

Unicentre

CH-1015 Lausanne

http://serval.unil.ch

Year : 2019

THE ORIGINS OF SEVERE SOFTWARE DEFECTS ON EVOLVING

INFORMATION SYSTEMS: A DOUBLE CASE STUDY

Hillah Nico

Hillah Nico, 2019, THE ORIGINS OF SEVERE SOFTWARE DEFECTS ON EVOLVING
INFORMATION SYSTEMS: A DOUBLE CASE STUDY

Originally published at : Thesis, University of Lausanne

Posted at the University of Lausanne Open Archive http://serval.unil.ch
Document URN : urn:nbn:ch:serval-BIB_A02DBD5A439B3

Droits d’auteur
L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les
documents publiés dans l'Archive SERVAL sont protégés par le droit d'auteur, conformément à la
loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir
le consentement préalable de l'auteur et/ou de l’éditeur avant toute utilisation d'une oeuvre ou
d'une partie d'une oeuvre ne relevant pas d'une utilisation à des fins personnelles au sens de la
LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette
loi. Nous déclinons toute responsabilité en la matière.

Copyright
The University of Lausanne expressly draws the attention of users to the fact that all documents
published in the SERVAL Archive are protected by copyright in accordance with federal law on
copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the
author and/or publisher before any use of a work or part of a work for purposes other than
personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose
offenders to the sanctions laid down by this law. We accept no liability in this respect.

http://serval.unil.ch/�

FACULTÉ DES HAUTES ÉTUDES COMMERCIALES

DÉPARTEMENT DES SYSTÈMES D’INFORMATION

THE ORIGINS OF SEVERE SOFTWARE DEFECTS ON
EVOLVING INFORMATION SYSTEMS: A DOUBLE

CASE STUDY

THÈSE DE DOCTORAT

présentée à la

Faculté des Hautes Études Commerciales
de l'Université de Lausanne

pour l’obtention du grade de
Docteur ès Sciences en systèmes d’information

par

Nico HILLAH

Directeur de thèse
Prof. Thibault Estier

Jury

Prof. Rