0.5 M. Finally, soil mineral particles suspended in dilute Na-hexametaphosphate (40 g/L) 

were processed by a Hydro2000S module.  

The C/N ratio was calculated on the oven-dried crushed samples of organic (Oi, Oe and Oa) and topsoil 

mineral layers (A) only, with a CHNS Elemental Analyser FlashEA 1112. Calcium carbonate in the A 

horizons was removed prior to analysis by addition of 10% HCl and subsequent rinsing. Analytical 

precision and accuracy were determined by replicate analyses and by comparison with Organic 

Analytical Standard composed of purified DL-Methionine. They were better than 0.1% (1σ) and 0.01% 

(1σ) for carbon and nitrogen determinations, respectively. 

 

3.2.4 The Rock-Eval method 

The organic carbon content and the organic matter properties of the 231 samples were obtained by 

thermal analysis performed with a Rock-Eval 6 Pyrolyser (Vinci Technologies). Twenty samples had 

TOC (Total Organic Carbon) concentrations that were too low for reliable analysis (TOC < 0.2%) and/or 

abnormal pyrolysis curves and were deleted from the dataset; therefore 211 samples were retained for 

the analyses. Between 40 and 70 mg of dried crushed sample were pyrolised in an inert N2 atmosphere 

with increasing temperatures from 200 up to 650°C with a heating rate of 25°C/min. The residual 

sample was then oxidised under oxygenated atmosphere starting at a temperature of 400 increasing 

until 850°C with the same heating rate. The two phases of thermal decomposition released hydrocarbon 

compounds (HC), CO2, and CO which are measured continuously. The sum of these carbon fractions 

(excluding the CO2 released above 400°C during N2-pyrolysis and above 650°C during oxidation, which 

corresponds to the mineral C), represents the TOC concentration (Lafargue et al., 1998).  

The amount of HC released relative to TOC is called the Hydrogen Index (HI) and it is considered as 

proportional to the atomic H:C ratio in the sample. Similarly, the amount of CO2 and CO released relative 

to TOC is called the Oxygen Index (OI) and it is considered as proportional to the atomic O:C ratio. The 

HI and OI indices are considered as proxies of the organic matter quality (Carrie et al., 2012). 

The amount of hydrocarbons released during pyrolysis between 200 and 650°C forms a compositional 

bell curve called the S2 pyrogram. The shape of this pyrogram is sample-specific and is indicative of the 

thermal stability of organic molecules composing the sample. The area under the S2 pyrogram was 

subdivided into four sections (A1, A2, A3 and A4) using temperature cut-offs frequently used in the 

literature (Sebag et al., 2016): 200-340°C for A1, 340-400°C for A2, 400-460°C for A3 and 460-650°C 

for A4. Thermally labile organic molecules are supposed to release high quantities of HC during the early 

stage of the pyrolysis process (i.e. large A1 and A2 areas), while thermally stable organic molecules crack 

later (i.e. large A3 and A4 areas). On this basis, thermal stability of each sample was represented by two 

indices previously suggested by Sebag et al. (2016): the R-Index, as the proportion of the refractory OM 
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fraction [R=(A3+A4)/(A1+ A2+A3+A4)], and the I-Index as an indicator of preservation of thermally 

labile immature OM [I=log10(A1+A2)/(A3)]. These two indices are inversely proportional and only the 

R-Index was used as an indicator of OM thermal stability in the present study.  

The TOC was corrected for hygroscopic moisture by oven drying dried crushed samples of organic and 

mineral soil layers. In order to minimize mass losses by oxidation and decomposition, temperature and 

duration of heating were adapted to the type of sample: 65°C during 30 h for organic layers and 105°C 

during 24 h for the other layers 
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 Vegetation changes in the subalpine-

alpine belt 

 

 

4.1 Abstract 

While the upward shift of plant species has been observed on many alpine and nival summits, the 

reaction of the subalpine and lower alpine plant communities to the current warming and lower snow 

precipitation has been little investigated so far. To this aim, 63 old, exhaustive plant inventories, 

distributed along a subalpine–alpine elevation gradient of the Swiss Alps and covering different plant 

community types (acidic and calcareous grasslands; windy ridges; snowbeds), were revisited after 25 to 

50-years. Old and recent inventories were compared in terms of species diversity with Simpson diversity 

and Bray-Curtis dissimilarity indices, and in terms of community composition with Principal 

Component Analysis. Changes in ecological conditions were inferred from the ecological indicator 

values.  

The alpha-diversity increased in every plant community, likely because of the arrival of new species. As 

observed on mountain summits, the new species led to a homogenisation of community compositions. 

The grasslands were quite stable in terms of species composition, whatever the bedrock type. Indeed, 

the newly arrived species were part of the typical species pool of the colonized community. In contrast, 

snowbed communities showed pronounced vegetation changes and a clear shift towards dryer 

conditions and shorter snow cover, evidenced by their colonisation by species from surrounding 

grasslands. Longer growing seasons allow alpine grassland species, which are taller and hence more 

competitive, to colonize the snowbeds.  

This study showed that subalpine-alpine plant communities reacted differently to the on-going climate 

changes. Lower snow/rain ratio and longer growing seasons seem to have a higher impact than warming, 

at least on plant communities dependent on long snow cover. Consequently, they are the most 

vulnerable to climate change and their persistence in the near future is seriously threatened. Subalpine 

and alpine grasslands are more stable and, until now, they do not seem to be affected by a warmer 

climate. 
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This chapter is an excerpt from the publication:  

Matteodo M, Ammann K, Verrecchia EP, Vittoz P (2016) Snowbeds are more affected than other 

subalpine-alpine plant communities by climate change in the Swiss Alps. Ecology and Evolution 6, 6969-

6982. (Appendix H). 

The Introduction and part of the Material and Methods have been removed from the published paper 

and they were included in Chapter 1, 2, and 3. 

 

4.2 Aims 

In this study the following questions are targeted:  

1. Are there observable changes in the subalpine-alpine vegetation over the last 25-50 years in 

species richness and community composition in the Alps?  

2. Do the magnitude and direction of changes vary across different plant communities and how?  

3. What environmental factors explain the observed changes?  

 

4.3 Materials and methods 

For the purpose of this study, 63 exhaustive plant inventories performed on six plant community types 

during the period 1964-1990 and located between the subalpine and alpine belts of the Swiss Alps have 

been revisited. A time-comparison of species frequencies and cover was performed, and with the help of 

indicator values, the main environmental drivers of the observed changes were identified.  

Study sites are extensively described in Chapter 2, and methods in Chapter 3.  

 

4.3.1 Data analyses 

The potential mistakes in species identifications, or changes in nomenclature and aggregation level 

between the historical and recent inventories, were corrected by a scrupulous check of possible 

synonymies and by aggregating the pairs of species with frequent confusions into the same taxon. One 

frequent problem in plant monitoring studies is the overlooked species in one of the surveys (Burg et al., 

2015; Vittoz and Guisan, 2007). This bias is particularly likely to cause artefact in this study, as recent 

inventories involved generally two botanists instead of one in the historical records, and because the 

historical inventories, especially those of Richard et al. (1977), were not performed for monitoring 

purposes, but for the classification of plant communities.  
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Changes in diversity between pairs of records were not expressed in terms of species richness but using 

the Simpson diversity index, which is less sensitive to the species with low cover. This is justified in order 

to minimize the influence of a possible bias related to the fact that species with very low cover are mainly 

those overlooked (Vittoz and Guisan, 2007). 

Two conversions of Braun-Blanquet's scale were used for subsequent analyses. The Braun-Blanquet’s 

scale was converted into the median of the cover class (Table 4.1), in order to test the changes in the 

species cover between the different periods. By contrast, for all other analyses (Simpson diversity, Bray-

Curtis dissimilarity, PCA, mean ecological values), numerical codes (Gillet, 2000) were used because 

they preserve the importance of the less abundant species, a crucial point in such analyses, by reducing 

the weight given to dominant ones (high cover).  

 

Table 4.1 – Braun-Blanquet's scale used in both historical and recent inventories to estimate plant cover, the 

corresponding cover range and medians, used in analyses of cover changes. Numerical codes used in all other 

analyses are also listed. 

 

Braun-

Blanquet's 

code 

Cover 

range 

Median of 

the cover 

range [%] 

Numerical 

code (Gillet, 

2000) 

r 
1 or 2 

individuals 
0.05 0.1 

+ <1% 0.5 0.5 

1 1-5% 3 1 

2 6-25% 15 2 

3 26-50% 37.5 3 

4 51-75% 62.5 4 

5 76-100% 87.5 5 

 

 

The difference between recent and historical species frequencies were calculated and tested with a 

restricted permutation test following Kapfer et al. (2011) within each plant community. Treating 

historical and recent inventories separately, the occurrences of each plant species amongst plots were 

shuffled randomly 999 times and new frequencies were calculated for each repetition. Significance levels 

were assessed by counting the number of times the changes in frequency between random historical and 

recent data was larger or equal to the observed changes in frequency between observed historical and 

recent data. For the species present simultaneously in at least 25% of the historical and recent 

inventories, a mean cover was calculated considering only the plots where the species was observed. 
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Changes in mean cover were tested with the same restricted permutation test used for species frequency 

but using the mean cover values instead (Kapfer et al., 2012). 

The floristic shifts between historical and recent records were visualized using two Principal Component 

Analyses (PCA, R vegan library): one based on species composition and cover, and the other based on 

presence-absence data. The cover values were previously submitted to Hellinger transformation, which 

is recommended when performing PCA with species cover data (Borcard et al., 2011). In order to test 

the significance of the temporal shifts in species composition and cover along the first three axes of PCA, 

a multivariate analysis of variance (MANOVA) was applied on the differences of axis scores against the 

intercept for each vegetation type individually (Vittoz et al., 2009b). 

Landolt ecological indicator values (Landolt et al., 2010) were used to investigate which of the 

environmental factors were related to the changes. Based on the same principle of Ellenberg indicator 

values for flora of Central Europe (Ellenberg et al., 1991), the Landolt species indicator values have been 

developed for the Alpine flora. These semi-quantitative parameters, although inferred from field 

experience and not from direct measurements, have been shown to give pertinent indications about the 

species ecological optima within small spatial areas in Alpine landscapes (Scherrer and Körner, 2011). 

Specifically, the temperature indicator value is significantly correlated with the average soil 

temperature, which is far more representative of actual conditions experienced by low-stature alpine 

plants than the air temperature interpolated from meteorological stations (Scherrer and Körner, 2011).  

Landolt indicator values are species-specific, vary between 1 and 5 and express increasing species 

requirements in terms of air temperature (T), light (L), soil humidity (F), soil pH (R) and nutrient 

content (N). Mean indicator values per plot were calculated with the cover as a weight. Temporal 

changes of mean indicator values were checked using Pairwise Wilcoxon-Mann-Whitney tests. 

All data processing and analyses were performed with R software, version 3.1.1 (R Core Team, 2014). 

 

4.4 Results 

4.4.1 Distribution amongst vegetation types 

63 pairs of reliable records have been retained (Table 4.2 and Appendix C1): 10 in the calcareous 

grasslands, 13 in the windy ridges, 12 in the siliceous subalpine grasslands, 11 in the siliceous alpine 

grasslands, 8 in the typical snowbeds and 9 in the wet snowbeds. A clustering analysis (using the 

Hellinger distance and the Ward aggregation algorithm) of cover-weighted historical and recent 

inventories together showed that all old and recent records were placed by pairs in the same group 

corresponding to their respective plant community, except for one snowbed plot (R3935), which shifted 

from the wet to the typical snowbeds. For subsequent analyses, this record was retained at its original 

group.  
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Table 4.2 – Distribution of historical surveys amongst study sites and vegetation types. Number of plots, time 

spans, authors, and elevation ranges of historical and recent surveys ordered by study site (upper part) and 

vegetation types (lower part). The names of the historical botanists are abbreviated as follows: Jean-Louis Richard 

(JLR), Klaus Ammann (KA), Benoît Bressoud (BB), Olivier Duckert (OD). Numbers in brackets refer to medians.  

 

Site 

No. 

of 

plots 

Historical 

survey 

Author(s) of 

historical 

data 

Elevation [m] 

Morteys 12 1972-1979 (1973) JLR 1698-2232 (1884) 

Grimsel 25 1964-1973 (1970) KA 2310-2650 (2329) 

Réchy 26 1977-1990 (1981) BB, JLR, OD 2328-2697 (2567) 

Vegetation type         

Calcareous grasslands 10 1972-1973 (1973) JLR 1698-2099 (1807) 

Windy ridges 13 1975-1990 (1979) BB, JLR, OD 2180-2697 (2430) 

Siliceous subalpine 

grasslands 
12 1964-1973 (1967) KA 2312-2370 (2320) 

Siliceous alpine 

grasslands 
11 1965-1989 (1970) JLR, KA 

2300-2682 

(2528) 

Typical snowbeds 8 1970-1981 (1973) BB, JLR, KA 2313-2685 (2460) 

Wet snowbeds 9 1977-1990 (1988) JLR 2468-2677 (2585) 

 

4.4.2 Diversity changes 

Between the historical and the recent surveys, 47 out of 63 plots show an increase in alpha-diversity and 

16 show a decrease. The magnitude of the increase varies between vegetation types (Figure 4.1). The 

windy ridges show the highest increase in the mean Simpson diversity index (+6.3 ± 6.0, difference 

between medians being significant with a p-value = 0.004), followed by the siliceous subalpine 

grasslands (+4.8 ± 6.7, p-value = 0.017) and the wet snowbeds (+4.1 ± 3.5, p-value = 0.004). The 

increase of alpha-diversity in the other plant communities is not significant.  
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Figure 4.1 - Simpson diversity index for historical (white boxes) and recent (grey boxes) inventories in six plant 

communities. “Sil.”: Siliceous; “subalp.”: subalpine. Black dots represent the mean values, the black line is the 

median and boxes are limited by 1st and 3rd quartiles. Stars above the boxes indicate a significant change between 

historical and recent inventories, according to a pairwise Wilcoxon-Mann-Whitney test: * p<0.05; ** p<0.01.  

 

 

Beta-diversity shows an opposite trend with a slight decrease of the mean Bray-Curtis dissimilarity index 

between historical and recent records in each plant community, except for the calcareous grasslands 

(Figure 4.2), whose inventories always show the same low dissimilarity level. The highest 

homogenisation is observed in the siliceous alpine grasslands, where the mean dissimilarity index 

decreased by 0.05 ± 0.03 (p-value = 0.002), followed by the windy ridges (-0.04 ± 0.04, p-value = 

0.002) and the siliceous subalpine grasslands (- 0.04 ±0.04, p-value = 0.010). The two snowbeds also 

show a dissimilarity decrease, but not significantly. 
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Figure 4.2 - Averages of Bray-Curtis dissimilarity indices amongst historical (white boxes) and recent (grey boxes) 

inventories in six plant communities. Same symbols as in Figure 4.1. 

 

4.4.3 Shifts of plant communities  

The six plant communities display different directions and amplitudes in their temporal shifts in the 

cover-weighted PCA (Figure 4.3). The first two axes of PCA explain 23.3% of the total variance (PC1: 

13.0%; PC2: 10.3%). The most evident shifts are those of snowbeds: the typical ones show a significant 

(p-value = 0.012) unidirectional trend towards the siliceous alpine grasslands, while the recent species 

composition of the wet snowbeds is significantly closer (p-value = 0.006) to the typical snowbeds than 

the historical composition. The windy ridges plots shift in two main directions (p-value = 0.047), either 

towards calcareous grasslands or the siliceous ones. The three grassland communities have no 

significant shift in species composition. In particular, the calcareous grasslands display a high stability 

in terms of species composition. 



48 

 

 

Figure 4.3 - Principal Component Analysis (PCA) based on species composition and cover. The first axis represents 

13.0 % of the variance and the second 10.3%. Couples of historical (empty symbols) and recent (full symbols) records 

are connected with thin arrows. Thick arrows represent a significant shift of the plant community centroids.  

 

 

Similar trends, in direction and magnitude, are displayed when presence-absence data are considered 

(Figure 4.4). However, four couples of records originally attributed to the siliceous alpine grasslands are 

here assimilated to the typical snowbed group, sharing with it the same unidirectional trend towards 

siliceous grasslands. These records have a species composition similar to those of typical snowbeds but, 

because of the dominance of some grassland species, they are assimilated to the alpine grassland group 

when cover is taken into account. Hence, they can be considered as transition between snowbeds and 

siliceous alpine grasslands.  
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Figure 4.4 - Principal Component Analysis (PCA) based on species composition (presence-absence). The first axis 

represents 12.3 % of the variance and the second 9.3%. Same symbols as in Figure 4.3.  

 

4.4.4 Changes in species frequency and cover 

In all the vegetation types but the calcareous grasslands, the number of species, whose frequency 

increased since the historical survey, exceed species whose frequency decreased (Data available from 

the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.q82j0), and only increasing frequencies 

are significant. Regarding changes in species cover, most of the species in the calcareous grasslands, the 

siliceous subalpine and alpine grasslands show a decrease in the mean cover, whereas most of the species 

in the windy ridges, the typical and wet snowbeds increase in cover. But very few cover changes are 

significant. 

In the calcareous grasslands, five species with their optimum mostly at the subalpine belt, increase 

significantly: Festuca ovina aggr., Globularia cordifolia, Cirsium acaule, Plantago atrata s.str., and 

Polygala alpestris. Interestingly, Globularia cordifolia, a typical species of upper montane-lower 

subalpine belt according to the temperature indicator value (Landolt et al. 2010), was absent in the 

historical survey, but is present in 50% of the recent plots. Carex sempervirens shows a strong decrease 

in mean cover (-15%, p-value = 0.001). In windy ridges, species from both calcareous (Anthyllis 

vulneraria subsp. alpestris and Selaginella selaginoides) and siliceous grasslands (Hieracium 

http://dx.doi.org/10.5061/dryad.q82j0
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angustifolium), or from the ridge community itself (Agrostis alpina) and generalist species (Campanula 

scheuchzeri), display a significant frequency increase. 

The occurrence of three subalpine species (Solidago virgaurea ssp. minuta, Trifolium pratense ssp. 

nivale and Arnica montana) is significantly higher in recent siliceous subalpine grasslands surveys than 

in the historical ones. Nardus stricta markedly decreases in mean cover (-11.5%, p-value = 0.029). In 

the siliceous alpine grasslands, four species typical of this community (Euphrasia minima, Agrostis 

rupestris, Homogyne alpina and Hieracium alpinum) are distributed more widely amongst recent 

surveys than in the historical ones. 

The species, whose frequency and cover greatly increased in typical snowbeds, are mostly from siliceous 

alpine grasslands as well: Leontodon helveticus increases by 62.5% in frequency (p-value = 0.019) and 

3.3% in cover (not significant), while Helictotrichon versicolor was absent in the historical survey, but 

is present in half of the recent plots (marginally significant, p-value = 0.057). Between the other species 

increasing both in frequency and cover (defined as “winners”, Appendix E1), most of them are typical of 

grasslands and are generalists (Ligusticum mutellina, Nardus stricta). In contrast, the species with the 

most important, but not significant, cover decrease (Carex foetida) is typical of snowbeds.  

In the wet snowbeds, some species mostly associated to typical snowbeds, such as Sibbaldia 

procumbens, increase in frequency (+55.6%, p-value = 0.019), while Juncus triglumis, Saxifraga 

androsacea and Gentiana bavarica, three species growing in wet snowbeds, decrease in terms of mean 

cover (-26.3%, p-value = 0.008; -18.4%, p-value = 0.026; -15%, p-value = 0.047; respectively).  

 

4.4.5 Ecological indicator values 

The six vegetation types display mean temperature indicator values (Landolt et al., 2010) that reflect 

their distribution in elevation, with highest values for the calcareous grasslands (Figure 4.5a). The 

calcareous grasslands and the typical snowbeds are the only plant communities showing a significant 

increase in their mean temperature values between inventories (p-value = 0.010 and p-value = 0.004, 

respectively). Similarly, the value for soil humidity (F) reflects the moisture conditions of the plant 

communities, with the four types of grasslands having lower values than the two snowbed communities 

(Figure 4.5b). Species present in the recent records of the typical and wet snowbeds have, on average, 

lower values than the composition of historical surveys, indicating their preference for drier conditions. 

However, only the decrease in the latter one is significant (p-value = 0.004).  

None of the studied plant communities show significant variations between historical and recent surveys 

in terms of soil nutrient requirements (Figure 4.5c), light and soil pH (Appendices E2 and E3), according 

to the corresponding mean ecological indicator values. 
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Figure 4.5 - Cover-weighted means of indicator values (Landolt et al., 2010) for temperature (a), soil humidity 

(b) and soil nutrient content (c) in historical (white boxes) and recent (grey boxes) inventories. Same symbols as 

in Figure 4.1.   
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4.5 Discussion 

The results of this study clearly indicate that vegetation changed over a 25-50 years timespan at the 

subalpine-alpine level in the Swiss Alps. The six plant communities displayed similar alpha and beta-

diversity changes, but also various reactions to past environmental changes in terms of species 

composition. 

 

4.5.1 Alpha and beta-diversity 

The increase in species richness, expressed as Simpson diversity index at the plot-scale, is observed in 

each plant community. There are three possible explanations: (1) new species arrived since the historical 

time; (2) the recent inventories were more exhaustive than the historical ones, or (3) the new species are 

the result of inaccurate location of the plots. The last option can be excluded because it cannot result in 

a systematic increase for all the vegetation types. The second option could be meaningful only for the 

least frequent species (i.e. occurring in one or two new plots), but not for those with a considerable 

increase (for example Globularia cordifolia in the calcareous grasslands). Moreover, many of these 

species are easily visible in terms of size and/or difficult to confuse with other species. Therefore, the 

colonisation of plots by new species is at least partly responsible for the observed increase in alpha-

diversity. Many previous studies observed the same trend over the last three decades on alpine plant 

communities (Britton et al., 2009; Kudernatsch et al., 2005; Sandvik and Odland, 2014; Vittoz et al., 

2009b), or even just over six years in snowbeds (Carbognani et al., 2014; Pickering et al., 2014). Olsen 

and Klanderud (2014) observed that species poor communities were more susceptible to species 

invasion than highly diverse species communities. Our results do not confirm such a trend, as the highest 

species increase was observed on the windy ridges community, which are more diverse than typical 

snowbeds.  

The increase in species richness is related to an increase in the floristic similarity inside the plant 

community, except in the calcareous grasslands. Similar homogenisation was first highlighted on seven 

European Alpine summits by Jurasinski and Kreyling (2007), and on a variety of alpine plant 

communities since then (Britton et al., 2009; Carbognani et al., 2014; Ross et al., 2012). According to 

their observations, the biotic homogenisation results from two processes: the invasion of widespread 

and generalist species, and a decline of rare and specialized species. Generalist species may be able to 

spread in new areas previously unsuitable, thanks to less constraining conditions for their establishment 

and survival, such as longer growing seasons through climate warming, or increased nutrient availability 

(Britton et al., 2009). Indeed, such a pattern is apparent in this study, where snowbed specialists 

decrease in cover while grassland generalist species increase in frequency and cover (see Appendix E1). 

An increasing alpha-diversity coupled with a homogenisation can be explained by the arrival of 

previously missing species in the community, completing the typical species ensemble for a given 
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vegetation type (e.g., Agrostis alpina in the windy ridges, Arnica montana in the siliceous subalpine 

grasslands).  

 

4.5.2 Snowbeds 

The main changes in plant composition are observed in the typical snowbeds, which show a marked shift 

of species composition and cover towards the siliceous alpine grasslands, and in the wet snowbeds, 

whose composition tends towards the typical snowbeds (Figure 4.3 and Figure 4.4). Therefore, the 

snowbeds are now more similar to the siliceous alpine grasslands than they were in the 1970s. This is 

confirmed by the observed colonisation by species from siliceous alpine grasslands (Helictotrichon 

versicolor) in the typical snowbeds or their increase in both frequency (Leontodon helveticus) and cover 

(Nardus stricta). This expansion of grassland species is reflected in the increase of the temperature 

indicator value and in the decrease of the humidity one (Figure 4.5a and Figure 4.5b). These conclusions 

are consistent with results from previous long-term monitoring across alpine areas of the Scandes 

(Kapfer et al., 2012; Sandvik and Odland, 2014; Virtanen et al., 2003), Scotland (Britton et al., 2009), 

Caucasus (Elumeeva et al., 2013), Japan (Kudo et al., 2011), and Greenland (Daniëls et al., 2011).  

Similar changes have been observed even on shorter time-scales, as in 6-year surveys from Italy 

(Carbognani et al., 2014) and Australia (Pickering et al., 2014). All these studies agree that the arrival 

and expansion of grassland species in the snowbed communities is likely a consequence of longer 

growing seasons induced by earlier snow-melt dates. 

The melt out date, which is an important driver of arctic and alpine plant growth (Jonas et al., 2008), 

shifted earlier by 1-4 days per decade between 1998 and 2015 at 2110-2630 m a.s.l. next to our three 

study sites (Appendix E4). This shift, although not significant and covering a short time period, is 

corroborated by satellite observations in the high latitude and high elevation areas of the Northern 

Hemisphere (Dye, 2002).  

This is probably the consequence of two associated factors: firstly, the increase of mean annual 

temperature, which has been calculated as 1.82 K between 1961 and 2008 in Switzerland (Serquet et al., 

2013), which is equivalent to the double of the mean change for the Northern Hemisphere (Rebetez and 

Reinhard, 2008), and secondly the decrease of the snowfall/precipitation ratio estimated to be around 

0.25% per year at the beginning and the end of the snow season from 1961 to 2008 (Serquet et al., 2013). 

The spring decreasing trend of snowfall/precipitation day ratio has been observed even at 2,500 m a.s.l. 

by Marty and Meister (2012) but is generally more pronounced at lower elevations (Scherrer et al., 2004; 

Serquet et al., 2013). 

In the three present study sites, despite a high inter-annual variability, the annual sum of fresh snow 

thickness decreased by 0.49 to 0.96% per year between 1964 and 2011 (Figure 2.2). The autumn and 

spring months seem to be crucial for snow duration, because at that period of the year, air temperatures 

are closer to the melting point than during the winter (Serquet et al., 2011), and a slight increase is 

sufficient to reduce the snowfall part of precipitations. The lower snow amount and earlier melting dates 

observed in the study sites were accompanied by lagged snow falls in autumn (Appendix E4).  
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The resulting longer growing season (+5 to 14 days per decade between 1998 and 2015, not significant, 

Appendix E4) allows the invasion of generally more competitive species, such as graminoids (Dullinger 

et al., 2007). These species now have enough time to accomplish their life cycle in a snowbed. The 

establishment of species from adjacent communities could have been enhanced by (i) the proximity of 

grasslands to snowbeds (mostly <20 m from the study sites), (ii) the snowbed potential of trapping seeds 

(Larsson and Molau, 2001), and (iii) the high dispersal capacity of certain grassland species. Indeed, the 

increase in frequency of Leontodon helveticus could be associated to its pappus appendage, which was 

shown to give an advantage to plant species in colonising new Alpine summits (Matteodo et al., 2013).  

Moreover, snow is an efficient scavenger of atmospheric pollutants, which are leached through the 

snowpack, mainly at the beginning of the melt period (Johannessen and Henriksen, 1978). The 

consequent high load of nitrogen into the snowbed soils can damage certain species (as the moss Kiaeria 

starkei; Woolgrove and Woodin, 1996b) and favour the establishment of acquisitive (nutrient-rich) 

plants. For example, graminoid cover has been shown to be directly related to nitrogen deposition in 

acidic grasslands (Dupré et al., 2010). However, an increase of the mean nutrient indicator value 

(Landolt et al., 2010) that could support this hypothesis has not been observed in the study sites (Figure 

4.5c). But, we cannot exclude that higher temperatures, combined with relatively high nutrient level in 

the soil, allow more thermophilous species (grassland species) to establish in the snowbeds, 

independently from the length of the growing season.  

The snowbed species are able to respond positively to experimental warming (Arft et al., 1999; Sandvik 

and Totland, 2000) and can theoretically profit for earlier snow-free habitats. But they are restricted to 

snowbed habitats because of lower competition from co-occurring plants (Heegaard and Vandvik, 

2004). The arrival of taller species from the surrounding grasslands, might increase the competition and 

induce a decrease of typical snowbed species. Hulber et al. (2011) suggested that the presence of 

neighbours in snowbed systems leads to competitive effects rather than facilitative ones, which can be 

expected in such harsh environmental conditions (Choler et al., 2001). Moreover, the role of competition 

might increase with warming, as experimentally observed by Olsen and Klanderud (2014). In the study 

sites, no significant decrease is observed, but the strong decrease in cover of Carex foetida could be a 

first sign of such an evolution. 

Similarly to the typical snowbeds, but over a shorter time period (median of historical records years = 

1988, Table 4.2), the wet snowbeds show increasingly dry conditions. The reduction of snow 

precipitation, combined with higher temperatures, likely shorten the amount and duration of water 

supply (Beniston et al., 2003) to these communities, mostly located under melting firn. The cover 

decrease of typical alliance species and the diffusion of snowbed species, in parallel with the reduction 

of the mean humidity indicator value (Figure 4.5b), indicate that these sites are rapidly shifting toward 

typical snowbed communities. The same drying trend was observed with the expansion of some 

graminoids and shrub species in Norwegian wet snowbeds (Sandvik and Odland, 2014), on soligenous 

and ombrogenous mires (Ross et al., 2012; Virtanen et al., 2003), and springs (Britton et al., 2009). 

These last vegetation types do not belong to snowbeds, but they are subject to the same water-logged 
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conditions, which limit the growth of taller plants. Diverse alpine plant communities, directly related to 

high water supply, seem to respond similarly to climate changes. 

 

4.5.3 Grasslands 

In contrast to plant communities related to long snow cover, calcareous and siliceous grasslands 

demonstrate a high stability of species composition and cover, whatever the bedrock type (Figure 4.3 

and Figure 4.4).  

Similar results were obtained by warming experiments on subalpine meadows in the Rocky Mountains 

(Price and Waser, 2000), on calcareous grasslands in northern England after a 13-yr exposure to climate 

changes (Grime et al., 2008), and observed too by long-term surveys in the Alps (Vittoz et al., 2009b; 

Windmaißer and Reisch, 2013). These authors identified many possible explanatory factors. Firstly, the 

high plant density and belowground phytomass of subalpine grasslands, compared to the sparse 

vegetation of alpine and nival summits or to the low species abundance in snowbeds, lead to high 

competition levels for light and soil resources, which restricts the establishment of new species (Choler 

et al., 2001). Secondly, the extreme longevity of some grass species (C. curvula can reach a maximum of 

5000 years; de Witte et al., 2012), the persistence of their shoot and root systems and their clonal 

growth, that allows the continuous recolonisation of vegetation gaps, result in a high resilience to 

interannual variations (Hillier et al., 1990) with a consequent long-term persistence. For example, 

Laserpitium siler, which was a dominant species in half of the plots in calcareous grasslands, is highly 

competitive in terms of light and water resources and occupies a wide elevation range, thus likely 

preventing colonisation by new species. Thirdly, the steep slopes where the calcareous grasslands are 

established could also explain their stability. According to Theurillat and Guisan (2001), slopes steeper 

than 40° (which is often the case in this study) may act as barriers to upward dispersal of species. 

Nevertheless, this general stability is also accompanied by new species or increase in frequency. Some 

of these species (Globularia cordifolia, Cirsium acaule), although frequently associated to calcareous 

grasslands, have their optimum at lower elevations. Conversely, the only significantly declining species, 

Carex sempervirens, has its optimum at the lower alpine rather than the subalpine belt. These changes 

in composition are reflected by a significant increase of the mean indicator value for temperature 

observed across the calcareous grasslands (Figure 4.5a). In conclusion, although displaying a high 

stability, these grasslands seem to experience the arrival of species from lower elevations, as repeatedly 

observed on alpine and nival summits (see Stöckli et al., 2011 for a review). Interestingly, in long-term 

studies focused on lower elevation grasslands (Britton et al., 2009; Elumeeva et al., 2013; Ross et al., 

2012; Vittoz et al., 2009b; Windmaißer and Reisch, 2013), most of the species decreasing in frequency 

and/or cover have an alpine to arctic distribution, while those increasing have broader or lower elevation 

ranges. 

Siliceous subalpine and alpine grasslands show a different trend with supplementary species either 

having very widespread distribution (Euphrasia minima, Homogyne alpina) or arriving from the same 
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species pool (Arnica montana, Hieracium alpinum). This process, known as range filling, was already 

observed in the Italian Alps by Cannone and Pignatti (2014) and seems to be predominant compared to 

the upward shift. Indeed, neither did montane species colonize the siliceous subalpine grasslands, nor 

did subalpine species move upward and colonize the siliceous alpine grasslands. The abovementioned 

stabilizing factors appear to be important in these siliceous grasslands.  

According to Dullinger et al. (2012), the elevational shift of plant species observed on alpine summits 

may display faster cool edge expansion than warm edge retreat because of the potentially long 

persistence of declining populations under unsuitable conditions. The stability of the subalpine and 

alpine grasslands, while snowbeds are changing, seems to confirm this prediction and indicates that, 

during the last few decades, subalpine and lower alpine species expanded upwards from their elevational 

range rather than shifting it. 

 

4.5.4 Windy ridges 

The community on windy ridges shows a significant change in species composition according to the PCA 

(Figure 4.3 and Figure 4.4). Indeed, the centroid shifts towards the calcareous grasslands, although 

some of the recent inventories are closer to the siliceous grasslands instead. The species increasing in 

frequency confirm this pattern, with some related to the calcareous grasslands and others to the siliceous 

ones. The different shifts seem to be related to soil pH, as shown by soil analyses, but a higher number 

of plots would be necessary for a better understanding of these divergences.  

Research on comparable habitats (such as alpine heaths on windy ridges) show diversified reactions to 

past climatic changes, from very limited changes (Elumeeva et al., 2013), to an increase in dwarf shrubs 

(Virtanen et al., 2003) or graminoid increase related to a dwarf-shrub and forb decrease (Ross et al., 

2012). The only common feature is the lichen decrease, attributed either to summer reindeer grazing 

(Virtanen et al., 2003), or to nitrogen deposition (Armitage et al., 2014), trampling, and climate 

warming (see Ross et al., 2012 and references therein). Unfortunately, the majority of our historical 

inventories do not give any indication of lichen covers (Appendix C1). Consequently this study cannot 

confirm such a trend.  

 

4.5.5 Long-term implications 

This study is the first of its kind to assess the way different plant communities in the subalpine and lower 

alpine belts of the European Alps reacted to climate changes over the last two to four decades. It 

demonstrates that reactions differ considerably between vegetation types, with the most important 

changes in those linked to long snow cover.  

The vulnerability of Salicion herbaceae (typical snowbeds) was already suspected by Braun-Blanquet 

(1975). Indeed, monitoring Eastern Switzerland vegetation of a very late snowmelt patch dominated by 
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the moss Polytrichum sexangulare from 1921 to 1947, Braun-Blanquet (1975) observed an increasing 

cover of snowbed plant species in response to shorter snow cover and warmer temperatures. Moreover, 

he hypothesized that snowbeds will be progressively invaded by species from the surrounding siliceous 

grasslands. Therefore, it is likely that, during the last few decades, some snowbed communities took 

refuge in Polytrichum sexangulare communities, altering their species composition. Simultaneously, 

snowbed species colonized many summits and slopes, where, as a result of glacier and snow cover 

reductions, new snowbed areas were available for colonisation (Grytnes et al., 2014). Therefore, 

snowbed species can still find suitable areas in the coldest micro-habitats, but with potential detrimental 

consequences for the communities currently present. This corroborates the theory of Scherrer and 

Körner (2011), who sustained that alpine terrain offers a variety of thermal micro-habitats over very 

short distances, which will be suitable for the majority of species.  

Beniston et al. (2003) predicted that, with a temperature rise of 4°C in 2071-2100 (Christensen et al., 

2002), the snow volume in the Alps at 2000 m may reduce by 50% and the melting season advanced by 

50-60 days. As this study clearly demonstrates, changes in snow precipitations may have a stronger 

impact on the subalpine-alpine plant communities than warmer temperatures, at least for communities 

directly dependent on snow cover as a limit to the growing season. However, very probably, the 

grasslands will not be able to stand such a temperature increase without important changes as well. But, 

with the available data, it is not possible to conclude if changes will still be very slow, like those observed 

until now, which will induce a large local extinction debt (Dullinger et al., 2012), or if strong and sudden 

changes are expected after forest colonisation, successive years of drought, development of diseases 

(Ayres and Lombardero, 2000), or the arrival of new herbivores (Pellissier et al., 2014). Future 

monitoring of alpine grasslands will be particularly important to address these questions. 
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 Soils and humus forms in the 

subalpine-alpine belt 

 

 

5.1 Abstract 

When studying plant community dynamics, helpful elements may come from the study of soil and, in 

particular, its humus layers. Humus forms play a central role in the functioning of terrestrial ecosystems, 

being at the interface between vegetation, soil organisms, parent material, and under the control of 

climatic variables. Humus forms of the alpine environment, and their relationships with ecosystem 

properties, have been hardly investigated so far. The aim of this study was to fill this gap, taking 

advantage of the large ecosystem diversity on short space-scale that the alpine environment offers.  

Eight subalpine-alpine vegetation types, spanning a gradient of soil acidity and snow cover, were visited 

and their soil profiles and humus forms described. Physical and chemical properties of each soil horizon 

were recorded in 46 soil profiles. By means of redundancy analyses, the most important correlations 

between humus forms and environmental descriptors were identified. Finally, the specifics of alpine 

humus forms, with regards to lower elevation ones, were highlighted. 

Ten main groups of soil type and the same number of humus forms were identified. The soil types and 

its solution pH reflected the lithology of the parent material. By contrast, C/N ratios of the organic layers 

were mostly influenced by the vegetation type. Lithology of soil’s parent material and climate 

importantly shaped the humus form distribution: Mulls were mostly found on calcareous parent 

materials, at lower elevations and therefore warmer sites. On the contrary, Moders and Mors were 

associated to siliceous materials and colder sites. Topography was important as well: roots were 

abundant in humus forms located on slopes, while humus forms presenting waterlogging conditions 

were exclusively found in depressions. Vegetation played a secondary role. 

This study provided an exhaustive inventory of soils and humus forms occurring among the most 

representative vegetation types of the alpine environment. Moreover, the ecosystem properties driving 

the alpine humus form development were for the first time identified. 
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5.2 Aims 

In this study the following goals are targeted:  

 

1) identification of soils associated to the eight plant communities under study;  

2) description of their main physical and chemical properties;  

3) investigation of the diversity of alpine humus forms and description of their characteristics; 

4) investigation of the principal environmental factors driving the distribution of humus forms; 

5) emphasizing of specifics of the alpine environment within humus forms classification criteria.  

 

5.3 Materials and methods 

For the purpose of this study, eight subalpine-alpine vegetation types (Table 3.1), spanning a gradient 

of soil acidity and snow cover, were visited and their soil profiles and humus forms described. A total of 

46 profiles and 232 soil samples were studied. Morphological descriptions were completed by laboratory 

analyses of pH H20 (here after referred as “pH”), grain-size distributions, and CHN concentrations. 

Study sites are extensively described in Chapter 2, and methods in Chapter 3.  

5.3.1 Data analyses 

The relationship between the humus forms and the main parameters employed for their identification 

(Table 5.1) were visualized using a Principal Component Analyses (PCA, R vegan library). A circle of 

equilibrium contribution (Borcard et al., 2011) allowed to identify the most important parameters for 

the humus form distribution. All variables were scaled and reduced (mean = 0, variance = 1) prior to 

analysis.  

The influence of selected environmental factors (Table 5.1) on the humus form distribution and the 

parameters employed for their identification was assessed by total RDA (Redundancy Analysis). The 

parameters employed for the humus form identification were used as response variables and 

environmental variables as explanatory variables. Quantitative variables were scaled and reduced prior 

to analysis. Two different RDA were performed: the first considered all environmental factors (Table 

5.1), while in the second the “Vegetation” factor was omitted in order to assess its importance by 

comparison with the first RDA. The relationship between the response data and the explanatory 

variables was tested by permutation test with 1000 repetitions.  

 

 



61 

 

5.4 Results  

5.4.1 Diversity of soil types among vegetation types 

The 46 soil profiles have been classified into ten main groups of soil references (Table 5.2 and Figure 

5.1), unevenly distributed among the eight plant community types under study. Calcareous vegetation 

types were characterized by Calcaric, Eutric, and Dystric Cambisols. All soils of subalpine pastures were 

classified as Dystric Cambisols. The siliceous grasslands were associated to Umbric, Entic, and Albic 

Podzols. The siliceous snowbeds were associated to soils showing waterlogging conditions as Gleysols 

and Stagnosols, but two Podzols and one Regosol were also observed in the typical snowbeds. Among 

the two Podzol profiles, one showed a high degree of evolution, with an E horizon particularly well 

developed (Albic Podzol, profile G336, Table 5.2 and Appendix D). Leptosols were equally distributed 

among calcareous and siliceous vegetation types. 

 

 

 

Figure 5.1 - Number and type of soil profiles described in each vegetation type (Chapter 3). Soils are grouped into 

ten principal soil references (IUSS Working Group, 2015). “Sil.”: siliceous; “subalp.”: subalpine; “alp.”: alpine.  
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Table 5.1 – Parameters employed for the identification of humus forms and potential environmental drivers. The 

parameters employed for the humus form identification were used in the PCA and RDA, and the environmental 

factors were used in the RDA as explanatory variables. Annual precipitations and summer temperatures are 

extrapolated for each soil location from the Swiss meteorological stations (www.meteoswiss.ch) according to 

Zimmermann and Kienast (1999). For lithologies, the ‘Calcareous’ category refers to limestones, calcareous 

sandstones, marbles and surficial deposits (screes and moraines) derived almost exclusively from these materials. 

The ‘Mixed’ category contains surficial deposits of mixed origin (sedimentary, metamorphic, crystalline 

components). The ‘Si-rich’ (Silicium rich) category contains granites, gneisses, quartzites and surficial deposits 

derived almost exclusively from these materials. The eight vegetation types are described in Chapter 3. Ranges and 

medians are given for quantitative variables only.  

 

Parameters employed for humus form identification   

Variable Remarks Range (median) 

Rhizic Humus forms having more than 25% of dead or living roots in the total 
volume (Jabiol et al., 2013) 

0-1 

Water Presence of waterlogging conditions 0-1 

Oe Presence of an Oe horizon, continous or discontinuous 0-1 

Oa Presence of an Oa horizon, continous or discontinuous 0-1 

A Presence of an A horizon 0-1 

pH_A pH of the A horizon or, if this was missing, pH of the first horizon under 
the O 

3 - 7.4 (5.4) 

A_massive Presence of an A horizon with massive structure 0-1 

A_sg Presence of an A horizon with single-grain structure 0-1 

A_micro Presence of an A horizon with micro-granular structure (aggregates < 1 
mm) 

0-1 

A_meso Presence of an A horizon with meso-granular structure (aggregates 1-4 
mm) 

0-1 

   

Environmental factors 
  

Variable Remarks Range (median) 

NS gradient North-South gradient; equals to 0 - cosinus [radian (Aspect)] From -1 (North) to 1 (South) 
(-0.03) 

Slope Steepness  0°- 50 ° (20°) 

Topography Topography, estimated visually Three categories: depression, 
slope and ridge 

Precipitations Average of annual precipitation sum for the period 1961-1990 1396 - 2218 mm (1650 mm) 

Summer temp. Monthly average temperature for the period 1961-1990, from June to 
September, included 

4.8 - 10 °C (6.7 °C) 

Lithology Lithology of the soil's parent material Three categories: Calcareous, 
Mixed and Si-rich 

Vegetation Vegetation type Eight categories: Calcareous 
grasslands; Subalpine 
pastures; Windy ridges; 
Calcareous snowbeds; Silic. 
Subalp. Grasslands; Silic. 
Alp. Grasslands; Typical 
snowbeds; Wet snowbeds. 

 

http://www.meteoswiss.ch/
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The soil types substantially reflected the lithology of their parent material (Figure 5.2). All Cambisols 

were found on calcareous lithology, and most of the Podzols on Si-rich (Silicium-rich) ones (granite, 

gneiss, quartzite). Hydromorphic soils, such as Gleysols and Stagnosols, were found only on surficial 

deposits with a potentially mixed lithology. Leptosols were equally distributed among lithologies of soil 

parent material. 

 

 

 

Figure 5.2 - Relation between the soil type and the lithology of its parent material. For lithologies, the ‘Calcareous’ 

category refers to limestones, calcareous sandstones, marbles and surficial deposits (screes and moraines) derived 

almost exclusively from these materials. The ‘Mixed’ category contains surficial deposits of mixed origin 

(sedimentary, metamorphic, crystalline components). The ‘Si-rich’ category contains granites, gneisses, quartzites 

and surficial deposits derived almost exclusively from these materials.  

 

 

The elevation distribution of soil profiles depended upon the location of the vegetation records, and 

therefore it was skewed with respect to a random sampling. Cambisols were present on the whole 

elevational gradient, from 1698 m (subalpine belt) to 2697 m (alpine belt). Podzols (Umbric, Entic, and 

Albic) were located from the forest line to the alpine belt, between 2310 and 2685 m. Similarly, 

Stagnosols, Gleysols, and Regosols were situated in the alpine belt, from 2440 m to 2650 m. Elevation 

gradient of Leptosols was wide, from 1979 (subalpine belt) to 2650 m (alpine belt).  
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Table 5.2 – Characteristics of the soil profiles: name of the soil profile; study site; elevation; aspect of the slope; steepness of the slope; depth of soil pit (the soil was not always 

dug until the parent material was reached); lithology of the soil’s parent material (cf. Table 5.1); vegetation type (cf. Chapter 3); soil type according to Baize and Girard (2009) 

and IUSS Working Group (2015) and humus forms according to Jabiol et al. (2013).  

 

Profile Site Elevation 
[m asl] 

Aspect 
[°] 

Slope 
[°] 

Soil 
pit 
depth 
[cm] 

Parent material Lithology 
of parent 
material 

Vegetation type Soil type (Baize & Girard 2009) Soil type (IUSS 
Working Group 2015) 

Humus form 
(Jabiol et al. 2013) 

M2716 Morteys 1966 320 30 41 Limestone colluvium Calcareous Calcareous snowbeds 
BRUNISOL DYSTRIQUE hemiorganique, sur 
colluvionnement calcaire 

Dystric Cambisol MESOMULL 

M2844 Morteys 1698 122 28 33 Clayey limestone and marl Calcareous Calcareous grasslands CALCOSOL décarbonaté en surface, hémiorganique Calcaric Cambisol OLIGOMULL (Rhizic) 

M2965-6 Morteys 1932 180 45 34 Limestone colluvium Calcareous Calcareous grasslands 
CALCOSOL leptique, hémiorganique, issu de 
colluvionnement calcaire  

Calcaric Cambisol OLIGOMULL (Rhizic) 

M2976 Morteys 1981 0 0 43 Compact limestone Calcareous Subalpine pastures BRUNISOL DYSTRIQUE, leptique, humique  Dystric Cambisol EUMESOAMPHI 

M2980 Morteys 1945 340 10 50 Compact limestone Calcareous Subalpine pastures BRUNISOL DYSTRIQUE  rédoxique  Dystric Cambisol OLIGOMULL 

M3109 Morteys 1900 146 39 39 Limestone-rich moraine Calcareous Subalpine pastures 
BRUNISOL DYSTRIQUE, leptique, colluvionné en surface, à 
charge calcaire  

Dystric Cambisol OLIGOMULL 

M3126 Morteys 1716 108 48 25 Compact limestone Calcareous Calcareous grasslands CALCISOL leptique bathycarbonaté, hémiorganique Eutric Cambisol OLIGOMULL (Rhizic) 

M3127 Morteys 1747 120 35 30 Compact limestone Calcareous Calcareous grasslands CALCISOL leptique hémiorganique  Eutric Cambisol 
OLIGOMULL 
(Hyperhumic, Rhizic) 

M3128 Morteys 1855 142 38 44 Compact limestone Calcareous Calcareous grasslands CALCISOL haplique hémiorganique  Eutric Cambisol 
OLIGOMULL 
(Hyperhumic, Rhizic) 

M3132 Morteys 1972 165 11 68 Limestone-rich moraine Calcareous Subalpine pastures BRUNISOL DYSTRIQUE rédoxique, hémiorganique Dystric Cambisol MESOMULL 

M3138 Morteys 1711 142 33 26 Detritic limestone Calcareous Calcareous grasslands CALCISOL bathycarbonaté leptique Calcaric Cambisol 
DYSMULL 
(Hyperhumic, Rhizic) 

M3139 Morteys 1774 158 27 27 Detritic limestone Calcareous Calcareous grasslands CALCISOL leptique  Eutric Cambisol 
OLIGOMULL 
(Hyperhumic, Rhizic) 

M3140 Morteys 1997 136 35 32 Detritic limestone Calcareous Calcareous grasslands 
CALCOSOL leptique, hémiorganique, issu de 
colluvionnement calcaire, à charge calcaire 

Calcaric Cambisol 
OLIGOMULL (Rhizic, 
Skeletic) 

M3141 Morteys 2099 135 27 23 Detritic limestone Calcareous Calcareous grasslands 
BRUNISOL EUTRIQUE OU DYSTRIQUE, sur 
colluvionnement calcaire 

Dystric Cambisol OLIGOMULL (Rhizic) 

M3150 Morteys 1951 210 31 20 Limestone colluvium Calcareous Calcareous grasslands CALCISOL leptique, hémiorganique  Eutric Cambisol 
DYSMULL 
(Hyperhumic, Rhizic) 

M3167 Morteys 1979 50 28 11 Compact limestone Calcareous Calcareous snowbeds LITHOSOL-CALCISOL bathycarbonaté Rendzic Cambic Leptosol MESOMULL (Lithic) 

M3592 Morteys 2232 20 18 35 Compact limestone Calcareous Calcareous snowbeds CALCISOL  caillouteux, colluvial, hémiorganique Eutric Cambisol 
DYSMULL 
(Hyperhumic, 
Skeletic) 

M4121 Morteys 2180 330 50 2 Compact limestone Calcareous Calcareous snowbeds LITHOSOL holorganique 
Rendzic Leptosol 
Hyperhumic 

Hyperlithic 
PARAHUMUS 
(Rhizic) 

G47 Grimsel 2317 180 30 42 Gneiss and micaschist-rich moraine Si-rich Silic. subalp. grasslands PODZOSOL OCRIQUE colluvial, juvénile, leptique, pierreux 
Hyperskeletic Entic 
Podzol  Colluvic 

HEMIMODER 
(Rhizic) 

G90 Grimsel 2441 156 10 42 Granite, granodiorite, diorite Si-rich Silic. alp. grasslands PODZOSOL OCRIQUE Entic Podzol HUMIMOR (Rhizic) 

G92 Grimsel 2511 0 0 28.5 Granite, granodiorite, diorite Si-rich Silic. alp. grasslands PODZOSOL OCRIQUE leptique Leptic Entic Podzol HEMIMODER 

G291 Grimsel 2348 140 5 51 Gneiss and micaschist-rich moraine Si-rich Silic. subalp. grasslands PODZOSOL HUMIQUE leptique SUR PODZOSOL tronqué Umbric Podzol 
HUMIMOR 
(Hyperhumic, Rhizic) 

G334 Grimsel 2310 145 20 52 Gneiss and micaschist Si-rich Silic. alp. grasslands PODZOSOL MEUBLE caillouteux Skeletic Albic Podzol HUMIMOR  (Rhizic) 

G336 Grimsel 2497 0 0 46 Granite, granodiorite, diorite Si-rich Typical snowbeds 
PODZOSOL MEUBLE leptique, développé dans un paléo 
Podzosol Meuble 

Albic Podzol 
HEMIMODER 
(Bryoic) 

G339 Grimsel 2650 45 5 23 Granite, granodiorite, diorite Si-rich Silic. alp. grasslands RANKOSOL alpin, graveleux, leptique Umbric Leptosol HEMIMODER 

G340 Grimsel 2560 320 20 27 Granite, granodiorite, diorite Si-rich Silic. alp. grasslands 
RANKOSOL alpin, à horizon A humifère, graveleux, 
podzolisé 

Umbric Leptosol HEMIMODER 

G350 Grimsel 2326 160 18 32 Gneiss and micaschist-rich moraine Si-rich Silic. subalp. grasslands PODZOSOL OCRIQUE leptique Leptic Entic Podzol DYSMODER (Rhizic) 

G403 Grimsel 2313 0 20 15.5 Gneiss and micaschist Si-rich Typical snowbeds 
RANKOSOL alpin, graveleux, leptique, podzolisé, 
hémiorganique 

Umbric Leptosol HEMIMODER 

G421 Grimsel 2312 167 20 52 Gneiss and micaschist-rich moraine Si-rich Silic. subalp. grasslands PODZOSOL OCRIQUE pierreux, issu de cordon morainique 
Hyperskeletic Entic 
Podzol 

HEMIMODER 
(Rhizic) 
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Profile Site Elevation 
[m asl] 

Aspect 
[°] 

Slope 
[°] 

Soil 
pit 
depth 
[cm] 

Parent material Lithology 
of parent 
material 

Vegetation type Soil type (Baize & Girard 2009) Soil type (IUSS 
Working Group 2015) 

Humus form 
(Jabiol et al. 2013) 

R264R Réchy 2489 0 0 45 Mixed moraine Mixed Typical snowbeds REDOXISOL à horizon réduit de surface Gleyic Stagnosol EUANMOOR 

R267R Réchy 2685 272 5 30 Quartzite Si-rich Typical snowbeds PODZOSOL OCRIQUE leptique Entic Podzol 
HEMIMODER 
(Rhizic) 

R3901 Réchy 2697 251 6 50 Marble and phyllitic calcschist Calcareous Windy ridges 
BRUNISOL EUTRIQUE hémiorganique, leptique, juvénile, 
développé dans un Régosol cryoturbé issu de loess et de 
quartzites, sur calschistes et quartzites 

Endocalcaric Eutric 
Cambisol (Humic) 

DYSMULL 

R3913 Réchy 2599 3 20 41 Mixed moraine Mixed Typical snowbeds REGOSOL polygénétique, colluvial 
Skeletic Regosol (Colluvic, 
Humic) 

MESOMULL 

R3934 Réchy 2468 116 5 8 Mixed moraine Mixed Wet snowbeds REDUCTISOL TYPIQUE Gleysol EUANMOOR (Bryoic) 

R3935 Réchy 2468 1 10 36 Mixed moraine Mixed Typical snowbeds REDUCTISOL TYPIQUE Gleysol 
EUANMOOR-
MESOMULL 

R4003 Réchy 2595 240 35 40 Calcareous colluvium  Calcareous Windy ridges 
CALCOSOL décarbonaté en surface, leptique, issu de 
colluvionnement calcaire, hémiorganique, bilithique 

Calcaric Cambisol OLIGOMULL  

R4209 Réchy 2581 207 14 31.5 Gneiss Si-rich Silic. alp. grasslands PODZOSOL OCRIQUE Leptic Entic Podzol 
HEMIMODER 
(Rhizic)  

R4217 Réchy 2568 0 0 36 Quartzite-rich alluvial deposits Mixed Wet snowbeds REDUCTISOL TYPIQUE graveleux, leptique Gleysol EUANMOOR 

R4468 Réchy 2440 342 3 34.5 Mixed moraine Mixed Typical snowbeds REDOXISOL sur REDUCTISOL STAGNIQUE Stagnosol on Gleysol HEMIMODER 

R4469 Réchy 2578 182 18 43 Mixed moraine Mixed Silic. alp. grasslands PODZOSOL OCRIQUE hémiorganique Entic Podzol HEMIMODER 

R4471 Réchy 2682 64 22 52 Quartzite, metaconglomerate Si-rich Silic. alp. grasslands PODZOSOL OCRIQUE leptique, pierreux Leptic Entic Podzol HEMIMODER 

R4482 Réchy 2450 225 30 52 Phyllitic marble, calcschist Calcareous Windy ridges CALCISOL leptique, pierreux Eutric Cambisol OLIGOMULL 

R5061 Réchy 2650 299 18 32 Mixed moraine Mixed Wet snowbeds REDUCTISOL TYPIQUE colluvionné en surface Gleysol Epicolluvic EUANMOOR 

R5067 Réchy 2528 20 8 20.5 Mixed moraine Mixed Silic. alp. grasslands PODZOSOL OCRIQUE leptique Leptic Entic Podzol DYSMODER (Rhizic) 

R5141 Réchy 2567 340 32 21 Gneiss and micaschist Si-rich Wet snowbeds REGOSOL humique, issu de colluvionnement 
Skeletic Leptosol 
(Colluvic) 

HEMIMOR (Rhizic) 

R5145 Réchy 2430 275 36 30 Quartzite, metaconglomerate Mixed Windy ridges 
REGOSOL hémiorganique, colluvial, à charge calcaire de 
profondeur 

Skeletic Leptosol 
(Colluvic, Humic) 

OLIGOMULL (Rhizic) 
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5.4.2 Physical and chemical soil properties 

Grain-size distribution was mainly related to the study sites (Figure 5.3): samples from the Morteys site, 

characterized by a limestone lithology, displayed higher clay concentrations than the two other sites, 

where the clay percentage never exceeded 10%. Among the Morteys plant community types, the texture 

of soil samples from the subalpine pastures (Dystric Cambisols) was homogenously silty clay loam and 

silty clay, whereas those from calcareous grasslands and snowbeds were more variable, and some 

samples were attributed to loamy and silty loam texture classes.  

The Grimsel and Réchy study sites were differentiated according to their relative proportions of silt and 

sand: the Réchy site was dominated by the silt fraction and presented mainly silty loam textures; the 

Grimsel site showed instead variable proportions of silt and the textures were sandy loam to silty loam. 

The relationship between the grain-size distributions and the plant community or soil type appeared to 

be weaker than with the study site. It has to be noted that the texture of Eutric and Calcaric Cambisols 

observed on windy ridges (Réchy site) was similar to that of other soil types from the same site and 

substantially different from the other Cambisols present in the Morteys site (Figure 5.3).   

 

 

 

Figure 5.3 - Textural ternary diagrams of the fine earth (< 2 mm) of A, E, B and C horizons. Symbols represent the 

three study sites (Chapter 3), colors represent (a) the eight plant communities and (b) the ten soil types. Same 

abbreviations as in Figure 5.1. Textural classes follow IUSS Working Group (2015). “Clay”: 0-2 µm; “Silt”: 2-63 µm; 

“Sand”: 0.063-2 mm.  
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The gradient in soil pH was broadly consistent with the type of plant community (Figure 5.4). Calcareous 

grasslands, windy ridges, and calcareous snowbeds showed higher soil pH (from 5.3 to 8.2) than in 

siliceous grasslands and snowbeds (from 3 to 6.2). The wet snowbeds, even if developed on siliceous 

parent material or mixed moraine (Table 5.2), presented higher pH values than the other siliceous 

vegetation types. Contrarily, the subalpine pastures, even if located in a limestone-dominated site 

(Morteys site), presented relatively lower soil pH ranges. Organo-mineral horizons (A) had generally 

lower soil pH values than mineral horizons. This was particularly obvious in the soils of windy ridges, 

where the difference of average pH between mineral and A horizons reached 1.4 units (< 1 unit for the 

other plant communities). Wet snowbeds presented same pH ranges for A and mineral horizons.  

The eluvial (E) horizons were not merged neither with A nor mineral horizons because of their peculiar 

characteristics showed in the OM stability study (Chapter 6). Because of their small number (four 

samples in total), these horizons were not considered in the following boxplots of pH and C/N 

distribution (Figure 5.4 and Figure 5.5). 

 

 

 

Figure 5.4 - pH distribution among A and mineral layers (B and C horizons) in the eight plant communities. Same 

abbreviations as in Figure 5.1. Black dots represent the mean values, the black line is the median, and boxes are 

limited by 1st and 3rd quartiles. Numbers of observations are indicated above boxplots.  

 

 

The organic C concentration decreased from litter to mineral horizons consistently in all the plant 

community types (Figure 5.5a). This decrease was particularly pronounced between O and A horizons. 

Litter layers showed variable percentages of organic C, reaching maximum values in a moss-rich sample 

of typical snowbeds (59%) and minimum ones in calcareous grasslands (29%). The A horizons were in 

general C-rich (9.3% in average, Appendix F1), especially those from calcareous grasslands (13% of C in 
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average). The same trend is maintained in mineral horizons, where the highest values (7.2% in average) 

were found in calcareous grasslands.  

Total Nitrogen (N) concentrations decreased from organic to mineral horizons but not linearly in each 

vegetation type (Figure 5.5b). N concentrations in litter samples (organic N in this case) were highly 

variable: snowbeds, either calcareous or siliceous, reached the highest values (1.5% in average), while 

grasslands were the lowest (0.9% in average). In calcareous and siliceous grasslands (both subalpine 

and alpine), a relative increase in N concentrations was observed in Oe and Oa samples. The same trend 

appeared in the subalpine pastures but the only Oe sample available cannot allow further conjectures. 

N concentrations of A horizons presented a high variability among and within vegetation types. Higher 

concentrations were found in subalpine pastures and in calcareous grasslands and snowbeds, the three 

plant community types investigated in the Morteys site. N concentrations in the mineral layers were very 

low and followed the same trend as A horizons.  

The C/N ratio (organic C / total N) linearly decreased from litter to A horizons (Figure 5.5c). The C/N 

ratio was not computed in mineral layers because of their concentrations being too close to the detection 

limit of the machine. A small error of such N concentrations would have notably skewed the results. The 

litter C/N variability was relatively high among and within each vegetation type. The litter collected in 

calcareous and siliceous grasslands displayed higher C/N ratios (between 32 and 70) compared to all 

other plant communities (between 19 and 34). C/N ratios of A horizons showed high variability among 

vegetation types (values varying between 7 and 20). 
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Figure 5.5 – Total Carbon and Nitrogen concentrations among horizons and vegetation types. (a) Organic Carbon 

(Corg), (b) total Nitrogen (Ntot) concentration and (c) C/N ratio among litter, Oe and Oa, A and mineral (B and C) 

horizons in the eight plant communities. Same abbreviations as in Figure 5.1 and symbols as in Figure 5.4.  
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5.4.3 The diversity of humus forms and their characteristics 

Ten main groups of humus forms, from Mull to Mor, were identified (Table 5.2). Apart from the 

Euanmoor, which is semi-terrestrial, all other forms are terrestrial humus forms. 

Among parameters employed for the humus form identification (Table 5.1), the pH of the A horizon and 

its structure resulted as the most important according to PCA (Figure 5.6). Mull forms were associated 

to meso-granular structures and high pH of the A horizon, compared to Moders and Mors that were 

associated to lower pH and micro-granular or single-grain structures. Dysmoder and Mor forms 

distinguished from other Moders because of the occurrence of an Oa horizon. The Euanmoors showed 

intermediate pH values and were clearly separated from all other terrestrial forms because of the 

waterlogging conditions. Their A structure was massive in all cases except in one profile (R264R), where 

a meso-granular structure was found instead.  

 

 

 

Figure 5.6 - Principal Component Analysis (PCA) based on parameters for identification of humus forms. The first 

axis represents 25.5% of the variance and the second 22.1%. Colors represent the groups of humus forms, and 

symbols whether these are Rhizic (Jabiol et al., 2013) or not. The Hyperlithic Parahumus form (1 observation) was 

omitted for lack of pH data. Abbreviations: “Oe”, “Oa”, “A”: presence of Oe, Oa, A horizons respectively; 

“A_massive”,“A_sg”, “A_micro”, “A_meso”: different A structures, respectively massive (Anmoor A; Jabiol et al., 

2013), single grain, micro-granular (aggregates < 1 mm), meso-granular (aggregates 1-4 mm); “Water”: presence of 

waterlogging conditions, “pH_A”: pH of the A horizon or, if this was missing, pH of the first horizon under the O; 

“Rhizic”: humus forms having a rhizic horizon between 25 and 75% of the thickness of combined diagnostic horizons 

or having > 25% of dead or living roots in the total humus form volume (Jabiol et al., 2013). (a) Distance biplot 

(scaling 1): distance among objects are approximations of their Euclidean distances in multidimensional space; the 

angles among descriptor vectors are meaningless. The circle of equilibrium contribution defines variables which 

contribution is higher than average. (b) Correlation biplot (scaling 2): distances among objects are not 

approximations of their Euclidean distances, the angles between descriptors reflect their correlation (Borcard et al., 

2011). “A-micro” was omitted to facilitate easy reading.  
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5.4.4 Main environmental factors driving the distribution of humus forms 

5.4.4.1 Vegetation type  

The calcareous plant communities were associated to Mull forms (Meso-, Oligo- and Dysmull; Figure 

5.7). Eumull, the humus form having the most efficient nutrient recycling among mulls (Jabiol et al., 

2013), was not observed. A Eumesoamphi was detected in a subalpine pasture and a Hyperlithic 

Parahumus (having continuous rock under litter and within 2 cm from the soil surface; Jabiol et al., 

2013) in a calcareous snowbed. Moder and Mor forms were associated to siliceous grasslands (both 

subalpine and alpine) and to typical snowbeds. An Hemimor was recorded in the wet snowbeds and a 

Mesomull in a typical snowbed. Euanmoor forms were only observed in snowbeds plant communities.  

Roots were abundant (Appendix F1), leading to the use of the suffix “Rhizic” in 22 humus form names 

(having a rhizic horizon between 25 and 75% of the thickness of combined diagnostic horizons or having 

> 25% of dead or living roots in the total humus form volume; Jabiol et al., 2013). Most of them were 

observed on grassland soils, and particularly under calcareous and siliceous subalpine grasslands, where 

all humus forms were described as Rhizic.  

 

 

 

Figure 5.7 - Number and type of humus forms described in each vegetation type (Chapter 3). Humus forms are 

grouped into ten principal humus form references (IUSS Working Group, 2015). The Rhizic form (Jabiol et al., 

2013) of some humus forms is indicated by a specific symbol. Same abbreviations as in Figure 5.1.  

 

 

5.4.4.2 Soil type and soil parent material  

The type of soil, notably its acidity and the waterlogging conditions, shaped the distribution of humus 

forms (Figure 5.8). Mull forms were prevalently found in association with Cambisols; Moder and Mor 

forms with Podzols, and Anmoor forms with Stagnosols and Gleysols. Leptosols had no specific humus 
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forms except the Hyperlithic Parahumus. Rhizic humus forms were absent from hydromorphic soils 

(Gleysol and Stagnosol) and Regosols. 

Consistently, the lithology of the soil’s parent material clearly separated humus forms in two groups: 

Mulls mostly on calcareous parent material and Moder and Mor on siliceous ones (Figure 5.9). Soils 

developed on surficial deposits with mixed lithology (sedimentary, metamorphic and crystalline 

components) displayed both Mulls and Moders. All Anmoor forms were associated to the mixed 

lithology. The Eumesoamphi and the Hyperlithic Parahumus forms occurred on calcareous parent 

material.  

 

 

 

Figure 5.8 - Number and type of humus forms described in each soil reference group (IUSS Working Group, 2015).  

 

 

 

Figure 5.9 - Relationship between the lithology of soil’s parent material and the humus forms (IUSS Working 

Group, 2015). For lithologies, refer to Table 5.1.  
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5.4.4.3 Temperature and precipitation ranges 

The gradient of mean summer temperatures and annual precipitations of this study importantly shaped 

the humus form distribution (Figure 5.10). However, it has to be reminded that the three study sites 

(Morteys, Réchy, Grimsel) differ in terms of elevation and biogeographic regions, besides lithology 

(Chapter 2), showing thus differences in climate. Therefore, the humus form distribution along 

gradients of summer temperatures and annual precipitations could result from the variation of all 

parameters associated to the study sites (geology, vegetation, etc.), in addition to climatic variations.  

Mull forms were mainly found at Morteys site that, being lower in elevation, is the one showing the 

highest summer temperatures. Nevertheless, four Mulls were found also at cooler temperatures, 

showing that this humus form can occur at colder site as well. Among Mulls, Rhizic forms were generally 

found at lower elevation (mainly below 2000 m) than their relative non-rhizic form (all above 1900 m). 

Moders and Mors were found only above 2300 m (Table 5.2), at both Réchy and Grimsel sites, 

irrespective of the precipitation regime. Humimors were found only at Grimsel and the unique Hemimor 

was found at Réchy. Anmoors were observed only at Réchy, above 2400 m.  

 

 

 

Figure 5.10 - Relationship between mean summer temperatures and annual precipitations of each humus form 

type. Colors represent the groups of humus forms, and symbols whether these are Rhizic (Jabiol et al., 2013) or not. 

Points are grouped by study sites.  

 

 

5.4.4.4 Topography 

The humus form distribution was influenced by topography as well (Figure 5.11). Indeed, Anmoors were 

found only in depressions, while Rhizic forms mostly on slopes. The distribution of Mulls, Moders and 

Mors appeared poorly related to topography. Nevertheless, only Mull forms were observed on ridges.   
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Figure 5.11 - Relationship between topography and the humus forms (IUSS Working Group, 2015). The three 

categories of topography (ridge, slope, depression) have been estimated visually by the author.  

 

 

5.4.4.5 The combined influence of environmental factors  

The respective influence of various environmental factors (Table 5.1) on the humus form distribution, 

the correlation among them and with the parameters of humus form identification (Figure 5.6) is 

summarized in the redundancy analysis of Figure 5.12a. The selected environmental factors explained a 

significant part (60.5%) of humus form variation (permutation test, F=3.3, P-value < 0.001).  

Slope, summer temperatures and North-South gradient play an important role in the dispersion of 

humus forms along the first axis, which opposes Mulls to Moders and Mors. The parameters defining 

the Mull forms, such as abundance of roots (Rhizic), the meso-granular structure of the A horizon 

(A_meso) and its higher pH, are associated to higher summer temperatures, steeper and south-exposed 

slopes. The second axis, correlated to lithology of soil’s parent material, annual precipitation and the 

presence of snowbed vegetation (Figure 5.12a), separates Dysmoders and Mors from Anmoors. 

Consistently, waterlogging conditions are associated with snowbed vegetation, while single grain 

structure and presence of Oa horizons are correlated with Si-rich lithology and higher precipitations.  

The environmental factor “Vegetation” is influenced by climate, topography and soil parent material as 

much as the humus forms. This makes its presence in the canonical ordination questionable. When the 

vegetation type was removed from the analysis (Figure 5.12b), the dispersion of humus forms along the 

first and second axis did not change considerably and the remaining environmental factors explained 

44,6% of the variance (F=3.6, P-value < 0.001). 
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Figure 5.12 - Redundancy analysis (RDA) representing (a) the influence of environmental variables (black arrows 

and text; Table 5.1) on the distribution of humus forms (symbols), and on parameters for the identification of humus 

forms (red text; Figure 5.6). Colors represent the groups of humus forms, and symbols whether these are Rhizic 

(Jabiol et al., 2013) or not. The Hyperlithic Parahumus form (1 observation) was omitted for lack of pH data. 

Abbreviations in addition to those listed in Figure 5.6: “Summer temp.”: mean summer temperature; “Silic.”: 

siliceous; “alp.”: alpine; “subalp.”: subalpine; “NS gradient”: North-South gradient (cf. Table 5.1). For easy reading, 

some environmental variables (Vegetation of subalpine pastures, calcareous snowbeds and windy ridges) with low 

explaining power were omitted. Were also omitted “A_micro” and “A_massive” among parameters for 

identification of humus forms for easy reading. (b) Same as (a) but without the “Vegetation” variables. Scaling 2 in 

both RDA.  

 

5.5 Discussion 

Eight plant communities, encompassing a large variety of ecosystems, were chosen as sampling units in 

order to investigate the diversity of soil types and humus forms in the subalpine and alpine belts. In 

relatively undisturbed environments as the alpine one, the plant species composition well reflects 

variations of environmental conditions, as the soil parent material, the topography and the climate. Such 

parameters, together with living organisms and time, are fundamental forming factors of soil and humus 

forms (Jenny, 1941). This study aimed to evaluate their respective influence on properties of humus 

forms.  
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5.5.1 The role of parent material 

Mull humus forms were almost exclusively occurring within calcareous lithology (only two exceptions 

in a siliceous typical snowbed); while Moders and Mors were exclusively associated to Si-rich parent 

materials (Figure 5.9). In the present study, it was challenging to determine whether this is related to 

the nature of soil parent material, or to differences in litter degradability between calcareous and 

siliceous plant communities. By assuming that the litter degradability is negatively related to the C/N 

ratio (Cornwell et al., 2008), then the high C/N ratio of grassland litters is an indication of their low 

degradability. Calcareous and siliceous grasslands showed similar C/N ratios of litters (Figure 5.5c), 

suggesting that the potential for degradation was lithology-independent, and rather influenced by 

factors linked to the graminoids (Poaceae, Cyperaceae and Juncaceae) traits. If the litter degradability 

is lithology-independent, then the distribution of humus forms can indeed be related to the lithology of 

soil’s parent material. A previous study comparing humus forms of coniferous and deciduous forests in 

the whole France reached the same conclusion (Ponge et al., 2011).  

Based on its mineralogy and alterability, the soil parent material can influence the humus form by 

determining the percentage of base saturation and its pH environment (Duchaufour, 1977), which have 

a direct impact on the macroinvertebrates (Ponge, 1993) and the structure of the microbial population 

(Mannisto et al., 2007). According to Ponge (2003), nutrient-rich soils foster the activity of earthworms 

and bacteria that are, respectively, the dominant faunal and microbial group in biomass in Mull forms. 

On the contrary, nutrient-poor, acidic soils, allow for the development of enchytraeids and fungi, 

especially abundant in Moders and less in Mors. In this study, macroinvertebrates observations were 

rare probably because of the harsh climatic conditions characterizing the alpine environment. However, 

some earthworms and enchytraeids (taxonomy not determined) were found in Mull forms of the 

Morteys site (Appendix F2), which is the lowest in elevation and entirely on limestone parent material. 

No macroinvertebrates were observed in the Réchy and Grimsel sites.  

Besides soil pH, the parent material can influence decomposition patterns through its ability to release 

mostly clay, silty, or sandy material. As demonstrated by Bullinger-Weber et al. (2007), earthworms 

tend to avoid sandy soils because sand particles exert an abrasive action on their soft skin (Curry, 2004). 

The Morteys soils, mostly with silty clay loam texture (Figure 5.3), were in this sense also favorable to 

the earthworm occurrence. Differences in faunal and microbial communities among lithologies of soil’s 

parent material were also confirmed by variations in the A horizon structure. This presented mostly 

meso-granular aggregates in Morteys, whereas micro to single-grain structures were observed in the 

Grimsel and Réchy sites (Appendix F1). Consistently, the single-grain structure of the A horizon was 

associated to Si-rich lithology in the RDA (Figure 5.12), while meso-granular aggregates, high pH and 

roots abundance, were associated to warm summer temperatures.  

This points out the role of climate, and thus elevation, in the humus form distribution. Therefore, it can 

be suggested that the Mull presence on calcareous lithology was probably linked to an ensemble of 

favorable conditions, such as low acidity, silty clay loam texture and warmer temperatures, for effective 
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decomposition. These conditions were not met on Si-rich lithology, where Moder and Mor forms 

dominated instead.  

In addition, it must be pointed out that the nature of parent material can locally influence the litter 

quality, and thus its degradability. Nicolai (1988) observed that litter from European beech (Fagus 

sylvatica) growing on nutrient-rich calcareous soils was enriched in Ca, Mg, Na, and K, compared to 

beech trees growing on nutrient-poor acidic soils, with the observed consequence that the turnover of 

the nutrient-rich litter was faster than the nutrient-poor one. 

Furthermore, A horizons of soils associated to calcareous grasslands were characterized by high organic 

C content (Figure 5.5a and Appendix F1). This could be another effect of the limestone parent material 

that provides an active calcium carbonate fraction (i.e. the finest part of total calcium carbonate), which 

seems to efficiently bind OM with mineral components (Muneer and Oades, 1989). Therefore, on one 

hand, calcareous parent material, by its action on soil pH, soil texture and litter nutrient content, seems 

to establish favorable conditions for a relatively rapid OM decomposition. However, on the other hand, 

the abundance of calcium hinders the decomposition and favors the OM accumulation in A horizons, 

probably stabilized by mineral interactions. This aspect is better examined in Chapter 6. 

Finally, Anmoor forms were exclusively associated to mixed lithology (Figure 5.9). The ‘Mixed’ category 

contains rocks of mixed origin (sedimentary, metamorphic, crystalline components). This category was 

often attributed to colluvial deposits located in topographical depressions. There, percolating water and 

snow accumulate, favouring the formation of Anmoors. Moreover, most of the studied depressions were 

located on moraine deposits, which often are of mixed lithology. The association of Anmoors with mixed 

lithology was therefore indirect, and rather the result of topography. 

 

5.5.2 The role of climate 

Variations of summer temperatures and annual precipitations occurring in this study are due to 

differences in elevation and biogeographic region considered (Chapter 2). Progressively colder summer 

temperatures with increasing elevation were associated to a certain gradient of decreasing decaying 

activity from Mesomull to Moders and Mors; whereas differences between Moders and Mors seemed 

not related to temperature variations (Figure 5.10). The RDA (Figure 5.12) confirmed the importance of 

summer temperatures in the humus form distribution. Three Humimor forms were found where 

precipitations were the highest (Grimsel), and many Moders were found at the driest site (Réchy). 

Despite the number of Mor observations are not sufficient to draw conclusions, a possible role of annual 

precipitation in the respective distribution of Moders and Mors can be hypothesized and needs further 

studies to be confirmed.  

As previously observed in forest humus forms (Ponge et al., 2011), a decrease in temperature and an 

increase in precipitations likely explain the declining decaying activity. Higher temperatures increase 

OM decomposition rates (Aerts, 1997) when there is no water limitation (Aerts, 2006), as in the studied 
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sites. Moreover, higher mean annual temperature could lead to higher weathering rates directly by 

enhancing chemical reactions (Egli et al., 2003; Jenny, 1941; Turner et al., 2010), or indirectly by 

fostering microbial activity with subsequent production of organic acids with weathering capacities (Egli 

et al., 2008a). The higher litter turnover and weathering rates expected in the warmer sites release more 

nutrients in the soil, and these have positive feedbacks on the OM decomposition (Ponge, 2013; Zhang 

et al., 2008). Rather, at higher elevations, the lower temperatures are supposed to decelerate both biotic 

and abiotic chemical processes and the higher precipitations to increase soil leaching with subsequent 

nutrient losses. This could explain the OM accumulation and the predominance of Moder and Mor forms 

above 2300 m. Nevertheless, a Dysmull was found at the uppermost soil profile, at 2697 m, in 

association with a windy ridge vegetation. This indicated that harsh climate per se is not a limit for the 

Mull occurrence if other conditions, such as vegetation and topography (see below) are favorable.  

In mountain regions, thermic conditions change drastically according to the slope aspect as well. This 

was apparent in the RDA (Figure 5.12) where south-facing slopes (high north-south gradient) were 

related to Mull forms. Ascher et al. (2012) showed that the higher temperatures recorded on south-

facing slopes affect the enchytraeids populations and increase their decomposing activity. As a 

consequence, soil OM accumulates in north-facing slopes (Egli et al., 2009). Moreover, the high solar 

radiations present on south-facing slopes and ridges, provoke important contrasts of soil temperature 

and humidity, which can physically accelerate the litter decomposition (Duchaufour, 1977).  

The Rhizic form of Oligomulls and Dysmulls occurred systematically at lower elevations than their non-

rhizic forms. This could be a sort of artefact related to the sampling design, as Rhizic Mull forms were 

mainly associated to calcareous grasslands (for topography and vegetation-related reasons, see below) 

and these ecosystems were situated at lower elevations than the other mull-forming vegetation types.  

In the present study, the lowest in elevation and thus warmer sites (Morteys) are all on calcareous 

bedrock, while higher and thus colder sites (Réchy and Grimsel) are mostly on siliceous substrates. 

Climate and geology are often correlated in the mountain environment, with the proportion of 

precipitations (Körner, 2007) and siliceous rocks (Pfiffner, 2014; Stampfli, 2001) increasing along with 

the elevation because of orogenic processes. This makes their specific contribution on distribution of 

humus forms difficult to evaluate. Moreover, climate importantly influences vegetation that is also a 

determinant factor for humus form development.  

 

5.5.3 The role of topography 

Topography is a major soil forming factor, especially in the alpine landscape where it is highly variable, 

even at micro-scale. Its role on humus forms is well illustrated by the exclusive presence of Anmoor in 

topographical depressions (Figure 5.11), where shallow water-tables and snow accumulation (i.e. 

“snowbed”) hamper the oxygen diffusion and thus the decomposition of organic matter. This leads to 

the formation of histic organo-mineral horizons typical of Anmoors. Moreover, rhizic forms were mainly 
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observed on slopes. Roots are essential for plant anchorage (Körner, 2003) and therefore crucial for 

plant stability on steep slopes, exposed to soil erosion and solifluction.  

Finally, humus forms on ridges were all Mulls, including a Dysmull found at the uppermost soil profile 

(2697 m). Litter production on ridges is relatively low as plant cover is sparse and many lichens occupy 

the surface (cf. Chapter 2). The litter amount is further lowered by the action of wind that exports part 

of the litter produced. These processes combined may lead to sufficiently low litter inputs into the soil 

for an effective degradation by soil organisms.  

 

5.5.4 The role of vegetation 

Calcareous grasslands, subalpine pastures, windy ridges and calcareous snowbeds were mainly 

associated to Mull forms, siliceous grasslands (both subalpine and alpine) to Moders and Mors, and 

snowbeds mainly to Anmoors (Figure 5.7 and Figure 5.12). The same environmental drivers that shape 

distribution of humus forms, namely climate, soil parent material, topography and time, importantly 

influence the vegetation types. When the vegetation factor was omitted in the RDA, the distribution of 

humus forms in the multidimensional plane (Figure 5.12) underwent weak changes. In agreement with 

Ponge et al. (2011), this finding suggested that vegetation plays a minor role on development of humus 

forms, compared to other environmental variables. Nevertheless, as vegetation represents the main 

source of soil OM inputs (Rumpel and Kogel-Knabner, 2011), its role is certainly not negligible and worth 

to be mentioned in the framework of this study. 

Vegetation (aerial and subterranean parts) can influence the humus forms by determining the quality 

and the amount of the litter entering the soil system. In this study, the C/N ratio has been used as a 

proxy for litter quality (Cornwell et al., 2008). As previously discussed, grassland litters showed higher 

C/N ratios than any other plant communities and this independently of the soil parent material. As 

mentioned in the Chapter 3, the litter was collected at the snowmelt and it was composed by species not 

decomposed during winter (the most resistant). Graminoids (Poaceae and Cyperaceae families) were 

often among those species and were therefore important components of litter samples, especially in 

grasslands. Some molecular components of the Graminoids tissues could be responsible of their 

resistance and of the high C/N values measured in grassland litters. A characterization of molecules 

composing the litter would allow confirming it. According to Duchaufour (1977), the C/N values 

measured in grassland litters would characterize Moder and Mor humus forms. Indeed, this was the 

case for siliceous grasslands, but not for the calcareous ones where, despite their high C/N litter ratio, 

only Mull forms were observed. In addition, biomass production was higher in calcareous grasslands 

than in any other plant community but this was not sufficient to overpass the local OM degradation rate. 

The warmer temperatures and less acidic soils characterizing the calcareous grasslands were probably 

sufficient to allow effective litter decay. These elements further confirm the preponderant role of climate 

and parent material on the formation of humus forms.  
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Furthermore, the grassland vegetation (both calcareous and siliceous) displayed an increase in N 

concentrations in Oe and Oa, relative to litter horizons (Figure 5.5b). This may indicate differential C 

and N mineralization rates among plant communities. According to Bocock et al. (1960) and other 

references cited in Duchaufour (1977), N-rich leaves, i.e. with a low C/N value, release CO2 and mineral 

N at almost the same rate, maintaining a C/N relatively constant or slightly decreasing during 

decomposition. On the contrary, N-poor leaves, i.e. with a high C/N ratio, decay slower. In this later 

case, the N release is especially delayed compared to the CO2 one, which instead, can be quite effective. 

This mechanism seems to occur in the studied grassland communities, providing clues about their 

relatively low degradability.  

The influence of alpine vegetation on the humus forms is through belowground litter, more than the 

aboveground one. Indeed, Rhizic humus forms were frequent and mainly associated to grasslands. In 

the alpine environment, and especially in grass-dominated vegetation, the plant root system is 

particularly developed and its biomass strongly exceeds that of aboveground parts (Reisigl and Keller, 

1987). Some plant species, such as Carex sempervirens and Sesleria caerulea in calcareous grasslands, 

Nardus stricta (Fitter et al., 1998) and Carex curvula in siliceous grasslands (Grabherr, 1989), are 

characterized by particularly important and long-lived root systems. Their abundance in grasslands may 

explain the frequent association of this vegetation type to Rhizic forms.  

The root turnover and the root exudate production are supposed to provide large amounts of fresh OM. 

This C source was shown to favor microbial activity and N-mineralization in the rhizosphere (priming 

effect; Kuzyakov, 2002). If the occurrence of roots stimulates the decomposition, rhizic forms would be 

expected mostly in association to Mull forms. This was not the case in the present study where, on the 

contrary, Dysmoder, Humimor, and Hemimor forms were all found in their rhizic form. This implies 

that when large amounts of OM are delivered by the root system in an unfavorable context for 

decomposition (in terms of parent material and climate), then this OM accumulates and Moder-Mor 

humus forms are observed. This is in agreement with Bradley and Fyles (1996) findings, according to 

which the priming effect was visible only in Mull forms, and not in the Mor ones. 

Furthermore, plants can delay the calcium (Ca2+) lixiviation in calcareous soils. As shown by Havlicek 

and Gobat (1996), herbaceous plants are able to extract Ca2+ from the soil skeleton through their roots-

associated fungi, and this up to 40 cm depth. Then, by litter deposition, the calcium is released at the 

soil surface and hence the Ca2+-stock is maintained. Hence, it can be assumed that plants in calcareous 

vegetation types concur with soil parent material to maintain suitable nutrient and pH conditions for 

the microbial activity. 

 

5.5.5 The role of time 

When climate, geology, and topography parameters are kept constant, humus forms are supposed to 

quickly react to vegetation changes (Bernier and Ponge, 1994; Frouz and Novakova, 2005). In the 

framework of this study, despite important climatic changes during the last 25-50 years, vegetation 
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shifts were shown to be relatively weak (Chapter 4), and therefore drastic transformations in humus 

forms were not expected. Some changes could have been observed in the snowbed plant communities, 

which significantly shifted towards siliceous alpine grasslands (Chapter 4). However, traces of past 

vegetation were not observed in snowbed humus forms neither, suggesting that these were likely in 

equilibrium with present ecosystem properties. As shown by the RDA (Figure 5.12), vegetation type is 

not determinant for the differentiation of humus forms, and the permanence of waterlogging conditions 

may be sufficient to guarantee the Anmoor presence.  

However, humus forms have their own spatio-temporal scale. Some changes in response to vegetation 

shift could occur in the future. An analysis of macrorests with the small-volume methods developed by 

Ponge (1984) would likely allow detecting them.  

 

5.5.6 The classification of humus forms 

The humus forms of this study were named according to Jabiol et al. (2013), who proposed a 

classification system in harmony with the World Reference Base for Soil Resources (IUSS Working 

Group, 2006). It seems pertinent to recap the criteria of the humus form nomenclature used in the key 

from Jabiol et al. (2013) in order to better understand this issue.  

Mull forms display biomacro- or biomesostructured (meso-granular) A horizons, with an absence of Oa 

horizon (OH according to Jabiol et al., 2013) and at least two of the following properties: 1) presence in 

the A horizon of living earthworms or their casts; 2) presence of a very sharp transition (<3 mm) between 

organic and organo-mineral horizons (A); 3) pH of the A horizon > 5. Then, according to the 

presence/absence and to the continuity/discontinuity of Oi (OL) and Oe (OF) horizons, the different 

Mull forms are defined.  

Moder forms include biomicrostructured (micro-granular), massive, or single grain A horizon, the 

presence of Oa, the absence of non-zoogenic Oe (i.e. formed by fungal activity), and one of the following 

properties: 1) no sharp transition Oa/A horizon; or 2) pH of the A horizon < 5. Finally, according to the 

thickness and continuity/discontinuity of Oa, the different Moder forms are defined.  

Mor forms may not have the A horizon, and when present it has biomicro, massive or single grain 

structure. Moreover, Mor forms have: 1) non-zoogenic Oe; 2) very sharp transition (< 3 mm) of O to A, 

AE or E horizons; 3) pH of E or AE or A horizon < 4.5. Then different Mor forms are defined according 

to the continuity/discontinuity of Oe and the presence/absence of Oa and biomicrostructured A. 

This classification key appeared fairly inadequate for the alpine humus forms and, in many cases, no 

reference name corresponded to the humus forms observed in the field. Hereafter, the problematic cases 

and the solutions adopted are discussed. 

1. In this determination key, certain structures of the A horizon are associated to specific organic 

horizon succession. In the present study, such associations were not always observed. For 
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example, many humus profiles were composed by an Oi horizon, mainly concentrated under 

grass turfs, a discontinuous Oe or in pockets within the A horizon, an absence of Oa, and a 

microstructured A horizon with pH < 5. With such a horizon succession (Oi/Oe/A), a Mull form 

fits, although the microstructure and pH of the A horizon would instead drive the humus 

towards a Moder or Eumor form. After several discussions with experts of humus forms (Jean-

François Ponge, Augusto Zanella), it was chosen that the structure of the A horizon should have 

priority over the horizon succession. Therefore, a humus form as the one described above is 

named Hemimoder. The presence of an Oa horizon, required for Moder forms in the key of 

Jabiol et al. (2013), is considered as not necessary for the Hemimoder form in this study. The 

absence of an Oa horizon, or its discontinuity, may also indicate a regression from a previous 

phase with a continuous Oa horizon, formed in different environmental conditions than the 

present ones (J.-F. Ponge, pers. comm.). 

2. According to Jabiol et al. (2013), the microstructured A is associated to pH < 5 (Moder). In this 

study, the same structure was found at pH > 5, and was then included in Mull.  

3. Another common issue encountered, was the recognition of the non-zoogenic Oe. According to 

Jabiol et al. (2013), this Oe horizon is formed by the action of cellulose-lignin decomposing 

fungi. However, mat of fungal material were rarely observed in the present study, and doubts 

raised frequently about the nature of the Oe horizons (zoogenic or not). This criterion, very 

useful in forest ecosystems, seems thus more difficult to apply in the alpine one. In the present 

study, when fungal material was recognized within the Oe horizon, the humus form was 

attributed to Mor, provided that other conditions were fulfilled. Oe horizons, without evidences 

of fungal activity, were considered as zoogenic.  

4. Finally, despite the limiting conditions for biological activities and decomposition of OM 

characterizing the Moder forms with respect to Mulls, organic horizons could be quite thin and 

discontinuous. The presence and thickness of Oi and Oe horizons in Moder forms were 

comparable to those in Mull forms. Sometimes, the Oi thickness in Mull forms was even greater 

than in Moder forms. This was especially true in Carex sempervirens turfs, where senescent 

leaves remained fixed at the base of the plant (Figure 5.13).  
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Figure 5.13 - Detail of a Carex sempervirens turf. Profile M3138, Dysmull (Hyperhumic, Rhizic). Elevation: 1711 

m. The different colors of the litter layer may indicate different stages of decomposition. Leaves start to decompose 

while they are still fixed to the living plant.  

 

 

According to these reflections, and in agreement with the PCA of Figure 5.6, two parameters were 

considered crucial for the determination of humus forms in the present study: the structure of the A 

horizon and its pH.  

Mulls were attributed to humus forms having a pH of the A horizon > 5, with micro, meso or macro-

granular structure, and Oa absent. The continuity/discontinuity of the Oe and Oi horizons allowed to 

define the different Mull forms, as indicated in Jabiol et al. (2013): 

- Oe present and continuous: Dysmull 

- Oe missing or discontinuous and Oi present: Oligomull 

- Oe missing and Oi present but discontinuous: Mesomull 

When the pH of the A horizon was < 5, the following rule was followed: 

- Microstructured or single grain A, Oa absent and Oe zoogenic possible: Hemimoder 

- Single grain A, Oa present and Oe zoogenic possible: Dysmoder 

- Single grain A or A absent, Oa present and Oe non-zoogenic present: Humimor 

- A absent, Oa present and Oe non-zoogenic absent: Hemimor 

According to the classification of humus form proposed by Jabiol et al. (2013), the structure of the A 

horizons is retained as crucial for the definition of humus forms. This directly reflects the community of 

soil organisms and hence their efficiency in litter decay (Brethes et al., 1995; Ponge, 2003). Meso- (1-4 

mm) and macroaggregates (> 4 mm) are considered to be earthworm casts and they define Mull forms, 

while microaggregates (< 1 mm) can be related to enchytraeid or microarthropods casts, and they are 

common in Moder and Mors (Coleman et al., 2004). Single-grain and massive structures are non-

zoogenic. 
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There is little evidence that this correspondence between structure of the A horizon and community of 

decomposing soil organisms is valid also in alpine ecosystem. The study of soil macro-, meso- and micro-

fauna in the alpine ecosystem is up to now very limited, and it is hard to determine the organisms 

responsible of the OM decay.  

The soil fauna of the topsoil was not targeted by this study. Nevertheless, some earthworms and 

enchytraeids were found in calcareous soils at the Morteys site, and corresponded to Mull forms. This 

would then corroborate that soil fauna is indeed at least partly responsible of the A structure. No 

earthworms and enchytraeids were found at the other sites, but their presence was not searched for.  

Beside the decomposer organisms, the size distribution of mineral particles has also an obvious effect 

on the soil structure (Bullinger-Weber et al., 2007). In the present data set, microstructured and single-

grain A horizons were especially associated to Si-rich parent materials (Figure 5.12), with sandy to silty 

texture.  

Moreover, plant roots end exudates can be important engineers in alpine ecosystem. Extracellular 

polysaccharides produced by plant roots exert a major role as binding agent in aggregate formation 

(Oades, 1984). However, how they influence the aggregate size is still unknown. Aggregates of different 

shapes and sizes were often found in the proximity and around fine roots (shaping a sort of small grape 

of aggregates), while almost no structure is present in distal parts. These “rhizogenic aggregates” have 

irregular shapes and have a “fluffy” consistence, compared to the enchytraeid or earthworm casts, which 

are considered isodiametric since they passed through a digestive tract.  

The remarkable abundance of roots in certain humus profiles led to the identification of three OR 

horizons (> 75% in volume of dead or living roots; Jabiol et al., 2013), and of 22 Rhizic forms (Figure 

5.14).  

 

 

Figure 5.14 - Detail of a Rhizic humus form. Profile M3126, Oligomull (Rhizic). Elevation: 1716 m. The OR horizon 

of Jabiol et al. (2013) is considered as an organic horizon and not as an A horizon.  

 

 

However, in this study the OR label was used also for A horizons having > 75% in volume of roots. This 

choice was justified in order to supply to a nomenclature gap, as root-rich horizons were often organo-

mineral layers (A) and not organic ones. The forthcoming key of humus forms 
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(https://www.researchgate.net/project/HUMUSICA-a-new-humus-manual) fills this gap and 

introduces the concept of rhizic horizon, this latter being either Oi, Oe, Oa or A. 

In summary, among terrestrial humus forms, the structure of A horizons may result from different 

factors: the soil decomposer community, the texture and the root-associated processes. Other physical 

processes, such as frost/thaw cycles, are also likely, but they were not observed in this study. 

Waterlogging conditions are fundamental as well, as a massive structure was associated to almost all 

Anmoors recorded (Figure 5.6).   

By saying that the decomposer community is not the unique driving factor of the structure of A horizons, 

it implies that the latter would not be anymore an indicator of the decomposition efficiency. This is the 

key to understand the presence of microstructured A (indicating a Moder or Mor according to Jabiol et 

al., 2013) in absence of Oa, Oe and with pH of A horizon > 5 (indicating a Mull). This discrepancy 

between the A structure and the horizon sequence leads to some reflections. In an alpine environment, 

part of the litter may be removed by the combined action of steep terrains, strong winds, snow melting, 

which tend to creeping and transporting plant material downwards or accumulating it in depressions, 

or litter may be locally grazed by cattle or wild ungulates before dying. These processes, combined to a 

low productivity, regulate the low leaf litter input into the soil, compared to forest ecosystems. The 

absence of thick Oe and Oa layers may indicate that the decomposition of these small amounts of 

remaining litter is efficient, despite of the absence of earthworms and the presence of micro-granular 

structure of A horizons, normally typical of Moder forms. Finally, the snowpack may protect the soil 

from frozen temperatures and enhance an effective decomposition during winter (Saccone et al., 2013). 

In this case, such humus forms would be functionally closer to Mulls than Moders, even if the structure 

of A horizons is micro-granular.  

To conclude, we can hypothesize the existence of a sort of a disconnection between organic and organo-

mineral layers in alpine ecosystems. The occurrence and thickness of organic layers could be mainly 

linked to the vegetation productivity, degradability of plant species, decomposer organisms, and to a 

series of disturbances leading to the accumulation/removal of the litter. A horizons, instead, would be 

influenced by the soil texture, alkalinity, root abundance and the decomposer community. As mentioned 

in the introduction (Chapter 1), the root : shoot ratio in the alpine grasslands is > 6 (Yang et al., 2009), 

meaning that the highest part of plant biomass is represented by roots in the alpine environment. The 

root biomass enters the soil system directly in the A horizon, and thus does not participate to the 

formation of Oi, Oe and Oa horizons. This further amplifies the disconnection of OM cycling between 

organic and organo-mineral layers.  

 

https://www.researchgate.net/project/HUMUSICA-a-new-humus-manual
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5.6 Conclusions 

The present chapter gives an extensive overview of the diversity of soils and humus forms in the 

subalpine and alpine belts of the Swiss Alps. Taking advantage of the large variability in soil parent 

materials, topography, plant communities and climate, it was possible to discuss the influence of each 

of these factors on properties of humus forms. In the context of this study, with a few exceptions, three 

main groups of interactions were observed: 1) calcareous parent material - Cambisols - Mull humus 

forms - calcicole plants; 2) siliceous parent material – Podzols - Moder or Mor humus forms - calcifuge 

plants; 3) waterlogging conditions - hydromorphic soils - Anmoor humus forms - snowbed vegetation.  

Therefore, the parent material and topography seems to act as attracting poles (Beisner et al., 2003), 

shaping soils and humus forms. The influence of climate on the distribution of humus forms may be as 

much important as the parent material; however, their interdependence stemming from the present 

sampling design prevents to assess their singular role. 

In any case, despite the harsh climatic conditions, typical of the subalpine-alpine belt, Mull humus forms 

were widely observed up to 2697 m. This fact indicates that an effective litter decomposition was possible 

under certain conditions in the alpine belt.  

Furthermore, the root system was shown to play a primary role in the subalpine-alpine humus forms. 

Decomposition patterns of roots, and relative exudates, must be investigated in the future in order to 

better understand plant-soil interactions in the alpine environment.  

Finally, the study of decomposer organisms, as meso-fauna and micro-flora communities, their specific 

requirements in terms of temperature, humidity, acidity, and grain-size distributions, would allow the 

alpine OM dynamics to be better characterized. This information is needed also in order to adapt keys 

for classification of humus forms to the alpine environment, as it is presently based on forest ecosystem.   
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 Drivers of organic matter stability 
 

 

6.1 Abstract 

 

Our understanding of mechanisms governing soil organic matter (OM) stability is evolving. It is 

gradually becoming accepted that soil OM stability is not primarily regulated by the molecular structure 

of plant inputs, but instead by the biotic and abiotic properties of the edaphic environment. Moreover, 

several experimental studies conducted in artificial systems have suggested that mechanisms regulating 

OM stability may differ with depth in the soil profile. Up to now however, there is very limited field-scale 

evidence regarding the hierarchy of controls on soil OM dynamics and their changes with soil depth.  

In this study, we take advantage of the high heterogeneity of ecological conditions occurring in the alpine 

belt to identify the major determinants of OM stability and how their significance varies with soil depth. 

For this purpose, 46 soil profiles spanning a wide range of soil types have been investigated. 

Aboveground litter, mineral topsoil, and subsoil samples were analysed using Rock-Eval Pyrolysis, a 

technique that investigates the thermal stability of OM, which can be considered as a proxy for OM 

transformation processes. 

Our results show a clear divergence of controls on OM thermal stability in the litter, topsoil, and subsoil 

layers. The composition of plant inputs influences OM thermal stability in the litter layer but not in 

mineral soil horizons, where the supply rate of fresh organic material and the physical and chemical 

characteristics of the pedogenic environment appear important instead. This study offers direct 

confirmation that soil OM dynamics are controlled by different ecosystem properties in each soil layer. 

This has important implications for our understanding of carbon cycling in soils under a changing 

climate.  
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This chapter is an excerpt from the paper:  

Matteodo M, Grand S, Sebag D, Rowley M, Vittoz P, Verrecchia EP (submitted) Decoupling of topsoil 

and subsoil controls on organic matter stability. 

 

The Introduction and part of the Material and Methods have been removed from the paper and they 

were included in Chapter 1, 3, and 4. 

 

6.2 Aims 

In this study the following questions are targeted: 

1. what are the major determinants of soil OM thermal stability 

2. how does their significance vary with soil depth? 

 

6.3 Materials and methods 

Thermal stability of OM from litter (Oi horizon), topsoil mineral (A horizons), and subsoil mineral layers (including 

E, B, and C horizons) of 46 subalpine-alpine soil profiles was assessed using Rock-Eval pyrolysis. We focused on 

the R-Index as defined in Sebag et al. (2016), which refers to the proportion of refractory compounds within the 

pyrolysed OM, as an indicator of OM thermal stability. The soil profiles represented a broad spectrum of 

environmental conditions, spanning eight vegetation types, a wide range of soil pH (between 3 and 7.9) and 

moisture conditions (Table 6.1). Study sites are extensively described in Chapter 2, and methods in Chapter 3. 
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Table 6.1 – Description of the vegetation types associated to a soil profile. List of the eight vegetation types among which the 46 soil profiles are distributed and description of 

their main features: list of the dominant plant species (nomenclature according to Aeschimann et al., 1996), range of elevation, mean summer temperatures, annual precipitations, 

monthly moisture index, and the daily average of global potential shortwave radiation during summer months, claculated for the period 1961-1990 (Zimmermann and Kienast, 

1999), study sites where the vegetation types were observed, number of soil profiles within each plant community, soil types (nomenclature according to IUSS Working Group, 

2006) and humus forms encountered (nomenclature according to Jabiol et al., 2013). Values in brackets refer to medians. 

 

Vegetation type Description Dominant species 
Elevation 
[m] 

Summer 
temperature 
[°C] 

Annual 
precipitations 
[mm] 

Monthly 
moisture 
index 
[mm/month] 

Summer solar 
radiations 
[KJ/m2*day] 

Site(s) 
No. of 
soil 
profiles 

Soil type(s) 
Humus form 
types 

Calcareous grasslands 
Generally steep and south-exposed 
slopes of the subalpine-lower alpine 
belt 

Carex sempervirens, Sesleria 
caerulea, Helianthemum 
nummulariums. s.l. 

1698-2099 
(1774) 

7.9-10.0 (9.6) 
1590-1742 
(1631) 

715-918 (765) 
27030-28545 
(27879) 

Morteys 10 
Calcaric, Dystric 
and Eutric Cambisol 

Oligomull, 
Dysmull 

Subalpine pastures 
Calcareous bedrock. Subalpine, 
mesotrophic to eutrophic pastureland 

Alchemilla vulgaris aggr., Poa 
alpina, Ligusticum mutellina 

1900-1981 
(1945) 

8.5-9 (8.7) 
1661-1697 
(1685) 

838-1016 
(953) 

19512-28243 
(20795) 

Morteys 4 Dystric Cambisol 
Eumesoamphi, 
Oligomull, 
Mesomull 

Windy ridges 
Mostly on calcareous bedrock. Wind 
exposed, short snow cover 

Elyna myosuroides, Agrostis 
alpina, Sesleria caerulea, high 
lichens cover 

2430-2697 
(2595) 

5.5-7.1 (6.1) 
1396-1564 
(1486) 

806-945 (868) 
21535-28447 
(26233) 

Rechy 4 
Calcaric and Eutric 
Cambisol, Leptosol 

Oligomull, 
Dysmull 

Calcareous snowbeds 
Calcareous bedrock. Concave 
topography and/or north aspect, long 
snow cover (> 9 months) 

Dryas octopetala, Ranunculus 
alpestris, Salix reticulata 

1966-2232 
(2180) 

7.2-8.6 (7.5) 
1694-1773 
(1742) 

960-1022 
(1011) 

17080 - 27564 
(25985) 

Morteys 4 
Dystric and Eutric 
Cambisol, Leptosol 

Mesomull, 
Dysmull, 
Hyperlithic 
Parahumus 

Siliceous subalpine 
grasslands 

Siliceous bedrock. Subalpine 
pastureland below treeline 

Nardus stricta, Festuca rubra 
aggr., Anthoxanthum odoratum 
aggr. 

2312-2348 
(2326) 

6.4-6.6 (6.5) 
2010-2024 
(2019) 

1188-1219 
(1199) 

27984-28902 
(28574) 

Grimsel 4 
Entic and Umbric 
Podzol 

Hemimoder, 
Dysmoder, 
Humimor 

Siliceous alpine 
grasslands 

Siliceous bedrock. Alpine grasslands 
above treeline 

Carex curvula, Leontodon 
helveticus, Helictotrichon 
versicolor 

2310-2682 
(2560) 

4.8-6.6 (5.9) 
1482-2218 
(2080) 

832-1511 
(1244) 

20949-28418 
(27207) 

Grimsel, 
Rechy 

9 
Albic and Entic 
Podzol, Leptosol 

Hemimoder, 
Dysmoder, 
Humimor 

Typical snowbeds 
Siliceous bedrock. Concave 
topography and/or north aspect, long 
snow cover (>9 months) 

Salix herbacea, Gnaphalium 
supinum, Carex foetida, high 
bryophytes cover 

2313-2685 
(2489) 

5.6-7.0 (6.6) 
1422-2158 
(1436) 

779-1384 
(855) 

23479-27933 
(25748) 

Grimsel, 
Rechy 

7 

Albic and Entic 
Podzol, Gleysol, 
Leptosol, Regosol, 
Stagnosol 

Oligomull, 
Hemimoder, 
Euanmoor 

Wet snowbeds 
Siliceous bedrock. Running water  
brought by small rivers or firn melting, 
or next to a lake, long snow cover 

Carex bicolor, Salix herbacea, 
Taraxacum alpinum, high 
bryophytes cover 

2468-2650 
(2568) 

5.8-6.8 (6.2) 
1432-1513 
(1482) 

784-964 (911) 
18153-26819 
(26110) 

Rechy 4 Gleysol, Leptosol 
Euanmoor, 
Hemimor 
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Table 6.2 – Eighteen potential drivers of OM thermal stability subdivided following thematic categories, with the 

scale for the ordinal drivers and the units for the continuous ones, their range and indications on whether they were 

included in the linear mixed models (LMM) specific to each soil horizon, and their relative importance calculated 

with the IT-AIC analysis. Some drivers were excluded from the models to avoid collinearities or because they were 

not relevant in the soil horizon considered. 

 

Category 
Potential drivers of 
OM thermal 
stability 

Remarks Scale or unit 
Range 
(median)  

Relative 
importance 
in litter 
horizons 

Relative 
importance 
in mineral 
topsoil 

Relative 
importance 
in mineral 
subsoil 

Site conditions Mean summer 
temperature 

Monthly average temperature  
(period 1961-1990) 

°C 4.8-10 
(6.6) 

<0.01 0.08 <0.01 

 
Monthly moisture 
Index 

Precipitation - potential 
evapotranspiration (period 1961-1990) 

mm/month 715-1511 
(866) 

0.01 0.05 <0.01 

 
North-South gradient Equals to 0 - cosinus [radian (Aspect)] - From -1 

(North) to 
1 (South) 
(-0.03) 

Collinear with 
solar radiation 
and 
Vegetation 
PC2 scores 

0.03 <0.01 

 
Summer solar 
radiations 

Global potential shortwave radiation KJ/m2*day 17080-
28902 
(27030) 

Collinear with 
North-South 
gradient and 
Vegetation 
PC2 scores 

<0.03 <0.01 

Vegetation type Vegetation PC1 scores Proportion of acidophilous species Scores on the 
PC1 axis of a PCA 
based on species 
composition 

From -0.3 
to 0.2 
(0.05) 

<0.01 Collinear 
with pH 

0.49 

 
Vegetation PC2 scores Proportion of hygrophilous species Scores on the 

PC2 axis of a PCA 
based on species 
composition 

From -0.2 
to 0.2 (-
0.01) 

0.7 0.08 0.02 

Soil properties pH For the litter layers, is the value of the 
first A horizon in the corresponding soil 

- 3 - 7.9 
(5.4) 

Collinear with 
Vegetation 
PC1 scores 

0.05 <0.01 

 
Presence of carbonates For the litter layers, it corresponds to 

the presence of carbonates within the 
soil profile 

0 (absence), 1 
(presence) 

- 0.03 0.04 0.01 

 
Clay Mineral particles < 0.002 mm diameter % of fine earth 

fraction 
1.1-48.5 
(4.3) 

Not relevant Collinear 
with Sand 

Collinear 
with Sand 

 
Silt Mineral particles 0.002-0.063 mm 

diameter 
% of fine earth 
fraction 

31.7-87.1 
(57.7) 

Not relevant 0.06 0.46 

 
Sand Mineral particles 0.063-2 mm diameter % of fine earth 

fraction 
3.2-65.4 
(22.9) 

Not relevant 0.04 0.54 

Humus form 
properties 

Humus Index Modified from Ponge et al., 2002 2 (Mesomull & 
Euanmoor), 3 
(Oligomull), 4 
(Dysmull), 5 
(Hemimoder & 
Amphi), 7 
(Dysmoder), 8 
(Hemimor & 
Humimor) 

2-8 (4) 0.02 0.03 <0.01 

 
Waterlogged 
conditions 

Presence of Anmoor humus forms 
(Jabiol et al., 2013)  

0 (absence), 1 
(presence) 

- 0.01 0.03 <0.01 

 
Rhizic humus form  Presence of more than 25% of dead or 

living roots in the total volume of the O 
and A horizons combined (Jabiol et al., 
2013) 

0 (absence), 1 
(presence) 

- Not relevant <0.03 0.01 

OM properties TOC Total organic Carbon concentration % of fine earth 
fraction 

0.45-59 
(6.2) 

<0.01 1 <0.01 

 
Hydrogen Index (HI) Amount of hydrocarbons (HC) released 

relative to TOC  
mg HC/g TOC 44.9-524.5 

(267.3) 
0.36 0.03 0.4 

 
Oxygen Index (OI) Amount of CO and CO2 released relative 

to TOC  
mg CO+CO2/g 
TOC 

107.8-
464.6 
(216.2) 

<0.01 0.03 0.02 

  C/N Total Carbon / Total Nitrogen - 7.3-70.2 
(14.7) 

0.73 0.08 Not relevant 
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6.3.1 Potential drivers of OM thermal stability 

A total of eighteen quantitative variables in five categories (site conditions, vegetation type, soil 

properties, humus forms and OM properties) were chosen for their potential impact on OM stability 

(Table 6.2). The mean air temperature in summer (June to September included), the average summer 

solar radiation and the mean annual moisture index (precipitation-evapotranspiration) were 

extrapolated for each soil location from the Swiss meteorological stations (www.MeteoSwiss.ch) 

according to Zimmermann and Kienast (1999). The aspect was measured in the field with a compass 

and then converted to a “North-South (NS) gradient” by the formula: 

 

𝑁𝑆𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 = 0 − cos〖[𝑟𝑎𝑑𝑖𝑎𝑛(𝐴𝑠𝑝𝑒𝑐𝑡)〗]. 

 

The vegetation type was taken into account by performing a principle component analysis (PCA) based 

on the species composition and cover (after Hellinger transformation) recorded at each study point. 

Scores on the first two axes (Appendix G2) were retained for subsequent analyses. The two resulting 

variables were respectively called Vegetation PC1 scores and Vegetation PC2 scores. Landolt ecological 

indicator values (Landolt et al., 2010) expressing plant-specific requirements for soil pH (R) and 

moisture (F) were associated to each plant species of the dataset. Then, mean indicator values per plant 

inventory were calculated with the species cover as a weight. Finally, the Pearson’s r correlation between 

the mean indicator values and the PC1 and PC2 scores of each plant inventory were calculated. 

Soil properties included pHH2O, clay (<2 µm), silt (2-63 µm) and sand (63–2000 µm) percentages, the 

occurrence of carbonate (presence/absence of 10% HCl reaction). The humus form, i.e. the sequence of 

organic and underlying topsoil mineral horizons, represents the integrated effects of plant and 

decomposer communities, soil climate, pH, and root distribution. In this study, the humus form was 

represented by the Humus Index (modified after Ponge et al., 2002) spanning from 2 (Mull) to 8 (Mor). 

The presence of waterlogged and rhizic conditions (binary variables) was assigned, respectively, to the 

histic Anmoor humus forms (Jabiol et al., 2013) and to humus forms having more than 25% of dead or 

living roots in the total volume (Jabiol et al., 2013). The OM properties consisted in the TOC 

concentration and three indices of OM quality: the HI and OI indices from Rock-Eval pyrolysis and the 

C/N ratio. 

Finally, the relation between class variables and OM thermal stability was also investigated. Class 

variables included the soil parent material, pedogenic processes and horizon type (see Figure 6.4d, 

Appendix G6 & G8). The soil parent material was assigned using our field observations as well as existing 

geological and geomorphological maps (www.swisstopo.admin.ch). Pedogenic processes and horizon 

types were assigned on the basis of field description and results of soil lab analyses. 

http://www.meteoswiss.ch/
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6.3.2 Statistical analysis 

The litter (Oi horizon), topsoil mineral (A horizon) and subsoil mineral layers (set of E, B and C horizons) 

were considered separately in the statistical analyses. The Oe and Oa horizons were excluded because of 

their low frequency in the data set (respectively 6 and 4% of the samples).  

An information theoretic framework based on the Aikaike’s information criterion (IT-AIC, Burnham and 

Anderson, 2002) was employed in order to find the dominant factors influencing OM thermal stability 

in each layer. Contrary to the traditional null hypothesis testing (Anderson et al., 2000), the IT-AIC 

approach fundamentally explores range of alternative hypotheses (a “model set”) potentially associated 

to a certain phenomenon and highlights the strongest associations worthy of further investigations 

(Symonds and Moussalli, 2011).  

In the present study, a model set of linear mixed-effects models (LMM) was built with the R-Index as 

dependent variable and the potential drivers of Table 6.2 as independent variables. The study sites were 

set as random effects in order to account for their potential influence on the dependent variable.  

The independent variables (predictors) to be included in the models were scrutinised in order to avoid 

problematic collinearities. For each layer, groups of variables having a Spearman’s rank correlation 

coefficient higher than 0.7 were identified, and only the most ecologically relevant variable within each 

group was retained. The model set was composed of every possible combination of the variables, 

including an intercept-only model. According to Harrell (2001), the number of predictor variables 

simultaneously considered in each model should not exceed 1/10 of the sample size to avoid over-

parameterization. As the sample size of the litter layers was 33, the maximal number of predictors 

simultaneously considered in each model was set to 3. The same maximum number of predictors was 

used for mineral topsoil and subsoil horizons, although the number of samples was higher (77 and 69, 

respectively), to ensure that each analysis operated under similar constraints.  

The models composing the set were then simultaneously compared and ranked by their AICC (modified 

version of AIC recommended for small sample sizes). The approximation power of each model was 

expressed as the difference (∆AICC) between the AICC of the best model (the lowest AICC value) and the 

AICC value for each of the other models. The ∆AICC was then used to calculate the Aikaike weight (wi) 

representing, for a given model, the probability to be the best approximating model within the model 

set. In this study, a “top model set” was created by subsetting the models that had a cumulative Aikaike 

weight of ≤0.95. Then, within the top model set, the relative importance of each variable was calculated 

by summing the Aikaike weights of the model(s) containing that variable. The factors having the 

strongest effect on the response variable were those with the highest summed Aikaike weights, i.e. 

having a relative importance tending towards 1 (Burnham and Anderson, 2002).  

The relationship between the response variable (R-Index) and the factors having the highest relative 

importance was measured by the Pearson’s correlation coefficient and its 95% confidence intervals. The 

lower the confidence interval width, the higher the probability of the Pearson’s correlation coefficient to 

correctly reflect population correlation. 
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Finally, the role of class variables (soil parent material, pedogenic process, horizon type) on OM thermal 

stability, which could not be evaluated through the IT-AIC analysis, was investigated using a one-way 

analysis of variance (ANOVA).  

Diagnostics for assumptions of normality, homoscedasticity, and goodness-of-fit were performed on 

residual plots. For significant effects, pairwise t-test without adjustment for multiple inferences 

(Webster, 2007) were performed to identify significant differences between R-Index means. The alpha 

level for significance was set to α = 0.05 for all tests.  

 

6.4 Results 

6.4.1 Thermal stability of the OM increases with depth in the soil profile 

The R-Index, i.e. the proportion of refractory compounds in the pyrolysed OM, increased with depth in 

the soil profile, from litter to topsoil and subsoil mineral layers (Figure 6.1). In contrast, the I-index, a 

proxy for preservation of “fresh” or “labile” compounds (Sebag et al., 2016), decreased with depth. This 

progressive increase in OM thermal stability with depth was observed in each of the eight vegetation 

types (Appendix G1).  

 

 

 

Figure 6.1 - Co-variation of the R- and I-indices through the different soil layers with increasing depth. Rock-Eval 

I/R plot (Sebag et al., 2016) of samples from litter (Oi horizons), topsoil mineral (A), and subsoil mineral layers (E, 

B and C horizons). The I-Index and R-Index represent the proportion of ‘labile’ and ‘refractory’ compounds in 

pyrolysed OM, respectively.  
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6.4.2 Factors influencing OM thermal stability in the litter layer  

According to the IT-AIC analysis, OM thermal stability in the litter layer was mainly related to the OM 

stoichiometry (C/N ratio and hydrogen index, HI) and vegetation type (Figure 6.2). 

 

 

 

Figure 6.2 - Drivers of OM thermal stability in the litter layer. (a) The six main predictor variables influencing the 

R-Index in the litter layers, ranked by their relative importance. “Veget. PC2 scores”: scores on the 2nd axis of a 

principle component analysis based on vegetation composition and cover, corresponding to a gradient of increasing 

contribution of hygrophilous species; “HI”: Hydrogen Index, amount of hydrocarbons released relative to the total 

organic C content; “HCl+”: visible effervescence upon strong acid addition due to the presence of carbonate in the 

soil; (b and c) R-Index values plotted against the two most important predictors, C/N and Vegetation PC2 scores. 

Colours represent the eight plant communities. “Silic.”: siliceous. “subalp.”: subalpine.  

 

 

The vegetation type in our analysis was represented by two variables, namely “Vegetation PC1 scores” 

and “Vegetation PC2 scores”, corresponding to the first two principal components of a multivariate 

dataset containing plant species composition and cover (Appendix G2). To facilitate interpretation of 

these principal components, we calculated the Pearson’s correlation coefficient between Landolt 

ecological indicator values (Landolt et al., 2010) and vegetation PC1 and PC2 scores. Landolt’s R value, 

corresponding to an increasing preference for alkaline soils, correlated strongly and negatively with 

Vegetation PC1 scores (Pearson’s r= -0.88, 95% confidence interval = -0.93 < r < -0.80). Landolt’s F 

value, corresponding to increasing requirement for soil moisture, was positively correlated with 

Vegetation PC2 scores (r= 0.54, -0.30 < r < -0.72). Vegetation PC1 scores were thus mainly related to 

the proportion of acidophilic species and separated plant communities typically associated with 

calcareous versus siliceous substrates. Instead, Vegetation PC2 scores reflected in part the contribution 

of hygrophilous species and distinguished grasslands from snowbeds.  

The R-Index of the litter samples correlated negatively with the C/N ratio (r = -0.72, -0.85 < r < -0.50) 

and positively with Vegetation PC2 scores (r = 0.79, 0.61 < r < 0.89). The Hydrogen Index (HI), 

representing the proportion of hydrogen (H) relative to C atoms in OM, ranked as the third most 

important factor. Similarly to C/N, the relationship between HI and the R-Index was negative (r = -0.65, 
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-0.81 < r < -0.39; Appendix G3). The litter from snowbeds showed the lowest C/N ratios and HI values 

but the highest OM thermal stability. 

 

6.4.3 Factors influencing OM thermal stability in the mineral topsoil  

In the topsoil (A horizons), thermal stability of the OM was predominantly related to its concentration 

(Figure 6.3). 

 

 

Figure 6.3 - Drivers of OM thermal stability in the mineral topsoil. (a) The six main predictor variables influencing 

the R-Index in the topsoil, ranked by their relative importance. “TOC”: total organic C concentration; “Summer 

temp.”: mean summer temperature; “Silt”: % of mineral particles having a diameter between 0.002 and 0.063 mm 

(b) R-Index values plotted against the most important variable, the organic C concentration (TOC %). Colours 

represent the eight plant communities, while letters represent peculiarities of the A horizon. “a”: hydromorphic A 

(Anmoor in Jabiol et al. (2013); “r”: rhizic humus form, presence of > 25 % of dead and living roots in the total 

volume of O and A horizons combined (Jabiol et al., 2013); “f”: fragmented litter homogeneously mixed with fine 

earth fraction.  

 

 

The correlation between the R-Index and total organic C (TOC) concentration was negative and 

relatively weak (r = -0.51, -0.66 < r < -0.32). When the topsoil was OM-rich (TOC > 10%), the OM 

thermal stability was relatively low. In some cases, these OM-rich A horizons were water-saturated for 

more than six months per year and displayed a hydromorphic humus type (classified as Anmoor; Jabiol 

et al., 2013). In others cases, the OM-rich A horizons had a large proportion of roots, and finally some 
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of them presented a certain amount of fragmented litter homogeneously mixed with the fine earth 

fraction, likely resulting from bioturbation.  

It has to be noted that 28 of the 46 soil profiles presented several A horizons. In these cases, the OM of 

the most surficial A horizon systematically had a lower thermal stability than the underlying one 

(Appendix G4), indicating increasing proportions of thermally stable OM with depth. When only the 

topmost A horizons were considered in the IT-AIC analysis, the relative importance of OM concentration 

decreased but it still remained the primary factor influencing OM thermal stability (not shown).  

 

6.4.4 Factors influencing OM thermal stability in the mineral subsoil 

The OM thermal stability in the subsoil was negatively related to the sand content and positively to the 

proportion of acidophilic species (Vegetation PC1 scores; Figure 6.4b and c), but the correlation 

remained weak in both cases (r = -0.33, -0.52 < r < -0.10 and r = 0.25, 0.01 < r < 0.46, respectively). Silt 

and HI ranked respectively as third and fourth most important predictors (Figure 6.4a; Appendix G5). 

The correlation between the R-Index and the texture variables (sand and silt proportion) and HI was 

mainly driven by three eluvial (E) horizons, which were particularly sandy. If these three samples were 

removed from the analysis, the importance of texture and HI was reduced and Vegetation PC1 scores 

became the most important predictor, followed by sand and silt proportions (not shown).  

This study taking place in the alpine environment, with little human activity, the respective vegetation 

type reflected each site’s ecological conditions. Vegetation PC1 scores could thus be considered as a proxy 

for soil geochemistry, as determined by the nature of the geological substrate and pedogenic trajectory 

(Appendix G6). The nature of the geological substrate indeed explained 74% of the variance in 

Vegetation PC1, while the pedogenic trajectory explained 62% of the variance in Vegetation PC1. This 

interpretation is confirmed by the correlation between Vegetation PC1 and soil pH (Appendix G7). 

Soil geochemistry was best represented by class variables that were not suited to the IT-AIC analysis. 

We therefore conducted a separate analysis of variance to test the effect of geological and soil classes on 

the R-index of subsoil horizons (Appendix G8). Geological classes explained 19% of the variance in the 

R-index, with samples associated with Si-rich lithologies having a significantly higher R-index than 

samples associated with calcareous or mixed lithologies. Soil classes explained 26% of the variance in 

the R-index, with ferric podzols having a significantly higher R-index than other soils. 
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Figure 6.4 - Drivers of OM thermal stability in the mineral subsoil (a) The six main predictor variables influencing 

the R-Index in the subsoil, ranked by their relative importance. “Veget. PC1 scores”: scores on the 1st axis of a 

principle component analysis based on vegetation composition and cover, corresponding to gradient of increasing 

contribution of acidophilous species and here considered as proxy for soil geochemistry. (b and c) R-Index values 

along the gradient of the two most important variables, Sand proportion and Vegetation PC1 scores. Colours 

represent the eight plant communities and symbols represent the horizon categories. (d) Boxplots of R-Index by 

mineral horizon types. The first four horizon types represent the podzolic soil sequence, including “E” (eluvial 

horizon); “Bh” (illuvial accumulation of organic matter), average pH = 4.7; “Bs” (illuvial accumulation of 

sesquioxides), average pH = 4.9; “podzolic C” (horizon weakly affected by pedogenic processes and underlying a 

podzolic profile). The next four horizon types are found in weakly-developed solums, such as Cambisols, Leptosols, 

and Regosols, and include: “Bsi” (siliceous, low Ca saturation), average pH=5.7; “Bci” (absence of Ca-carbonate but 

high Ca saturation), average pH = 6.7; “Bca” (presence of calcium (Ca) carbonate), average pH = 7.5; “C” (underlying 

horizon weakly affected by pedogenic processes). The next two horizon types are found in soils with expressed 

redoximorphic features and include “Bg” (stagnic conditions) and “Br” (strong reducing conditions) horizons. The 

last class “IIA” refers to buried A horizons (FAO, 2006). Black dots represent the mean values, the black line is the 

median, and boxes are limited by 1st and 3rd quartiles. Numbers of observations are indicated above boxplots. 

Letters above boxplots indicate significant differences (p-value < 0.05) within each group of horizons, calculated by 

pairwise t-test.  
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Moreover, thermal stability of subsoil layers varied according to the type of horizon considered (Figure 

6.4d) and the pattern was not reducible to horizon depth, as could be observed in the topsoil (Appendix 

G4).  

E horizons showed the lowest R-Index values, reaching the same range of thermal stability displayed by 

the A horizons (Figure 6.3), while buried A horizons (IIA; corresponding to fossil soils) showed among 

the highest R-index values. B and C horizons showed intermediate values on average. Significant 

differences could be noted according to the different pedogenic processes at work: in podzolic profiles, 

OM thermal stability increased dramatically from eluvial (E) to illuvial horizons and was highest in 

horizons dominated by the accumulation of sesquioxides (E ~ Bh < Bs ~ podzolic C). In moderately 

developed soils, thermal stability slightly increased from carbonate-rich to non-carbonate horizons (Bca 

< Bsi). In redoximorphic horizons, OM thermal stability was generally variable and within range of other 

acid B and C horizons.  

The horizon type and the associated pedogenic process were therefore shown to affect the OM thermal 

stability of the mineral subsoil layers.  

 

6.5 Discussion 

Due to its complex topography, geology, and geomorphology, the Alpine environment generates steep 

natural gradients of vegetation, soil moisture, texture, and geochemistry over very short spatial scales. 

This natural variability was used to explore controls on OM thermal stability.  

Study sites displayed a small climatic gradient (restricted region in the Alps and limited elevation range) 

and climate-related variables (mean summer temperature, moisture index, and solar irradiance) were 

not found to be important predictors of OM dynamics in the data set. Furthermore, anthropogenic 

impact on these soils could be discounted as they have never been ploughed, but have been used only 

for extensive pasture. 

The stability of OM was represented by the Rock-Eval R-index, which gives a snapshot of the proportion 

of thermally refractory compounds found within the OM. The use of Rock-Eval pyrolysis allowed us to 

evaluate OM properties similarly across all soil layers without applying any pre-treatment, and thus 

eliminated the risk of creating experimental artefacts. As expected from results of other studies 

employing Rock-Eval analysis (Sebag et al., 2016 and references therein), we found that the contribution 

from thermally stable OM progressively increased with depth in the soil profile (Figure 6.1). This is in 

accordance with the generally accepted idea that in the absence of perturbations, soil OM stability and 

residence time tends to increase with depth (van der Voort et al., 2016).  

However, the R-index of subsoil horizons retained significant variability (Figure 6.4d and Appendix G1). 

Moreover, differences in subsoil horizons could not be predicted from differences observed in the litter 

layer or even the A horizon. As an example, wet snowbeds had relatively high R-index values in the litter 
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layer, but showed the lowest values in mineral horizons; siliceous subalpine grasslands had among the 

lowest R-index values in the litter and topsoil horizons, but they showed the highest values in the subsoil 

(Appendix G1). This indicates that soil OM transformation, as represented by changes in OM thermal 

properties, follows diverging trajectories with depth in different edaphic environments. In the next 

sections, we will explore the factors influencing OM thermal stability in each major soil layer (litter, 

topsoil, and subsoil).  

 

6.5.1 Litter layer 

In the litter layer, thermal stability of OM varied according to its stoichiometry (C/N and Hydrogen 

Index – HI) and to the plant community producing it (Vegetation PC2 scores). Variability of the C/N 

and HI in the litter layer can be inherited from the initial biochemical OM composition (Barré et al., 

2016; Sebag et al., 2016), or rather be a result of the litter mineralisation degrees.  

The variations in C/N ratios recorded in this study were driven by differences in N contents (Appendix 

G9). The N enrichment in some litter types might stem from various plant properties, such as highly 

efficient N uptake mediated by mycorrhizal fungi or N-fixing capacity. These characteristics were 

observed in some plant species of snowbeds (Mullen et al., 1998) and mosses (Woolgrove and Woodin, 

1996a), furtherly enhanced by N accumulation in the snowpack, acting as a scavenger of air pollution 

(Knutson et al., 1976).  

Furthermore, as N accumulation (Aber and Melillo, 1982; Manzoni et al., 2008) and OM 

dehydrogenization (loss of H bonds) typically occur during decomposition (Barré et al., 2016), low C/N 

and HI values may also indicate a more advanced mineralisation degree. The simultaneous increase of 

the litter thermal stability and the proportion of hygrophilous species may indeed indicate that longer 

periods of snow cover favour decomposition (Baptist et al., 2010; Hobbie and Chapin, 1996) and 

selectively preserve thermally resistant components (Sebag et al., 2016). The increase in the R-index, 

concomitant with the increase in N and decrease in H content of the litter, corroborates the conventional 

view, according to which OM properties are controlled by the quality of the inputs, modulated by 

selective preservation of certain compounds.  

 

6.5.2 Mineral topsoil layer 

In the A horizons, the main factor influencing OM thermal stability was the amount of soil OM, which 

is in turn related to the balance between mechanisms governing the fresh OM inputs and those 

hampering its mineralization or deep translocation.  

This study showed that when topsoil layers were water saturated for long periods, as indicated by the 

presence of hydromorphic humus forms (Figure 6.3), the OM remained in a thermally labile state, 

probably because of a limited access to oxygen, and therefore a reduced activity of some enzymes 
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essential for OM decomposition, such as phenol oxidase (Freeman et al., 2001). Similarly, the OM 

stability was low when relatively high amounts of fresh organic material was delivered to the topsoil 

layers via plant roots and fragmented litter. In the same way, Sebag et al. (2006) observed lower Rock-

Eval R-indices in soil layers under dense plant cover (large inputs) comparing to sparse vegetation (low 

inputs). Therefore, quantity of the inputs, instead of quality, appears to determine the OM stability in 

topsoils.  

A possible explanation involves the efficiency of the decomposer community. Even if litter contains 

biochemical resistant substances, the soil decomposer community and the type of enzymes produced 

are generally well-suited for their decomposition (Ekschmitt et al., 2005). However, it has been 

suggested that above a certain amount of substrate availability, the enzyme efficiency could reach 

saturation, and the energy gain from decomposition products would be insufficient to sustain enzyme 

production (Schimel and Weintraub, 2003). As a consequence, in the presence of large inputs of litter, 

the soil OM may accumulate in the topsoil in a labile form.  

On the other hand, when plant litter inputs do not exceed the threshold for maximum enzyme efficiency, 

decomposition could be relatively effective. In this case, labile components can be rapidly mineralised, 

while the remaining recalcitrant components would instead be decomposed by slow-growing microbial 

types (Fontaine et al., 2003). This could explain why, in our study, topsoils with > 15% TOC showed low 

average OM thermal stability, while topsoils with lower concentrations in TOC had higher and more 

variable OM thermal stability (Figure 6.3).  

Moreover, the potential for OM stabilization by interactions with mineral surfaces increases at low 

organic loadings (Six et al., 2002). The effective preservation of partially oxidized, thermally stable 

compounds, on mineral surfaces could contribute to the increasing thermal stability of samples with low 

TOC. 

Overall, our results indicate that thermal stability of OM in the topsoil mineral layers is mainly an 

emergent property stemming from the pedogenic environment, rather than an intrinsic property of OM 

molecular structure. 

 

6.5.3 Mineral subsoil layers 

In subsoil mineral layers, OM thermal stability was mainly influenced by the texture and the soil 

geochemical characteristics (as represented by Vegetation PC1). An additional analysis of variance 

confirmed that geological and pedogenic classes had a strong explanatory power on variations in the R-

index of the subsoil (Appendix G8).  

This result concords with a recent study of instantaneous OM mineralisation rates (represented by soil-

surface efflux, also known as soil respiration) in mountain soils, which found that 17% of the variation 

in whole-soil respiration could be explained by soil classes (Grand et al., 2016). In the subsoil, chemical 

properties of the mineral matrix are thus likely to be critical drivers of OM stability; yet, they are 

conspicuously absent from most models of soil OM cycling. Interestingly, we found that texture (% sand, 
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silt, or clay) only had a very minor effect on the R-index of OM in subsoil layers once special pedogenic 

dynamics were accounted for, such as that associated with the E horizons of podzols. 

Moreover, significant differences in OM thermal stability were observed between subsoil horizon types 

(Figure 6.4d). Differences between horizons could not be simply explained by an increase in the R-index 

with depth. We instead hypothesize that various stabilisation mechanisms, associated to specific 

pedogenic processes, could be responsible for the observed variations.  

According to von Lützow et al. (2008), stabilisation mechanisms are indeed horizon-specific in Podzols. 

The potential for organo-mineral interactions is thought to be low in eluvial horizons, where long-chain 

alkyl structures could accumulate (Rumpel et al., 2004), perhaps as a result of hydrophobic separation 

from decomposers. Complexation of organics with Al and Fe has been proposed as the main stabilization 

mechanism in Bh horizons while Bs and podzolic C horizons typically contain highly oxidized OM 

stabilised by organo-mineral interactions, such as ligand-exchange (Rumpel et al., 2004; Lützow et al., 

2008). Interestingly, thermal stability of Podzol mineral layers measured in this study increased in the 

order E < Bh < Bs layers, however the difference between E and Bh horizons was not significant (Figure 

6.4d). In accordance with the conceptual model outlined by Rumpel et al. (2004), a possible 

interpretation is that E horizons contained mostly C and H-rich, thermally unstable moieties (Appendix 

G10), while Bh and Bs horizon were enriched in partially dehydrogenated, thermally stable molecules.  

Moreover, our results might suggest that OM interaction with metals, believed to dominate in Bh 

horizons, have a weaker effect on OM properties than interactions with poorly crystalline oxides and 

aluminosilicates, expected in Bs horizons.  

A potential stabilisation mediated by Ca was less apparent (Figure 6.4d), but OM present in Ca-rich 

horizons (Bca) was more thermally labile, and thus perhaps less processed, than the OM present in Ca-

poor horizons (Bsi). This may indicate that aggregation (Muneer and Oades, 1989), and the 

heterogeneous protection of both thermally labile and refractory OM by occlusion within aggregates 

(Popleau et al., in review), were more pronounced in Ca-rich horizons. Redoximorphic processes (Bg 

and Br horizons) were not associated with a specific OM thermal signature, perhaps due to the typically 

seasonal nature of waterlogging in alpine soils.  

Overall, our result strongly support a dominant role of the geochemical properties of the mineral matrix 

on OM dynamics in the subsoil. Further detailed investigation is needed to establish whether the thermal 

resistance measured by Rock-Eval pyrolysis is indeed reflective of the type of organo-mineral association 

involved.  

 

6.5.4 The decoupling 

As previously proposed by Salomé et al. (2010), this study confirms a substantial decoupling between 

organic, topsoil, and subsoil mineral horizons in terms of factors governing OM dynamics. This study 

also confirms the repeated findings of litter bag experiments (e.g. Preston et al., 2009) showing that the 
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intrinsic properties of OM (litter source, stochiometry) play a role at the beginning of the OM 

decomposition continuum (Lehmann and Kleber, 2015), in the litter layer, before any pervasive 

opportunity for interaction with the mineral matrix.  

However, in the topsoil and subsoil mineral layers, OM properties are determined by the pedogenic 

environment, rather than being an intrinsic property driven by its initial composition. In these layers, 

the vegetation type plays an indirect role on soil OM thermal stability by determining the rate of plant 

inputs entering the soil system and its vertical distribution along the soil profile (Jobbagy and Jackson, 

2000), rather than by determining its quality. As observed in many studies (Kögel-Knabner et al., 2008; 

Rumpel et al., 2002), soil OM stability in subsoil horizons seems to be driven by the types and intensity 

of organo-mineral interactions and physical protection from decomposers.  

Building upon the theoretical framework of Schmidt et al. (2011), field observations and Rock-Eval 

pyrolysis have illustrated that OM dynamics in soils are related to biological (amount of plant roots, 

presence of bioturbation), and edaphic properties (conditions of water saturation, presence of polyvalent 

cations, reactive mineral surfaces). By taking into account the biological (plant species inventories), 

geological and geochemical contexts, this study broadly demonstrated that OM dynamics resulted from 

a complex interplay between ecosystem properties and those horizon-resolved; consequently, multi-

disciplinary approaches are key to the understanding and the prediction of soil OM fate in a changing 

world.  

 

6.5.5 Long-term implications 

It is generally thought that global warming will increase organic C mineralisation in soils (Leifeld et al., 

2009; Schimel, 1995). The present study suggests that the effects of climate change will not be reducible 

to changes in OM mineralisation rates as a result of the temperature-dependency of enzymatic 

degradation (Q10-effects); indeed, pure Q10-effects are likely to be of minor importance when compared 

to broader ecosystem consequences.  

For instance, higher temperatures and the consequent shortening of snow cover may affect the soil OM 

mineralization rates in contradicting ways. The reduction of insulation by the snowpack might reduce 

mineralization in the winter season (Saccone et al., 2013). However, by reducing the duration of 

waterlogging conditions, hydromorphic topsoils could progressively dry out and OM degradation could 

increase. Moreover, the way in which changes in climatic conditions will affect OM dynamics in the deep 

soil, where interactions with the mineral matrix are of prime importance, is highly uncertain. Changes 

in pedogenic trajectories could indeed result in drastically altered conditions for OM stabilisation in the 

subsoil. This constitutes a critical research gap which undermines our capacity to predict the future of 

OM storage in soils.  
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 Synthesis 

 

As I write these lines, Switzerland is experiencing in 2017 the 3rd warmest summer since the beginning 

of weather measures in 1864 (www.meteosuisse.admin.ch), with a mean summer temperature 1.9 °C 

higher than the reference period 1981-2010. Only the summers 2003 and 2015 have been warmer (+3.6 

and 2.3 °C, respectively). In the Swiss Alps, December 2016 was the driest since 1864 and the sunniest 

since 1959. As a consequence of this dry and mild weather, the snowline in the Alps in December 2016 

was at ca. 2000 m, and the snow depth at 2500 m amounted to 20-30 cm only (MétéoSuisse, 2016). 

These data do not represent isolated records, but they witness a trend of increasing temperatures and 

decreasing snow precipitations that started already at the end of the XXth century, and that is projected 

to continue in the present century, especially at high elevations (Pepin et al., 2015). High elevation 

ecosystems are considered particularly vulnerable to climate change (IPCC, 2014). Modest changes in 

mean annual temperature may significantly alter the elevation-controlled distribution of plants and 

vegetation (Theurillat et al., 1998). Climatic parameters being fundamental in the maintenance of 

several mountain ecosystems, these are quite sensitive and highly vulnerable to climate changes. 

Deterioration of alpine ecosystems may bring important biodiversity losses and socioeconomic 

consequences (Diaz et al., 2003). 

Most of the long-term studies on climate change effects focused on upper alpine and nival belts or the 

treeline ecotone. Conversely, the subalpine-alpine herbaceous plant communities have been poorly 

investigated so far. Furthermore, these ecosystems were also poorly known under a soil perspective. 

Soils are worth to study as they generate a significant diversity of ecosystem services, including physical 

support to plants, nutrient and organic C cycling, hydrological control, biodiversity and biological 

activity (FAO, 2015). These functions are currently threatened in mountain ecosystem, which are 

affected by climate and land-use changes in a unprecedented way (FAO, 2015). Mountain soils represent 

also extremely rich OM-stocks (Leifeld et al., 2009; Sjogersten et al., 2011), whose sensitivity to recent 

climate changes is still unclear. Within the soil profile, the humus form represents the centre of plant-

soil interactions, litter degradation, and is a pathway to most geochemical cycles. The study of alpine 

humus forms, soil OM properties, and the main environmental factors influencing them, may 

significantly improve our understanding of the subalpine-alpine ecosystem functioning and, thus, its 

response to climate changes.  

http://www.meteosuisse.admin.ch/
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This research aimed to assess the response of different subalpine-alpine vegetation types to recent 

climate changes and to estimate the consequences of such responses on soil organic matter dynamics 

and on the distribution of humus forms. The main outcomes are highlighted by thick arrows in Figure 

7.1.  

 

Figure 7.1 – Summary diagram reporting the main findings of this study. Red boxes : objects targeted by this study 

and for which the main drivers were investigated. Black boxes : ecosystem factors having an effect on the targeted 

objects. Thick arrows : relationships between targeted objects and ecosystem factors that were highlighted by this 

study. Thin arrows : relationships between components that were assumed and not demonstrated by this study. 

 

The main changes were observed in vegetation types closely related to the snow cover duration: the 

typical snowbeds showed a marked shift of species composition and cover towards the siliceous alpine 

grasslands, while the wet snowbeds tended towards the typical snowbeds. This was likely a consequence 

of climate warming and reduced snow precipitations that, combined, induced earlier snowmelt dates. It 

is certain that the snow cover duration is also related to topography and slope aspect, however, being 

these parameters unchangeable in the short to middle term, the climate remains the unique driver of 

snow cover duration.  
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Recent climate changes appeared to have no direct effects on those vegetation types less related to the 

snow cover duration. Indeed, calcareous and siliceous grasslands demonstrated a stability of species 

composition and cover, whatever the bedrock type. The dense plant cover and the important 

belowground phytomass characterizing the grassland vegetation increase the competition for light and 

soil resources, which hampers the establishment of new seedlings. Moreover, grasslands plant species 

are characterized by high longevity, clonal growth, and persistent shoots and root systems. These 

properties induce long-term persistence and continuous recolonization of existing gaps.  

The distribution of humus forms was mainly controlled by climate, lithology of the soil’s parent material, 

topography and slope aspect. Mulls were mostly found on calcareous parent materials, at lower 

elevations, south-exposed, and therefore warmer sites. On the contrary, Moder and Mors were 

associated to siliceous materials and colder sites. Roots were abundant in humus forms located on 

slopes, while humus forms presenting waterlogging conditions were exclusively found in depressions. 

Interestingly, the vegetation type appeared to play a secondary role in the humus form distribution, but 

it still influenced the litter quality, here expressed by the C/N ratio. Indeed, both calcareous and siliceous 

grasslands were characterized by higher C/N values in their litter samples than any other plant 

communities. With such high C/N values, a low degradability potential is expected for the grassland 

litter. However, Mull forms, indicating efficient decomposition, were observed in association with 

calcareous grasslands. This furtherly confirmed that the humus form development weakly depends on 

the litter degradability, but rather on environmental factors. 

The study of OM thermal stability provided consistent results with the study of humus forms. Indeed, 

the vegetation type and the litter quality (here represented by the C/N ratio) were the main 

environmental controls of OM thermal stability in the litter layer, whereas they were of minor 

importance in the top- and subsoil horizons. Litter from snowbeds showed the highest levels of thermal 

stability, while those from siliceous grasslands the lowest. It was hypothesized that litter degradation in 

the snowbed was relatively efficient because of an initial OM biochemical composition favourable to 

degradation (role of litter quality) and because of the protection from freezing temperature provided by 

the snowpack (role of snow cover duration). As a consequence, the mineralisation degree of snowbed 

litter samples, collected in summer, after snowmelt, was probably at an advanced stage. On the contrary, 

grassland litter, inherently more resistant to degradation (high C/N) and less protected by the long snow 

cover, was probably less degraded at the collection period and thus still richer in thermally labile 

compounds. 

OM thermal stability in the topsoil mineral horizons was influenced instead by the balance between 

factors controlling its inputs and those hampering its mineralisation or deep translocation. Thermal 

stability was relatively low when large amounts of fresh OM were provided into the topsoil by plant roots, 

their exudates, and fragmented litter (role of litter and root amount). Similarly, thermal stability was 

low when waterlogging conditions, consequence of a long snow cover, prevented its transformation and 

decomposition. In absence of these conditions (water saturation, litter and root abundance), OM likely 

undergoes decomposition and the most thermally resistant components accumulate and/or are 

protected by interactions with mineral surfaces. 
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In subsoil layers, the geochemical properties of the mineral matrix exerted the major control on OM 

thermal stability. This was not homogeneous among subsoil horizons and significantly varied according 

to the specific pedogenic process at work. Specific stabilisation mechanisms, associated to the different 

pedogenic processes, were suggested as responsible of the observed variations.  

This research clearly indicated a substantial decoupling between organic, topsoil, and subsoil mineral 

horizons in terms of factors driving OM dynamics. It was confirmed by field observations that the 

inherent properties of OM, linked to the vegetation type, are of minor importance for the OM dynamics 

in the mineral soil. However, if the vegetation type does not influence the OM dynamics by determining 

its quality, it does by determining the rate of plant inputs entering the soil system and its vertical 

distribution along the soil profile (Jobbagy and Jackson, 2000). 

Building on the outcomes illustrated so far, it seems appropriate to return once more to the main 

questions of this study. Firstly, it was asked “how did subalpine-alpine vegetation respond to recent 

climate changes?” The response would be “it depends on the vegetation type considered”. Indeed only 

snowbed vegetation showed pronounced changes. The second question was “what are the consequences 

of the potential vegetation shifts on soil OM dynamics?” As grassland vegetation did not show large 

shifts in species composition and cover, there is not evident reason to discuss how soil OM dynamics 

could evolve in these ecosystems. Instead, in the case of snowbed vegetation, the answer would be “soil 

OM dynamics can be affected by the vegetation shifts depending on the soil layer considered”.  

Indeed, it was demonstrated that the vegetation type was not an important driver of OM thermal 

stability in the mineral soil. Pedogenic processes and soil OM protection mechanisms were fundamental 

instead. Changes in vegetation will likely have an effect only at the litter level. The expansion of grassland 

species in the snowbeds will probably increase the mean C/N ratio of the litter and thus reduce its 

degradability potential. However, this does not directly imply a litter accumulation, since this will also 

depend on the soil insulation from extreme temperatures operated by the snowpack. As demonstrated 

by Serquet et al. (2013) the snowfall/precipitation ratio decreased by ca. 0.25% per year at the beginning 

and the end of the snow season from 1961 to 2008. Beniston et al. (2003) predicted that, with a 

temperature rise of 4°C in 2071-2100 (Christensen et al., 2002), the snow volume in the Alps at 2000 m 

may be reduced by 50% and the melting season advanced by 50-60 days. With such projections, 

snowbed soils will experience progressively shorter periods of thermal insulation. This, combined with 

the supposed decrease in litter degradability potential (higher C/N ratios), may consequently reduce the 

litter degradation in snowbeds (Saccone et al., 2013).  

At the topsoil level, reduction of snow cover period may diminish frequency and magnitude of 

waterlogging conditions. Water saturation being a constraint on OM decomposition in the topsoil, the 

gradual drying of snowbed soils may make important amounts of fresh OM available to oxidation. 

Moreover, the expansion of some grassland species with particularly well developed root systems (e.g. 

Nardus stricta, Carex curvula), may provide large amounts of fresh, and labile, OM in the topsoils of 

snowbeds. The abundance of root exudates may also enhance the OM mineralisation in the rhizosphere 

by two mechanisms: first, root exudates represent a large source of labile C that can sustain the 
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degradation activity of soil microorganisms (priming effect; Kuzyakov 2002); and second, some root 

exudates, such as oxalic acid, may liberate organic compounds from protection by mineral associations 

(Keiluweit et al., 2015). 

Vegetation changes will likely have very small effects on the subsoil OM dynamics. There, the OM 

thermal stability is mainly controlled by the pedogenic environment and the type of stabilisation 

mechanism. These factors are likely independent from the plant species composition. In order to discuss 

the future of deep soil OM, it would be more informative to identify controls of OM stabilisation and 

destabilisation processes (Sollins et al., 1996; von Lutzow et al., 2006).  

What is the impact of the observed vegetation changes on the humus form distribution? As discussed 

above, changes in plant species composition of the snowbeds and a reduced snow cover period may lead 

to lower litter degradation rates. Will this favour the development of Moder and Mor forms? According 

to the present results, the humus form is mostly influenced by the lithology of the soil parent material 

and the climatic parameters. Therefore, a reduction of litter degradability should not determine a shift 

in the humus form, provided other environmental variables constant. The Mull forms associated to the 

calcareous grasslands despite their low litter degradability, confirm such hypothesis. The importance of 

climatic variables for the humus form development may question on the future of humus form under a 

warmer climate. However, the sampling strategy of this study does not allow to draw conclusions in this 

sense. Indeed, warmer sites (lower elevations) were all on calcareous parent materials, while higher and 

colder sites were mostly on siliceous ones. This correlation among lithology and climate prevent the 

assessment of their respective influence on the humus forms. Further studies investigating the influence 

of climate changes on humus forms should be careful to avoid this issue.  

Finally, based on the present findings, what is the impact of climate changes on the soil organic C cycling 

in mountain ecosystems? Despite the assessment of soil organic C stock was not targeted by this 

research, some general considerations may be proposed. Subalpine-alpine grasslands did not display 

significant vegetation changes. Important variations of the C cycling in such ecosystem is therefore 

unlikely in short to middle term. Conversely, ecosystems related to long snow cover were identified as 

extremely sensitive to recent warming and snow precipitations decline. The expansion of grassland plant 

species, and the consequent progressive shift towards less degradable litter, may cause the OM 

accumulation at the soil surface, enhancing the C sink capacity of such soils. Moreover, the reduction of 

insulation by the snowpack might increase frost events, and therefore reduce mineralisation under 

snow. On the other hand, the release of waterlogging conditions will likely liberate considerable 

proportions of OM that will be available for oxidation. This can transform snowbed soils into a CO2 

source instead.  

Aside from changes in soil water regimes, recent and projected climate changes include an increase in 

temperature. Temperature sensitivity of C stabilisation processes is still not well understood and not 

accurately quantified by the scientific community. Experimental approaches allowed the identification 

of a cohort of processes working simultaneously, such as accessibility of microorganisms to substrates, 

pH, water, oxygen and nutrient limitations (von Lutzow and Kogel-Knabner, 2009). This study confirms 
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that factors influencing the outcome of OM in soils are numerous, horizon and soil specific, and highly 

interconnected. Multi-disciplinary approaches, as the present research, are key to understand and 

forecast soil OM fate in a changing world.
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 General conclusions and perspectives 

 

The aim of this research was to investigate the relationships between subalpine-alpine vegetation and 

soil OM dynamics in the context of recent climate changes. In particular, the following questions were 

targeted in separate chapters: 

 Chapter 5: (1) are there observable changes in the subalpine-alpine vegetation over the last 25-

50 years in species richness and community composition in the Alps? (2) Do the magnitude and 

direction of changes vary across different plant communities and how? (3) What environmental 

factors best explain the observed changes? 

 Chapter 6: (4) which soils and humus forms are associated to the main subalpine-alpine plant 

communities? (5) What are the determinants of their distribution in the alpine environment? 

(6) Are the existing classification criteria adapted to the alpine humus forms? 

 Chapter 7: (7) what are the major determinants of OM thermal stability and how does their 

significance vary with soil depth? 

 

The present research provided the following answers, respectively: 

1. The species richness and composition of the subalpine-alpine vegetation did show changes over 

the last 25-50 years in the Alps. 

2. Not all subalpine-alpine vegetation types reacted to recent climate changes. Both calcareous and 

siliceous grasslands showed high stability in terms of plant species composition and cover. On 

the other hand, vegetation types linked to long snow cover (snowbeds) showed pronounced 

changes. Several species, coming from the surrounding grasslands increased in frequency and 

cover. 

3. The observed vegetation changes are likely a consequence of earlier melting dates and longer 

growing seasons. 

4. The eight vegetation types displayed ten main groups of soil references and the same number of 

humus forms. 

5. The plant community type played a secondary role in the humus form distribution, which was 

in contrast mostly defined by the lithology of the soil’s parent material, the climate and the 

topography. Mull forms were observed along the whole elevation gradient of this study (1698-



112 

 

2697 m), but mostly on lowest-elevation sites and on calcareous parent material. Moder and 

Mor forms, instead, were associated to the highest elevations and the siliceous parent materials. 

The concave topography was determinant for the occurrence of Anmoor forms. Roots were 

abundant in the investigated soils, particularly on steep slopes. 

6. The existing keys for humus form identification proved partly unsuitable for the alpine 

ecosystem and some adaptations were suggested. 

7. Ecosystem controls on soil OM dynamics differed substantially according to the soil layer 

considered. The vegetation type influenced OM stability in the litter layer, but not in the topsoil 

and subsoil. There, the supply rate of fresh organic material and the physical and chemical 

characteristics of the pedogenic environment appeared important instead.  

The plant resurvey method, the one employed in this research, was suitable to identify vegetation types 

and plant species that are reacting more strongly to recent climate changes. However, the same method 

does not allow the understanding of mechanisms underlying such changes or, on the contrary, their 

absence. For example, why did the grassland communities show so little changes during the last 

decades? The dense plant cover characterizing this vegetation type has often been raised as a factor 

hampering the establishment of new seedlings (Choler et al., 2001). In order to verify this hypothesis, 

plant seeds from lower elevations belt than the one under study could be sowed in grasslands with 

increasing plant cover, and the proportion of germination success recorded after a certain period. 

Moreover, the grassland stability may result from the presence of obstacles for the seed dispersion, such 

as a forest belt that separates sources of potential colonizers from the sink plant communities. This could 

be verified by comparing the proportion of species from low elevation grasslands (source) present in 

supplementary reinventoried subalpine-alpine grasslands (sink) distributed along a gradient of 

connection with montane grasslands. It is also possible that the weak vegetation changes observed so 

far represent just a first phase of the response to warming; and a second phase, characterized by strong 

and sudden changes, could follow after forest colonisation, successive years of drought, development of 

diseases (Ayres and Lombardero, 2000), or the arrival of new herbivores (Pellissier et al., 2014). A 

regular monitoring of alpine grasslands, based on permanent plots, as the ones established in this study, 

would allow this question to be addressed.  

In the present study, a drought stress was hypothesized to explain several observations of dried turfs of 

Elyna myosuroides in, or around, the studied plots. However, it is difficult to evaluate the real 

desiccation stress at which alpine plants are submitted, as precipitations at these high elevations are 

rarely a limiting factor and alpine plants exhibit extreme tolerance to desiccation (Körner, 2003). The 

plant water supply also depends on the pattern of the rainfall distribution during the growing season, 

the soil structure, the plant cover, and the exposition to wind (Körner, 2003). Researches in this 

direction could be very pertinent in light of the increasing frequency of extreme drought events expected 

globally by the end of the 21st century (Calanca, 2007). 

In snowbed vegetation types, the arrival of species from surrounding grasslands was interpreted as the 

consequence of earlier snowmelt dates. However, why were some grassland species better colonizers 

than others? The same question was addressed by many authors studying the upward movement of plant 
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species in alpine summits, and some answers came from the analysis of plant functional traits (Matteodo 

et al., 2013; Tackenberg and Stocklin, 2008; Vittoz et al., 2009a). The same approach could be followed 

in snowbeds by comparing plant functional traits of good vs weak colonizing species. The functional 

plant traits represent a connection between the plant C strategy and biogeochemical cycling (Cornwell 

et al., 2008; De Deyn et al., 2008). Therefore, the study of plant functional traits could be relevant also 

for the understanding of present and predicted litter decomposition potentials among different 

vegetation types.  

Many questions concerning the humus forms functioning are still pending because out of the scope of 

this research, or due to an inappropriate sampling design. First, what are the composition and functions 

of the macro-, meso-, and micro-fauna inhabiting the alpine topsoils in different vegetation types? Are 

there fluctuations in microbial population during the year?  

The study of soil fauna and microorganisms could be addressed in several ways: directly by soil fauna 

extraction or DNA sequencing, followed by determination of taxa, and indirectly, by micromorphological 

observations of the fecal pellets, whose size and shape are family-specific (Bullock et al., 1985). Thin 

layer sections of humus form horizons could be very helpful in this regards, as they provide a snap-shot 

of litter degradation status, with images of plant residues, fecal pellets, and mineral components and 

their spatial arrangement. Repeated observations of such thin layers during the growing season, and 

under different ecological conditions, could be highly informative on the functioning of humus forms. 

The sampling strategy of this study was based on the availability of historical vegetation surveys. This, 

together with orogenic processes resulting in calcareous mountain ranges being at lower elevations than 

siliceous ones (Pfiffner, 2014; Stampfli, 2001), led to alkaline soils being mostly described at lower 

elevations (warmer temperatures) and acidic ones mostly at high elevations (lower temperatures). Mull 

forms appeared as mainly associated to calcareous parent materials and thus to warmer temperatures, 

while Moders and Mors to colder and siliceous sites. What is the respective influence of temperature 

and soil parent material in the humus form distribution? The study of humus forms of high alpine 

calcareous soils and subalpine siliceous grasslands would allow this question to be answered.  

Both the description of humus forms and the study of OM thermal stability suggested the importance of 

the root system in the alpine carbon cycling. Is the belowground biomass contributing more than the 

aboveground one to the soil OM pool in the alpine ecosystems? Are there differences among vegetation 

types? What degradability (C/N) and thermal stability do the dead roots have? Are they determining the 

thermal stability signature of the topsoil OM? Are there differences of thermal stability between coarse 

and fine roots?  

An attempt to answer these questions was made in this study, but was finally discarded for lack of time. 

Litter, aboveground and belowground biomasses were collected in 12 study plots, evenly distributed 

among three vegetation types (calcareous grasslands, siliceous alpine grasslands and typical snowbeds). 

Preliminary results indicated that the root density (Kg/m2) was higher in calcareous grasslands than in 

other plant communities, and it exceeded aboveground biomass by a factor of 8 in each plant 

community. The difference with litter density was even higher, especially in siliceous alpine grasslands 

and typical snowbeds, where the root density was 35 and 24 times higher than litter one, respectively 
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(only 7 times higher in calcareous grasslands). Rock-Eval and CHN analyses on the biomass, litter and 

root samples (coarse and fine separately) would then allow the thermal stability and the degradability 

of the three OM pools to be characterized.  

Studying the belowground biomass is a challenging task, especially in the alpine ecosystem where soils 

are generally rich in skeleton and the root system is very dense. The root extraction from soil monoliths 

by washing-sieving procedure was employed in this study. This method is time-consuming and a large 

proportion of fine roots is inevitably lost during the process (Oliveira et al., 2000), thus leading to 

underestimation of the belowground biomass. An alternative indirect method to study root biomass is 

the ground penetrating radar, which allows relatively large surfaces to be investigated in a non-

destructive way. However, this method generally requires well drained sandy soil, with low OM and ion 

content, for an optimum accuracy (Addo-Danso et al., 2016). These conditions are not fulfilled in the 

alpine soils, and several tests and calibrations would be needed prior to implement the method in the 

alpine system. In order to study root production, mini-rhizotrons are increasingly employed. This 

method, capturing root images at time intervals in a constant position, has the advantage to be non-

destructive, time-efficient and allows studying root production along the year (Blume-Werry et al., 

2016).  

As for aerial plant parts, root functional traits strongly influence ecosystem processes, such as C and 

nutrient cycling, and are crucial for soil formation and structural stability (Bardgett et al., 2014). Their 

study in the alpine ecosystems would bring important knowledge on the biogeochemical cycles 

characterizing these soils.  

The present research highlighted the importance of organo-mineral interactions for the thermal stability 

of OM in the deep soil. What will be the effect of climate warming on this stabilized fraction? What are 

the respective effects of warming and snow cover changes on the C stabilization mechanisms? Elevated 

CO2 concentration in the atmosphere are considered to increase the amount of root exudates (Carney et 

al., 2007). Among the root exudates, the oxalic acid has been shown to unravel organo-mineral 

association, thus enhancing the microbial access to organic compounds and finally, their mineralisation 

(Keiluweit et al., 2015). Considering the high amount of roots present in the alpine soils, are these 

particularly prone to C loss? On the other hand, roots and their exudates likely represent an important 

C input for alpine soil. Is this input important enough to counterbalance the C output stimulated by root 

exudates?  

In order to better understand the role of climate on soil OM dynamics, a study of soils along an elevation 

gradient, from mountainous forest to alpine grasslands, would be very informative. Research sites 

should be selected on homogeneous parent material, in order to discard its relative influence on the OM 

stabilisation processes.  

 

Besides improving our knowledge of the alpine ecosystem functioning, the above mentioned research 

lines are crucial to forecast impacts of climate change on alpine vegetation and soils. Moreover, as a 

natural experimental laboratory, the alpine environment may provide findings and clues that can be, at 

least in part, extrapolated to a larger scale, also beyond boundaries of high elevation ecosystems.  
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A. Plot location 

 

Appendix A1 – Topographical map of the Morteys plots.  
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Appendix A2 – Topographical map of the Morteys plots. Colours represent the vegetation type, and symbols whether a vegetation record was accompanied by a soil description 

and sampling (circles) or not (triangles).  
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Appendix A3 – Topographical map of the Grimsel plots.
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Appendix A4 – Topographical map of the Grimsel plots. Focus on the Western (a), Central (b) and Eastern (c) 

part. Colour and symbol meaning as in Appendix A2.  
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Appendix A5 – Topographical map of the Réchy plots.  
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Appendix A6 – Topographical map of the Réchy plots. Focus on the Northern part. Colour and symbol meaning 

as in Appendix A2.  
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Appendix A7 – Topographical map of the Réchy plots. Focus on the Southern part. Colour and symbol meaning 

as in Appendix A2.
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B. Tectonic and geological maps 

Appendix B1 - (a) Cross section of the Western Swiss Alps on transect of figure (d), and simplified palinspastic 

model (b and c), modified from Marchant 1993 and Marchand & Stampfli (1997) in Stampfli (2001; p. 7). The 

estimated location of the three study areas is indicated in (a). (d) Tectonic  map  of  the  Western  Alps  modified  

from  Berthelsen (1992) in Stampfli (2001; p. 6). Ao  =  Adamello  intrusions;  DB  =  Dent  Blanche  nappe;  Go =  

Gotthard  massif;  GP  =  Grand  Paradis  massif;  LE  =  Lower  Engadine  window;  MB  =  Mont  Blanc  massif;  

MR  =  Monte  Rosa  nappe; Pr  =  Provence  basin;  TW  =  Tauern  window;  VVL  =  Villalvernia-Varzi-Levanto  

line. Thin black line: cross-section of the western Alps (a). (e) Color legend. All figures are taken from Stampfli 

(2001).   
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Appendix B2 - (a) Tectonic profile of the Morteys valley and tree cross sections (A, B and C). The study area is 

represented by the cross section B. (b) Stratigraphic chart and color legend. Figures taken from Lehmann (2006). 

 

 

Appendix B3 - Tectonic map of the Central Alps, modified from Goncalves et al. (2012). The Grimsel study area 

is represented by the star.  
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Appendix B4 - Geological map of the Morteys area and partial legend, extracted from  Swisstopo (https://map.geo.admin.ch).
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Appendix B5 - Geological map of the Grimsel area and partial legend, extracted from Swisstopo (https://map.geo.admin.ch). 
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Appendix B6 - Geological map of the Réchy area and partial legend, extracted from Swisstopo 

(https://map.geo.admin.ch). Focus on the Northern part.  

https://map.geo.admin.ch/
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Appendix B7 - Geological map of the Réchy area and partial legend, extracted from Swisstopo 

(https://map.geo.admin.ch). Focus on the Southern part.

https://map.geo.admin.ch/
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C. Historical and recent plant inventories 

Appendix C1 - List of the 134 inventories (67 historical and 67 recent) included in the vegetation study, with the 

corresponding author's names, time span of survey, spatial coordinates in m (according to the Swiss reference 

system for geographical coordinates, CH1903+), elevation (“Elev.”), slope, aspect, surface (“Surf.”), plant 

community (phytosociological alliance), herbs, mosses and/or lichens (“M. & L.”), litter, rock and bare soil covers, 

and current land use. Covers are given in %, except values with * for which the Braun-Blanquet's scale was used 

(Table 4.1). Author names are abbreviated as follows: Jean-Louis Richard (JLR), Klaus Ammann (KA), Benoît 

Bressoud (BB), Olivier Duckert (OD), Magalì Matteodo (MM), Pascal Vittoz (PV), Marie-José Petétot (MJP), Loïc 

Liberati (LL), and Swanee Messerli (SM).  

 

Plot 
name 

Auth
or(s) 

Date 
Coord 
X 

Coord 
Y 

Elev. 
[m] 

Slope 
[°] 

Aspect 
[°] 

Surf. 
[m2] 

Vegetation 
type 

Herbs 
[%] 

M. & 
L. 
[%] 

Litter 
[%] 

Rocks 
[%] 

Bare 
soil 
[%] 

Grazed 

M2844_1 JLR 25.06.1972 580651 155309 1700 37 SSE 25 Seslerion       

M2844_2 
PV & 
MM 

01.07.2013 580651 155309 1698 28 122 25 Seslerion 90 0 1 6 3 no 

M3110_1 JLR 15.07.1973 578884 154197 1910 31 SSE 20 Seslerion       

M3110_2 
PV & 
MM 

22.07.2013 578845 154201 1926 31 135 20 Seslerion 94.9 0.1 1 2 2 yes 

M3126_1 JLR 20.07.1973 580901 155948 1710 45 ESE 100 Seslerion       

M3126_2 
PV & 
MM 

04.07.2013 580896 155961 1716 48 108 85 Seslerion 89 1 2 8 0 no 

M3127_1 JLR 20.07.1973 580901 155948 1730 39 ESE 100 Seslerion       

M3127_2 
PV & 
MM 

04.07.2013 580883 155984 1738 35 125 70 Seslerion 92 0.5 3 4 0.5 no 

M3128_1 JLR 20.07.1973 580728 156076 1850 39 SSE 100 Seslerion       
M3128_2 MM 05.07.2013 580720 156058 1843 38 150 100 Seslerion 85 1 3 8 3 no 

M3138_1 JLR 18.08.1973 579954 153138 1720 31 SE 60 Seslerion       

M3138_2 
PV & 
MJP 

16.07.2013 579959 153138 1715 33 130 60 Seslerion 90.9 0.1 3 5 1 no 

M3139_1 JLR 18.08.1973 579919 153178 1750 27 SE 50 Seslerion 100      

M3139_2 
PV & 
MJP 

16.07.2013 579910 153214 1771 27 145 50 Seslerion 96.5 0 2 1 0.5 no 

M3140_1 JLR 18.08.1973 579682 153564 2010 39 SE 20 Seslerion 80      

M3140_2 
PV & 
MM 

15.07.2013 579691 153559 1997 35 136 20 Seslerion 75 0 7 13 5 no 

M3141_1 JLR 18.08.1973 579004 152955 2100 27 SE 100 Seslerion 100      

M3141_2 
PV & 
MM 

17.07.2013 579009 152948 2099 27 135 100 Seslerion 95.9 0 4 0 0.1 no 

M3150_1 JLR 22.08.1973 579352 154639 1950 33 SW 30 Seslerion 100      

M3150_2 
PV & 
MJP 

22.07.2013 579347 154645 1951 31 210 30 Seslerion 93 0.1 4.5 2 0.4 no 

M2976_1 JLR 29.08.1972 578727 153322 1960 0 N 2 
Poion 
alpinae 

      

M2976bis
_2 

MM 28.08.2014 578769 153331 1981 0 0 2 
Poion 
alpinae 

92 3 5 0 0 yes 

M2980_1 JLR 01.09.1972 578770 153439 1950 6 N NA 
Poion 
alpinae 

      

M2980_2 
PV & 
MJP 

24.07.2013 578735 153453 1945 10 340 12 
Poion 
alpinae 

96 0.9 2 0.1 1 yes 

M3109_1 JLR 15.07.1973 578462 153689 1900 27 SSE 10 
Poion 
alpinae 

      

M3109_2 MM 19.07.2013 578445 153669 1900 39 146 9 
Poion 
alpinae 

90 0 0 7 3 yes 

M3132_1 JLR 25.07.1973 578405 153834 1970 11 E NA 
Poion 
alpinae 

      

M3132_2 
PV & 
MJP 

18.07.2013 578392 153835 1972 11 165 42 
Poion 
alpinae 

96.9 0.5 0.1 2 0.5 yes 

M3592_1 JLR 06.08.1975 577370 152715 2230 17 N 5 Elynion 90      
M3592_2 MM 05.09.2013 577417 152744 2232 18 20 6 Elynion 70 7.5 0.5 20 2 no 

M4121_1 JLR 02.07.1979 578142 154115 2180 50 N 10 Elynion 70      

M4121_2 
PV & 
MM 

25.07.2013 578145 154108 2180 50 330 12 Elynion 65 7 2 33 3 no 

R239_1 BB 02.08.1990 604100 115760 2550 25 WNW 100 Elynion 85 0     
R239_2 MM 06.08.2014 604095 115740 2550 30 61.5 81.9 Elynion 75 1.5 0.5 22 1 no 

R331_1 OD 1990 604970 117030 2340 35 E 5x5 Elynion 30 10     

R331_2 
MM 
& PV 

14.07.2014 605050 117020 2328 37 22 25 Elynion 77 10 6 2 5 no 

R3901_1 JLR 16.08.1977 603945 113878 2695 6 W 10 Elynion 90 0     
R3901_2 MM 12.08.2014 603963 113870 2697 6 251 9.86 Elynion 80 16 2 1.5 0.5 no 

R4003_1 JLR 19.8.1978 607069 116182 2600 35 WSW 10 Elynion 100 0     
R4003_2 PV 15.07.2014 607042 116199 2595 35 240 10 Elynion 88 3 6 1 2 yes 

R4005_1 JLR 19.08.1978 607139 116283 2690 11 WSW 5 Elynion 30 0     
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Plot 
name 

Auth
or(s) 

Date 
Coord 
X 

Coord 
Y 

Elev. 
[m] 

Slope 
[°] 

Aspect 
[°] 

Surf. 
[m2] 

Vegetation 
type 

Herbs 
[%] 

M. & 
L. 
[%] 

Litter 
[%] 

Rocks 
[%] 

Bare 
soil 
[%] 

Grazed 

R4005_2 
MM 
& PV 

15.07.2014 607150 116278 2694 20 238 4 Elynion 81 8 8 2 1 no 

R4224_1 JLR 30.8.1979 604156 109976 2380 17 W 5 Elynion 90 0     

R4224_2 
MM 
& PV 

03.07.2014 604144 110013 2386 20 284 5 Elynion 80 6 8 2 4 yes 

R4225_1 JLR 30.8.1979 604225 109876 2400 39 SW 25 Elynion 80 0     
R4225_2 PV 03.07.2014 604220 109846 2400 36 232 25 Elynion 85 1 7.9 0.1 6 yes 

R4472_1 JLR 29.7.1981 603945 113878 2695 6 W 40 Elynion 90 0     

R4472_2 
MM 
& 
SM 

22.08.2014 603953 113865 2694 10 243 40 Elynion 86.5 7 1 5 0.5 no 

R4482_1 JLR 18.9.1981 604364 109876 2460 31 WSW 25 Elynion 0 0     
R4482_2 PV 03.07.2014 604272 109921 2450 30 225 25 Elynion 75 7 10 2 6 yes 

R5066_1 JLR 24.8.1989 605403 114580 2420 11 WNW 15 Elynion 60 50     

R5066_2 MM 07.08.2014 605402 114532 2422 18 298 
15.0
8 

Elynion 70 15 1 5 0 yes 

R5145_1 JLR 18.8.1990 606928 118484 2430 31 WNW 20 Elynion 80 0     
R5145_2 MM 17.07.2014 606927 118485 2430 36 275 20 Elynion 80 8 2 10 0 ? 

G14_1 KA 24.07.1964 663765 155640 2315 45 S 100 Nardion 5* 1* +* 0 0  

G14_2 
PV, 
MM, 
LL 

13.08.2013 663753 155633 2320 45 155 25 Nardion 92 2 4 1 1 no 

G281_1 KA 19.09.1967 662425 155215 2320 15 SSE 50 Nardion 5* 1-2* 1* 0 1*  

G281_2 
MM 
& LL 

07.08.2013 662426 155254 2320 20 216 35 Nardion 75 7 3 15 0 no 

G288_1 KA 19.09.1967 662700 155450 2368 10 S 6 Nardion 5* 1* +* 0 0  

G288_2 
MM 
& LL 

6.08.2013 662694 155451 2370 10 146 6 Nardion 50 15 34 1 0 no 

G291_1 KA 24.09.1967 662785 155390 2345 5 SE 50 Nardion 5* +* 0 0 0  

G291_2 
PV & 
LL 

16.08.2013 662789 155399 2348 5 140 50 Nardion 85 3 7 4 1 no 

G294_1 KA 25.09.1967 663705 155625 2325 45 SE 100 Nardion 5* +* 0 0 0  

G294_2 
PV, 
MM, 
LL 

13.08.2013 663707 155606 2320 42 140 77 Nardion 92 1.5 3 2 1.5 no 

G295_1 KA 25.09.1967 663660 155610 2335 40 SE 100 Nardion 5* +* +* 0 0  

G295 
bis_2 

PV, 
MM, 
LL 

13.08.2014 663646 155585 2329 37 155 98 Nardion 95 0.5 3 1 0.5 no 

G343_1 KA 24.08.1972 662160 155150 2330 30 S 25 Nardion 5* 1* 1* 0 1*  

G343_2 
MM 
& LL 

09.08.2013 662167 155133 2330 30 175 24 Nardion 65 15 3 10 7 no 

G350_1 KA 24.08.1972 662550 155275 2320 10 S 25 Nardion 3* +* +* 0 0  

G350_2 
MM 
& LL 

07.08.2013 662558 155273 2326 18 160 22.5 Nardion 60 10 3 25 2 no 

G351_1 KA 24.08.1972 662565 155280 2320 10 S 25 Nardion 3* 1* +* 0 2*  

G351_2 
MM 
& LL 

6.08.2013 662566 155269 2318 18 164 25 Nardion 65 5 4 25 1 no 

G352_1 KA 24.08.1972 662585 155290 2320 10 S 25 Nardion 5* +* +* 0 +*  

G352_2 
MM 
& LL 

6.08.2013 662592 155279 2320 10 178 23.5 Nardion 80 3 7 10 0 no 

G421_1 KA 27.08.1973 662770 155295 2315 0 - 25 Nardion 5* 1* +* 0 1*  

G421_2 
MM 
& LL 

5.08.2013 662762 155297 2312 20 167 16 Nardion 60 3 10 20 7 no 

G47_1 KA 31.08.1964 663040 155440 2315 10 S 100 Nardion 5* 1* 1* 0 0  

G47_2 MM 29.08.2013 663052 155454 2317 30 180 98 Nardion 78 2 3 15 2 no 

G334_1 KA 30.08.1970 667725 155110 2300 20 S 25 
Caricion 
curvulae 

5* 1* 1* 0 1*  

G334_2 
PV, 
MM, 
LL 

15.08.2013 667715 155127 2310 20 145 27 
Caricion 
curvulae 

83 4 6 5 2 yes 

G335_1 KA 30.08.1970 667520 155275 2410 10 S 25 
Caricion 
curvulae 

5* 1* 1* 0 +*  

G335_2 
PV, 
MM, 
LL 

15.08.2013 667526 155246 2410 15 160 25 
Caricion 
curvulae 

86 4 3 5 2 yes 

G337_1 KA 30.08.1970 667250 155515 2495 5 N 25 
Caricion 
curvulae 

5* 1* 1* 0 1*  

G337_2 
PV & 
LL 

15.08.2013 667276 155529 2500 10 300 25 
Caricion 
curvulae 

50 36 2 10 2 yes 

G338_1 KA 30.08.1970 666675 155485 2600 20 SSE 9 
Caricion 
curvulae 

4* 1-2* 2* 0 1*  

G338_2 
PV, 
MM, 
LL 

14.08.2013 666664 155481 2603 25 120 12 
Caricion 
curvulae 

22 15 1 60 2 no 

G339_1 KA 30.08.1970 666500 155500 2640 0 - 9 
Caricion 
curvulae 

2* 2* 1* 0 3*  

G339_2 
PV & 
LL 

14.08.2013 666476 155486 2650 5 45 18 
Caricion 
curvulae 

30 19 1 15 35 no 

G340_1 KA 30.08.1970 666330 155740 2560    Caricion 
curvulae 

0 0 0 0 0  

G340_2 
PV, 
MM, 
LL 

14.08.2013 666337 155742 2560 20 320 17.5 
Caricion 
curvulae 

30 25 15 30 0 no 

G90_1 KA 24.09.1965 665105 155945 2370 5 SE 25 
Caricion 
curvulae 

4* 1* 2* 0 0  

G90 R_2 MM 28.08.2013 665119 155930 2441 10 150 25 
Caricion 
curvulae 

70 12 5 5 8 no 

G92_1 KA 03.08.1965 664610 155380  - - 4 
Caricion 
curvulae 

2* 4-5* 0 0 1*  
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Plot 
name 

Auth
or(s) 

Date 
Coord 
X 

Coord 
Y 

Elev. 
[m] 

Slope 
[°] 

Aspect 
[°] 

Surf. 
[m2] 

Vegetation 
type 

Herbs 
[%] 

M. & 
L. 
[%] 

Litter 
[%] 

Rocks 
[%] 

Bare 
soil 
[%] 

Grazed 

G92_2 
MM 
& LL 

08.08.2013 664605 155385 2511 0 0 4 
Caricion 
curvulae 

60 20 0 10 10 no 

R4209_1 JLR 15.08.1979 603597 113878 2600 11 S 100 
Caricion 
curvulae 

80 

seve
ral 
liche
ns 

    

R4209_2 
MM 
& 
SM 

18.08.2014 603487 113884 2581 14 207 99 
Caricion 
curvulae 

75 19.5 1 4 0.5 no 

R4471_1 JLR 29.07.1981 604014 113878 2695 11 ENE 20 
Caricion 
curvulae 

70 0     

R4471_2 
MM 
& 
SM 

19.08.2014 604033 113848 2682 22 64 19.8 
Caricion 
curvulae 

63 15 1 20 1 no 

R5067_1 JLR 25.08.1989 604291 115880 2520 0 0 10 
Caricion 
curvulae 

70 0     

R5067_2 MM 05.08.2014 604333 115949 2528 8 20 9.6 
Caricion 
curvulae 

74.5 20 2 3 0.5 yes 

G336_1 KA 30.08.1970 667250 155515 2495 - - 5 
Salicion 
herbaceae 

+* 5* r* 0 0  

G336_2 
PV, 
MM, 
LL 

15.08.2013 667218 155531 2497 0 0 6 
Salicion 
herbaceae 

10 68 15 3 4 yes 

G341_1 KA 30.08.1971 666310 156030 2460 20 N  Salicion 
herbaceae 

5-4* 1-2* 0 0 0  

G341_2 
PV, 
MM, 
LL 

14.08.2013 666299 156018 2460 25 285 2.7 
Salicion 
herbaceae 

88 6 2 0 4 ? 

G404_1 KA 27.08.1973 663080 155425 2315 5-10 NNE 4 
Salicion 
herbaceae 

5* 1* 0 0 0  

G404_2 MM 27.08.2013 663086 155430 2313 5 340 4 
Salicion 
herbaceae 

75 15 5 2 3 no 

G405_1 KA 27.08.1973 662040 155410 2320 5-10 NNE 4 
Salicion 
herbaceae 

5* 1-2* 0 0 0  

G405_2 
PV, 
MM, 
LL 

16.08.2013 663061 155417 2313 7 330 4.5 
Salicion 
herbaceae 

85 11.9 3 0.1 0 no 

G417_1 KA 27.08.1973 663015 155400 2315 3 S 10 
Salicion 
herbaceae 

4-5* +* 0 0 2*  

G417_2 
PV, 
MM, 
LL 

16.08.2013 662999 155408 2315 3 145 10.5 
Salicion 
herbaceae 

73 0 7 20 0 no 

R264_1 BB 1979 6047 1148 2470 0 0 4 
Salicion 
herbaceae 

100 10     

R264R_2 MM 04.08.2014 604728 114805 2489 0 0 4 
Salicion 
herbaceae 

70 27 2 1 1 yes 

R267_1 BB 1979 604650 1134 2690 5 W 2 
Salicion 
herbaceae 

90 0     

R267R_2 MM 28.07.2014 604629 113420 2685 5 242 2.25 
Salicion 
herbaceae 

80 5 15 0 0 no 

R3935_1 JLR 25.08.1977 604639 115079 2470 11 N 2 
Caricion 
bicolori-
atrofuscae 

25 100     

R3935_2 MM 16.07.2014 604647 115072 2468 10 340 2.25 
Salicion 
herbaceae 

50 37 8 2 3 yes 

R4468_1 JLR 27.7.1981 604708 115780 2450 0 0 2 
Salicion 
herbaceae 

80 0     

R4468_2 PV 16.07.2014 604733 115800 2440 3 342 5 
Salicion 
herbaceae 

70 10 20 0 0 yes 

R3934_1 JLR 25.08.1977 604708 115079 2467 0 0 2 
Caricion 
bicolori-
atrofuscae 

50 0     

R3934_2 MM 04.08.2014 604710 115093 2468 5 116 2.25 
Caricion 
bicolori-
atrofuscae 

80 15 0 1 4 yes 

R3937_1 JLR 25.08.1977 604640 113779 2567 0 0 2 
Caricion 
bicolori-
atrofuscae 

20 0     

R3937_2 MM 08.08.2014 604627 113800 2569 0 0 2 
Caricion 
bicolori-
atrofuscae 

67 30 1 2 0 no 

R4216_1 JLR 29.08.1979 604640 113879 2567 0 0 ? 
Caricion 
bicolori-
atrofuscae 

25 30     

R4216_2 
MM 
& 
SM 

21.08.2014 604656 113848 2567 0 0 3 
Caricion 
bicolori-
atrofuscae 

35 52 0.5 2.5 10 no 

R4983_1 JLR 19.08.1988 605404 113779 2630 22 N 3 
Caricion 
bicolori-
atrofuscae 

20 80     

R4983_2 MM 14.08.2014 605278 113505 2659 15 17 2.8 
Caricion 
bicolori-
atrofuscae 

24 25 1 50 0 no 

R5061_1 JLR 24.8.1989 605543 113779 2650 17 WNW 5 
Caricion 
bicolori-
atrofuscae 

70 75     

R5061_2 MM 14.08.2014 605601 113769 2650 18 299 5 
Caricion 
bicolori-
atrofuscae 

70 24 2 3 1 no 

R5062_1 JLR 24.8.1989 605682 113779 2670 17 WNW 10 
Caricion 
bicolori-
atrofuscae 

0 0     

R5062_2 MM 15.08.2014 605673 113726 2677 17 290 10 
Caricion 
bicolori-
atrofuscae 

25 15 0.2 59.8 0 no 
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R5069_1 JLR 25.8.1989 604152 115479 2600 22 N 20 
Caricion 
bicolori-
atrofuscae 

10 60     

R5069_2 MM 05.08.2014 604143 115515 2602 30 20 20 
Caricion 
bicolori-
atrofuscae 

25 22 2 50 1 yes 

R5141_1 JLR 17.8.1990 605126 114179 2560 35 N 5 
Caricion 
bicolori-
atrofuscae 

70 0     

R5141_2 
MM 
& 
SM 

20.08.2014 605116 114197 2567 32 340 5 
Caricion 
bicolori-
atrofuscae 

65 9.5 0.5 25 0 no 

 

 

 

Appendix C2 - List of the 22 recent plant inventories discarded from the vegetation study, with the corresponding 

author's names, time span of survey, spatial coordinates in m (according to the Swiss reference system for 

geographical coordinates, CH1903+), elevation, slope, aspect, surface, herbs, bryophytes and/or lichens, litter, rock 

and bare soil covers, and current land use. Author names are abbreviated as follows: Magalì Matteodo (MM), Pascal 

Vittoz (PV), Loïc Liberati (LL), and Swanee Messerli (SM). The vegetation type, defined only for the plant 

inventories included in the Soil and OM studies, are reported in Table 5.2. 

 

Plot 
name 

Author(s) Date CoordX CoordY 
Elevation 
[m] 

Slope 
[°] 

Aspect 
[°] 

Surface 
[m2] 

Herbs 
[%] 

Mosses & 
lichens 
[%] 

Litter 
[%] 

Rocks 
[%] 

Bare 
soil 
[%] 

Grazed 

M2716 MM 03.09.2013 578907 153414 1966 30 320 20.8 63 20 0 15 2 no 

M2965-6 PV & MM 23.07.2013 579633 153341 1932 45 180 15 75 0 10 5 10 ? 

M2976 MM 02.09.2013 578771 153332 1981 0 - 15 96.5 2 0.5 0.5 0.5 yes 

M3167 MM 4.09.2013 578474 153131 1979 28 50 10 65 10 1 20 4 no 

M3167R MM 4.09.2013 578498 153057 2014 30 0 10 10 23 0 65 2 no 

G38 MM 26.08.2013 663073 155423 2313 0 - 2 70 10 10 5 5 no 

G39 MM 26.08.2013 663070 155424 2313 5 340 1 40 38 10 10 2 no 

G90 MM 28.08.2013 665112 155927 2441 10 156 24 70 12 3 8 7 no 

G283 MM & LL 09.08.2013 662350 155272 2332 38 154 17.5 65 5 5 20 5 no 

G286 MM & LL 06.08.2013 662635 155305 2324 16 159 24 75 3 17 0 5 no 

G401 MM 27.08.2013 663082 155427 2313 30 330 4 25 60 2 10 3 no 

G403 MM 27.08.2013 663076 155424 2313 20 0 4 75 15 5 0 5 no 

R264 MM 04.08.2014 604715 114805 2489 5 101 4.1 88 10 1 1 0 yes 

R267 MM 28.07.2014 604641 113402 2690 8 255 2.1 70 25 2 3 0 no 

R3900 MM 13.08.2014 604623 113169 2734 20 4 2.2 30 45 2 23 0 no 

R3912 MM 27.07.2014 607802 111367 2598 12 7 2.2 70 23 1 5 1 yes 

R3913 MM 27.07.2014 607804 111364 2599 20 3 2.2 50 30 5 15 0 yes 

R4217 MM & SM 21.08.2014 604949 113947 2568 0 - 25 60 32 5 3 0 no 

R4469 MM 13.08.2014 604607 114009 2578 18 182 4 75 19 0.5 4 1.5 no 

R4470 MM 27.08.2014 604624 113856 2568 0 - 10.1 20 10 0.3 69 0.7 no 

R5140 MM & SM 20.08.2014 605101 114322 2500 40 343 10 75 20 1 3 1 no 

R5144 MM 18.07.2014 607080 118778 2380 30 300 20 60 5 2 25 8 no 
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Appendix C3 - Plant species list of the inventories of Seslerion, Poion alpinae and Elynion vegetation types, and corresponding cover classes of Braun-Blanquet (1964; see Table 4.1 for details). Within each vegetation type, plant species are classified into characteristic, 

companion and casual. 
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Seslerion caeruleae Poion alpinae Elynion myosuroidis 

Characteristic species of Seslerion caeruleae 

(1)                                                                  

Anthyllis vulneraria subsp. alpestris 0.493 0.001 20 1 19 40 + 1 + + + 1 + + + + + + + + + 2 + + 1 1 . . . . + . . . . r . r . + + + . + 2 2 . + . + . + + 1 + 1 + 1 2 1 

Carex sempervirens 0.519 0.001 20 2 16 38 4 2 2 2 3 2 3 2 2 3 3 2 3 2 3 2 3 2 3 2 . + . . . . 1 . + 2 2 1 . r . . . . 1 + . 2 1 + 2 2 . r 3 2 . 1 . . 

Lotus corniculatus 0.414 0.001 20 5 8 33 1 2 + 1 + + 1 1 + + + 1 + + 1 1 + + 1 1 . . . + 1 + + + . . . . 2 + + + . . . . . . . . . + . + . . + . + . 

Phleum hirsutum 1.000 0.001 20 0 0 20 + + 1 1 + + + + + + + + + + + + + + 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Phyteuma orbiculare 0.800 0.001 20 2 0 22 + 1 + + + + + 1 + + + + + + + + + + + + . . . . r 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Pulsatilla alpina s.str. 0.950 0.001 20 1 0 21 1 + 2 1 1 1 1 1 2 + r + 2 2 1 + 2 2 2 + . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Galium anisophyllon 0.264 0.003 19 5 21 45 + + + + + + + + + + 1 + . + 1 + + + + + . . . + 1 + + + . + . . 1 1 + + + + 1 + . r . + + + + + 1 + + + 1 + 

Leucanthemum adustum 0.622 0.001 19 3 0 22 + + + + + + + + + + + + . + + + + + + + . . . . + 1 . + . . . . . . . . . . . . . . . . . . . . . . . . . . 

Scabiosa lucida 0.619 0.001 19 3 5 27 + 1 + 1 + + + 1 . 1 1 + 1 + 1 + 1 + + + . . . r + 1 . . + 1 . . . . . . . . + + . . . . . + . . . . . . . . 

Carduus defloratus s.str. 0.713 0.001 18 2 1 21 + + . 1 + + + + + + + + . + + + + + + 2 . . . . + + . . . . . . . + . . . . . . . . . . . . . . . . . . . . 

Helianthemum nummularium s.l. 0.762 0.001 18 0 8 26 1 1 2 2 . 2 1 2 1 2 1 2 1 1 2 2 2 1 . 2 . . . . . . . . . . + . . . + . . . . . . . . + 1 + . + 1 2 . . . . 

Gentiana lutea 0.563 0.001 17 3 0 20 r 1 + 2 + . + r + + + + + 1 . . + r + + . . . . + 1 . + . . . . . . . . . . . . . . . . . . . . . . . . . . 

Trifolium pratense s.str. 0.392 0.001 16 5 0 21 . + + . + 2 + 1 1 + . + + + . 1 + + 1 1 . . . 1 2 + 1 + . . . . . . . . . . . . . . . . . . . . . . . . . . 

Euphorbia cyparissias 0.750 0.001 15 0 0 15 + + + + + + + + + + + + + + . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Gymnadenia conopsea 0.739 0.001 15 0 0 15 + r . + + . + + + + + + + r . r . r . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hieracium villosum 0.750 0.001 15 0 0 15 r + + 1 + r + r + r . . + . + r r . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hippocrepis comosa 0.726 0.001 15 1 0 16 . + + . + + + + . . + + . + + + + + + + . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Linum catharticum 0.750 0.001 15 0 0 15 . r + r . + + + + + + + + + + + . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Paradisea liliastrum 0.750 0.001 15 0 0 15 1 + . + r + + + + + + + + 1 . r . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Ranunculus montanus aggr. 0.313 0.001 15 5 1 21 . . . 1 + 1 1 1 1 + + + + + + 1 . . + + . + . + + + . 1 . . . . . . . + . . . . . . . . . . . . . . . . . . 

Traunsteinera globosa 0.750 0.001 15 0 0 15 + r + + + . + r + . + + + + . . . + + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Alchemilla conjuncta aggr. 0.636 0.001 14 0 2 16 + + + 1 + 1 . . . . . . + + + + + + + r . . . . . . . . . + . + . . . . . . . . . . . . . . . . . . . . . . 

Bupleurum ranunculoides s.str. 0.700 0.001 14 0 0 14 . . . . + + + 1 1 . + 1 + 1 + . + + 1 + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Festuca ovina aggr. 0.526 0.001 14 0 5 19 . + . + 1 1 + 2 + 1 . 1 . 1 . r . + 1 1 . . . . . . . . . . . + . . . . . . . . . . . . . 2 1 . + 1 . . . . 

Helictotrichon pubescens 0.700 0.001 14 0 0 14 1 1 + + + 1 + + r 1 . . . . . . r r + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Laserpitium latifolium 0.700 0.001 14 0 0 14 2 2 1 + 1 2 + 2 1 2 + 1 . . . . . . r + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Polygala chamaebuxus 0.700 0.001 14 0 0 14 r . . . + 2 + 1 + + 1 2 1 1 + . 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Prunella grandiflora 0.700 0.001 14 0 0 14 1 1 1 2 1 1 2 1 1 1 2 1 1 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Thymus pulegioides s.str. 0.535 0.001 14 2 0 16 + + . 1 + 1 + 1 + + . r . . . + + . + + . . . . + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hieracium murorum aggr. 0.650 0.001 13 0 0 13 . . + r . . + + + . . r . + + r + + + 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Polygala alpestris 0.413 0.001 13 2 1 16 + + + + . + . + . + . + . + . . + r r + . . . . + + . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . 

Serratula tinctoria subsp. monticola 0.650 0.001 13 0 0 13 1 1 . . + + + + + + + 1 1 1 . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Stachys pradica 0.545 0.001 13 1 0 14 + + + + + + . + + + + + + + . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Astrantia major 0.600 0.001 12 0 0 12 + + . + + + + + . . . + 2 1 . . . + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Briza media 0.600 0.001 12 0 0 12 + + . . + + + + + + + + + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Carex flacca 0.600 0.001 12 0 0 12 1 + . . + . + . . . 1 1 2 + 1 1 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Linum alpinum 0.600 0.001 12 0 0 12 + . + . . + . . + r r r . . + . + + 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Peucedanum austriacum 0.600 0.001 12 0 0 12 + 1 . . 1 2 + 1 1 + + 1 + r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Trifolium montanum 0.600 0.001 12 0 0 12 1 + . . 1 1 1 2 1 1 + + 1 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Calamagrostis varia 0.550 0.001 11 0 0 11 . r . . + . . + . . + 1 + 1 1 2 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Cirsium acaule 0.550 0.001 11 0 0 11 + r . + . . . r . + . . + + . 1 + + . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Cuscuta epithymum 0.550 0.001 11 0 0 11 . r . + + . 1 + + r r . + . . r . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Geranium sylvaticum 0.345 0.001 11 2 0 13 1 + + . + + + + + . . . . r . . . + . + . . . . + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Laserpitium siler 0.550 0.001 11 0 0 11 . + . . 3 3 3 4 3 3 2 3 1 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Potentilla crantzii 0.369 0.001 11 0 7 18 . . . + + + . + + + + + . . . . + . + + . . . . . . . . . . . . . . . . . + . . . . . + . + + + + + . . . . 

Senecio doronicum 0.537 0.001 11 0 1 12 . . + + . . . . + r r r . . + r . r r + . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . 

Acinos alpinus 0.479 0.001 10 1 0 11 . + + 1 . 1 r + + + . + . . . + . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Primula veris subsp. columnae 0.500 0.001 10 0 0 10 . . . . + + r 1 + + + + . . + r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Thesium alpinum 0.288 0.005 10 0 2 12 . . . + . . + r . . + + . + + . + r . + . . . . . . . . . . . . . . + r . . . . . . . . . . . . . . . . . . 

Trollius europaeus 0.389 0.001 10 2 1 13 + + . . . . + r . + . . . 1 . . 1 1 + 1 . . . . r + . . . . . . . . . + . . . . . . . . . . . . . . . . . . 

Carlina acaulis subsp. caulescens 0.180 0.009 9 0 0 9 + + + 1 . . . . . . . . . . . + + + + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Dianthus superbus 0.450 0.001 9 0 0 9 . . . . + + + + + + . . . . . . + . r + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Silene vulgaris s.str. 0.263 0.003 9 2 0 11 . + + + + . . + + . . . . . + r . . . + . . . . + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Viola hirta 0.450 0.001 9 0 0 9 . . . . + 1 + + + 1 + + . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Campanula thyrsoides 0.400 0.002 8 0 0 8 r . . + + + + . + . . . . . . . . . r r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Centaurea montana 0.400 0.001 8 0 0 8 + + . . r . . . + . . . . . . . + 1 + r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Centaurea scabiosa s.l. 0.400 0.001 8 0 0 8 + + + . . . + + . + . + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Euphrasia hirtella 0.240 0.003 8 2 0 10 . . . . + . + . + . 1 + + . . . . . + + . . . . . . + + . . . . . . . . . . . . . . . . . . . . . . . . . . 

Rhinanthus alectorolophus 0.400 0.001 8 0 0 8 + + . . 1 + 1 + + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Silene nutans s.str. 0.245 0.002 8 0 0 8 . . r . + 1 . + + + + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Anemone narcissiflora 0.350 0.001 7 0 0 7 . . . 1 . . + + . . . . 1 1 . . + 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Aposeris foetida 0.350 0.001 7 0 0 7 + + + . . . . . . . . . r 1 . . . + . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Lilium martagon 0.350 0.002 7 0 0 7 . . r r r r . . r . r r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Pimpinella major 0.225 0.001 7 2 0 9 . + 1 + . . . + + . . . . . . . . . 1 + . . . . + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Cotoneaster integerrimus 0.300 0.001 6 0 0 6 . . . . + + . + . + + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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Crepis pyrenaica 0.221 0.009 6 1 0 7 + . 1 + . . . . + . . . + + . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Knautia dipsacifolia s.str. 0.300 0.001 6 0 0 6 . r + . . . . . . . . . . . + + + 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Onobrychis montana 0.300 0.004 6 0 0 6 1 2 . . . . . . . . . . + + + 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Pedicularis foliosa 0.300 0.002 6 0 0 6 + . + . . . . . . . . . 1 + . . . + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Plantago media 0.300 0.002 6 0 0 6 1 1 . . r + r + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Trifolium rubens 0.300 0.001 6 0 0 6 . . . . + . . . + . 1 + + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Campanula glomerata s.str. 0.250 0.002 5 0 0 5 . . . . + r + + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Carex montana 0.250 0.002 5 0 0 5 2 2 . . . . . . . . . + . 2 . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Euphrasia salisburgensis 0.185 0.008 5 0 2 7 . . . . . . + . + . . . . . 1 . . . r r . . . . . . . . . . . + . . . . . . . . . . . . . . . . . + . . . . 

Globularia cordifolia 0.152 0.031 5 0 2 7 . . . 1 . + . + . + . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + 2 . . . . . . . . 

Globularia nudicaulis 0.250 0.001 5 0 0 5 . . . . . . . . . . 2 2 1 1 . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Helictotrichon pratense 0.250 0.001 5 0 0 5 . . . . . + + 2 + . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hieracium pilosum 0.231 0.003 5 1 0 6 . . . . . . . . . . . . . 1 + . + . + + . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Origanum vulgare 0.250 0.004 5 0 0 5 . + . . + . + . . . + 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Plantago lanceolata 0.250 0.001 5 0 0 5 1 . + . r . . . . . . . r + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Rhinanthus glacialis 0.171 0.006 5 1 0 6 . . 1 + . . . . . . 1 . 1 . . . . . 1 . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Sanguisorba minor s.str. 0.250 0.002 5 0 0 5 + 1 . . + 1 . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Tephroseris capitata 0.250 0.002 5 0 0 5 . . . . . . . . + . . . . . . . + r + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Turritis glabra 0.250 0.004 5 0 0 5 r . . . + + + r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Allium schoenoprasum 0.200 0.005 4 0 0 4 . . + . . . . . . . . . . . . r + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Buphthalmum salicifolium 0.200 0.002 4 0 0 4 . . . . . . . . . . + + + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Carlina biebersteinii 0.200 0.008 4 0 0 4 . . . . . . + . . . r . + . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Dactylis glomerata 0.200 0.013 4 0 0 4 . 2 . . + . + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Lathyrus pratensis 0.200 0.009 4 0 0 4 . . . . . + r . + . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Polygonatum odoratum 0.200 0.011 4 0 0 4 . . . . + + . . . . 1 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Potentilla erecta 0.145 0.044 4 1 0 5 1 + . . . . . . . . . . 1 1 . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Trifolium medium 0.200 0.013 4 0 0 4 . 1 . . . . . . . + + r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Allium lusitanicum 0.150 0.01 3 0 0 3 . . . . . . . . + + r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Arrhenatherum elatius 0.150 0.014 3 0 0 3 . . . . . . + . + 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chaerophyllum villarsii 0.111 0.048 3 1 0 4 + 2 1 . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Crepis bocconei 0.150 0.017 3 0 0 3 + . . . . . . . . . . . + 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hieracium prenanthoides aggr. 0.150 0.018 3 0 0 3 + . . . . . + . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Listera ovata 0.150 0.017 3 0 0 3 . r . . . . . . . . . . . . . r . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Pedicularis ascendens 0.150 0.019 3 0 0 3 . . . . . . . . . . . . . + 1 . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Rosa pendulina 0.150 0.012 3 0 0 3 . . . . . + . . . r . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Teucrium montanum 0.150 0.023 3 0 0 3 . . . . . r . . . . + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Valeriana officinalis aggr. 0.150 0.015 3 0 0 3 . . . . r + . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Geranium sanguineum 0.100 0.042 2 0 0 2 . . . . . . . . . . 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Lathyrus occidentalis 0.100 0.043 2 0 0 2 + . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Characteristic species of Poion alpinae (2)                                                                                          

Alchemilla vulgaris aggr. 0.786 0.001 7 8 0 15 . r + + . . . . . . . . r r . r . r . . + 1 1 1 3 3 3 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 

Ligusticum mutellina 0.576 0.001 1 8 3 12 . . . . . . . . . . . . . . . . . 1 . . 2 1 2 2 + + 1 2 1 + . r . . . . . . . . . . . . . . . . . . . . . . 

Plantago alpina 0.658 0.001 0 8 3 11 . . . . . . . . . . . . . . . . . . . . 2 1 3 2 1 + 2 1 . . . . . r . . . . . . . . . . . . . . . . 2 1 . . 

Plantago atrata s.str. 0.716 0.001 9 8 6 23 1 1 + 1 . . . + . + . + . . . + . + . . 2 + 1 + 1 1 1 2 . . . . 1 + . . . . . . . r . . . . . r . . 1 1 . . 

Soldanella alpina 0.707 0.001 5 8 11 24 . . . r . . . . . . . . . . . . + + r + 2 1 2 2 1 + 1 + 1 + . . 2 2 . + . . 1 . . . . r . + . . . . 1 1 . + 

Cirsium spinosissimum 0.463 0.001 0 7 4 11 . . . . . . . . . . . . . . . . . . . . r . + 1 + + + 1 . . . . + + . + . . . . . . . . . . . . . . . r . . 

Leontodon hispidus s.str. 0.609 0.001 3 7 7 17 . 1 . . . . . . . . . . . . . . . + r . . + + 2 2 1 2 2 . + . . . + + 1 . . . . . r . . . . . . . . . r . 1 

Phleum alpinum aggr. 0.495 0.001 1 7 0 8 . . . + . . . . . . . . . . . . . . . . + r 1 . + + 1 + . . . . . . . . . . . . . . . . . . . . . . . . . . 

Sagina saginoides 0.406 0.001 0 7 2 9 . . . . . . . . . . . . . . . . . . . . + . + + + r + + . . . . . . . . . . . . . + . . . . . . . . . r . . 

Trifolium badium 0.471 0.001 3 7 2 12 . . + + . . . . . . . . . . . . . . . + + r + + 1 . 2 1 . . . . . . . + . . . . . . . . . . . . . . . . . + 

Trifolium thalii 0.842 0.001 0 7 0 7 . . . . . . . . . . . . . . . . . . . . + . + + 2 2 1 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 

Festuca violacea aggr. 0.203 0.021 9 6 13 28 . . 2 2 . . . . 1 + . . . . . 2 + 1 1 2 1 + 1 1 . + 1 . + 2 . + 1 + 2 2 . . . . . + . . . + . + . . . + 3 2 

Poa alpina 0.263 0.01 3 6 20 29 . . . + . + . . . + . . . . . . . . . . . . 1 + 2 2 2 2 + . . + 1 + + + + 1 1 + + + + . + . + 1 . . 1 1 1 1 

Carex atrata aggr. 0.357 0.002 0 5 5 10 . . . . . . . . . . . . . . . . . . . . 1 + + r . . + . . + + . . . . . . . + . . . . . . . . + . . . . + . 

Crepis aurea 0.502 0.001 0 5 2 7 . . . . . . . . . . . . . . . . . . . . + 2 2 . 1 . . + . + . . . . . . . . . . . . . . . . . . . . . + . . 

Deschampsia cespitosa 0.520 0.001 0 5 0 5 . . . . . . . . . . . . . . . . . . . . . + + 1 . . 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 

Gentiana bavarica 0.248 0.005 0 5 4 9 . . . . . . . . . . . . . . . . . . . . + + + + . . 1 . . . . . + r . r . . . . . . . . . . . . . . . r . . 

Ranunculus tuberosus 0.461 0.001 7 5 0 12 . 1 + r . . . . . . . . . . . r . + + + . . . r + + + 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 

Rumex alpestris 0.581 0.001 0 5 0 5 . . . . . . . . . . . . . . . . . . . . . . . r + + r 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 

Luzula spicata s.l. 0.186 0.018 0 4 4 8 . . . . . . . . . . . . . . . . . . . . r . . . + . + + . r . . . + . . . . . . . . . . . . . . . + . + . . 

Ranunculus acris subsp. friesianus 0.450 0.001 1 4 0 5 1 . . . . . . . . . . . . . . . . . . . r . . . . 2 1 + . . . . . . . . . . . . . . . . . . . . . . . . . . 

Veronica serpyllifolia subsp. humifusa 0.500 0.001 0 4 0 4 . . . . . . . . . . . . . . . . . . . . . . . . + + 1 + . . . . . . . . . . . . . . . . . . . . . . . . . . 

Agrostis capillaris 0.237 0.004 9 3 0 12 + + . . + + + + + . . . + 1 . . . . . . . . . . + 2 . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 

Carex ferruginea 0.244 0.002 3 3 0 6 . + 2 . . . . . . . . . . . . . . 1 . . r 2 . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Cerastium fontanum subsp. vulgare 0.375 0.001 0 3 0 3 . . . . . . . . . . . . . . . . . . . . . . . . + r . + . . . . . . . . . . . . . . . . . . . . . . . . . . 

Crocus albiflorus 0.274 0.004 7 3 0 10 + . . + . r . r r . . . . . . . . + . + . . . . 1 1 . + . . . . . . . . . . . . . . . . . . . . . . . . . . 

Gentiana purpurea 0.265 0.002 0 3 0 3 . . . . . . . . . . . . . . . . . . . . . . . 1 r . r . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Poa supina 0.304 0.001 0 3 0 3 . . . . . . . . . . . . . . . . . . . . . . . . . 1 + + . . . . . . . . . . . . . . . . . . . . . . . . . . 

Primula elatior s.str. 0.239 0.001 2 3 0 5 . . . . . . . . . . . . . . . . + + . . r . . . r + . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Adenostyles alliariae 0.217 0.001 0 2 1 3 . . . . . . . . . . . . . . . . . . . . . . . r . . . r . r . . . . . . . . . . . . . . . . . . . . . . . . 

Dactylorhiza fuchsii 0.160 0.013 2 2 0 4 r . . . . . . . . . . . . r . . . . . . . . . r . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hypericum maculatum s.l. 0.188 0.009 1 2 0 3 . . + . . . . . . . . . . . . . . . . . . . . . r + . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Ranunculus aconitifolius 0.250 0.003 0 2 0 2 . . . . . . . . . . . . . . . . . . . . . . . + . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 

Taraxacum officinale aggr. 0.250 0.002 0 2 0 2 . . . . . . . . . . . . . . . . . . . . . . . . + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Veratrum album s.l. 0.114 0.047 1 2 0 3 . r . . . . . . . . . . . . . . . . . . . . . r . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . 

Characteristic species of Elynion myosuroides 
(3)                                                                                          

Sesleria caerulea 0.588 0.001 19 0 25 44 1 . + + 1 2 2 1 2 + 1 1 1 1 1 + 2 1 1 1 . . . . . . . . + + 3 2 2 2 2 1 . + 3 3 + 1 1 2 3 3 + 1 3 2 2 2 2 + 
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Polygonum viviparum 0.221 0.017 13 6 23 42 1 + + 1 + . + + . . . . + + . . + 1 1 + 2 1 1 1 + . 1 . 1 1 1 2 2 2 1 + 1 + 1 + . + 1 r 1 + 1 . + + 1 + . + 

Elyna myosuroides 0.793 0.001 0 0 21 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . + + . 3 3 3 2 2 2 2 + 2 + 3 3 2 r 2 2 3 1 

Pedicularis verticillata 0.704 0.001 2 0 20 22 . . . . . . . . . . . . . . . . + + . . . . . . . . . . . + + + 1 1 + + 1 + 2 1 . + + . . . 1 + + + + + . + 

Gentiana verna 0.427 0.001 7 2 19 28 + . . + . . r r . . . + . . . . . . + r . . . . + + . . . . + . . + . + + + 1 1 + + . 1 . + + + + + 1 + + + 

Festuca quadriflora 0.647 0.001 1 0 18 19 . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . 1 1 . 1 . . 2 1 2 2 . 1 1 2 1 2 1 1 2 2 . . 2 1 

Ligusticum mutellinoides 0.463 0.001 0 0 17 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + + + + 1 + 1 . . r + r . . + + + . + + + + 

Silene exscapa 0.275 0.003 0 0 15 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 . . + 1 + + . + 1 r . . + 1 . . + 1 + + 

Agrostis alpina 0.348 0.001 1 0 14 15 . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . + . + . + . 1 . . 1 2 2 1 . + 2 1 . + 1 1 

Androsace obtusifolia 0.344 0.002 0 0 14 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . + . r 1 + + + . + . r . . + + . . . + + + 

Salix reticulata 0.519 0.001 0 0 14 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 + 1 + 2 + 2 2 . . . . 2 3 . . . . + + . . . . 3 2 

Saxifraga paniculata 0.463 0.001 0 0 14 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . r . r + 1 . . . . . + 1 + + + + + . . 1 r 

Minuartia verna 0.399 0.001 0 0 12 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . 1 + + + . . . + + + + + + + . . . . 

Aster alpinus 0.276 0.003 5 0 11 16 . . + . . . . . . . . r . . . . 1 . 1 + . . . . . . . . . . . . . . . . 1 1 1 + . . + . 1 . + + 1 r . . + . 

Bartsia alpina 0.164 0.037 2 3 11 16 . . . . . . . . . . . . . . . . + + . . . 1 r + . . . . . . . . 1 + + 1 . . . . 1 1 . . . . . . + . 1 1 1 + 

Dryas octopetala 0.423 0.001 0 0 11 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 . . + + . . . . . . 3 2 + + + . . . . . 2 2 

Parnassia palustris 0.218 0.007 0 0 11 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . r . . + . . . . . . . + + 2 + . . 1 + . . 1 + 

Salix retusa 0.303 0.001 0 2 11 13 . . . . . . . . . . . . . . . . . . . . . 1 . 1 . . . . 5 3 2 1 2 2 2 2 . . . . . . . . . . . . . . 1 3 . 1 

Draba aizoides 0.302 0.001 0 0 10 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 + + + . + . r r . + + . . . r . . 

Erigeron uniflorus 0.221 0.003 0 0 10 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + + . . + + + + . r . . . . + + . . . + . . 

Gentiana brachyphylla 0.262 0.003 0 0 10 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . + r . r . . + + . . . . + . . + . + r . . . . . 

Gentiana nivalis 0.319 0.001 0 0 10 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . + . + + 1 . . . . . + . . + + r . + . . 

Antennaria carpatica 0.257 0.005 0 0 9 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . . r . . + 2 . . . . + . . . 1 2 . . . . + + 

Aster bellidiastrum 0.160 0.041 7 3 9 19 . . . + . . . . . . . . . . + + + 1 + + . r . + r . . . . + . . 1 + + 1 . . + + . . . . . . . . . . . + . 2 

Gentiana campestris s.str. 0.142 0.045 5 1 9 15 . . . . . . . . . . + . + . + . . + + . . . . . r . . . . + . . . . + . . r + . . . . . + . . + + r . r . . 

Salix serpillifolia 0.143 0.044 0 0 9 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + + + . + . + . + + 1 + . . . . . 

Silene acaulis 0.223 0.005 0 0 9 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . + 1 + 2 . . . + . . . + . + . . . + . . . + . . . . 

Leontopodium alpinum 0.308 0.001 0 0 8 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + r + + . . . . 1 + . . 1 1 . . . . 

Arenaria ciliata 0.162 0.018 0 0 7 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . + . 1 . . . . + . . . + . . . r . r 

Saxifraga exarata subsp. moschata 0.209 0.007 0 0 7 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + + + . . 1 1 . . . . . . . . + + . . . . . . 

Carex ericetorum 0.231 0.004 0 0 6 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 + 1 + . . 1 2 . . . . 

Potentilla frigida 0.231 0.005 0 0 6 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . + + . . . . . . . . + + . . . r . . 

Ranunculus alpestris 0.149 0.01 0 1 6 7 . . . . . . . . . . . . . . . . . . . . . + . . . . . . 2 2 2 1 1 2 . . . . . . . . . . . . . . . . . . . . 

Saxifraga aizoides 0.133 0.029 0 0 6 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . r + . + . . . . . 1 + . . . . . . . . . . . . 

Sedum atratum 0.231 0.005 0 0 6 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . + . . . . . . r . . . + . . + + . . 

Carex ornithopodioides 0.192 0.01 0 0 5 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . 2 + . . . . . . . . 1 + . . 

Lloydia serotina 0.192 0.01 0 0 5 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + + . . . . 2 r . . . . . . . . + . 

Polygala alpina 0.183 0.007 0 0 5 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . r . + . . . + . + . . 

Sempervivum arachnoideum 0.150 0.016 0 0 5 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . + + . . . . . . . . + + . . . . . . 

Veronica aphylla 0.192 0.003 0 0 5 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . + . . . . . . . . . . . + . . . . . . . 1 . + 

Oxytropis campestris s.str. 0.154 0.029 0 0 4 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 . . . . . . . . 2 2 . . . . . . 

Oxytropis lapponica 0.154 0.024 0 0 4 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + + . . . . . . . . + + . . . . . . 

Gentiana tenella 0.115 0.038 0 0 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . + . . . . + . 

Pedicularis oederi 0.115 0.039 0 0 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . 1 r . . . . . . . . . . . . . . . . . . . . . . 

Companion species                                                                                          

Campanula scheuchzeri 0.258 0.001 5 8 18 31 . . + + . . + . . . . . . . . . + . 1 . + r + + + + + + . + . . + + . + . r 1 + . + 1 + + + . + + + + + . + 

Anthoxanthum odoratum aggr. 0.366 0.001 18 5 5 28 1 + 1 1 1 r + + 1 1 + + + + . . + 1 1 1 . . . 1 2 1 + 1 . + . . . . + + . . . . . . . . . . . . . . . + . + 

Festuca rubra aggr. 0.419 0.001 15 7 0 22 + 1 1 1 1 + . + . 1 + . 1 1 . . + 2 + 2 . 2 1 2 1 2 1 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 

Saxifraga oppositifolia 0.340 0.001 0 0 19 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + + + 1 + + r + . + . 2 + + r + r + + . . + + . . 

Homogyne alpina 0.115 0.445 3 2 12 17 . . . + . . . . . . . . . . . . + + . . . + . 1 . . . . + + . . 1 + + 1 . . + . . . . r . r . . . . + + . 1 

Myosotis alpestris 0.093 0.39 5 3 9 17 . . + + . . . . . . . . . . . r . . + + . . + . + + . . + + + + 2 1 . + . . . . . . . . . . . . . . . + . + 

Selaginella selaginoides 0.192 0.024 0 2 12 14 . . . . . . . . . . . . . . . . . . . . . + . + . . . . . + . . . + + + . . . + . . r + . + . r . . + + . + 

Sempervivum montanum 0.236 0.008 0 0 12 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 + . . 1 + + + . . . + . . + + . . . + + + 

Botrychium lunaria 0.153 0.033 5 1 5 11 r . . . . r . r r . . . r . . . . . . . . . . . . . . r . . . . . . . . . r + + . . . . . . r + . . . . . . 

Euphrasia minima 0.462 0.001 0 2 9 11 . . . . . . . . . . . . . . . . . . . . . + . + . . . . . r . . . + + + + . . r . . . . . . . + . . . + . r 

Helictotrichon versicolor 0.310 0.001 0 0 10 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + + + . + + . . . + . . . . + . . . + + 1 

Pulsatilla vernalis 0.161 0.036 0 0 10 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + + . . . . + + + + . + + + . . . r 

Carex ornithopoda 0.072 0.278 3 2 4 9 . . . + . . . . + . . . . + . . . . . . . . . . . + r . . . . . . . + . . . . . . . 1 . 1 . . . 1 . . . . . 

Potentilla aurea 0.375 0.001 1 4 4 9 . . . . . . . . . . . . . . . . . + . . . . . + 1 . r + . . . . . r . r + . . . . . . . . . . + . . . . . . 

Veronica fruticans 0.164 0.033 1 0 8 9 . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r 1 1 + + . . . + . . + + . . . . . . 

Carex parviflora 0.338 0.001 0 0 8 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 + . . . r . . 1 1 . . . . + . . . 2 + . . 

Cerastium arvense subsp. strictum 0.222 0.007 2 1 5 8 . . . . . + . . . r . . . . . . . . . . . . . . + . . . . . . . . . . r . r + r . . . . . . + . . . . . . . 

Coeloglossum viride 0.236 0.002 4 2 2 8 . . . . . . . . . . . . . . . . + + r + . . . . + . . + . . . . . . + + . . . . . . . . . . . . . . . . . . 

Nigritella rhellicani 0.169 0.023 8 0 0 8 . . r r . . . . . + . . . . . r r r r + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Erigeron alpinus 0.116 0.054 4 0 3 7 . . . . . . . . . . . . . . . . + r + + . . . . . . . . . . . . . . . . . + . . . . . . . . . + + . . . . . 

Luzula alpinopilosa 0.190 0.033 0 4 3 7 . . . . . . . . . . . . . . . . . . . . + + + + . . . . . + . . . . . r . . . . . . . . . . . . . . . . . + 

Arabis ciliata 0.077 0.191 4 1 1 6 . . . . . . r r . r . . . . . . . . r . . . . . + . . . . . . . . . . . . . . + . . . . . . . . . . . . . . 

Arctostaphylos uva-ursi 0.108 0.069 2 0 4 6 . . . . . . . . . . 2 r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 . . 1 + . . . . 

Carex curvula s.str. 0.698 0.001 0 0 6 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 . . 2 2 . . . . . . . . 1 1 . . . . . . 

Hieracium angustifolium 0.154 0.031 0 0 6 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . r . . . r . r . r . + 

Leontodon helveticus 0.337 0.002 0 1 5 6 . . . . . . . . . . . . . . . . . . . . . . . 2 . . . . . . . . . 1 . + . . . . . . . . . . . + . . . r . + 

Achillea millefolium 0.098 0.088 4 1 0 5 . + . . . r r + . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Ajuga reptans 0.113 0.05 3 2 0 5 . . + . . . . + . . . + . . . . . . . . . . . . r r . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Antennaria dioica 0.126 0.072 1 0 4 5 . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . 2 . + . . + + . . . . 

Helianthemum alpestre 0.094 0.071 3 0 2 5 . . . . . . . . . . . . . . . . + r 2 . . . . . . . . . . . 1 1 . . . . . . . . . . . . . . . . . . . . . . 

Luzula lutea 0.145 0.025 0 0 5 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + + . . . . . . . . . . . r . . . r . + 

Salix herbacea 0.368 0.001 0 3 2 5 . . . . . . . . . . . . . . . . . . . . 1 + 1 . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . + 

Saxifraga bryoides 0.064 0.515 0 0 5 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . + r . . . r . + 

Thymus praecox subsp. polytrichus 0.218 0.009 0 0 5 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . 1 + . + . 1 . . . . 
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Vaccinium vitis-idaea 0.121 0.056 1 0 4 5 . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . + . . . . + . . . . . . + + . . . . . . . . . . 

Veronica alpina 0.220 0.004 0 2 3 5 . . . . . . . . . . . . . . . . . . . . . . . . + . . r . + . . . + . . . . . . . . . . . . . . . . . . . + 

Casual species             

                                                                                                            

Achillea nana 0.082 0.141 0 0 4 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . + . . . . + + 

Calluna vulgaris 0.307 0.004 0 0 4 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + + . + . . r . . . . . 

Campanula rotundifolia 0.097 0.078 3 0 1 4 . . . . . . . . . . . r + r . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . 

Juniperus communis subsp. nana 0.218 0.009 4 0 0 4 . . . . r + r . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Minuartia sedoides 0.421 0.001 0 0 4 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + + . . . . . . . . . . . . . . . + . . 1 . . . 

Primula farinosa 0.074 0.226 1 0 3 4 r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . + . . + . . 

Pseudorchis albida 0.048 0.56 2 0 2 4 . . . . . . . . . . . . . . . . + r . . . . . . . . . . . . r r . . . . . . . . . . . . . . . . . . . . . . 

Viola calcarata 0.090 0.114 0 0 4 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 + . . . . . . . . . . . + . . . . . + . . 

Arabis caerulea 0.169 0.009 0 0 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . + + . . . . . . . . . . . . 

Carex capillaris 0.079 0.145 0 0 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . + . . 1 . . . 

Cerastium cerastoides 0.248 0.002 0 3 0 3 . . . . . . . . . . . . . . . . . . . . + . + r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Erigeron neglectus 0.076 0.101 0 0 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . + . . . + . . . . 

Gnaphalium supinum 0.262 0.006 0 3 0 3 . . . . . . . . . . . . . . . . . . . . . + 1 + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hieracium bifidum aggr. 0.068 0.299 1 0 2 3 . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . + 

Luzula multiflora 0.196 0.014 1 1 1 3 . . . . . . . . . . . . . . . . . r . . . . . . . . . + . + . . . . . . . . . . . . . . . . . . . . . . . . 

Pritzelago alpina s.str. 0.131 0.034 0 0 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . + r . . + . . . . . . . . . . . . . . . . . . . . . 

Rhododendron ferrugineum 0.104 0.117 0 0 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 . . . . . . . . . . . . . . . . . r 

Sempervivum tectorum subsp. alpinum 0.061 0.317 2 0 1 3 . . . . . + . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . 

Sibbaldia procumbens 0.216 0.013 0 3 0 3 . . . . . . . . . . . . . . . . . . . . . + 1 + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Solidago virgaurea subsp. minuta 0.308 0.002 2 0 1 3 . . . . . . . . . . . . . . + + . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . 

Taraxacum alpinum aggr. 0.468 0.001 0 3 0 3 . . . . . . . . . . . . . . . . . . . . + . . . . . + 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 

Thalictrum minus subsp. saxatile 0.072 0.179 2 0 1 3 . . . . . . . . + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . 

Vaccinium gaultherioides 0.183 0.013 0 0 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 . . . . . . . . . . . . . . . . . 3 

Veronica bellidioides 0.196 0.014 0 0 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . + . . . . . . . . . + . . . . . . 

Vicia sepium 0.101 0.113 2 1 0 3 . . + . . . . . . . . . . . . r . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Agrostis rupestris 0.264 0.005 0 2 0 2 . . . . . . . . . . . . . . . . . . . . . 1 . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Allium victorialis 0.100 0.056 2 0 0 2 . . . . . . . . . . . . . . . . + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Biscutella laevigata 0.026 0.782 1 0 1 2 . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . 

Brachypodium pinnatum 0.100 0.111 2 0 0 2 . . . . . . . . . . + r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Campanula cochleariifolia 0.043 0.471 1 0 1 2 . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . 

Carum carvi 0.100 0.076 2 0 0 2 . + . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Convallaria majalis 0.100 0.107 2 0 0 2 . . . . . . . . . . + 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Coronilla vaginalis 0.100 0.105 2 0 0 2 1 . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Digitalis grandiflora 0.100 0.104 2 0 0 2 . . . . + 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Draba dubia 0.077 0.216 0 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 r . . . . . . . . . . . . . . . . 

Empetrum nigrum subsp. hermaphroditum 0.048 0.473 0 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . + 

Equisetum variegatum 0.167 0.024 0 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 + . . 

Erigeron glabratus 0.077 0.2 0 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . r . . 

Galium album 0.100 0.057 2 0 0 2 . . . . + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Gypsophila repens 0.100 0.05 2 0 0 2 . . . . . . . . . . . . . . r r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hedysarum hedysaroides 0.077 0.252 0 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + + . . . . . . . . . . . . . . . . . . . . . . 

Hieracium pilosella 0.234 0.003 1 0 1 2 . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . 

Juncus jacquinii 0.258 0.005 0 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + + . . . . . . 

Koeleria macrantha 0.100 0.113 2 0 0 2 . . . . + . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Leucanthemopsis alpina 0.301 0.003 0 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + r . . . . . . . . . . . . . . . . . . . . 

Mercurialis perennis 0.100 0.115 2 0 0 2 . . . . . . . . . . r + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Orchis mascula 0.100 0.125 2 0 0 2 . . . . . . . . . . r + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Oxytropis jacquinii 0.100 0.118 2 0 0 2 . . . . . . . . . . . . . . 1 r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Platanthera bifolia 0.100 0.06 2 0 0 2 r . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Primula auricula 0.100 0.057 2 0 0 2 . . . . . r . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Pseudolysimachion spicatum 0.100 0.12 2 0 0 2 . . . . r + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Pyrola minor 0.045 0.556 0 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + 1 . . . . . . . . . . . . . . . . . . 

Salix appendiculata 0.100 0.062 2 0 0 2 . . . . . . . . . . . . r r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Salix foetida 0.129 0.041 0 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + + 

Salix helvetica 0.172 0.013 0 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 . . . . . . . . . . . . . . . . . . 

Saxifraga androsacea 0.304 0.001 0 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . r . . . . . . . . . . . . . . . . . . . . . . 

Stachys recta s.str. 0.100 0.065 2 0 0 2 . + . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Tragopogon pratensis s.l. 0.100 0.118 2 0 0 2 + . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Trifolium repens s.str. 0.104 0.07 1 1 0 2 . . . + . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 

Viola rupestris 0.077 0.29 0 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + + . . . . 

Aconitum napellus aggr. 0.050 0.467 1 0 0 1 . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Agrostis schraderiana 0.242 0.004 0 1 0 1 . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Alchemilla demissa aggr. 0.125 0.065 0 1 0 1 . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Androsace chamaejasme 0.050 0.446 1 0 0 1 . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Arabis alpina s.str. 0.089 0.051 0 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . 

Arabis bellidifolia s.l. 0.038 1 0 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . 

Arenaria multicaulis 0.050 0.455 1 0 0 1 . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Asplenium ruta-muraria 0.050 0.459 1 0 0 1 . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Astragalus frigidus 0.038 1 0 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . 

Carex bicolor 0.338 0.001 0 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . 

Carex caryophyllea 0.050 0.416 1 0 0 1 . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Carex firma 0.038 1 0 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . 

Carex nigra 0.127 0.075 0 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . 

Crepis conyzifolia 0.050 0.477 1 0 0 1 . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Dactylorhiza sambucina 0.050 0.479 1 0 0 1 . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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Daphne mezereum 0.050 0.474 1 0 0 1 . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Doronicum grandiflorum 0.089 0.044 0 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . 

Draba siliquosa 0.038 1 0 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . 

Festuca halleri 0.220 0.008 0 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . 

Fourraea alpina 0.050 0.48 1 0 0 1 . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Gagea fragifera 0.125 0.05 0 1 0 1 . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Galium verum s.str. 0.050 0.462 1 0 0 1 . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Gentiana acaulis 0.206 0.007 0 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . 

Gentiana clusii 0.050 0.478 1 0 0 1 . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Gentiana orbicularis 0.038 1 0 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . 

Gentiana ramosa 0.550 0.001 0 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . 

Geum montanum 0.594 0.001 0 1 0 1 . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Globularia bisnagarica 0.050 0.469 1 0 0 1 + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Gnaphalium hoppeanum 0.038 1 0 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . 

Gnaphalium norvegicum 0.064 0.313 0 1 0 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . 

Gnaphalium sylvaticum 0.125 0.052 0 1 0 1 . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Heracleum sphondylium s.l. 0.050 0.457 1 0 0 1 . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hieracium alpinum 0.122 0.057 0 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . 

Hieracium aurantiacum 0.050 0.476 1 0 0 1 . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hieracium lactucella 0.035 0.755 0 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . 

Juncus trifidus 0.238 0.007 0 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + 

Linaria alpina s.str. 0.038 1 0 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . 

Loiseleuria procumbens 0.383 0.001 0 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . . . . . . . . . . . 

Medicago lupulina 0.050 0.471 1 0 0 1 . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Myosotis sylvatica 0.050 0.449 1 0 0 1 . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Nardus stricta 0.692 0.001 0 1 0 1 . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Orchis ustulata 0.050 0.457 1 0 0 1 . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Phyteuma spicatum 0.125 0.066 0 1 0 1 . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Picea abies 0.032 0.891 0 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + 

Picris hieracioides s.l. 0.050 0.491 1 0 0 1 r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Pinguicula alpina 0.038 1 0 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . 

Pinus cembra 0.038 1 0 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . 

Poa minor 0.104 0.082 0 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . 

Poa nemoralis 0.050 0.457 1 0 0 1 . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Potentilla neumanniana 0.050 0.482 1 0 0 1 + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Ranunculus carinthiacus 0.050 0.456 1 0 0 1 . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Rhamnus alpina 0.050 0.446 1 0 0 1 . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Rosa glauca 0.050 0.462 1 0 0 1 . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Rosa villosa 0.050 0.475 1 0 0 1 . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Rumex alpinus 0.125 0.071 0 1 0 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 

Sedum album 0.050 0.451 1 0 0 1 . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Sedum dasyphyllum 0.050 0.468 1 0 0 1 . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Sedum rupestre aggr. 0.050 0.474 1 0 0 1 . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Sorbus mougeotii 0.050 0.45 1 0 0 1 . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Stachys alpina 0.050 0.464 1 0 0 1 + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Thalictrum aquilegiifolium 0.050 0.483 1 0 0 1 . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Trisetum flavescens 0.050 0.484 1 0 0 1 . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Vaccinium myrtillus 0.160 0.02 0 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . 

Viola biflora 0.088 0.176 0 1 0 1 . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

  



162 

 

Appendix C4 - Plant species list of the inventories of Nardion and Caricion curvulae vegetation types, and corresponding cover classes of Braun-Blanquet (1964; see Table 4.1 for details). Within each vegetation type, plant species are classified into characteristic, 

companion and casual. 
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Nardion strictae Caricion curvulae 

Characteristic species of Nardion strictae (4)                                                        

Nardus stricta 0.692 0.001 24 7 31 3 2 3 2 4 3 5 2 2 2 1 1 2 2 4 + 4 3 2 1 3 3 2 3 2 2 . . 1 + . + . . . . . . . . 1 2 . . . . 

Anthoxanthum odoratum aggr. 0.366 0.001 22 8 30 1 1 1 1 2 2 1 2 1 + . 1 . 1 2 2 + 2 1 3 + 2 + 1 + . . . + . . . + . . . . . 1 + . + . + . + 

Festuca rubra aggr. 0.419 0.001 22 0 22 1 1 2 2 2 2 . . 1 1 3 2 3 2 2 2 1 2 2 3 2 1 3 2 . . . . . . . . . . . . . . . . . . . . . . 

Campanula barbata 0.811 0.001 20 1 21 1 1 1 1 1 2 . . . . 1 + 1 + 1 2 1 2 + + 1 1 r + . . . . . . . . . . . . . . . . . + . . . . 

Campanula scheuchzeri 0.258 0.001 20 4 24 + + 1 + 1 + . . 1 . 1 + 1 + + + + + 1 + . + 1 + . . . . . . . . . . . . . . . . . + + . + + 

Euphrasia minima 0.462 0.001 20 6 26 1 + 1 1 1 + . + 1 + + + + + + + + . 1 + 1 + . . . r . . . . . . . + . r . . . . . + . + . + 

Geum montanum 0.594 0.001 19 3 22 r + 1 1 1 2 . . 1 + 1 + . + + . 1 2 2 2 2 1 . + . . . . . . . . . . . . . . . . . 1 . . + 1 

Potentilla aurea 0.375 0.001 19 6 25 . . 1 2 1 1 . . 1 + 1 1 1 + + + + + 1 + 1 1 . 1 . . . . . + . . . . . . . . . . 1 1 2 . + 3 

Phyteuma hemisphaericum 0.460 0.001 18 14 32 1 + 1 + . + . . + + 1 . 1 + + + + + + . . + 1 + r r . . 1 + 1 + + + . . . . . r + + r + . r 

Sempervivum montanum 0.236 0.008 16 10 26 r . 1 + . + . . . . + + . r + + r + + + . + + + . r . . r + 1 r . . . . . . . . 1 + + . 2 + 

Gentiana ramosa 0.550 0.001 14 0 14 r + . + 1 + . . + . 1 + 1 + . . . + r + + . . . . . . . . . . . . . . . . . . . . . . . . . 

Selaginella selaginoides 0.192 0.024 13 2 15 . r 1 r . . . . . . . + 1 + r + r r r + . + . . . . . . . . . . . . . . . . . . . . . . r + 

Achillea erba-rotta subsp. moschata 0.500 0.001 12 0 12 . r . + . . . . . . + + . . + . r + 1 + + + . + . . . . . . . . . . . . . . . . . . . . . . 

Agrostis schraderiana 0.242 0.004 12 0 12 . . 1 + 1 + . 2 . + . . . . r + + . . + . + . + . . . . . . . . . . . . . . . . . . . . . . 

Coeloglossum viride 0.236 0.002 11 0 11 1 + . . . . . . . . + + 1 + . r 1 + . . r + . . . . . . . . . . . . . . . . . . . . . . . . 

Cerastium arvense subsp. strictum 0.222 0.007 10 0 10 r + . + . . . . . . + + 1 + . . . r . . + + . . . . . . . . . . . . . . . . . . . . . . . . 

Solidago virgaurea subsp. minuta 0.308 0.002 10 0 10 . + . . . r . . . . . + 1 + . + . r . + . + . + . . . . . . . . . . . . . . . . . . . . . . 

Veronica fruticans 0.164 0.033 10 3 13 + r . . . . . . . . + + + . . . + + + + . r . . . . . . . . . . . . . . . . . . . + . . + + 

Calluna vulgaris 0.307 0.004 9 0 9 . 2 1 1 + . + r . . . . . . . . 1 + . r . . . . . . . . . . . . . . . . . . . . . . . . . . 

Juncus trifidus 0.238 0.007 9 8 17 . 2 2 + . . . . . . 1 2 1 1 . . . . . . + + . . . + . . + 1 1 r + . . . . . . . 1 + . . . . 

Pulsatilla vernalis 0.161 0.036 9 5 14 1 1 . + . . . . . . + + 1 1 . . . + . + . . . . . . . . . . . . . . . . . . . . 1 + + . 1 1 

Thymus praecox subsp. polytrichus 0.218 0.009 9 0 9 + + . + . . . . . . + + . + . . . + . . + + . . . . . . . . . . . . . . . . . . . . . . . . 

Trifolium pratense subsp. nivale 0.375 0.001 9 0 9 . + . . . . . . . . 1 1 . + . + . + r 1 . + . . . . . . . . . . . . . . . . . . . . . . . . 

Hieracium pilosella 0.234 0.003 8 2 10 1 2 . + . . . . . . . 1 1 1 . . . . . . 1 + . . . . . . . . . . . . . . . . . . 2 + . . . . 

Luzula multiflora 0.196 0.014 8 1 9 . + 1 r . + . . . . 1 r 1 + . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . 

Arnica montana 0.168 0.026 7 7 14 r + . r . . . r . . . 2 . 2 . . . . . r . . . . r 1 . . 1 + . r . . . . . . . . r + . . . . 

Botrychium lunaria 0.153 0.033 7 3 10 + . . . . . . . . . + + + + . . . r . + . . . . . . . . . . . . . . . . . . . . . r . . r r 

Bupleurum stellatum 0.292 0.001 7 0 7 . + . + . r . . . . + + + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Juncus jacquinii 0.258 0.005 7 1 8 . + 2 2 . . . . . . 2 + + + . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . 

Luzula sudetica 0.292 0.001 7 0 7 . . . . . + . + . . . . + . 1 + + . . . . + . . . . . . . . . . . . . . . . . . . . . . . . 

Salix helvetica 0.172 0.013 7 0 7 . . . . 1 + . . . . . . . . 2 2 r + r . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Gentiana acaulis 0.206 0.007 6 2 8 . + . + . + . . . . . + 1 + . . . . . . . . . . . r . . . . . . . . . . . . . . . + . . . . 

Juniperus communis subsp. nana 0.218 0.009 6 0 6 . 2 . . . . . . . . . + 1 2 + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Leucanthemum vulgare aggr. 0.250 0.003 6 0 6 r + . . . . . . . . 1 + 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Nigritella rhellicani 0.169 0.023 6 0 6 + + . . . . . . . . 1 + 1 + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Poa variegata 0.250 0.003 6 0 6 . 1 . 1 . . . . . . + r . + . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Phyteuma betonicifolium 0.208 0.002 5 0 5 . + . . . . . . . . 1 + . + . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Pulsatilla alpina subsp. apiifolia 0.208 0.002 5 0 5 . . . + . . . . . . 1 1 1 + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Pedicularis tuberosa 0.131 0.046 4 1 5 . . . . . . . . . . + + + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + 

Potentilla grandiflora 0.167 0.016 4 0 4 . 2 . . . . . . . . 1 1 . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Ajuga pyramidalis 0.125 0.027 3 0 3 . r . . . . . . . . . r . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hypochaeris uniflora 0.125 0.037 3 0 3 . . . . . . . . . . . . r r . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . 

Characteristic species of Caricion curvulae (5)       
                                                                      

Carex curvula s.str. 0.698 0.001 2 22 24 . . . . . . . . 4 2 . . . . . . . . . . . . . . 3 2 1 2 4 3 3 3 2 2 1 + + + + 1 2 1 2 2 2 2 

Leontodon helveticus 0.337 0.002 17 21 38 . . 1 1 1 1 . 1 2 3 . . . . 1 1 1 + 1 1 + + + 1 1 1 . + 2 + 2 + 1 2 + 1 + + + 1 1 1 1 2 + + 

Helictotrichon versicolor 0.310 0.001 16 17 33 1 1 1 + . + . . 1 1 1 + 1 1 . . . + . . + + 2 1 + 1 . + 1 + 1 1 + 2 + + . . . . 1 1 1 + + 1 

Agrostis rupestris 0.264 0.005 10 14 24 2 . 1 . 1 + . . 1 . . . . . 2 + . + . + . . + . . . . 2 1 + 1 + . + . + . + . + 1 1 + + . + 

Leucanthemopsis alpina 0.301 0.003 7 13 20 . . + . + . . . + + . . . . . . . . + + . . + . 1 . 1 r . . . . . . 1 + 1 + 1 1 + + 2 + . . 

Minuartia sedoides 0.421 0.001 3 12 15 . . . . . . . . . . . . . . . . . + . . + . + . . . . . . . . . . . 3 2 2 2 1 + 1 + + + + + 

Loiseleuria procumbens 0.383 0.001 3 10 13 . . 1 1 . + . . . . . . . . . . . . . . . . . . 1 2 . . 3 3 3 3 3 2 . . . . . . . . + 1 . . 

Hieracium piliferum aggr. 0.222 0.002 5 8 13 . . . . 1 . + . . . . . . . . . . + . + . . . 1 . + . . 1 + 1 + + + . . + . . . . . . . . . 

Trifolium alpinum 0.211 0.011 11 8 19 . 1 . + . + . . 2 + + . 2 2 . . . . . + . . + + r 1 . . 2 2 . 2 . . . . . . . . 4 3 . . . r 

Vaccinium gaultherioides 0.183 0.013 2 8 10 . . . . + + . . . . . . . . . . . . . . . . . . . 2 . + + + + r 1 1 . . . . . . . . . . . . 

Veronica bellidioides 0.196 0.014 9 7 16 + . . + . . . . . . + r + . . . . + + + . . . r . . . . . . 1 . . . . . . . . . 2 1 2 + 1 1 

Festuca halleri 0.220 0.008 0 6 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 + 1 2 2 

Hieracium angustifolium 0.154 0.031 4 6 10 . + . . . . . . . . . r . . . . . . . . + + . . . . . . . . . . . . . . . . . . + + + + + + 

Poa laxa 0.273 0.007 0 6 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 + + 1 1 . . . . . . 

Vaccinium myrtillus 0.160 0.02 3 6 9 . . . 1 . r . . . . . . . . . . . . . . . . . + r + . . . + . + . + . . . . . . . r . . . . 

Diphasiastrum alpinum 0.199 0.023 1 5 6 . . . + . . . . . . . . . . . . . . . . . . . . 2 + . . + r . . . . . . . . . . . . . r . . 

Luzula lutea 0.145 0.025 2 5 7 . + . . . . . . . . . . . r . . . . . . . . . . . . . . . + 1 + . . . . . . . . . + 1 . . . 

Sedum alpestre 0.154 0.026 1 5 6 . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 r . . + . . + . + . . 

Senecio incanus s.str. 0.136 0.02 0 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . 2 + 

Companion species       
                                                                      

Carex sempervirens 0.519 0.001 20 6 26 2 1 2 3 1 2 . . + + 1 2 3 2 + + 2 + . + 2 1 . + r + . . 1 + . . . . . . . . . . 1 1 . . . . 
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Homogyne alpina 0.115 0.445 13 12 25 . . 1 + 1 1 . + + + . . + . . + . + . . + + + . 1 1 . + . . . . 1 + . + . . . + . + + + r + 

Galium anisophyllon 0.264 0.003 19 2 21 1 + . + 1 + . . . . 1 + 1 + + + + + + + + + + + . . . . . . . . . . . . . . . . . r . . . + 

Salix herbacea 0.368 0.001 6 13 19 . . 1 + 1 + . . . . . . . . . . . + . + . . . . . r . 1 . . . . + 2 1 + 1 2 + 1 . + + + . . 

Lotus corniculatus 0.414 0.001 17 1 18 + + 1 1 1 + . . . . + + 1 + . + + 1 . 2 + 1 . r . . . . . . . . . . . . . . . . . . . . + . 

Ligusticum mutellina 0.576 0.001 11 7 18 . . + + . + 1 + 1 + . r 1 . . . . . . . . . + + 1 1 . 1 + . . . + . 2 . . . . . . . + . . . 

Poa alpina 0.263 0.01 9 7 16 . . . . 1 + . . . . + . . . + . r + . + + + . . . . . . . . . . . . + . . . . + . + + 1 + + 

Gnaphalium supinum 0.262 0.006 4 11 15 . . + . + . . . . r . . . . . . . . . . + . . . . . + 2 . . . . . . + + + + 1 1 . + + + . . 

Soldanella pusilla 0.246 0.004 7 6 13 . . 1 + . . . . . + . + + + . . . . . . . . r . . + 1 1 . . . . . + . . . . + 2 . . . . . . 

Luzula spicata s.l. 0.186 0.018 10 3 13 + . . + + + . . + . + . . . . . . + . r + + . . . . . . . . + . . . . . . . . . . + . r . . 

Antennaria dioica 0.126 0.072 8 4 12 . 1 . . + + . . . . + + 1 + . . . . . + . . . . . . . . . . + 1 . . . . . . . . 2 + . . . . 

Ranunculus montanus aggr. 0.313 0.001 10 2 12 r . 1 1 + + . . . . 1 + 1 + . . . . . . . + . . . . . . . . . . . . . . . . . . . r . . . + 

Myosotis alpestris 0.093 0.39 8 3 11 . + . + . . . . . . 1 + 1 + . . . 1 . + . . . . . . . . . . . . . . . . . . . . . + . . + + 

Silene exscapa 0.275 0.003 5 6 11 . . . r . . . . . . . . . . . . 1 + + r . . . . . . . . . . . . . . . . 1 + + r . . . . + + 

Trifolium badium 0.471 0.001 10 0 10 . . . . 1 . . . . . + . . . 1 1 1 2 1 + 2 1 . . . . . . . . . . . . . . . . . . . . . . . . 

Parnassia palustris 0.218 0.007 10 0 10 . + . . . . . . . . + + 1 + + + 2 + . r . . . . . . . . . . . . . . . . . . . . . . . . . . 

Agrostis alpina 0.348 0.001 8 1 9 . 1 . + . . . . . . . 1 . + + + . . . . . + 1 . . . . . . . . . . . . . . . . . . + . . . . 

Luzula alpinopilosa 0.190 0.033 2 6 8 . . . . . . . . . + . . . . . + . . . . . . . . . . . . . . . . . . 1 + + . 1 2 . . . + . . 

Cirsium spinosissimum 0.463 0.001 8 0 8 . . . + 1 . . . . . . . . . + . r r + + + . . . . . . . . . . . . . . . . . . . . . . . . . 

Bartsia alpina 0.164 0.037 7 1 8 . . . . 1 + . . . . . . . . 1 + r . . + . + . . . . . . . . . . . . . . . . . . . . . . r . 

Polygonum viviparum 0.221 0.017 5 3 8 . + . + . . . . . . + + . . . . . + . . . . . . . . . . . . . . . . . . . . . . . + . + . + 

Cardamine resedifolia 0.088 0.15 5 2 7 . . . . + . . . . . . + . . . . . r r r . . . . . . . . . . . . . . 1 + . . . . . . . . . . 

Thesium alpinum 0.288 0.005 6 1 7 r + . . . . . . . . + + + + . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . 

Leontodon hispidus s.str. 0.609 0.001 6 1 7 . . . . . . . . . . 2 1 1 + 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + 

Sibbaldia procumbens 0.216 0.013 3 3 6 . . . r 1 . . . . . . . . . . . . . . . + . . . . . . . . . . . . . + . . . . . . . . + . + 

Veronica alpina 0.220 0.004 2 4 6 . . . . 1 . . . . . + . . . . . . . . . . . . . . . . . . . . . . . + . . . + + . . . r . . 

Hieracium alpinum 0.122 0.057 2 4 6 . . . . . + . . . . . . . . . . . . r . . . . . . . . . . + . + . + . + . . . . . . . . . . 

Carlina acaulis subsp. caulescens 0.180 0.009 6 0 6 . 1 . . . . . . 1 . 2 2 1 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Silene nutans s.str. 0.245 0.002 6 0 6 r + . . . . . . . . 1 + + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Phleum alpinum aggr. 0.495 0.001 5 1 6 . . . 1 1 . . . . . 1 + . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . 

Erigeron uniflorus 0.221 0.003 4 2 6 . . . . . . . . . . . . . . . . . r + r + . . . . . . . . . . . . . . . . . . . . . . . + + 

Avenella flexuosa 0.094 0.063 2 3 5 . . . + . . . . . . . . . . . . . + . . . . . . . . . . + 1 . + . . . . . . . . . . . . . . 

Saxifraga bryoides 0.064 0.515 2 3 5 . . . . . . . . . . . . . . . . r . + . . . . . . . . . . . . . . . 2 r . . . . . . . + . . 

Gentiana nivalis 0.319 0.001 5 0 5 . r . . . . . . . . . . + . . . r . r . r . . . . . . . . . . . . . . . . . . . . . . . . . 

Primula farinosa 0.074 0.226 4 0 4 r + . . . . . . . . + . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Primula hirsuta 0.061 0.285 2 2 4 . + . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . r . . 

Gentiana punctata 0.082 0.111 1 3 4 . . . r . . . . . . . . . . . . . . . . . . . . . . . + . . . . r . . . . . . + . . . . . . 

Silene rupestris 0.047 0.509 2 2 4 + . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . + + . . . . 

Vaccinium vitis-idaea 0.121 0.056 0 4 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . + 1 2 1 . . . . . . . . . . . . . . 

Alchemilla vulgaris aggr. 0.786 0.001 4 0 4 . . . . 1 . . . . . . + . . 1 + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Crepis aurea 0.502 0.001 4 0 4 . . . 1 1 . . . . . 1 + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Festuca violacea aggr. 0.203 0.021 3 1 4 . + . . . . . . . . . 1 . . . . . . . . . . . + . . . . . . . . . . . . . . . . . + . . . . 

Plantago alpina 0.658 0.001 0 4 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r 2 . . + 1 

Androsace obtusifolia 0.344 0.002 2 2 4 . . . . . . . . . . . + . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . + + . . 

Salix retusa 0.303 0.001 4 0 4 . . . . + . . . . . . . . . 1 r . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Casual species           

                                                                                            

Rhododendron ferrugineum 0.104 0.117 3 0 3 . . . . . . . . . . . . r . . r r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Viola biflora 0.088 0.176 3 0 3 . . . . . . . . . . . . . . + . r . . . . . . r . . . . . . . . . . . . . . . . . . . . . . 

Ranunculus kuepferi 0.090 0.086 0 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . + + 

Anthyllis vulneraria subsp. alpestris 0.493 0.001 2 1 3 . r . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + 

Gentiana bavarica 0.248 0.005 0 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . + . + . . . . . . . 

Antennaria carpatica 0.257 0.005 0 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r 1 1 

Ligusticum mutellinoides 0.463 0.001 0 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + r + 

Saxifraga exarata subsp. moschata 0.209 0.007 0 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . + + 

Alchemilla pentaphyllea 0.770 0.001 1 1 2 . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . 

Carex foetida 0.912 0.001 2 0 2 . . . . . . . . + 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Cardamine alpina 0.253 0.003 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . r . . 

Cerastium pedunculatum 0.297 0.005 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . + . . . . . . . 

Salix foetida 0.129 0.041 2 0 2 . . . . . . . . . . . . . . 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Saxifraga seguieri 0.234 0.004 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . + . . . . . . . 

Pseudorchis albida 0.048 0.56 2 0 2 . . . . . . . . . . . + . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Achillea nana 0.082 0.141 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 + 

Pyrola minor 0.045 0.556 2 0 2 . . . . . . . . . . . . . . . + . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Viola calcarata 0.090 0.114 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 + 

Gnaphalium norvegicum 0.064 0.313 2 0 2 . . . . + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Pinguicula leptoceras 0.083 0.176 2 0 2 . . . . . . . . . . . . . . . + . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . 

Viola palustris 0.083 0.152 2 0 2 . . . . . . . + . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Gentiana alpina 0.091 0.136 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 + . . . . 

Huperzia selago 0.024 0.924 1 1 2 . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . 

Minuartia recurva 0.091 0.163 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + + . . 

Euphrasia hirtella 0.240 0.003 2 0 2 . . . . . . . . . . . r + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Scabiosa lucida 0.619 0.001 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + + 

Gentiana purpurea 0.265 0.002 2 0 2 . . . . . . . . 1 + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Soldanella alpina 0.707 0.001 1 1 2 . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + 

Trifolium thalii 0.842 0.001 2 0 2 . . . . . . . . . . . . . . . + . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . 

Veratrum album s.l. 0.114 0.047 2 0 2 . . . . . . . . . . . . . . r + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Draba aizoides 0.302 0.001 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + + 

Elyna myosuroides 0.793 0.001 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + r 

Festuca quadriflora 0.647 0.001 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + + 

Gentiana brachyphylla 0.262 0.003 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 + 
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Gentiana campestris s.str. 0.142 0.045 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . + 

Gentiana verna 0.427 0.001 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + + 

Minuartia verna 0.399 0.001 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + r 

Salix serpillifolia 0.143 0.044 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 

Sempervivum arachnoideum 0.150 0.016 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + r 

Doronicum clusii 0.131 0.029 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . 

Saxifraga stellaris 0.483 0.001 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . 

Biscutella laevigata 0.026 0.782 1 0 1 . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Carex ornithopoda 0.072 0.278 1 0 1 . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Empetrum nigrum subsp. hermaphroditum 0.048 0.473 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . 

Picea abies 0.032 0.891 1 0 1 . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Alchemilla alpina 0.042 0.794 1 0 1 . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chamorchis alpina 0.042 0.819 1 0 1 . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Cystopteris fragilis 0.042 0.782 1 0 1 . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hieracium intybaceum 0.042 0.838 1 0 1 . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . 

Hieracium lactucella 0.035 0.755 1 0 1 . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Peucedanum ostruthium 0.042 0.825 1 0 1 . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Phyteuma ovatum 0.042 0.822 1 0 1 . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . 

Poa chaixii 0.042 0.801 1 0 1 . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Polystichum lonchitis 0.042 0.809 1 0 1 . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Salix breviserrata 0.042 0.799 1 0 1 . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Festuca acuminata 0.045 0.618 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . . . . 

Larix decidua 0.045 0.612 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . 

Pedicularis kerneri 0.045 0.652 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . 

Silene suecica 0.045 0.623 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + 

Arenaria biflora 0.072 0.265 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . 

Carex nigra 0.127 0.075 1 0 1 . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Epilobium nutans 0.052 0.32 1 0 1 . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Eriophorum angustifolium 0.110 0.054 1 0 1 . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Geranium sylvaticum 0.345 0.001 1 0 1 . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Gymnadenia conopsea 0.739 0.001 1 0 1 . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Helianthemum nummularium s.l. 0.762 0.001 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . . . 

Potentilla erecta 0.145 0.044 1 0 1 . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Rhinanthus glacialis 0.171 0.006 1 0 1 . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Silene vulgaris s.str. 0.263 0.003 1 0 1 . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Agrostis capillaris 0.237 0.004 1 0 1 . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Dactylorhiza fuchsii 0.160 0.013 1 0 1 . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . 

Deschampsia cespitosa 0.520 0.001 1 0 1 . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Plantago atrata s.str. 0.716 0.001 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . 

Rumex alpestris 0.581 0.001 1 0 1 . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Arenaria ciliata 0.162 0.018 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . 

Aster bellidiastrum 0.160 0.041 1 0 1 . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Polygala alpina 0.183 0.007 1 0 1 . r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Saxifraga paniculata 0.463 0.001 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 

Silene acaulis 0.223 0.005 1 0 1 . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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Appendix C5 - Plant species list of the inventories of Salicion herbaceae and Caricion bicolori-atrofuscae vegetation types, and corresponding cover classes of Braun-Blanquet 

(1964; see Table 4.1 for details). Within each vegetation type, plant species are classified into characteristic, companion and casual. 

 

Plot name           

G
3

3
6

_
1
 

G
3

3
6

_
2
 

G
3

4
1

_
1
 

G
3

4
1

_
2
 

G
4

0
4

_
1
 

G
4

0
4

_
2
 

G
4

0
5

_
1
 

G
4

0
5

_
2
 

G
4

1
7

_
1
 

G
4

1
7

_
2
 

R
2

6
4

_
1
 

R
2

6
4

R
_

2
 

R
2

6
7

_
1
 

R
2

6
7

R
_

2
 

R
3

9
3

5
_

1
 

R
3

9
3

5
_

2
 

R
4

4
6

8
_

1
 

R
4

4
6

8
_

2
 

R
3

9
3

4
_

1
 

R
3

9
3

4
_

2
 

R
3

9
3

7
_

1
 

R
3

9
3

7
_

2
 

R
4

2
1

6
_

1
 

R
4

2
1

6
_

2
 

R
4

9
8

3
_

1
 

R
4

9
8

3
_

2
 

R
5

0
6

1
_

1
 

R
5

0
6

1
_

2
 

R
5

0
6

2
_

1
 

R
5

0
6

2
_

2
 

R
5

0
6

9
_

1
 

R
5

0
6

9
_

2
 

R
5

1
4

1
_

1
 

R
5

1
4

1
_

2
 

Species number           7 12 14 16 9 11 10 19 14 20 10 18 8 7 16 25 13 22 19 23 14 28 17 23 12 17 11 13 19 31 14 33 19 33 

  in
d

.v
a

l 

p
-v

a
lu

e
 

fr
e

q
. 

(6
) 

fr
e

q
. 

(7
) 

fr
e

q
. 

to
t.

 

Salicion herbaceae Caricion bicolori-atrofuscae 

Characteristic species of Salicion herbaceae (6)                                            

Carex foetida 0.912 0.001 16 0 16 + 2 . r 4 2 r 1 4 3 2 + 4 4 . + 3 2 . . . . . . . . . . . . . . . . 

Alchemilla pentaphyllea 0.770 0.001 15 2 17 . . 2 2 2 1 3 3 1 1 4 3 2 . + 1 4 3 . . . + . . . . . . . r . . . . 

Gnaphalium supinum 0.262 0.006 13 7 20 r + 1 . . r . + r . + 2 1 1 + 1 1 . . . . r . . 1 + . . + + . r . r 

Luzula alpinopilosa 0.190 0.033 8 4 12 . . 4 3 r . . 1 1 2 . . . . . . + + . . . . . . 1 2 . . . . . . 2 3 

Sibbaldia procumbens 0.216 0.013 9 5 14 . . . . . . . . + r 1 1 2 . + + 1 1 . . . r . r . . . . . + . r . + 

Soldanella pusilla 0.246 0.004 8 1 9 . + 1 2 1 1 2 2 . r . . . . . . . . . . . 2 . . . . . . . . . . . . 

Characteristic species of Caricion bicolori-atrofuscae 
(7)      

                                                     

Salix herbacea 0.368 0.001 10 15 25 . . 2 + 1 3 3 1 . . 2 3 . . + 3 . . + 1 1 . 1 1 1 2 4 3 + 1 + 1 3 2 

Taraxacum alpinum aggr. 0.468 0.001 5 12 17 . . 1 . . . . . . . . + . . + + . r + 1 + + 1 + + + . . 2 1 . 1 . + 

Saxifraga stellaris 0.483 0.001 5 11 16 r + 1 + . . . . . . . . . . + . . . + r . . r . + r + 1 + + 1 r . . 

Cerastium cerastoides 0.248 0.002 11 9 20 r + . . + r 1 . . . . + . + + + 1 + + . . + . . 1 + + + + + + . . . 

Saxifraga oppositifolia 0.340 0.001 0 10 10 . . . . . . . . . . . . . . . . . . . . r + + + . . 2 2 . . + 2 1 r 

Carex parviflora 0.338 0.001 1 9 10 . . . . . . . . . . + . . . . . . . + + . 2 + 1 + + 1 2 . . . . . . 

Veronica alpina 0.220 0.004 8 8 16 . . 1 + . + . + . + . + . . + + . . . + . r . . + + . . 2 + . 1 . + 

Oxyria digyna 0.412 0.001 1 6 7 . . . . . . . . . . . . . . + . . . . . . . . . + + . . . . + + + + 

Carex bicolor 0.338 0.001 0 6 6 . . . . . . . . . . . . . . . . . . 1 1 2 2 1 + . . . . . . . . . . 

Cerastium pedunculatum 0.297 0.005 0 6 6 . . . . . . . . . . . . . . . . . . . . . . . . + r . . 2 + + . + . 

Juncus triglumis 0.353 0.001 0 6 6 . . . . . . . . . . . . . . . . . . 1 + 2 + 2 + . . . . . . . . . . 

Saxifraga androsacea 0.304 0.001 2 5 7 . . . . . . . . . . . . . . 2 + . . . . . . . . . . 1 + . + 1 + . . 

Cardamine alpina 0.253 0.003 2 4 6 . . . . . . . . . r . . . . 1 . . . . . . . . . 1 + . . + + . . . . 

Carex lachenalii 0.224 0.006 3 5 8 . . . . . . r . . . . + . . . . + . + . . . + + . . 1 1 . . . . . . 

Ranunculus glacialis 0.294 0.004 0 5 5 . . . . . . . . . . . . . . . . . . . . . . + + . . . . 2 1 . . . + 

Saxifraga seguieri 0.234 0.004 1 4 5 . . . . . . . . . . . . . . + . . . . . . . . . . . . . + . . + 2 1 

Arabis caerulea 0.169 0.009 1 3 4 . . . . . . . . . . . . . . + . . . . . . . . . . . . + . . 1 + . . 

Equisetum variegatum 0.167 0.024 0 4 4 . . . . . . . . . . . . . . . . . . . . 1 1 1 1 . . . . . . . . . . 

Salix foetida 0.129 0.041 0 4 4 . . . . . . . . . . . . . . . . . . . . + . + 1 . . . . . . . . + . 

Cerastium uniflorum 0.176 0.015 0 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + 1 1 

Doronicum clusii 0.131 0.029 1 3 4 . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . 2 1 

Pritzelago alpina s.str. 0.131 0.034 0 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . 1 1 . . 

Agrostis stolonifera 0.118 0.036 0 2 2 . . . . . . . . . . . . . . . . . . . . . . 1 2 . . . . . . . . . . 

Doronicum grandiflorum 0.089 0.044 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + + . . 

Juncus alpinoarticulatus 0.118 0.048 0 2 2 . . . . . . . . . . . . . . . . . . + r . . . . . . . . . . . . . . 

Minuartia biflora 0.118 0.027 0 2 2 . . . . . . . . . . . . . . . . . . . . r . . . . . . r . . . . . . 

Companion species      
                                                     

Poa alpina 0.263 0.01 12 14 26 . + 2 + . . r . + . . + 1 2 1 1 + + + + + 2 + . . + + + 1 2 + + + + 

Polygonum viviparum 0.221 0.017 3 12 15 . . . . . . . . . . 2 + . . . + . . 1 1 1 2 + 1 . . 2 2 . + . r 2 + 

Leontodon helveticus 0.337 0.002 7 6 13 . r . 2 . . . 1 r + . . . + . . . 1 . 1 . + . . . r . . 1 + . . . 2 

Sagina saginoides 0.406 0.001 4 9 13 . . . . . . . . . . . . . . 1 + + r + + + + . . . . + . 1 + 1 r . . 

Gentiana bavarica 0.248 0.005 2 9 11 . . . . . . . . . . . + . . . + . . + + . + . + 2 1 . . 1 + . . . + 

Leucanthemopsis alpina 0.301 0.003 7 4 11 r r 1 r . . . r . + . . 1 . . . . . . . . . . . . r . . . + . . 1 + 

Nardus stricta 0.692 0.001 10 0 10 . r . . + 2 2 2 r + . 1 . . . + . 2 . . . . . . . . . . . . . . . . 

Plantago alpina 0.658 0.001 4 6 10 . . . . . . . . . . 2 . . . . 1 + + + + + + 1 2 . . . . . . . . . . 

Campanula scheuchzeri 0.258 0.001 1 8 9 . . . . . . . . . r . . . . . . . . . . . r . r . . + . + + . + + + 

Homogyne alpina 0.115 0.445 7 2 9 . . 1 2 . . r 1 . + . . . . . + . 1 . . . . . . . . . . . r . . . + 

Cirsium spinosissimum 0.463 0.001 4 4 8 . . . + . . . . + 1 . . . . . + . . + + r + . . . . . . . . . . . . 

Festuca violacea aggr. 0.203 0.021 2 5 7 . . . . . . . . . . . 1 . . . . . + . . . . . . . . . . + + . 1 2 1 

Alchemilla vulgaris aggr. 0.786 0.001 4 2 6 . . . . . . . . . . 1 + . . . . + + + 2 . . . . . . . . . . . . . . 

Carex nigra 0.127 0.075 3 3 6 . . . . . . . . . . . + . . . + . + 3 3 + . . . . . . . . . . . . . 

Ligusticum mutellina 0.576 0.001 6 0 6 . . . 2 + + . 2 r + . . . . . . . . . . . . . . . . . . . . . . . . 

Phleum alpinum aggr. 0.495 0.001 6 0 6 . . 1 . r + r . . + . . . . . . . + . . . . . . . . . . . . . . . . 

Anthoxanthum odoratum aggr. 0.366 0.001 5 0 5 . . . 1 . . . + + + . . . . . . . + . . . . . . . . . . . . . . . . 

Euphrasia minima 0.462 0.001 1 4 5 . . . . . . . r . . . . . . . . . . . . . r . . . . . + . + . . . + 

Geum montanum 0.594 0.001 4 1 5 . . . . . . . r + 1 . . . . . . . + . . . . . . . . . . . + . . . . 

Agrostis schraderiana 0.242 0.004 3 1 4 . . . . . . . + 1 2 . . . . . . . . . + . . . . . . . . . . . . . . 

Bartsia alpina 0.164 0.037 1 3 4 . . 1 . . . . . . . . . . . . . . . . . . . . r . . . . . + . . + . 

Carex curvula s.str. 0.698 0.001 4 0 4 r + . . . . . . . . . . 1 1 . . . . . . . . . . . . . . . . . . . . 

Helictotrichon versicolor 0.310 0.001 4 0 4 . . . . . r . 1 . . . + . . . . . 1 . . . . . . . . . . . . . . . . 

Silene exscapa 0.275 0.003 1 3 4 . . . . . . . . . . . . 2 . . . . . . . . . . . . . . . . + . . 1 + 

Agrostis rupestris 0.264 0.005 3 0 3 . + . + . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . 

Epilobium anagallidifolium 0.101 0.141 1 2 3 . . . . . . . . . . . r . . . . . . . r . . . . . . . . . + . . . . 

Ligusticum mutellinoides 0.463 0.001 0 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . + . + 

Myosotis alpestris 0.093 0.39 0 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . 1 + 

Potentilla aurea 0.375 0.001 3 0 3 . . . . . . . . r + . . . . . . . + . . . . . . . . . . . . . . . . 

Saxifraga bryoides 0.064 0.515 0 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . + 1 

Silene acaulis 0.223 0.005 0 3 3 . . . . . . . . . . . . . . . . . . . . . + . 1 . . . . . . . + . . 

Casual species           
                                                                    

Androsace alpina 0.118 0.052 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . + r . . . . 

Androsace obtusifolia 0.344 0.002 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . + 

Arabis alpina s.str. 0.089 0.051 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . r 

Arenaria biflora 0.072 0.265 2 0 2 r + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Arenaria ciliata 0.162 0.018 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + + . 

Carex atrata aggr. 0.357 0.002 1 1 2 . . . . . . . . . . . . . . . 2 . . . . . . . . . . . . . . . + . . 

Carex capillaris 0.079 0.145 0 2 2 . . . . . . . . . . . . . . . . . . . . . r . + . . . . . . . . . . 

Deschampsia cespitosa 0.520 0.001 1 1 2 . . . . . . . . . + . . . . . . . . . . . + . . . . . . . . . . . . 

Erigeron uniflorus 0.221 0.003 0 2 2 . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . r 

Eriophorum angustifolium 0.110 0.054 0 2 2 . . . . . . . . . . . . . . . . . . . + . + . . . . . . . . . . . . 

Festuca halleri 0.220 0.008 1 1 2 . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . + 

Luzula spicata s.l. 0.186 0.018 1 1 2 . . . . . . . . . . . . . . . r . . . . . . . + . . . . . . . . . . 

Minuartia verna 0.399 0.001 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . r 

Poa minor 0.104 0.082 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 + . . 

Poa supina 0.304 0.001 1 1 2 . . . . . . . . . . . . . . . . + . . . . . + . . . . . . . . . . . 

Pritzelago alpina subsp. brevicaulis 0.053 0.413 2 0 2 . . . . . . . . . . . . . . 1 r . . . . . . . . . . . . . . . . . . 

Ranunculus alpestris 0.149 0.01 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + 2 . . 

Ranunculus kuepferi 0.090 0.086 2 0 2 . . . . . . . . . . . . . . . . + r . . . . . . . . . . . . . . . . 

Ranunculus montanus aggr. 0.313 0.001 2 0 2 . . . . . . . . . . . . . . . r . + . . . . . . . . . . . . . . . . 

Salix helvetica 0.172 0.013 0 2 2 . . . . . . . . . . . . . . . . . . . . . 1 . r . . . . . . . . . . 

Saxifraga aizoides 0.133 0.029 0 2 2 . . . . . . . . . . . . . . . . . . + 1 . . . . . . . . . . . . . . 

Sedum alpestre 0.154 0.026 0 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . r 

Selaginella selaginoides 0.192 0.024 0 2 2 . . . . . . . . . . . . . . . . . . . . . + . r . . . . . . . . . . 

Agrostis alpina 0.348 0.001 1 0 1 . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . 

Arabis subcoriacea 0.059 0.339 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . 

Aster bellidiastrum 0.160 0.041 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r . . 

Cardamine resedifolia 0.088 0.15 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r 

Carex flava 0.059 0.337 0 1 1 . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . 

Carex frigida 0.059 0.341 0 1 1 . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . 

Cerastium arvense subsp. strictum 0.222 0.007 1 0 1 . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . 

Epilobium nutans 0.052 0.32 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . 

Erigeron neglectus 0.076 0.101 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . 

Eriophorum scheuchzeri 0.059 0.31 0 1 1 . . . . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . 

Gentiana punctata 0.082 0.111 1 0 1 . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Gentiana verna 0.427 0.001 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . 

Leontodon hispidus s.str. 0.609 0.001 1 0 1 . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . 

Luzula multiflora 0.196 0.014 1 0 1 . . . . . . . r . . . . . . . . . . . . . . . . . . . . . . . . . . 

Minuartia sedoides 0.421 0.001 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . 

Phyteuma hemisphaericum 0.460 0.001 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . 

Salix reticulata 0.519 0.001 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . 
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Salix retusa 0.303 0.001 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + . . 

Trifolium alpinum 0.211 0.011 1 0 1 . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . 

Trifolium badium 0.471 0.001 0 1 1 . . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . 

Veronica bellidioides 0.196 0.014 0 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + 

 

 

Appendix C6 - Plant species list of the recent inventories discarded from the Vegetation study (Appendix C2), and corresponding cover classes of Braun-Blanquet (1964; see 

Table 4.1 for details). ( r ) : species occurring in the historical inventories that were just outside the plot area in the recent inventory. 
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Species number 52 43 45 46 14 13 6 22 33 24 28 22 35 24 35 40 36 29 32 42 24 48 

Species name                                             

Achillea atrata r . . 1 . . . . . . . . . . . . . . . . . . 

Achillea erba-rotta subsp. moschata . . . . . . . . + . . . . . . . . . . . . . 

Achillea nana . . . . . . . . . . . . . . . . . . . r . + 

Adenostyles alliariae 2 . . 2 r . . . . . . . . . . . . . . . . . 

Agrostis alpina . . . r . . . . . . . . . . . . . . . . . 2 

Agrostis rupestris . + . . . . . . ( r ) . + . . 1 . . . 1 + + . . 

Agrostis schraderiana . 2 . . . 1 . . + . 1 1 . . . . . . . . . 1 

Agrostis stolonifera . . . . . . . . . . . . . . . . . 1 . . . . 

Ajuga pyramidalis . . . . . . . . . + . . . . . . . . . . . . 

Ajuga reptans . . . r . . . . r . . . . . . . . . . . . . 

Alchemilla conjuncta aggr. + . . + r . . . . . . . . . . . . . . . . . 

Alchemilla fissa . 1 . . . . . . . . . . . . . . . . . . . . 

Alchemilla pentaphyllea . . . . . 3 1 . . . . 3 4 + . 2 2 . . . . . 

Alchemilla vulgaris aggr. + . . . . . . . . . . . + . . . . . . . . . 

Allium schoenoprasum . . . r . . . . . . . . . . . . . . . . . . 

Androsace alpina . . . . . . . . . . . . . . + . . . . . . . 

Androsace obtusifolia . . . . . . . . . . . . . + + r + . . . . . 

Antennaria carpatica . . . . . . . . . . . . . . . . . . . r . . 

Anthoxanthum alpinum + . . . . . . . 2 1 + + . . . . . . . . . + 

Anthyllis vulneraria ssp. alpestris . . . . . . . . . . . . . . . . . . . . . 1 

Anthyllis vulneraria subsp. alpestris + + . . . . . . . . . . . . . . . . . . . . 

Aposeris foetida . . + . . . . . . . . . . . . . . . . . . . 

Arabis alpina . . . . r . . . . . . . . . . . . . . . . . 

Arabis caerulea . . . . . . . . . . . . . . 1 . . . . + . . 

Arenaria ciliata . . . r . . . . . . . . . . . . . . . r . r 

Arnica montana . . . . . . . 1 . . . . . . . . . . . . . . 

Aster alpinus . . + . . . . . . . . . . . . . . . . . . . 

Aster bellidiastrum 2 1 1 . . . . . . . . . . . . . . . . . . 1 

Athyrium filix-femina . . . . . . . . ( r ) . . . . . . . . . . . . . 

Bartsia alpina + 1 . . . . . . . . + . . . . . . . . ( r ) + + 

Briza media . . 1 . . . . . . . . . . . . . . . . . . . 

Calamagrostis varia . . 1 . . . . . . . . . . . . . . . . . . . 

Calluna vulgaris . . . . . . . . + . . . . . . . . . . . . . 

Campanula barbata . . . . . . . . r + . . . . . . . . . . . . 

Campanula scheuchzeri + + . + + . . . + + + . + + r . . . r 1 + + 

Cardamine alpina + . . + . . . . . . . . + . + + r . . . . . 

Cardamine resedifolia . . . . . . . . r r . . . . . . . . . . . . 

Carduus defloratus . . . + . . . . . . . . . . . . . . . . . . 

Carex atrata s.l. + + . 1 . . . . . . . . . . . . . . . . . . 

Carex bicolor . . . . . . . . . . . . . . . 3 + 1 . . . . 

Carex brunnescens . . . . . . . . . . r . . . . . . . . . . . 

Carex capillaris . . . . . . . . . . . . . . . . . + . . . . 

Carex cf parviflora . . . . . . . . . . . . . . . . . . . . . + 

Carex curvula . . . . . . . 2 . + + r . + . + + . 1 . 2 . 

Carex ferruginea + 3 . . . . . . . . . . . . . . . . . . . . 

Carex flacca . . 2 . . . . . . . . . . . . . . . . . . . 

Carex foetida . . . . . 1 . . . . . . + 1 . . . + . . . . 

Carex lachenalii . . . . . . . . . . . . + . . . . + . . . . 

Carex nigra . . . . . . . . . . . . . . . 1 . + . . . . 

Carex ornithopodioides . . . . . . . . . . . . . . . . . . . . . + 

Carex parviflora . . . . . . . . . . . . + . 2 . ( r )  1 . + . . 

Carex sempervirens + + 3 1 . . . + 2 3 2 + . . . . . . . . . . 

Carlina acaulis subsp. caulescens . . + . . . . . . . . . . . . . . . . . . . 

Centaurea montana . . + . . . . . . . . . . . . . . . . . . . 

Cerastium arvense ssp. strictum . . . . . . . . . . . . + . . . . . . . . . 

Cerastium cerastoides . . . . . r . . . . . . + . 1 r . . . . . . 

Cirsium spinosissimum . . . . . . . . 1 . . . + . + . . . . 1 . . 

Cirsium spinossisimum 2 . . + . . . . . . . . . . . . . . . . . . 

Coeloglossum viride . . . . . . . . . . . r . . . . . . . . . . 

Crepis aurea 1 2 . + . . . . . . . r . . . . . . . . . . 

Daphne mezereum . . r . . . . . . . . . . . . . . . . . . . 

Deschampsia cespitosa + 1 . . . . . . . . . . . . . . . 1 . . . . 

Doronicum clusii . . . . . . . . . . . . . . . . . . . . + . 

Doronicum grandiflorum . . . + . . . . . . . . . . . . . . . + . . 

Draba aizoides . . . . . . . . . . . . . . + . . . . . . . 

Dryas octopetala . . . r . . . . . . . . . . . . . . . . . 1 

Elyna myosuroides . . . . . . . . . . . . . . r . . . . + . 2 

Empetrum nigrum . . . . . . . + . . . . . . . . . . . . . . 

Epilobium alsinifolium . . . r . . . . . . . . . . . . . . . . . . 

Epilobium anagallidifolium . . . . . . . . . . . . + . . . . . . + . . 

Epilobium nutans . . . . . . . . . . . . . . . . . r . . . . 

Equisetum variegatum . . . . . . . . . . . . . . . . . 2 . . . . 

Erigeron uniflorus . . . . . . . . . . . . . + + . . . + + . . 

Eriophorum angustifolium . . . . . . . . r . . . . . . . . . . . . . 

Eriophorum scheuchzeri . . . . . . + . . . . . . . . . . . . . . . 

Euphorbia cyparissias . . + . . . . . . . . . . . . . . . . . . . 

Euphrasia hirtella . . + . . . . . . . . . . . . . . . . . . . 

Euphrasia minima + + . + . . . + + + + r . r . r 1 + + + r . 

Euphrasia salisburgensis . . + . . . . . . . . . . . . . . . . . . . 

Festuca diffusa + . . . . . . . 3 . . . . . . . . . . . . . 

Festuca halleri . . . . . . . . . . . . . . . . . . 2 + + . 

Festuca laevigata s.l. . . + . . . . . . . . . . . . . . . . . . . 

Festuca melanopsis . . . . . . . . . . . . . . 1 . . . . . . . 

Festuca nigrescens . 2 . . . . . . . . . . . . . . . . . . . . 

Festuca quadriflora . . . . . . . . . . . . . . . . . . . + . + 

Festuca rubra aggr. . . . . . . . . . + . . . . . . . . . . . . 

Festuca violacea aggr. 1 . . 2 + . . . . . . . . . . 2 1 . . . + 2 

Festuca violacea s.str. . 1 . . . . . . . . . . . . . . . . . + . . 

Galium anisophyllon 1 . + . . . . . + . . . . . . . . . . . . . 

Gentiana acaulis . . . . . . . + . . . . . . . . . . . . . . 

Gentiana bavarica + . . + . . . . . . . . + . + r + + . + . . 

Gentiana campestris r . . . . . . . . . . . . . . . . . . r . . 

Gentiana cf campestris . . . . . . . . . . . . . . . . . . + . . . 

Gentiana cf punctata . . . . . . . . . + . . . . . . . . . . . . 

Gentiana clusii . . r . . . . . . . . . . . . . . . . . . . 

Gentiana nivalis + . . . . . . . . . . r . . . . . + . + . . 

Gentiana purpurea . . . . . . . . . . . . . . . + ( r ) . . . . . 

Gentiana tenella . . . . . . . . . . . . . . . . . . . + . . 

Gentiana verna . . + . . . . . . . . r + 1 + + . . . . . + 

Geum montanum . . . . . . . . 1 2 r + 1 r . r 2 . 2 . . . 

Globularia cordifolia . . + . . . . . . . . . . . . . . . . . . . 

Globularia nudicaulis . . 2 . . . . . . . . . . . . . . . . . . . 
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Gnaphalium supinum . + . . . ( r ) . . . . + + + 1 + 1 2 + + . . . 

Gymnadenia conopsea . . + . . . . . . . . . . . . . . . . . . . 

Gymnadenia odoratissima . . (r)  . . . . . . . . . . . . . . . . . . . 

Gypsophila repens . . + . . . . . . . . . . . . . . . . . . . 

Hedysarum hedysaroides . + . . . . . . . . . . . . . . . . . . . . 

Helianthemum nummularium subsp. 
grandiflorum 

. . 1 . . . . . . . . . . . . . . . . . . . 

Helictotrichon versicolor . . . . . ( r ) . 1 r 1 + 1 . . . . . . . . . . 

Helictotricon versicolor . . . . . . . . . . . . + . . 2 1 . 1 . 1 1 

Hieracium alpinum . . . . . . . + . . . . . . . . . . . . . . 

Hieracium angustifolium . . . . . . . . . . . . . . r . . . . . . . 

Hieracium bifidum aggr. . . . . . . . . . . . . . . . . . . . . . + 

Hieracium murorum aggr. . . + . . . . . . . . . . . . . . . . . . . 

Hieracium piliferum . . . . . . . + . r . . . . . . . . + . . . 

Hieracium pilosum . . + . . . . . . . . . . . . . . . . . . . 

Hippocrepis comosa . . + . . . . . . . . . . . . . . . . . . . 

Homogyne alpina + + . r . . . 2 + + + 1 1 . . + + . . + . + 

Huperzia selago . . . . . . . . . . . . . . . . . . . . r . 

Juncus filiformis . . . . . . . . . . . . . . . + 1 . . . . . 

Juncus jacquinii . . . . . . . . . + . . . . . . . . + . . . 

Juncus trifidus . . . . . . . + . . r . . . . . . . . . . . 

Juncus triglumis . . . . . . . . . . . . . . . . . + . . . . 

Juniperus communis subsp. nana  . . r . . . . . . . . . . . . . . . . . . . 

Juniperus nana . . . . . . . ( r ) . . . . . . . . . . . . . . 

Larix decidua . . . . . . . . . . . . . . . . . . . . . + 

Leontodon helveticus . + . . . . . 1 + 1 1 + 1 3 r 1 1 r 1 + + . 

Leontodon hispidus 1 2 . + . . . . r . . . . . . . . . . . . 1 

Leucanthemopsis alpina . . . . . . . . . . r . + 2 + + + . . r + . 

Leucanthemum adustum . . + . . . . . . . . . . . . . . . . . . . 

Ligusticum mutellina + + . . . 1 . 1 . + + 2 . . . . . . . . . . 

Ligusticum mutellinoides . . . . . . . . . . . . + r 1 + + . . + + + 

Linaria alpina . . . . . . . . . . . . . . . . . . . ( r ) . . 

Linum catharticum . . + . . . . . . . . . . . . . . . . . . . 

Lloydia serotina . . . . . . . . . . . . . . . . . . . . + . 

Loiseleuria procumbens . . . . . . . 2 . . . . . . . . . . . . 3 . 

Lotus corniculatus . . + . . . . . + + . . . . . . . . r . . . 

Luzula alpinopilosa 1 + . 2 . 1 + . . . + . . . . + + . . . 1 . 

Luzula lutea . . . . . . . . . . . . . . . . . . . . . + 

Luzula multiflora . . . . . . . . . . . r . . . . . . . . . . 

Luzula spicata . . . . . . . . . . . . r + . . . . + r . . 

Minuartia sedoides . . . . . . . . . . . . . + . + + . + . + . 

Minuartia verna . . . r r . . . . . . . . . r . . . . . r . 

Myosotis alpestris + . . + . . . . . . . . . . . + + . + . . . 

Nardus stricta . . . . . 2 1 3 2 3 1 2 1 . . . . . 2 . . . 

Nigritella rhellicani . . + . . . . . . . . . . . . . . . . . . . 

Onobrychis montana . . 1 . . . . . . . . . . . . . . . . . . . 

Oxyria digyna . . . . (r)  . . . . . . . . . . . . . . . . . 

Parnassia palustris . . . . . . . . . . . . . . . . . . . . . + 

Pedicularis ascendens . . + . . . . . . . . . . . . . . . . . . . 

Pedicularis verticillata r . . + . . . . . . . . . . . r r . . . . + 

Petasites paradoxus . . 1 . . . . . . . . . . . . . . . . . . . 

Peucedanum ostruthium r . . . . . . . . . . . . . . . . . . . . . 

Phleum alpinum subsp. rhaeticum + . . . . . . . . . . . . . . . . . . . . . 

Phleum hirsutum . . + . . . . . . . . . . . . . . . . . . . 

Phleum rhaeticum . . . . . + . . . . . . . . . . . . + . . . 

Phyteuma betonicifolium . . . . . . . . r . . . . . . . . . . . . . 

Phyteuma hemisphaericum . . . . . . . r . + + . . . . . . . . . . . 

Phyteuma orbiculare . . . r . . . . . . . . . . . . . . . . . . 

Phyteuma spicatum r . . . . . . . . . . . . . . . . . . . . . 

Picea abies . . . . . . . . . . . . . . . . . . . . . ( r ) 

Pinguicula alpina . . . . . . . . . . . . . . . . . . . . . + 

Pinus cembra . . . . . . . . . . . . . . . . . . . . . + 

Plantago alpina 1 1 . . . . . . . . . . + 1 . + + + 2 1 . . 

Plantago atrata . . . . . . . . . . . . . . . . . . . + . . 

Poa alpina + . . 1 1 . . . + . + . + 1 2 1 + + + + . + 

Polygala alpina . . . . . . . . . . . . . . . . . . . . . r 

Polygala chamaebuxus . . 1 . . . . . . . . . . . . . . . . . . . 

Polygonum viviparum + + + + . . . . . . . . 1 . + 1 + + . + + + 

Polystichum lonchitis . . . . . . . . ( r ) . . . . . . . . . . . . . 

Potentilla aurea . + . . . . . . 2 1 . . + . . 1 r . 2 . . . 

Primula farinosa . . . . . . . . . . . . . . . . . + . . . . 

Primula veris + . . . . . . . . . . . . . . . . . . . . . 

Pritzelago alpina . . . + 1 . . . . . . . . . + . . . . . . . 

Pritzelago alpina brevicaulis . . . . . . . . . . . . . . . . . . . + . . 

Prunella grandiflora . . 1 . . . . . . . . . . . . . . . . . . . 

Pulsatilla alpina s.str. . . 1 . . . . . . . . . . . . . . . . . . . 

Pyrola minor . . . . . . . . . . . . . . . . . . . . . r 

Ranunculus alpestris 2 + . 2 . . . . . . . . . . . . . . . . . . 

Ranunculus glacialis . . . . . . . . . . . . . . + . . + . + . . 

Ranunculus kuepferi . . . . . . . . . . . . . . . r 3 . 1 . . . 

Ranunculus montanus . . . . . . . . . . . . . . . . . . r r . . 

Ranunculus montanus aggr. + + + . . . . . . . . . . . . . . . . . . . 

Ranunculus tuberosus r . . . . . . . . . . . . . . . . . . . . . 

Rhododendron ferrugineum . + . . . . . . . . . . . . . . . . . . . 1 

Sagina saginoides . . . r . . . . . . . . + + . + + . . . . . 

Salix foetida . . . . . . . . . . . . . . . . . 1 . . . 2 

Salix helvetica . . . . . . . . ( r ) . . . . . . . . . . . . . 

Salix herbacea + + . 2 . 1 3 . . . 2 1 2 r + 3 3 3 . . 1 . 

Salix reticulata . + . + . . . . . . . . . . . . . + . . . 2 

Salix retusa + 1 . 2 . . . . . . + . . . . . . . . . + 1 

Saxifraga aizoides . . . + + . . . . . . . . . . + . . . . . r 

Saxifraga androsacea r . . + + . . . . . . . . . + . . . . . . . 

Saxifraga bryoides . . . . . . . . . . . . . . . . . . . . + + 

Saxifraga exarata subsp. moschata + . . + . . . . . . . . . . . . . . . . . . 

Saxifraga oppositifolia . . . . . . . . . . . . . . + . . + . + + + 

Saxifraga oppositifolia s.str. . . . + + . . . . . . . . . . . . . . . . . 

Saxifraga paniculata . . . . . . . . . . . . . . . . . . . . . + 

Saxifraga seguieri . . . . . . . . . . . . . . + r r . . . . . 

Saxifraga stellaris . . . + . . . . . . + . . . r + + . . . . . 

Scabiosa lucida . . + . . . . . . . . . . . . . . . . . . . 

Sedum alpestre . . . . . . . . . . . . + . . . . . . . . . 

Sedum atratum + . . r . . . . . . . . . . . . . . . + . . 

Selaginella selaginoides . . . . . . . . . . . . . . + . . r . . . + 

Selaginella selaginoides  + + . . . . . . . . . . . . . . . . . . . . 

Sempervivum montanum . . . . . . . + + + . . . . . . . . 1 . . r 

Senecio incanus s.str. . . . . . . . . . . . . + + . . . . + . . . 

Serratula tinctoria subsp. monticola . r r . . . . . . . . . . . . . . . . . . . 

Sesleria caerulea + + 1 + . . . . . . . . . . . . . . . . . 1 

Sibbaldia procumbens . + . . . . . . . . . . 1 + + + . + r . . . 

Silene acaulis . . . + . . . . . . . . . . 1 . . . . . . + 

Silene exscapa . . . . . . . . . . + . . 1 . + + . + 1 + . 

Silene rupestris . . . . . . . . . . r . . . . . . . . . . . 

Silene suecica . . . . . . . . . . . . . . . . . . + . . . 

Soldanella alpina 2 1 . + . . . . . + . . + . . . . . . . . . 

Soldanella pusilla . . . . . 1 + + . . 1 1 . . . . ( r ) . . r . . 

Taraxacum alpinum . . . + . . . . . . . . 1 . . + . . . . . . 

Taraxacum alpinum aggr. . . . . . . . . . . . . . . 1 . . + . + . . 

Taraxacum cf schroterianum . . . . . . . . . . . . . . 1 . . . . . . . 

Thesium alpinum . . + . . . . . + . . . . . . . . . . . . . 

Thymus praecox subsp. polytrichus . . . . . . . . + . . . . . . . . . . . . . 

Thymus pulegioides  . . + . . . . . . . . . . . . . . . . . . . 

Tofieldia calyculata . r . . . . . . . . . . . . . . . . . . . . 

Trifolium alpinum . . . . . . . 1 . . . . r . . . . . . . . . 

Trifolium badium + + . . . . . . . . . . . . . + + . . + . + 
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Trifolium medium 1 . . . . . . . . . . . . . . . . . . . . . 

Trifolium pratense subsp. nivale . r . . . . . . . . . . . . . . . . . . . . 

Trollius europaeus + + . . . . . . . . . . . . . . . . . . . . 

Vaccinium gaultherioides . . . . . . . 2 . . . . . . . . . . . . 2 1 

Vaccinium myrtillus . + . . . . . + 1 r + r . . . . . . . . . . 

Vaccinium uliginosum + + . . . . . . . . . . . . . . . . . . . . 

Veronica alpina + r . + + + . . . . . + + + 1 + + . . + . + 

Veronica aphylla . . . . 1 . . . . . . . . . . . . . . . . + 

Veronica bellidioides . . . . . . . . . . . . . . . . . . 1 . . . 

Viola biflora . . . . . . . . + . . . . . . . . . . . . . 

Viola calcarata . . . . . . . . . . . . . . . r ( r ) . r + . . 
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D. Soil profile descriptions 

A graphic soil profile description is given for 20 soil profiles, among the 46 described. These 20 profiles 

have been selected as representative of the main soil types encountered.  

Soil nomenclature follows Baize and Girard (2009) and IUSS Working Group (2015). Nomenclature of 

humus forms follows Jabiol et al. (2013). 
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E. Supplementary material related to Chapter 4 
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Appendix E1 - Relative change in cover vs. relative change in frequency of the species occurring in at least 20% of 

the historical or recent records (frequent species). The relative cover and frequency of the frequent species are 

calculated separately for (a) calcareous grasslands and windy ridges (Seslerion and Elynion), (b) subalpine and 

alpine siliceous grasslands (Nardion and Caricion curvulae), and (c) typical and wet snowbeds (Salicion herbaceae 

and Caricion bicolori-atrofuscae). Dotted lines represent an arbitrary thereshold of ±1% in cover and frequency 

changes. Only the plant species above and below this threshold are taken into account in order to focus on the main 

changes. 

Plant species have been splitted into generalist and specialist ones based on Delarze and Gonseth (2008). This 

publication assigns to each Swiss plant species one or more natural habitats, from which the species is typical of. 

We defined a plant species as a specialist when only one habitat type was associated to it (filled circles), otherwise 

it is a generalist (hollow circles). Species names are provided only for winning (++) and losing (--) species.   
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Appendix E2 - Cover-weighted means of indicator values (Landolt et al., 2010) for light (L) in historical (white 

boxes) and recent (grey boxes) inventories for each plant community. “Sil.”: Siliceous; “subalp.”: subalpine. Black 

dots represent the mean values, the black line is the median and boxes are limited by 1st and 3rd quartiles. None of 

the change is significant with a pairwise Wilcoxon-Mann-Whitney test. 

 

 

 

Appendix E3 - Cover-weighted means of indicator values (Landolt et al., 2010) for soil pH (R) in historical (white 

boxes) and recent (grey boxes) inventories for each plant community. Symbols and abbreviations are the same as 

in Appendix E2. 
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Appendix E4 - Recent variation of the last snow day (a), first snow day (b) and growing season length (c) on 

Anniviers meteorological station (ANV, 2630 m a.s.l.; period 1998-2015), on the Oberwald one (OBW, 2430 m a.s.l.; 

period 2000-2015) and on the Ober Meiel (OBM, 2110 m a.s.l.; period 2001-2015), respectively close to the study 

sites of Rechy, Grimsel and Morteys. All the stations belong to the WSL Institute for Snow and Avalanche Research 

SLF (SLF-Messdaten © 2016). Days are calculated from the 1st of January. The “last snow day” is defined as the 

last day of the winter season with snow cover, the “first snow day” as the first day of the fall season with snow cover 

and followed by at least one week of continuous snow cover. The growing season length is the difference between 

the “first snow day” and the “last snow day”. The time series of these three parameters was tested for each station 

separately with ANOVA, and for all the stations combined with ANCOVA. No significant changes of the “last snow 

day”, “first snow day” and “growing season length” were detected over these 15-18 years.   
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Appendix E5 - Principal Component Analysis based on species composition and cover of the calcareous plant 

communities: calcareous grasslands (Seslerion), windy ridges (Elynion) The first axis represents 26.3 % and the 

second 9.8% of the total variance, respectively. Couples of historical (hollow symbols) and recent (full symbols) 

records are connected with dotted arrows. Shift of centroids are not represented as they are negligible.  

 

 

 

Appendix E6 - Principal Component Analysis based on species composition and cover of the siliceous plant 

communities: subalpine siliceous grasslands (Nardion), alpine siliceous grasslands (Caricion curvulae), typical 

snowbeds (Salicion herbaceae), wet snowbeds (Caricion bicolori-atrofuscae). The first axis represents 17.1 % and 

the second 10.5% of the variance, respectively. Couples of historical (hollow symbols) and recent (full symbols) 

records are connected with dotted arrows. Shift of centroids are represented by thick arrows, except for Caricion 

curvulae with a negligible shift.  
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F. Supplementary material related to Chapter 5 

Appendix F1 - Chemical and physical characteristics of the investigated soil horizons grouped by soil profile: name 

of the horizon according to Baize and Girard (2009) and Jabiol et al. (2013); its translation in FAO nomenclature 

(FAO, 2006); depth; root abundance according to FAO (2006 p. 60) and subdivided by root diameter when the 

information was recorded; horizon structure according to (FAO, 2006 p. 45), HCl reaction from 0 (non-calcareous) 

to 4 (extremely-calcareous) according to FAO (2006, p. 38); pH; proportions of Sand (0.063-2 mm); Silt (0.002-

0.063 mm); Clay (< 0.002 mm); organic Carbon; total Nitrogen; C/N ratio. Missing values are indicated by “-“. In 

the column of horizon names: “[ ]” = discontinuous horizon; “&” = presence of different horizons in the same layer, 

each keeping its properties; “-“ = the layer is a transition between two horizons with intermediate properties; “S*” 

= moss layer, both living and dead; “L*”= lichen layer, both living and dead.   

Profile 

Soil horizon 
(Baize & 
Girard, 2009 
& Jabiol et 
al. 2013) 

Soil 
horizon 
(FAO 
2006) 

Depth [cm] Root abundance Structure 
HCl 
react. 

pH 
(H2O) 

Sand 
[%] 

Silt 
[%] 

Clay 
[%] 

Corg 
[%] 

Ntot 
[%] 

C/N 

        0-2mm 2-5mm >5mm                   

M2716 OF&S* Oe 0-0.5 - - - - 38 47 15 24.7 1.5 16.6 

 
Aho Ah 0.5-3/6 many granular (micro) 0/4 5.5 9 59 32 9.5 0.8 12.0 

 
Ah Ah 3/6-8/10 common granular (micro) 0/4 5.5 7 57 35 6.7 0.7 10.3 

 
Ah-S Ah-B 8/10-14 common granular / blocky 

subangular 
0/4 6.5 5 60 35 5.6 0.6 9.8 

 
S Bw 14-32/41 very few blocky subangular 0/4 6.1 7 56 36 1.4 0.1 10.2 

  IIDca IIBw 32/41+ few - - - - - - - - - 

M2844 OLv Oi 0.5/0 - - - - - - - 29.3 1.1 25.6 

 
Aciho Ah 0/5.5 many granular 0/4 6.4 10 52 37 10.0 0.9 11.3 

 
Acih-Sci Ah-B 5.5/15.5 common granular/blocky 

subangular 
0/4 6.8 11 50 39 6.4 0.6 10.7 

 
Sca Bw 12189 few - - - - - - - - - 

  Sca&Dca Bw 33+ very few - - - - - - - - - 

M2965-6 OLv Oi 5-0 - - - - - - - - - 32.8 0.6 53.2 

 
Acaho A 0-1/4 - - - - 4/4 7.3 29 49 22 9.7 0.7 13.2 

 
Sca Bw 1/4-24/28 - - - - 4/4 7.5 22 49 29 3.8 0.4 9.3 

  Dca-Sca Bw 24/28-34+ - - - - 4/4 7.7 22 49 29 2.2 0.3 7.1 

M2976 OLv Oi 1-0 - - - - - - - - - 38.9 1.2 31.8 

 
OH Oa 0-0/3 - - - - 1/4 5.4 22 63 15 29.6 1.5 19.8 

 
Aciho Ah 0/3-6/8 - - - - 1/4 5.4 11 52 37 12.9 0.9 13.8 

 
Acih-Sci Ah-B 6/8-17/18 - - - - 1/4 5.3 6 54 40 7.5 0.6 12.4 

 
Sci Bw 17/18-32 - - - - 1/4 4.9 7 58 35 2.8 0.3 9.6 

 
Sci&Rca-
IICsi 

Bw&R-IIC 32-43 - - - - 0/4 5.3 8 55 37 2.0 0.2 8.9 

  Rca R 43+ - - - - - - - - - - - - 

M2980 OLv&S* Oi 0.5-0 - - - - - - - - - - 

 
OF&A A&Oe 0-1 common - 0/4 5.0 26 58 16 28.2 1.7 16.9 

 
Ah Ah 1-6 very few granular (micro) 0/4 5.0 7 59 34 6.3 0.6 10.9 

 
Agh-Sg Ah-Bg 6-11 very few granular (micro) / 

blocky subangular 
0/4 4.8 4 62 34 5.2 0.5 10.7 

 
S Bw 11-28 few blocky subangular 0/4 5.6 3 58 38 2.5 0.2 10.2 

 
S&Csi Bw&C 28-33 few blocky subangular 0/4 5.7 7 60 34 1.5 0.1 10.4 

 
IISg IIBg 33-41 few blocky subangular 0/4 6.3 5 60 35 1.1 0.1 9.1 

  IIS&Csi IIBw&C 41-50+ - blocky subangular 0/4&0/4 7.2 5 60 35 1.1 0.1 9.1 

M3109 [OLv] [Oi] 1.5/2-0 - - - - - - - 37.1 1.4 26.9 

 
A&OF A&Oe 0-2/3 common - 0/4 5.7 12 50 38 10.1 0.8 12.2 

 
Ah-S Ah-B 2/3-4/5 - - 0/4 5.7 8 50 41 8.5 0.7 11.6 
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Profile 

Soil horizon 
(Baize & 
Girard, 2009 
& Jabiol et 
al. 2013) 

Soil 
horizon 
(FAO 
2006) 

Depth [cm] Root abundance Structure 
HCl 
react. 

pH 
(H2O) 

Sand 
[%] 

Silt 
[%] 

Clay 
[%] 

Corg 
[%] 

Ntot 
[%] 

C/N 

        0-2mm 2-5mm >5mm                   

 
S&IIDca Bw 4/5-8/14 - - 0/4 6.4 6 51 43 4.8 0.5 10.2 

 
S&Csi&IIDca Bw-C 8/14-8/19 - - 4/4&1/4 6.5 7 51 41 3.3 0.4 9.4 

  S&Csi&IIDca Bw-C 8/19-39+ - - 0/4&1/4 5.6 9 50 40 4.7 0.4 10.6 

M3126 OLv Oi 4-0 - - - - - - - 50.3 0.7 71.6 

 
OF&Aci A&Oe 0-2 many granular (meso) 0/4 6.2 15 48 37 16.3 1.2 14.2 

 
Aciho Ah 2-6 many granular 1/4 6.2 17 46 37 12.1 1.0 12.7 

 
Aciho-Sci Ah-B 6-16 many granular / blocky 

subangular 
1/4 6.8 7 47 46 10.9 0.9 12.3 

 
Sci Bw 16-24 many - - - - - - - - - 

  Sca&Rca Bw&R 24-25+ many - - - - - - - - - 

M3127 [OLv][S*] [Oi] 1/4-0 - - - - - - - - - 37.2 1.0 36.6 

 
OF-Aci A-Oe 0-4 many - - granular (meso) 0/4 6.7 6 52 42 18.1 1.2 15.4 

 
Aciho-Sci Ah-B 4-14/15 many - - granular (meso) / 

blocky subangular 
0/4 6.2 4 49 47 10.7 0.8 12.9 

  Scih&Rca Bw&R 14/15-24/30 many - very few blocky subangular 0/4 6.9 5 49 46 9.7 0.7 13.2 

M3128 OLv-S* Oi 3/6-0 - - - - - - - - - 35.3 0.8 43.6 

 
OR A 0-5/8 many - - granular (meso) 0/4 6.5 10 54 36 19.6 1.1 18.6 

 
Aciho-Sci Ah-B 5/8-18/21 common very few - granular / blocky 

subangular 
0/4 6.6 21 47 33 12.3 0.7 17.1 

 
Sciho1&Rca Bw&R 18/21-40 few - very few blocky subangular 0/4 6.8 23 46 31 10.7 0.6 16.5 

  Sciho2&Rca Bw&R 40-44+ few - very few blocky subangular 0/4 7.1 21 48 31 9.5 0.6 16.5 

M3132 [OLv]&[S*] [Oi] 0.5-0 - - - - - - - - - - 

 
Aho Ah 0-1.5/3 common - 0/4 5.0 9 53 38 13.2 1.0 13.8 

 
S1 Bw 1.5/3-10/18 very few - 0/4 4.3 9 53 39 4.6 0.5 9.6 

 
S2 Bw 10/18-23 few blocky subangular 0/4 4.3 8 52 40 1.5 0.2 8.3 

 
Sg1 Bg 23-45 - blocky subangular 0/4 - 10 52 38 1.0 0.1 7.8 

  Sg2 Bg 45-68+ - - 0/4 5.7 10 49 41 0.9 0.1 7.8 

M3138 OLv Oi 2/5-0 - - - - - - - - - 37.9 0.7 51.9 

 
OF Oe 0-2 - - - - 0/4 6.6 - - - 36.1 1.5 24.4 

 
OR A 2-5/6 many common - granular (meso) 0/4 6.6 15 62 23 22.4 1.4 16.5 

 
Aciho-Sci Ah-B 5/6-16/19 common - very few granular (meso) / 

blocky subangular 
0/4 6.6 15 58 27 13.9 1.0 13.7 

  Scaho&Dca Bw 16/19-26 common few - blocky subangular 2/4 7.0 14 58 29 12.7 0.9 13.9 

M3139 OLv Oi 3/5-0 - - - - - - - - - 35.8 0.8 42.5 

 
Aci&OF A&Oe 0-3/6 many - few granular (meso) 0/4 6.1 23 51 26 12.6 0.7 18.2 

 
Scih1 Bw 3/6-7/16 common - - blocky subangular 0/4 5.5 18 53 29 6.0 0.4 14.6 

 
Scih2 Bw 7/16-24 common - - blocky subangular 0/4 6.3 19 52 29 6.2 0.4 15.6 

  Scih2&Rca Bw 24-27+ common - - blocky subangular 1/4 6.9 21 51 28 6.4 0.4 15.0 

M3140 OLv Oi 7-0 - - - - - - - 37.1 0.8 46.1 

 
Acaho Ah 0-1 many granular 4/4 7.4 13 50 37 10.6 1.0 10.8 

 
Acaho-Sca Ah-B 1-10/13 common granular / blocky 

subangular 
4/4 7.5 11 52 37 9.4 0.9 10.4 

 
Sca-Dca1 Bw 10/13-20 common - - - - - - - - - 

  Sca&Dca2 Bw 20-32+ very few - - - - - - - - - 

M3141 OLv Oi 0/7-0 - - - - - - - 35.0 0.7 51.4 

 
A&OF A&Oe 0-2/6 many granular 0/4 5.4 30 48 22 8.6 0.5 16.7 

 
S Bw 2/6-16/23 - blocky subangular 0/4 5.3 29 45 26 5.0 0.4 14.0 

  S&IIDca Bw 16/23+ - - - - - - - - - - 

M3150 OLv Oi 3/5-0 - - - - - - - 39.3 1.1 35.5 

 
OF Oe 0-5/8 many - 0/4 6.2 24 62 14 27.7 1.3 21.0 

 
Aciho A 5/8-10/13 many granular (meso) 2/4 6.2 16 47 38 18.4 1.1 16.0 

  Aciho-
Sci&Rca[Rsi] 

Ah-Bw&R 10/13-20+ - blocky subangular 0/4 6.9 9 42 48 12.0 0.9 13.9 

M3167/a [OLv]S* [Oi] 0.5/2-0 - - - - - - - - - 37.6 2.0 18.8 

 
Acih Ah 0-7/10 - - - granular (micro) 0/4 6.6 23 54 23 7.8 0.8 9.5 

 
Aca-Sca AB 7/10-

7.5/10.5 
- - - granular / blocky 

subangular 
- - - - - - - - 
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Profile 

Soil horizon 
(Baize & 
Girard, 2009 
& Jabiol et 
al. 2013) 

Soil 
horizon 
(FAO 
2006) 

Depth [cm] Root abundance Structure 
HCl 
react. 

pH 
(H2O) 

Sand 
[%] 

Silt 
[%] 

Clay 
[%] 

Corg 
[%] 

Ntot 
[%] 

C/N 

        0-2mm 2-5mm >5mm                   

 
Dca Bw 7.5/10.5-

10.5+ 
- - - - - - - - - - - - 

M3167/b Aho Ah 0.5/9 - - - granular (micro) 0/4 - 24 59 17 19.3 1.7 11.5 

M3592 [OF] [Oe] 0-0/5 - - - - 40 45 15 25.2 1.6 15.9 

 
OF-Aciho A-Oe 0/5-0/1 common granular (meso) 0/4 6.1 33 45 22 19.3 1.3 14.8 

 
Aciho A 0/1-2/23 common granular (meso) 1/4 7.1 21 48 32 11.5 1.0 11.2 

 
Acih-Sci AB 2/23-2/13 common blocky subangular 1/4 7.2 17 45 38 5.7 0.5 10.6 

 
Scih Bw 2/13-13/30 very few blocky subangular 1/4 7.1 21 44 35 6.9 0.6 11.2 

 
Sci Bw 13/30-13/35 few blocky subangular 1/4 7.3 8 48 45 3.4 0.3 10.9 

  Dca B 13/35-35+ - - - - - - - - - - 

M4121 OLv Oi 0.2-0 - - - - - - - - - 45.6 1.1 40.7 

 
OF Oe 0-0.5 - - - - - - 51 46 2 43.5 1.6 26.6 

 
OH Oa 0.5-2 - - - - 0/4 - 45 51 4 39.4 2.0 19.5 

  Rca R 2+ - - - - - - - - - - - - 

G47 OLv Oi 0/2-0 - - - - - - - 37.0 0.7 50.9 

 
OF Oe 0-2 many single grain 0/4 4.7 - - - 26.2 1.1 24.2 

 
miAho Ah 2-5 many single grain 0/4 4.7 24 69 7 15.2 0.8 19.9 

 
Ae AE 5-14 common single grain 0/4 4.6 56 40 5 2.2 0.2 14.0 

 
D [BPs-C] Bs-C 14-33 many - 0/4 - - - - - - - 

  D Bs-C 33-42+ common - 0/4 - - - - - - - 

G90 OLv Oi 2-0 - - - - - - - 40.4 0.9 45.1 

 
OF Oe 0-1 none - 0/4 4.7 - - - 40.1 1.6 24.7 

 
OH Oa 1-3/4.5 common granular (micro) 0/4 4.7 - - - 36.5 1.5 24.4 

 
sgAeho - D AE 3/4.5-8 many single grain 0/4 4.7 46 49 5 11.1 0.6 17.7 

 
BPs-BPh Bs-Bh 8-13.5 common granular (micro) 0/4 4.7 38 58 4 5.2 0.2 21.7 

 
BPs-D1 Bs 13.5-42 many granular (micro) 0/4 5.2 44 53 3 2.5 0.1 24.9 

  BPs-D2 Bs 42+ none - 0/4 - - - - - - - 

G92 S*[OLv] [Oi] 0.5-0 - - - - - - - - - - 

 
Ae AE 0-8.5 many single grain 0/4 4.1 26 70 4 8.6 0.5 17.5 

 
C-BPs1 Bs 8.5-15.5 many single grain 0/4 4.7 47 50 3 1.4 0.1 21.5 

 
C-BPs2 Bs 15.5-23.5 common single grain 0/4 5.1 65 32 3 1.1 0.1 20.6 

 
C-BPs3 Bs 23.5-26.5 common - 0/4 - - - - - - - 

 
C C 26.5-28.5 common - 0/4 - - - - - - - 

  R R 28.5+ - - 0/4 - - - - - - - 

G291 OLv Oi 1/2-0 - - - - - - - 37.5 0.8 47.3 

 
OF Oe 0-3 many - 0/4 4.1 - - - 38.4 1.9 20.7 

 
OH1 Oa 3-8 many - 0/4 4.1 13 80 7 30.0 2.1 14.4 

 
OH2 Oa 8-14 many - 0/4 3.1 12 79 9 27.1 1.6 17.0 

 
BPs-BPh Bs-Bh 14-22 common - 0/4 4.7 32 61 7 8.9 0.5 18.8 

 
Dsi-Csi C 22-25 - single grain 0/4 4.8 33 64 4 2.5 0.1 24.8 

 
IIA IIA 25-33/35 common - 0/4 4.9 44 52 4 3.3 0.1 27.3 

 
IIBPs-C1 IIBs-C 33/35-35/47 common - 0/4 - - - - - - - 

 
IIBPs-C2 IIBs-C 35/47-47 common - 0/4 - - - - - - - 

  IIBPs-C3 IIB-C 47-51+ common - 0/4 - - - - - - - 

G334 OF [OH] Oe [Oa] 0-3/7 many - - - - - - 37.8 0.8 44.8 

 
OH Oa 3/7-10 many single grain 0/4 2.5 31 62 6 28.8 1.2 24.0 

 
E E 10-18 common single grain 0/4 4.1 64 33 2 2.0 0.1 14.3 

 
BPh Bh 18-24 common single grain 0/4 4.5 47 50 3 3.9 0.2 20.8 

 
BPs 1 Bs 24-46 common single grain 0/4 4.7 49 48 3 2.6 0.1 22.4 

  BPs 2 Bs 46-52+ common single grain 0/4 4.8 47 51 2 1.4 0.1 21.2 
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Profile 

Soil horizon 
(Baize & 
Girard, 2009 
& Jabiol et 
al. 2013) 

Soil 
horizon 
(FAO 
2006) 

Depth [cm] Root abundance Structure 
HCl 
react. 

pH 
(H2O) 

Sand 
[%] 

Silt 
[%] 

Clay 
[%] 

Corg 
[%] 

Ntot 
[%] 

C/N 

        0-2mm 2-5mm >5mm                   

G336 A A 0-3 common single grain 0/4 4.1 40 54 6 8.2 0.6 12.7 

 
E E 3-9 common single grain 0/4 4.4 51 47 3 0.6 0.1 11.4 

 
E-BPh E-Bh 9-12 common single grain 0/4 4.3 65 33 2 1.0 0.1 17.7 

 
BPh Bh 12-15 common single grain 0/4 4.8 54 43 3 2.8 0.1 26.7 

 
BPs Bs 15-22 none single grain 0/4 5.0 67 31 2 - - - 

 
C1 C 22-28 none single grain 0/4 5.0 64 34 2 - - - 

 
C2 C 28-30 none single grain 0/4 5.0 73 26 1 - - - 

  C3 C 30-46+ none single grain 0/4 5.2 68 30 2 - - - 

G339 S* O 
 

- - - - - - - - - - 

 
A1 A 0-2 common single grain 0/4 3.9 36 59 5 5.6 0.3 19.1 

 
sgA2 A 2-10 common single grain 0/4 4.4 55 41 4 1.5 0.1 15.5 

 
A-C A-C 10-15/23 common single grain 0/4 4.6 62 35 4 2.0 0.1 17.3 

  Rsi R 15/23-23 - - 0/4 - - - - - - - 

G340 S*[OLv] Oi 2-0 - - - - - - - - - - 

 
Aho Ah 0-1 common granular (micro) 0/4 4.3 44 53 3 8.6 0.5 17.7 

 
A1 A 1-8 common granular (micro) 0/4 4.4 53 44 3 2.7 0.2 15.8 

 
A2 A 8-18 common granular (micro) 0/4 4.4 52 45 3 2.4 0.1 16.9 

 
A3 A 18-25 common granular (micro) 0/4 2.4 57 40 3 1.8 0.1 18.1 

 
C-BPs C-Bs 25-27 common single grain 0/4 2.5 52 46 2 1.2 0.1 19.8 

  Rsi R 27+ - - 0/4 - - - - - - - 

G350 OLv Oi 1-0 - - - - - - - 40.2 0.9 44.1 

 
OH Oa 0-4 many granular (micro) 0/4 5.2 - - - 31.2 1.7 18.1 

 
Ae AE 4-7 many single grain 0/4 3.0 49 47 4 3.5 0.2 14.1 

 
BPs1 Bs 7-20 many single grain 0/4 4.9 47 49 4 1.5 - - 

 
BPs2 Bs 20-24 common - 0/4 - - - - - - - 

 
C C 24-32 common - 0/4 - - - - - - - 

  Rsi R 32+ - - 0/4 - - - - - - - 

G403 S*-OLv Oi 1-0 - - - - - - - - - - 

 
Aho Ah 0-2 common single grain 0/4 4.6 28 67 5 17.0 1.0 17.3 

 
A1 A 2-6 common single grain 0/4 4.7 40 56 4 4.2 0.3 13.7 

 
A2 A 6-9.5 common single grain 0/4 5.0 45 52 4 1.9 0.1 14.0 

 
BPs-C1 Bs-C 9.5-11.5 common single grain 0/4 4.9 56 42 3 1.4 0.1 14.8 

 
BPs-C2 Bs-C 11.5-15.5 common - 0/4 - - - - - - - 

  Rsi R 15.5+ - - 0/4 - - - - - - - 

G421 OLv Oi 3-0 - - - - - - - 38.9 1.3 30.9 

 
OF Oe 0-3 many - - - - - - 31.5 1.6 19.3 

 
Aho Ah 3-7 many granular (micro) 0/4 3.8 30 64 6 13.2 0.9 14.3 

 
A-E AE 7-7/11 many single grain 0/4 4.2 34 59 7 4.9 0.4 13.1 

 
BPS2 Bs 7/11-18 many - 0/4 - - - - - - - 

 
BPS2* Bs 18-34 many - 0/4 - - - - - - - 

 
X - 34-43/52 many - 0/4 - - - - - - - 

  M  C 43/52-52 common - 0/4 - - - - - - - 

R264R S*[OLv] [Oi] 1.5-0 - - - - - - - - - 45.2 1.5 30.7 

 
[OF] [Oe] 0-1 - - - - - - - - - 37.6 1.7 22.7 

 
Aa A 1-2/4 common - - granular (meso) 0/4 4.6 18 79 2 15.5 1.0 15.4 

 
Gr Br 2/4-12 very few - - blocky subangular 0/4 5.0 26 73 2 1.4 0.1 9.8 

 
Msi C 12-28 very few very few - single grain / 

blocky subangular 
0/4 5.3 33 66 1 0.4 0.1 6.7 

 
Go1 Br 12-28 - - - single grain / 

blocky subangular 
0/4 5.0 31 67 1 0.6 0.1 6.9 

  Go2 Br 28-45+ very few - - blocky subangular 0/4 4.9 28 71 1 0.8 0.1 7.4 
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Profile 

Soil horizon 
(Baize & 
Girard, 2009 
& Jabiol et 
al. 2013) 

Soil 
horizon 
(FAO 
2006) 

Depth [cm] Root abundance Structure 
HCl 
react. 

pH 
(H2O) 

Sand 
[%] 

Silt 
[%] 

Clay 
[%] 

Corg 
[%] 

Ntot 
[%] 

C/N 

        0-2mm 2-5mm >5mm                   

R267R S*&OLv Oi 2-0 - - - - - - - - - 43.3 1.7 24.9 

 
OR A 0-3 many very few - granular (micro) 0/4 4.4 22 74 4 15.3 0.9 17.7 

 
Ae AE 3-9 few - - granular (micro) 0/4 4.3 20 76 4 4.3 0.3 13.5 

 
A&BPs-C A&Bs-C 9-21 common - - granular (micro) / 

single grain 
0/4 4.4 28 69 3 2.0 0.2 10.7 

  C C 21-30+ very few - - single grain 0/4 4.4 22 75 3 0.5 - - 

R3901 OLv Oi 1-0 - - - - - - - - - 42.2 1.1 38.8 

 
OF Oe 0-1 - - - - - - - - - 39.7 1.3 30.6 

 
Aho Ah 1-8 many very few - granular (micro) 0/4 5.4 20 76 4 12.1 0.8 15.0 

 
A A 8-13 common very few - granular (micro) 0/4 6.2 26 72 2 1.6 0.2 8.8 

 
S-Csi Bw-C 13-22.5 few - very few single grain / 

blocky subangular 
0/4 7.1 24 73 3 0.6 0.1 8.7 

 
Xgr&IICca1 C 22.5-30.5 very few - - no 4/4 & 

quartz 
grains 
0/4 

8.0 26 70 4 - - - 

 
Xgr&IICca2 C 30.5-40.5 - - - no - - - - - - - - 

 
Xgr&IICca3 C 40.5-50 very few - - no 4/4 & 

quartz 
grain 
0/4 

8.1 43 53 3 - - - 

  Xgr&IICca4 C 50+ very few - - no 4/4 & 
quartz 
grain 
0/4 

8.2 35 61 4 - - - 

R3913 S*[OLv]-A [Oi]-A 1-0 - - - - - - - - - 10.0 0.6 16.6 

 
A1 A 0-3.5 few - - granular (micro) 0/4 5.4 18 79 4 3.9 0.3 12.8 

 
A2 A 3.5-9.8 common very few - granular (micro) / 

massive 
0/4 5.5 28 70 2 1.5 0.1 12.4 

 
C1 C 9.8-14.5 very few very few - single grain 0/4 5.6 34 65 1 - - - 

 
C2 C 14.5-24 very few - - single grain 0/4 5.7 32 67 1 - - - 

 
C3[A3] C[A] 24-30 very few - - single grain 0/4 5.8 29 70 1 - - - 

 
II A IIA 30-33 very few - - granular (micro) 0/4 5.9 28 70 2 - - - 

  II C IIC 33-41+ very few - - single grain 0/4 5.9 32 67 1 - - - 

R3934 S* - 4-2 - - - - - - - - - - - - 

 
OM Oi 2-0 - - - - - - - - - 48.0 1.1 42.1 

 
Aa A 0-5 few few - massive 0/4 6.1 16 80 4 9.0 0.4 21.9 

  Aa&D A 5-8+ - - - - 0/4 - - - - - - - 

R3935 S*[OLv] [Oi] 1-0 - - - - - - - - - 59.0 2.2 26.3 

 
Aa A 0-1 few very few - massive 0/4 5.1 20 76 3 13.1 0.6 23.1 

 
A1 A 1-2 few very few - - 0/4 - 18 79 3 5.6 0.3 16.3 

 
A2 A 2-8 few - - granular (meso) 0/4 5.9 26 71 3 2.4 0.2 13.6 

 
A2[Gr] A[Br] 8-17 few very few - granular (meso) / 

blocky subangular 
0/4 5.9 23 74 3 2.0 0.2 12.8 

 
Gr1 Br 17-26 very few - - blocky subangular 0/4 6.0 26 72 3 - - - 

 
Gr1-C Br-C 26-36 very few - - blocky subangular 

/ massive 
0/4 6.2 18 78 3 - - - 

  Gr2 Br(W) 36+ - - - - 0/4 - - - - - - - 

R4003 S*[OLv][OF] [Oi][Oe] 2-0 - - - - - - - 44.2 1.8 25.0 

 
Aciho Ah 0-2/5 many granular (micro) 1/4 6.8 25 71 4 15.6 1.4 11.3 

 
Aca A 2/5-3/6 many granular (micro) 2/4 7.4 23 74 4 3.6 0.4 10.0 

 
Sca-Cca Bw-C 3/6-28/8 many blocky subangular 4/4 7.8 20 76 4 1.0 - - 

 
Xpca&Cca C 28/8-40 common single grain 4/4 7.9 22 74 4 1.1 - - 

  IICsi&Dsi IIC 40+ none - - - - - - - - - 

R4209 S*&L*&OLv Oi 0.5/1-0 - - - - - - - - - 47.8 0.6 75.8 

 
Aho Ah 0-3 common very few - granular (micro) 0/4 4.2 17 75 7 16.2 0.7 22.1 

 
Eh Eh 3-15 few very few - single grain 0/4 4.4 21 75 4 2.2 0.2 13.6 

 
BPs1 Bs 15-18 - - - single grain / 

blocky subangular 
0/4 4.6 23 72 5 2.0 0.1 17.4 

 
BPs2 Bs 18-24.5 very few - - single grain / 

blocky subangular 
0/4 4.7 17 78 5 1.2 - - 
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Profile 

Soil horizon 
(Baize & 
Girard, 2009 
& Jabiol et 
al. 2013) 

Soil 
horizon 
(FAO 
2006) 

Depth [cm] Root abundance Structure 
HCl 
react. 

pH 
(H2O) 

Sand 
[%] 

Silt 
[%] 

Clay 
[%] 

Corg 
[%] 

Ntot 
[%] 

C/N 

        0-2mm 2-5mm >5mm                   

  Rsi&BPs Bs&R 24.5-31.5+ few - - single grain / 
blocky subangular 

0/4 5.0 13 81 6 1.4 - - 

R4217 S*[OLv] Oi 0.5-0 - - - - - - - - - 50.0 1.2 43.4 

 
Aa A 0-2 few very few - massive 0/4 6.0 29 68 3 12.5 0.6 22.6 

 
Jshg Bg 2-9 few - - granular (micro) / 

single grain 
0/4 6.7 49 50 2 0.5 0.0 13.2 

 
D&Cg Cg 9-23/26 very few - - single grain 0/4 6.8 48 50 2 - 0.0 0.0 

  D&Go Br(W) 23/26-36+ very few - - single grain 0/4 6.3 42 56 2 - - - 

R4468 S*[OLv][OF] [Oi][Oe] 1-0 - - - - - - - 42.7 1.1 39.0 

 
Ag1 Ag 0-3.5 few granular (micro) 0/4 4.5 22 75 3 5.0 0.4 13.5 

 
Ag2 Ag 3.5-10.5 few granular (micro) 0/4 4.8 25 72 3 2.8 0.2 12.1 

 
g1 Bg 10.5-15.5 few granular (micro) / 

single grain 
0/4 5.3 25 73 3 0.7 0.1 7.6 

 
g2 Bg 15.5-20 very few blocky subangular 0/4 5.4 21 76 3 0.7 0.1 6.9 

 
g3 Bg 20-23.5 very few blocky subangular 0/4 5.3 24 73 3 1.5 0.2 9.5 

 
II A IIA 23.5-26.5 few granular (micro) 0/4 5.1 25 73 2 6.4 0.4 15.6 

  IIGr-C IIBr-C 26.5-34.5+ very few single grain - 5.4 34 64 2 - - - 

R4469 S*&L*[OLv][
OF] 

[Oi][Oe] 1-0 - - - - - - - - - 41.3 1.0 40.9 

 
miAho Ah 0-2 common - - granular (micro) 0/4 4.1 24 70 5 16.1 1.0 16.8 

 
Ae AE 2-8/10 very few - - granular (micro) 0/4 4.0 24 71 4 4.7 0.3 14.3 

 
BPs-C1&D Bs-C 8/10-17/22 very few - - granular (micro) 0/4 5.0 47 52 1 1.5 - - 

  BPs-C2&D Bs-C 17/22-43+ few few - single grain / 
blocky subangular 

0/4 6.1 34 64 2 0.8 0.1 6.3 

R4471 S*[OLv] [Oi] 0.5-0 - - - - - - - - - 35.2 1.0 34.9 

 
miAho Ah 0-3 few - - granular (micro) 0/4 4.2 32 63 4 15.2 0.9 17.1 

 
Ae AE 3-11 very few - - granular (micro) 0/4 4.1 32 65 4 4.1 0.3 15.2 

 
D-C1 around 
roots 

C 11- - - - - 0 4.3 37 59 3 1.9 - - 

 
Xp[C1-BP] Bs 0-32 few - - single grain 0/4 4.3 35 63 3 1.1 - - 

  D[C2] C 32-52+ very few - - blocky subangular 0/4 4.3 23 75 2 - - - 

R4482 OLv Oi 2/4-0 - - - - - - - 40.4 1.2 33.7 

 
Aci A 0-9 common granular (micro) 0/4 6.4 24 72 4 6.6 0.7 10.1 

 
Aci-Sci AB 9-18 common granular (micro) / 

blocky subangular 
1/4 6.8 25 72 3 2.1 0.3 7.0 

  Xpca&Cca C 18-52+ common single grain 4/4 7.5 18 80 2 1.2 - - 

R5061 S*[OLv] [Oi] 1-0 - - - - - - - - - 40.5 1.3 30.7 

 
Aa A 0-1/7 many - - massive 0/4 5.3 21 77 3 18.2 1.0 18.2 

 
A&D&Gr1 A&Br 1/7-6/9 many - - massive 0/4 5.7 19 78 3 4.3 0.3 13.2 

 
Gr1 Br 6/9-19 few - - single grain 0/4 6.0 41 57 2 0.5 - - 

 
Gr2 Br 19-25 very few - - single grain 0/4 6.3 46 52 2 - - - 

  Gr3 W 25-32+ - - - - - - - - - - - - 

R5067 [OLv] [Oi] 1-0 - - - - - - - - - 49.9 1.1 46.5 

 
[OF] [Oe] 0-0.5 - - - - - - - - - - - - 

 
OH Oa 0.5-1.5/4 many very few - granular (micro) 0/4 4.8 16 74 10 21.4 1.1 19.3 

 
Ae AE 1.5/4-

6.5/8.5 
very few - - single grain 0/4 4.6 25 71 5 4.2 0.3 13.7 

 
BPs-C Bs-C 6.5/8.5-

10/11.5 
few - - single grain 0/4 4.9 26 70 4 2.6 - - 

 
C C 10/11.5-

14.5/20.5 
very few - - single grain 0/4 5.2 35 61 3 1.8 - - 

  Rsi&Rca R 14.5/20.5+ - - - - 0/4 - - - - - - - 

R5141 S*[OLv] [Oi] 1-0 - - - - - - - - - 39.7 1.9 20.8 

 
OH Oa 0-4/5.5 many few - massive 0/4 5.5 36 61 3 25.7 1.2 21.0 

 
C1-OH C-Oa 4/5.5-10 common - - single grain 0/4 4.1 34 64 2 2.4 - - 

 
C2 C 10-16.5 few - - single grain 0/4 4.3 37 61 2 1.5 - - 

  D[C2] C 16.5-21 - - - - - - - - - - - - 

R5145 OLv[OF] Oi[Oe] 1-0 - - - - - - - 39.9 1.4 28.7 
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Profile 

Soil horizon 
(Baize & 
Girard, 2009 
& Jabiol et 
al. 2013) 

Soil 
horizon 
(FAO 
2006) 

Depth [cm] Root abundance Structure 
HCl 
react. 

pH 
(H2O) 

Sand 
[%] 

Silt 
[%] 

Clay 
[%] 

Corg 
[%] 

Ntot 
[%] 

C/N 

        0-2mm 2-5mm >5mm                   

 
Aho Ah 0-3/6 many granular (micro) 0/4 6.0 10 87 3 14.8 0.8 18.6 

 
A A 3/6-6 many granular (micro) 0/4 5.7 16 82 2 5.4 0.3 18.9 

 
A&D1 A 6-11 many granular/single 

grain/blocky 
subangular 

0/4 5.8 21 77 2 2.0 - - 

 
A&D2 A 11-20 common granular/single 

grain 
0/4 5.8 24 73 2 1.4 - - 

  C&Dca C 20-30+ common blocky subangular 0/4 & 
stones 
2/4 

6.2 20 78 1 - - - 

 

 

 

 

      

 

Appendix F2 - Observation of soil macrofauna in two soil profiles in the Morteys site: (a and b) Profile M3109, 

Dystric Brunisol, Oligomull, 1900 m; (c) profile M3139, Eutric Cambisol, Oligomull (Hyperhumic, Rhizic), 1774 m.  

 

 

 

 

 

  

  

a b 

c 
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G. Supplementary material related to Chapter 6 

 

Appendix G1 - Box plot of R-Index for litter, topsoil, and subsoil mineral layers among the eight plant 

communities. The bold horizontal line in the boxes corresponds to the median, the whisker bars indicate data range 

within 5 and 95th percentiles and the numbers above plots refer to the number of samples. Colours represent the 

eight plant communities. “Silic.”: siliceous. “subalp.”: subalpine. 

 

 

Appendix G2 - Principal Component Analysis (PCA) based on plant species composition and cover. Each point 

represents a plant inventory associated to a soil profile. The first axis represents 17.1% and the second 9.1% of the 
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total variance in the dataset. Colours represent the eight plant communities. Same colours and abbreviations as in 

Appendix G1.  

 

 

Appendix G3 - Thermal stability (R-Index) of the litter layer plotted against the Hydrogen Index (HI). Same 

colours and abbreviations as in Appendix G1.  

 

 

Appendix G4 - R-Index of mineral topsoil layers as a function of their depth. Lines join A horizons of the same 

soil profile. Only soil profiles presenting more than one A horizon are represented (n=28).  
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Appendix G5 - R-Index values plotted against silt % (a) and HI (b), respectively the third and fourth most 

important predictors of OM thermal stability in the subsoil. Symbols represent the horizon categories. Same colours 

and abbreviations as in Appendix G1.  

 

 

Appendix G6 - Relationship between scores from the first principal component of vegetation composition and (a) 

the lithology of soil’s parent material, (b) the dominant soil-forming process. For lithologies, the “Calcareous” 

category refers to limestones, calcareous sandstones, marbles, and surficial deposits (screes and moraines) derived 

almost exclusively from these materials. The “Mixed” category contains surficial deposits of mixed origin 

(sedimentary, metamorphic, and igneous components). The “Si-rich” category contains granite, gneiss, quartzite, 

and surficial deposits derived almost exclusively from these materials. Regarding the soil-forming processes, the 

“Circumneutral” category refers to weakly differentiated solums (Cambisols, Leptosols, Regosols, Gleysols, 

Stagnosols) with a subsoil of pH > 6, while the “Acid” category refers to weakly differentiated solums with a subsoil 

at pH < 5.6. “Humic Podzols” and “Ferric Podzols” refer to acid solums with illuvial subsoil horizons enriched in 

organic compounds and/or sesquioxides. Black dots represent the mean values, the black line is the median, and 

boxes are limited by 1st and 3rd quartiles. Numbers of observations are indicated above boxplots. 
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Appendix G7 - Relationship between scores from the first principal component of vegetation composition and (a) 

pH of topsoil layers (Pearson’s r= -0.75, -0.84< r < -0.64) and (b) pH of subsoil layers (r= -0.70, -0.80 < r < -0.56) 

with their respective regression lines. Same colours and abbreviations as in Appendix G1.  

 

 

Appendix G8 - Relationship between the R-index and (a) the lithology of soil’s parent material, (b) the dominant 

soil-forming process. Same symbols and legend as in Appendix G6.  
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Appendix G9 - Relationship between the vegetation type and (a) the total organic C concentrations (TOC), (b) 

total Nitrogen concentration (Ntot) and (c) their ratio (C/N) of the litter samples. Same symbols as in F6. Same 

colours and abbreviations as in Appendix G1.  

 

 

Appendix G10 - Relationship between the Hydrogen Index (HI) and the type of mineral subsoil layers. The first 

four horizon types represent the podzolic soil sequence, including: “E”(eluvial horizon); “Bh” (illuvial accumulation 

of organic matter), average pH = 4.7; “Bs”(illuvial accumulation of sesquioxides), average pH = 4.9; “podzolic C” 

(horizon weakly affected by pedogenic processes underlying a podzolic profile). The next four horizon types are 

found in weakly-developed solums such as Cambisols, Leptosols, and Regosols and include: “Bsi” (siliceous, low Ca 

saturation), average pH=5.7; “Bci” (absence of Ca-carbonate but high Ca saturation), average pH = 6.7; “Bca” 

(presence of calcium (Ca) carbonate), average pH = 7.5; “C” (horizon weakly affected by pedogenic processes). The 

next two horizon types are found in soils with expressed redoximorphic features and include “Bg” (stagnic 

conditions) and “Br” (strong reducing conditions) horizons. The last class “IIA”refers to buried A horizons (FAO, 

2006). Same symbols as in Appendix G6.  
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Abstract

While the upward shift of plant species has been observed on many alpine and

nival summits, the reaction of the subalpine and lower alpine plant communi-

ties to the current warming and lower snow precipitation has been little investi-

gated so far. To this aim, 63 old, exhaustive plant inventories, distributed along

a subalpine–alpine elevation gradient of the Swiss Alps and covering different

plant community types (acidic and calcareous grasslands; windy ridges; snow-

beds), were revisited after 25–50 years. Old and recent inventories were com-

pared in terms of species diversity with Simpson diversity and Bray–Curtis
dissimilarity indices, and in terms of community composition with principal

component analysis. Changes in ecological conditions were inferred from the

ecological indicator values. The alpha-diversity increased in every plant commu-

nity, likely because of the arrival of new species. As observed on mountain

summits, the new species led to a homogenization of community compositions.

The grasslands were quite stable in terms of species composition, whatever the

bedrock type. Indeed, the newly arrived species were part of the typical species

pool of the colonized community. In contrast, snowbed communities showed

pronounced vegetation changes and a clear shift toward dryer conditions and

shorter snow cover, evidenced by their colonization by species from surround-

ing grasslands. Longer growing seasons allow alpine grassland species, which are

taller and hence more competitive, to colonize the snowbeds. This study

showed that subalpine–alpine plant communities reacted differently to the

ongoing climate changes. Lower snow/rain ratio and longer growing seasons

seem to have a higher impact than warming, at least on plant communities

dependent on long snow cover. Consequently, they are the most vulnerable to

climate change and their persistence in the near future is seriously threatened.

Subalpine and alpine grasslands are more stable, and, until now, they do not

seem to be affected by a warmer climate.

Introduction

During the end of the 20th century (1975–2004), the

mean annual temperature in Switzerland increased by

0.57°C per decade with a stronger trend in spring and

summer seasons (Rebetez and Reinhard 2008). After a

gradual increase until the early 1980s, snow precipitation

in Switzerland significantly decreased (Laternser and Sch-

neebeli 2003) with a particularly pronounced trend at

lower elevations (501–800 m a.s.l., Serquet et al. 2013).

Snowfall decreased above 1700 m as well, but only at the

beginning and at the end of the winter season (Serquet

et al. 2013). At such elevations, winter temperatures are

generally much lower than the melting point, and, even

with warmer conditions, there is little potential for a

decrease in snowfall days (Serquet et al. 2011). By con-

trast, the combination of higher temperatures and lower

snowfalls during the spring season results in a lower snow

cover (IPCC, 2014), earlier melt-out dates, and longer

growing seasons for plants (Dye 2002). Future scenarios

predict the continuation of this trend through the 21st

century and indicate that vegetation of high latitudes and

elevations is the most threatened (ACIA, 2005; IPCC,

2014).
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Impacts of the recent climate change on alpine vegeta-

tion have been largely recorded by many long-term stud-

ies on European upper alpine and nival summits. Authors

observed an increase in species richness during the last

century (see St€ockli et al. 2011 for a review), already

noticeable on a shorter timescale (2001–2008; Pauli et al.
2012). The newly arrived species are subalpine and lower

alpine species (Vittoz et al. 2008a; Engler et al. 2011) and

now, because of longer growing seasons, they are able to

grow at higher elevations. Space on the summits is not a

constraint to colonization as it is widely available. How-

ever, the upward shift of plant species led not only to

higher species number, but also to a homogenization of

plant composition across Alpine Swiss summits (Jurasin-

ski and Kreyling 2007). Similarly, vegetation of the high

northern latitudes has been changing over the past few

decades and a general increase in biomass and prolifera-

tion of shrub species are responsible for the tundra

“greening” (see Epstein et al. 2013 for a review).

Many more uncertainties exist about the effects of cli-

mate warming at lower elevations. A shift of tree line north-

wards and to higher elevations is the most often observed

change on European mountain ranges (see Garamvoelgyi

and Hufnagel 2013 for a review). In the Swiss Alps, the for-

est limit moved upward with a mean decadal increment of

28 m between 1985 and 1997 (Gehrig-Fasel et al. 2007).

However, between tree line and the upper alpine–nival belt,
there is a wide range of plant communities whose responses

to altered temperatures and precipitations have been poorly

investigated so far. This is unfortunate, as identifying the

most threatened plant communities is very important to

establish proper conservation measures. Some previous

long-term surveys focused on changes of specific plant

community, such as alpine siliceous grasslands (Dupr�e

et al. 2010; Windmaißer and Reisch 2013), calcareous

grasslands (Kudernatsch et al. 2005; Vittoz et al. 2009), or

snowbed communities (Carbognani et al. 2014; Pickering

et al. 2014; Sandvik and Odland 2014). However, only a

couple of studies located in the Scottish highlands (Britton

et al. 2009; Ross et al. 2012) and one in the Italian Alps

(Cannone and Pignatti 2014) looked at long-term vegeta-

tion changes in a variety of alpine plant communities.

At these elevations, the effects of climate and land-use

changes are difficult to disentangle. Indeed, seasonal graz-

ing has been decreasing and many pastures have been

abandoned since the end of the nineteenth century (B€atz-

ing 1991). This highly contributed to the forest expansion

toward higher elevations (Gehrig-Fasel et al. 2007; Vittoz

et al. 2008b) and favored the arrival of plants from fallow

and wood edge communities in the subalpine grasslands

(Vittoz et al. 2009). Moreover, as a result of industrial,

traffic, and agronomic emissions, tropospheric concentra-

tions of nitrogen compounds have increased remarkably,

reaching levels that are likely to affect the aboveground

productivity of alpine plants (Bassin et al. 2007).

It has been demonstrated that nitrogen deposition

causes a decrease in species richness in the Swiss montane

grasslands, with oligotrophic, and usually rare, species

being particularly disfavored (Roth et al. 2013). Subalpine

and alpine grasslands are likely more vulnerable to nega-

tive effects of N deposition, as they have shorter growing

seasons and generally thinner and nutrient poorer soils

(Bowman et al. 2012). However, increased N depositions

may have different consequences between habitats: using

a plant trait analysis, Maskell et al. (2010) showed that

eutrophication and acidification occurred, both of which

can be responsible for species loss. Indeed, in a moss-

dominated alpine heath of Northern Europe, N deposi-

tion seems to trigger a decline of plant diversity and of

shrub, bryophyte and lichen covers, but an increase in the

graminoid cover (Armitage et al. 2014).

A powerful and widely used tool to identify factors

driving the vegetation changes is the species indicator val-

ues of Landolt et al. (2010) for the flora in the Alps or

those of Ellenberg et al. (1991) in Central Europe. These

semiquantitative parameters, although inferred from field

experience and not from direct measurements, have been

shown to give pertinent indications of the species ecologi-

cal optima within small spatial areas in Alpine landscapes

(Scherrer and K€orner 2011). Specifically, the temperature

indicator value is significantly correlated with the average

soil temperature, which is far more representative of

actual conditions experienced by low-stature alpine plants

than the air temperature interpolated from meteorological

stations (Scherrer and K€orner 2011).

For the purpose of this study, 63 exhaustive plant

inventories performed on six plant community types dur-

ing the period 1964–1990 and located between the sub-

alpine and alpine belts of the Swiss Alps have been

revisited. Through a time comparison of species frequen-

cies and cover, and with the help of indicator values, the

following questions are targeted: (1) Are there observable

changes in the subalpine–alpine vegetation over the last

25–50 years in species richness and community composi-

tion in the Alps? (2) Do the magnitude and direction of

changes vary across different plant communities and

how? (3) What are the environmental conditions that can

explain the observed changes?

Materials and Methods

Study sites

Three study sites are located in the Northern Alps and

western central Alps of Switzerland (Fig. 1). The North-

ern Alps are characterized by higher precipitations than
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the Central Alps. The Morteys area (46°320N, 7°090E) is

situated on a calcareous bedrock with karstic geomor-

phology. The plots are located between 1698 and 2232 m

a.s.l., in the transition from the subalpine to the lower

alpine belt. The mean annual temperature is about 2.1°C,
and the annual precipitations are 1650 mm (Zimmer-

mann and Kienast 1999). The annual sum of fresh snow

thickness decreased by 34.1 cm per decade between 1964

and 2011, while the mean summer temperature (from

June to September) increased by 0.47°C per decade dur-

ing the same period at the closest meteorological station

(Château-d’Oex, 1029 m; Fig. 2 and Appendix S1).

The Grimsel area (46°320N, 8°160E) is situated on

gneiss and granodiorite bedrocks (Oberh€ansli et al. 1988).

The slopes in the Grimsel Valley are covered by various

moraine deposits from the last maximum glacier advances

that occurred between 1860 and 1920 (Ammann 1979).

The plots are situated in the lower alpine belt, between

2310 and 2650 m a.s.l., and are characterized by mean

annual temperature and precipitations of �0.44°C and

2071 mm, respectively (Zimmermann and Kienast 1999).

The annual sum of fresh snow thickness decreased in

average by 71.2 cm per decade, and the mean summer

temperature rose by 0.41°C per decade between 1964 and

2011 (Grimsel Hospiz, 1980 m; Fig. 2 and Appendix S1).

The R�echy area (46°100N, 7°300E) is located on a mixed

bedrock composed by gneiss, mica schists, quartzite, calc-

shists, marble, and cornieule and is shaped by geomor-

phological processes related to glaciers, gravity

movements, and cryoturbation. A mosaic of acid and

alkaline soils characterizes the area. Elevation of the vege-

tation plots ranges from 2328 to 2697 m a.s.l., namely the

tree line ecotone and the lower alpine belt of the region.

The area is the coldest and the driest among the three

study sites, with a mean annual temperature of �0.53°C
and 1480 mm of annual precipitations (Zimmermann

and Kienast 1999). The annual sum of fresh snow thick-

ness decreased by 24.1 cm, whereas the mean summer

temperatures increased by +0.25°C per decade (Evol�ene,

1825 m; Fig. 2 and Appendix S1) during the 1987–2013
time span (no data available before).

The three study sites have been partially included in

natural reserves for several decades. Except for Grimsel,

where there has been no cattle grazing since 1953, the

two other sites are currently pastured in some parts.

Thanks to the natural reserve management in Morteys,

the land use (cow and goat grazing) has barely changed

during the last 40 years. In R�echy, the type and amount

of cattle have fluctuated since the 1970s with alternating

cow and sheep grazing, proportions depending on both

elevation and location.

The total nitrogen deposition in Morteys and Grimsel

areas for the year 2007 amounted on average to 10.4 and

6.8 kg N�ha�1�year�1, respectively (according to Roth

et al. 2013; data from FOEN Federal Office for the Envi-

ronment). Data for the R�echy area were not calculated,

but are comparable to those of Grimsel area because of

the similar elevations and distance to main towns.

Vegetation data

In order to have a complete overview of reactions of sub-

alpine–lower alpine vegetation to climate change, six

Figure 1. Study site area. Stars represent the three study sites, and

triangles, the corresponding meteorological stations (Château-d’Oex

for Morteys, Grimsel Hospiz for Grimsel, Evol�ene for R�echy).

Figure 2. Annual sum of the fresh snow thicknesses daily measured

at 5:40 a.m. from 1964 to 2011 (at Château-d’Oex – CHD, and

Grimsel Hospiz – GRH weather stations) and from 1987 to 2011 at

the Evol�ene (EVO) weather station (MeteoSwiss network, Begert et al.

2005). The overall decrease in the snow amount among the three

stations is significant (ANCOVA test, P-value < 0.001).
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common vegetation types, for which more historical data

are available, were selected (Table 1 and Appendix S2).

Each vegetation type corresponds to a phytosociological

alliance given between brackets: calcareous grasslands

(Seslerion) located in the subalpine–alpine belt, generally

on very steep, south-exposed slopes; windy ridges (Ely-

nion) in alpine belt, situated mostly on calcareous sub-

strates; siliceous subalpine grasslands (Nardion); siliceous

alpine grasslands (Caricion curvulae); typical snowbeds

(Salicion herbaceae) associated with very long snow cover

and acidic soil conditions; wet snowbeds (Caricion bicol-

ori-atrofuscae) also associated with very long snow cover,

but close to running water, brought by rivers or firn

melting, or close to lakes.

Among the available data, a selection of the most

promising historical records was performed according to

criteria of reliability and possibility to relocate them. The

historical records were achieved by several botanists from

1965 to 1990 (Table 1) with most data being collected

during the 1970s (1980s in the case of wet snowbeds).

The inventories were only partly published (Ammann

1974; Richard et al. 1977, 1993), but field books were

available for most of them and they represented the main

information source. Because of their localization on topo-

graphic or vegetation maps (1:25,000 or more precise),

the plot areas were approximately localized in the field,

with a precision of � 10–50 m. Each area was extensively

visited, and, on the basis of information contained in the

historical field books (site description, elevation, surface,

slope, and exposition), the possible plot sites were

defined. The exact plot location was selected in order to

have a species composition as close as possible to the his-

torical one. This permits a conservative approach of

potential changes. When no area corresponded to the his-

torical description, or when vegetation was markedly dif-

ferent, the site was discarded. Only historical records

separated by a distance >10 m were retained in order to

avoid spatial autocorrelation. Finally, 63 plots have been

localized with a high confidence level. A new exhaustive

record of all vascular plants was performed during sum-

mers 2013 or 2014 at the phenological optimum, within

the same area as the historical one. Species cover was

visually estimated, as in historical inventories, according

to cover classes of Braun-Blanquet (1964; Table 2). The

plots were marked with metal plates in soil and the four

corners measured with a high precision GPS (GeoXT,

Trimble, Sunnyvale, CA) in order to enable their future

use as permanent plots. Finally, the nomenclature of spe-

cies is according to Aeschimann et al. (1996).

Data analyses

The potential mistakes in species identifications, or

changes in nomenclature and aggregation level between

the two periods, were corrected by a scrupulous check of

possible synonymies and by aggregating the pairs of spe-

cies with frequent confusions into the same taxon. One

frequent problem in plant monitoring studies is the over-

looked species in one of the surveys (Vittoz and Guisan

2007; Burg et al. 2015). This bias is particularly likely to

cause artifact in this study, as recent inventories involved

generally two botanists instead of one in the historical

records, and because the historical inventories, especially

those of Richard et al. (1977), were not performed for

monitoring purposes, but for the classification of plant

communities. Changes in diversity between pairs of

records were not expressed in terms of species richness

but using the Simpson diversity index, which is less sensi-

tive to the species with low cover. This is justified in

order to minimize the influence of a possible bias related

to the fact that species with very low cover are mainly

those overlooked (Vittoz and Guisan 2007).

Two conversions of Braun-Blanquet’s scale were used

for subsequent analyses. The Braun-Blanquet’s scale was

Table 1. Number of plots, time spans, authors, and elevation ranges of historical and recent surveys ordered by study site (upper part) and plant

community (lower part). The names of the historical botanists are abbreviated as follows: Jean-Louis Richard (JLR), Klaus Ammann (KA), Benôıt

Bressoud (BB), Olivier Duckert (OD). Numbers in brackets refer to medians.

Site No. of plots Historical survey Author(s) of historical data Elevation (m)

Morteys 12 1972–1979 (1973) JLR 1698–2232 (1884)

Grimsel 25 1964–1973 (1970) KA 2310–2650 (2329)

R�echy 26 1977–1990 (1981) BB, JLR, OD 2328–2697 (2567)

Plant community

Calcareous grasslands 10 1972–1973 (1973) JLR 1698–2099 (1807)

Windy ridges 13 1975–1990 (1979) BB, JLR, OD 2180–2697 (2430)

Siliceous subalpine grasslands 12 1964–1973 (1967) KA 2312–2370 (2320)

Siliceous alpine grasslands 11 1965–1989 (1970) JLR, KA 2300–2682 (2528)

Typical snowbeds 8 1970–1981 (1973) BB, JLR, KA 2313–2685 (2460)

Wet snowbeds 9 1977–1990 (1988) JLR 2468–2677 (2585)
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converted into the median of the cover class (Table 2), in

order to test the changes in the species cover between the

different periods. By contrast, for all other analyses

(Simpson diversity, Bray–Curtis dissimilarity, PCA, mean

ecological values), numerical codes (Gillet 2000) were

used because they preserve the importance of the less

abundant species, a crucial point in such analyses, by

reducing the weight given to dominant ones (high cover).

A possible homogenization in plant composition

between historical and recent records in a same vegetation

type was tested with the Bray–Curtis dissimilarity. This

index computes the beta-diversity between a given record

and all the others during the same time period, consider-

ing their respective species composition and cover. Means

of dissimilarity indices were computed for each record

separately for historical and recent surveys. Pairwise Wil-

coxon–Mann–Whitney tests were used to compare tem-

poral differences between medians of Simpson diversity

indices and mean Bray–Curtis dissimilarities. The Wil-

coxon test was applied firstly in the bilateral mode, and,

if it gave a significant result, the unilateral mode was

applied as well. The P-values reported in the text refer to

the unilateral mode.

The difference between recent and historical species fre-

quencies was calculated and tested with a restricted per-

mutation test following Kapfer et al. (2011) within each

plant community. Treating historical and recent invento-

ries separately, the occurrences of each plant species

among plots were shuffled randomly 999 times and new

frequencies were calculated for each repetition. Signifi-

cance levels were assessed by counting the number of

times the changes in frequency between random historical

and recent data was larger or equal to the observed

changes in frequency between observed historical and

recent data. For the species present simultaneously in at

least 25% of the historical and recent inventories, a mean

cover was calculated considering only the plots where the

species was observed. Changes in mean cover were tested

with the same restricted permutation test used for species

frequency but using the mean cover values instead (Kap-

fer et al. 2012).

The floristic shifts between historical and recent records

were visualized using two principal component analyses

(PCA, R vegan library): one based on species composition

and cover, and the other based on presence–absence data.

The cover values were previously submitted to Hellinger

transformation, which is recommended when performing

PCA with species cover data (Borcard et al. 2011). In

order to test the significance of the temporal shifts in spe-

cies composition and cover along the first three axes of

PCA, a multivariate analysis of variance (MANOVA) was

applied on the differences of axis scores against the inter-

cept for each vegetation type individually (Vittoz et al.

2009).

Landolt ecological indicator values (Landolt et al.

2010) were used to investigate which of the environmen-

tal factors were related to the changes. These values,

which are species specific, vary between 1 and 5 and

express increasing species requirements in terms of air

temperature (T), light (L), soil humidity (F), soil pH (R),

and nutrient content (N). Mean indicator values per plot

were calculated with the cover as a weight. Temporal

changes of mean indicator values were checked using

pairwise Wilcoxon–Mann–Whitney tests. All data process-

ing and analyses were performed with R software, version

3.1.1 (R Core Team, 2014).

Results

Distribution among vegetation types

Sixty-three pairs of reliable records have been retained

(Table 1): 10 in the calcareous grasslands, 13 in the windy

ridges, 12 in the siliceous subalpine grasslands, 11 in the

siliceous alpine grasslands, 8 in the typical snowbeds, and

9 in the wet snowbeds. A clustering analysis (using the

Hellinger distance and the Ward aggregation algorithm)

of cover-weighted historical and recent inventories

together showed that all old and recent records were

placed by pairs in the same group corresponding to their

respective plant community, except for one snowbed plot

(R3935), which shifted from the wet to the typical snow-

beds. For subsequent analyses, this record was retained at

its original group.

Diversity changes

Between the historical and the recent surveys, 47 of 63

plots show an increase in alpha-diversity and 16 show a

decrease. The magnitude of the increase varies between

Table 2. Braun-Blanquet’s scale used in both historical and recent

inventories to estimate plant cover, the corresponding cover range

and medians, used in analyses of cover changes. Numerical codes

used in all other analyses are also listed.

Braun-Blanquet’s

code

Cover

range

Median

of the

cover

range (%)

Numerical

code (Gillet

2000)

r 1 or 2 individuals 0.05 0.1

+ <1% 0.5 0.5

1 1–5% 3 1

2 6–25% 15 2

3 26–50% 37.5 3

4 51–75% 62.5 4

5 76–100% 87.5 5
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vegetation types (Fig. 3). The windy ridges show the

highest increase in the mean Simpson diversity index

(+6.3 � 6.0, difference between medians being significant

with a P-value = 0.004), followed by the siliceous sub-

alpine grasslands (+4.8 � 6.7, P-value = 0.017) and the

wet snowbeds (+4.1 � 3.5, P-value = 0.004). The increase

in alpha-diversity in the other plant communities is not

significant.

Beta-diversity shows an opposite trend with a slight

decrease in the mean Bray–Curtis dissimilarity index

between historical and recent records in each plant com-

munity, except for the calcareous grasslands (Fig. 4),

whose inventories always show the same low dissimilarity

level. The highest homogenization is observed in the silic-

eous alpine grasslands, where the mean dissimilarity index

decreased by 0.05 � 0.03 (P-value = 0.002), followed by

the windy ridges (�0.04 � 0.04, P-value = 0.002) and the

siliceous subalpine grasslands (�0.04 � 0.04, P-

value = 0.010). The two snowbeds also show a dissimilar-

ity decrease, but not significantly.

Shifts of plant communities

The six plant communities display different directions

and amplitudes in their temporal shifts in the cover-

weighted PCA (Fig. 5). The first two axes of PCA explain

23.3% of the total variance (PC1: 13.0%; PC2: 10.3%).

The most evident shifts are those of snowbeds: the typical

ones show a significant (P-value = 0.012) unidirectional

trend toward the siliceous alpine grasslands, while the

recent species composition of the wet snowbeds is signifi-

cantly closer (P-value = 0.006) to the typical snowbeds

than the historical composition. The windy ridges plots

shift in two main directions (P-value = 0.047), either

toward calcareous grasslands or the siliceous ones. The

three grassland communities have no significant shift in

species composition. In particular, the calcareous grass-

lands display a high stability in terms of species composi-

tion. Similar trends, in direction and magnitude, are

displayed when presence–absence data are considered

(Fig. 6). However, four couples of records originally

attributed to the siliceous alpine grasslands are here

assimilated to the typical snowbed group, sharing with it

the same unidirectional trend toward siliceous grasslands.

These records have a species composition similar to those

of typical snowbeds, but, because of the dominance of

some grassland species, they are assimilated to the alpine

grassland group when cover is taken into account. Hence,

they can be considered as transition between snowbeds

and siliceous alpine grasslands.

Changes in species frequency and cover

In all the vegetation types but the calcareous grasslands,

the number of species, whose frequency increased since

the historical survey, exceeds species whose frequency

decreased (data available from the Dryad Digital Reposi-

tory: http://dx.doi.org/10.5061/dryad.q82j0), and only

increasing frequencies are significant. Regarding changes

in species cover, most of the species in the calcareous

grasslands, the siliceous subalpine, and alpine grasslands

show a decrease in the mean cover, whereas most of the

species in the windy ridges, the typical, and wet snowbeds

increase in cover. But very few cover changes are signifi-

cant.

In the calcareous grasslands, five species with their

optimum mostly at the subalpine belt increase signifi-

cantly: Festuca ovina aggr., Globularia cordifolia, Cirsium

Figure 3. Simpson diversity index for historical (white boxes) and

recent (gray boxes) inventories in six plant communities. “Sil.”:

siliceous; “subalp.”: subalpine. Black dots represent the mean values,

the black line is the median, and boxes are limited by 1st and 3rd

quartiles. Stars above the boxes indicate a significant change between

historical and recent inventories, according to a pairwise Wilcoxon–

Mann–Whitney test: *P < 0.05; **P < 0.01.

Figure 4. Averages of Bray–Curtis dissimilarity indices among

historical (white boxes) and recent (gray boxes) inventories in six plant

communities. Same symbols as in Figure 3.
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acaule, Plantago atrata s.str., and Polygala alpestris. Inter-

estingly, Globularia cordifolia, a typical species of upper

montane–lower subalpine belt according to the tempera-

ture indicator value (Landolt et al. 2010), was absent in

the historical survey, but is present in 50% of the recent

plots. Carex sempervirens shows a strong decrease in mean

cover (�15%, P-value = 0.001). In windy ridges, species

from both calcareous (Anthyllis vulneraria subsp. alpestris

and Selaginella selaginoides) and siliceous grasslands

(Hieracium angustifolium), or from the ridge community

itself (Agrostis alpina) and generalist species (Campanula

scheuchzeri), display a significant frequency increase.

The occurrence of three subalpine species (Solidago vir-

gaurea ssp. minuta, Trifolium pratense ssp. nivale, and

Arnica montana) is significantly higher in recent siliceous

subalpine grassland surveys than in the historical ones.

Nardus stricta markedly decreases in mean cover

(�11.5%, P-value = 0.029). In the siliceous alpine grass-

lands, four species typical of this community (Euphrasia

minima, Agrostis rupestris, Homogyne alpina, and Hiera-

cium alpinum) are distributed more widely among recent

surveys than in the historical ones.

The species, whose frequency and cover greatly

increased in typical snowbeds, are mostly from siliceous

alpine grasslands as well: Leontodon helveticus increases by

62.5% in frequency (P-value = 0.019) and 3.3% in cover

(not significant), while Helictotrichon versicolor was absent

in the historical survey, but is present in half of the recent

plots (marginally significant, P-value = 0.057). Between

the other species increasing both in frequency and cover

(defined as “winners”, Appendix S3c), most of them are

typical of grasslands and are generalists (Ligusticum mutel-

lina, Nardus stricta). In contrast, the species with the

most important, but not significant, cover decrease (Carex

foetida) is typical of snowbeds.

In the wet snowbeds, some species mostly associated to

typical snowbeds, such as Sibbaldia procumbens, increase

in frequency (+55.6%, P-value = 0.019), while Juncus trig-

lumis, Saxifraga androsacea, and Gentiana bavarica, three

species growing in wet snowbeds, decrease in terms of

mean cover (�26.3%, P-value = 0.008; �18.4%, P-

value = 0.026; �15%, P-value = 0.047, respectively).

Ecological indicator values

The six vegetation types display mean temperature indica-

tor values (Landolt et al. 2010) that reflect their distribu-

tion in elevation, with highest values for the calcareous

grasslands (Fig. 7A). The calcareous grasslands and the

typical snowbeds are the only plant communities showing

a significant increase in their mean temperature values

between inventories (P-value = 0.010 and P-

value = 0.004, respectively). Similarly, the value for soil

Figure 5. Principal component analysis based on species composition

and cover. The first axis represents 13.0% of the variance and the

second 10.3%. Couples of historical (empty symbols) and recent (full

symbols) records are connected with thin arrows. Thick arrows

represent a significant shift of the plant community centroids.

Figure 6. Principal component analysis based on species composition

(presence–absence). The first axis represents 12.3% of the variance

and the second 9.3%. Same symbols as in Figure 5.
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humidity (F) reflects the moisture conditions of the plant

communities, with the four types of grasslands having

lower values than the two snowbed communities

(Fig. 7B). Species present in the recent records of the typ-

ical and wet snowbeds have, on average, lower values than

the composition of historical surveys, indicating their

preference for drier conditions. However, only the

decrease in the latter one is significant (P-value = 0.004).

None of the studied plant communities show significant

variations between historical and recent surveys in terms

of soil nutrient requirements (Fig. 7C), light, and soil pH

(Appendices S4 and S5), according to the corresponding

mean ecological indicator values.

Discussion

The results of this study clearly indicate that vegetation

changed over a 25- to 50-year time span at the sub-

alpine–alpine level in the Swiss Alps. The six plant com-

munities display similar alpha- and beta-diversity

changes, but also various reactions to past environmental

changes in terms of species composition.

Alpha- and beta-diversity

The increase in species richness, expressed as Simpson

diversity index at the plot scale, is observed in each plant

community. There are three possible explanations: (1)

new species arrived since the historical time; (2) the

recent inventories were more exhaustive than the histori-

cal ones, or (3) the new species are the result of inaccu-

rate location of the plots. The last option can be excluded

because it cannot result in a systematic increase for all the

vegetation types. The second option could be meaningful

only for the least frequent species (i.e., occurring in one

or two new plots), but not for those with a considerable

increase (for example, Globularia cordifolia in the calcare-

ous grasslands). Moreover, many of these species are

easily visible in terms of size and/or difficult to confuse

with other species. Therefore, the colonization of plots by

new species is at least partly responsible for the observed

increase in alpha-diversity. Many previous studies

observed the same trend over the last three decades on

alpine plant communities (Kudernatsch et al. 2005; Brit-

ton et al. 2009; Vittoz et al. 2009; Sandvik and Odland

2014), or even just over 6 years in snowbeds (Carbognani

et al. 2014; Pickering et al. 2014). Olsen and Klanderud

(2014) observed that species-poor communities were

more susceptible to species invasion than highly diverse

species communities. Our results do not confirm such a

trend, as the highest species increase was observed on the

windy ridges community, which are more diverse than

typical snowbeds.

The increase in species richness is related to an increase

in the floristic similarity inside the plant community,

except in the calcareous grasslands. Similar homogeniza-

tion was first highlighted on seven European Alpine sum-

mits by Jurasinski and Kreyling (2007), and on a variety

of alpine plant communities since then (Britton et al.

2009; Ross et al. 2012; Carbognani et al. 2014). According

to their observations, the biotic homogenization results

from two processes: the invasion of widespread and

Figure 7. Cover-weighted means of indicator values (Landolt et al.

2010) for temperature (A), soil humidity (B), and soil nutrient content

(C) in historical (white boxes) and recent (gray boxes) inventories.

Same symbols as in Figure 3.
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generalist species, and a decline of rare and specialized

species. Generalist species may be able to spread in new

areas previously unsuitable, thanks to less constraining

conditions for their establishment and survival, such as

longer growing seasons through climate warming, or

increased nutrient availability (Britton et al. 2009).

Indeed, such a pattern is apparent in this study, where

snowbed specialists decrease in cover, while grassland

generalist species increase in frequency and cover (see

Appendix S3). An increasing alpha-diversity coupled with

a homogenization can be explained by the arrival of pre-

viously missing species in the community, completing the

typical species ensemble for a given vegetation type (e.g.,

Agrostis alpina in the windy ridges, Arnica montana in the

siliceous subalpine grasslands).

Snowbeds

The main changes in plant composition are observed in

the typical snowbeds, which show a marked shift of spe-

cies composition and cover toward the siliceous alpine

grasslands, and in the wet snowbeds, whose composition

tends toward the typical snowbeds (Figs 5 and 6). There-

fore, the snowbeds are now more similar to the siliceous

alpine grasslands than they were in the 1970s. This is con-

firmed by the observed colonization by species from silic-

eous alpine grasslands (Helictotrichon versicolor) in the

typical snowbeds or their increase in both frequency

(Leontodon helveticus) and cover (Nardus stricta). This

expansion of grassland species is reflected in the increase

in the temperature indicator value and in the decrease in

the humidity one (Fig. 7A,B). These conclusions are con-

sistent with results from previous long-term monitoring

across alpine areas of the Scandes (Virtanen et al. 2003;

Kapfer et al. 2012; Sandvik and Odland 2014), Scotland

(Britton et al. 2009), Caucasus (Elumeeva et al. 2013),

Japan (Kudo et al. 2011), and Greenland (Dani€els et al.

2011).

Similar changes have been observed even on shorter

timescales, as in 6-year surveys from Italy (Carbognani

et al. 2014) and Australia (Pickering et al. 2014). All these

studies agree that the arrival and expansion of grassland

species in the snowbed communities is likely a conse-

quence of longer growing seasons induced by earlier

snowmelt dates. The melt-out date, which is an important

driver of arctic and alpine plant growth (Jonas et al.

2008), shifted earlier by 1–4 days per decade between

1998 and 2015 at 2110–2630 m.a.s.l. next to our three

study sites (Appendix S6a). This shift, although not sig-

nificant and covering a short time period, is corroborated

by satellite observations in the high-latitude and high-ele-

vation areas of the Northern Hemisphere (Dye 2002).

This is probably the consequence of two associated

factors: firstly, the increase in mean annual temperature,

which has been calculated as 1.82 K between 1961 and

2008 in Switzerland (Serquet et al. 2013), which is equiv-

alent to the double of the mean change for the Northern

Hemisphere (Rebetez and Reinhard 2008), and secondly,

the decrease in the snowfall/precipitation ratio estimated

to be around 0.25% per year at the beginning and the

end of the snow season from 1961 to 2008 (Serquet et al.

2013). The spring decreasing trend of snowfall/precipita-

tion day ratio has been observed even at 2500 m a.s.l. by

Marty and Meister (2012) but is generally more pro-

nounced at lower elevations (Scherrer et al. 2004; Serquet

et al. 2013). In the three present study sites, despite a

high interannual variability, the annual sum of fresh snow

thickness decreased by 0.49–0.96% per year between 1964

and 2011 (Fig. 2). The autumn and spring months seem

to be crucial for snow duration, because at that period of

the year, air temperatures are closer to the melting point

than during the winter (Serquet et al. 2011), and a slight

increase is sufficient to reduce the snowfall part of precip-

itations. The lower snow amount and earlier melting

dates observed in the study sites were accompanied by

lagged snow falls in autumn (Appendix S6b). The result-

ing longer growing season (+5 to 14 days per decade

between 1998 and 2015, not significant, Appendix S6c)

allows the invasion of generally more competitive species,

such as graminoids (Dullinger et al. 2007). These species

now have enough time to accomplish their life cycle in a

snowbed. The establishment of species from adjacent

communities could have been enhanced by (1) the prox-

imity of grasslands to snowbeds (mostly <20 m from the

study sites), (2) the snowbed potential of trapping seeds

(Larsson and Molau 2001), and (3) the high dispersal

capacity of certain grassland species. Indeed, the increase

in frequency of Leontodon helveticus could be associated

to its pappus appendage, which was shown to give an

advantage to plant species in colonizing new Alpine

summits (Matteodo et al. 2013).

Moreover, snow is an efficient scavenger of atmo-

spheric pollutants, which are leached through the snow-

pack, mainly at the beginning of the melt period

(Johannessen and Henriksen 1978). The consequent high

load of nitrogen into the snowbed soils can damage cer-

tain species (as the moss Kiaeria starkei; Woolgrove and

Woodin (1996)) and favor the establishment of acquisi-

tive (nutrient-rich) plants. For example, graminoid cover

has been shown to be directly related to nitrogen deposi-

tion in acidic grasslands (Dupr�e et al. 2010). However, an

increase in the mean nutrient indicator value (Landolt

et al. 2010) that could support this hypothesis has not

been observed in the study sites (Fig. 7C). But, we cannot

exclude that higher temperatures, combined with rela-

tively high nutrient level in the soil, allow more
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thermophilous species (grassland species) to establish in

the snowbeds, independently from the length of the grow-

ing season.

The snowbed species are able to respond positively to

experimental warming (Arft et al. 1999; Sandvik and Tot-

land 2000) and can theoretically profit for earlier snow-

free habitats. But they are restricted to snowbed habitats

because of lower competition from co-occurring plants

(Heegaard and Vandvik 2004). The arrival of taller species

from the surrounding grasslands might increase the com-

petition and induce a decrease in typical snowbed species.

Hulber et al. (2011) suggested that the presence of neigh-

bors in snowbed systems leads to competitive effects

rather than facilitative ones, which can be expected in

such harsh environmental conditions (Choler et al. 2001).

Moreover, the role of competition might increase with

warming, as experimentally observed by Olsen and Klan-

derud (2014). In the study sites, no significant decrease is

observed, but the strong decrease in cover of Carex foe-

tida could be a first sign of such an evolution.

Similar to the typical snowbeds, but over a shorter time

period (median of historical records years = 1988,

Table 1), the wet snowbeds show increasingly dry condi-

tions. Reductions in snow precipitation, combined with

higher temperatures, likely shorten the amount and dura-

tion of water supply (Beniston et al. 2003) to these com-

munities, mostly located under melting firn. The cover

decrease in typical alliance species and the diffusion of

snowbed species, in parallel with the reduction in the

mean humidity indicator value (Fig. 7B), indicate that

these sites are rapidly shifting toward typical snowbed

communities. The same drying trend was observed with

the expansion of some graminoids and shrub species in

Norwegian wet snowbeds (Sandvik and Odland 2014), on

soligenous and ombrogenous mires (Virtanen et al. 2003;

Ross et al. 2012), and springs (Britton et al. 2009). These

last vegetation types do not belong to snowbeds, but they

are subject to the same water-logged conditions, which

limit the growth of taller plants. Diverse alpine plant

communities, directly related to high water supply, seem

to respond similarly to climate changes.

Grasslands

In contrast to plant communities related to long snow

cover, calcareous and siliceous grasslands demonstrate a

high stability of species composition and cover, whatever

the bedrock type (Figs 5 and 6). Similar results were

obtained by warming experiments on subalpine meadows

in the Rocky Mountains (Price and Waser 2000), on cal-

careous grasslands in northern England after a 13-years

exposure to climate changes (Grime et al. 2008), and

observed too by long-term surveys in the Alps (Vittoz

et al. (2009), Windmaißer and Reisch (2013). These

authors identified many possible explanatory factors.

Firstly, the high plant density and belowground phy-

tomass of subalpine grasslands, compared to the sparse

vegetation of alpine and nival summits or to the low spe-

cies abundance in snowbeds, lead to high competition

levels for light and soil resources, which restricts the

establishment of new species (Choler et al. 2001). Sec-

ondly, the extreme longevity of some grass species (C.

curvula can reach a maximum of 5000 years; de Witte

et al. 2012), the persistence of their shoot and root sys-

tems, and their clonal growth, that allows the continuous

recolonization of vegetation gaps, result in a high resili-

ence to interannual variations (Hillier et al. 1990) with a

consequent long-term persistence. For example, Laserpi-

tium siler, which was a dominant species in half of the

plots in calcareous grasslands, is highly competitive in

terms of light and water resources and occupies a wide

elevation range, thus likely preventing colonization by

new species. Thirdly, the steep slopes where the calcareous

grasslands are established could also explain their stability.

According to Theurillat and Guisan (2001), slopes steeper

than 40° (which is often the case in this study) may act

as barriers to upward dispersal of species.

Nevertheless, this general stability is also accompanied

by new species or increase in frequency. Some of these

species (Globularia cordifolia, Cirsium acaule), although

frequently associated to calcareous grasslands, have their

optimum at lower elevations. Conversely, the only signifi-

cantly declining species, Carex sempervirens, has its opti-

mum at the lower alpine rather than the subalpine belt.

These changes in composition are reflected by a signifi-

cant increase in the mean indicator value for temperature

observed across the calcareous grasslands (Fig. 7A). In

conclusion, although displaying a high stability, these

grasslands seem to experience the arrival of species from

lower elevations, as repeatedly observed on alpine and

nival summits (see St€ockli et al. 2011 for a review). Inter-

estingly, in long-term studies focused on lower elevation

grasslands (Britton et al. 2009; Vittoz et al. 2009; Ross

et al. 2012; Elumeeva et al. 2013; Windmaißer and Reisch

2013), most of the species decreasing in frequency and/or

cover have an alpine-to-arctic distribution, while those

increasing have broader or lower elevation ranges.

Siliceous subalpine and alpine grasslands show a differ-

ent trend with supplementary species either having very

widespread distribution (Euphrasia minima, Homogyne

alpina) or arriving from the same species pool (Arnica

montana, Hieracium alpinum). This process, known as

range filling, was already observed in the Italian Alps by

Cannone and Pignatti (2014) and seems to be predomi-

nant compared to the upward shift. Indeed, neither did

montane species colonize the siliceous subalpine

6978 ª 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Climate Change Affects Snowbed Communities M. Matteodo et al.



grasslands, nor did subalpine species move upward and

colonize the siliceous alpine grasslands. The abovemen-

tioned stabilizing factors appear to be important in these

siliceous grasslands.

According to Dullinger et al. (2012), the elevational

shift of plant species observed on alpine summits may

display faster cool edge expansion than warm edge retreat

because of the potentially long persistence of declining

populations under unsuitable conditions. The stability of

the subalpine and alpine grasslands, while snowbeds are

changing, seems to confirm this prediction and indicates

that, during the last few decades, subalpine and lower

alpine species expanded upwards from their elevational

range rather than shifting it.

Windy ridges

The community on windy ridges shows a significant

change in species composition according to the PCA

(Figs 5 and 6). Indeed, the centroid shifts toward the cal-

careous grasslands, although some of the recent invento-

ries are closer to the siliceous grasslands instead. The

species increasing in frequency confirm this pattern, with

some related to the calcareous grasslands and others to

the siliceous ones. The different shifts seem to be related

to soil pH, as shown by soil analyses, but a higher num-

ber of plots would be necessary for a better understanding

of these divergences. Research on comparable habitats

(such as alpine heaths on windy ridges) shows diversified

reactions to past climatic changes, from very limited

changes (Elumeeva et al. 2013), to an increase in dwarf

shrubs (Virtanen et al. 2003) or graminoid increase

related to a dwarf shrub and forb decrease (Ross et al.

2012). The only common feature is the lichen decrease,

attributed either to summer reindeer grazing (Virtanen

et al. 2003), or to nitrogen deposition (Armitage et al.

2014), trampling, and climate warming (see Ross et al.

2012 and references therein). Unfortunately, the majority

of our historical inventories do not give any indication of

lichen covers (Appendix S2). Consequently, this study

cannot confirm such a trend.

Long-term implications

This study is the first of its kind to assess the way different

plant communities in the subalpine and lower alpine belts

of the European Alps reacted to climate changes over the

last two to four decades. It demonstrates that reactions

differ considerably between vegetation types, with the

most important changes in those linked to long snow

cover. The vulnerability of Salicion herbaceae (typical

snowbeds) was already suspected by Braun-Blanquet

(1975). Indeed, monitoring eastern Switzerland vegetation

of a very late snowmelt patch dominated by the moss

Polytrichum sexangulare from 1921 to 1947, Braun-Blan-

quet (1975) observed an increasing cover of snowbed plant

species in response to shorter snow cover and warmer

temperatures. Moreover, he hypothesized that snowbeds

will be progressively invaded by species from the sur-

rounding siliceous grasslands. Therefore, it is likely that,

during the last few decades, some snowbed communities

took refuge in Polytrichum sexangulare communities, alter-

ing their species composition. Simultaneously, snowbed

species colonized many summits and slopes, where, as a

result of glacier and snow cover reductions, new snowbed

areas were available for colonization (Grytnes et al. 2014).

Therefore, snowbed species can still find suitable areas in

the coldest microhabitats, but with potential detrimental

consequences for the communities currently present. This

corroborates the theory of Scherrer and K€orner (2011),

who sustained that alpine terrain offers a variety of ther-

mal microhabitats over very short distances, which will be

suitable for the majority of species.

Beniston et al. (2003) predicted that, with a tempera-

ture rise of 4°C in 2071–2100 (Christensen et al. 2002),

the snow volume in the Alps at 2000 m may reduce by

50% and the melting season advanced by 50–60 days. As

this study clearly demonstrates, changes in snow precipi-

tations may have a stronger impact on the subalpine–
alpine plant communities than warmer temperatures, at

least for communities directly dependent on snow cover

as a limit to the growing season. However, very probably,

the grasslands will not be able to stand such a tempera-

ture increase without important changes as well. But, with

the available data, it is not possible to conclude whether

changes will still be very slow, like those observed until

now, which will induce a large local extinction debt (Dul-

linger et al. 2012), or whether strong and sudden changes

are expected after forest colonization, successive years of

drought, development of diseases (Ayres and Lombardero

2000), or the arrival of new herbivores (Pellissier et al.

2014). Future monitoring of alpine grasslands will be par-

ticularly important to address these questions.
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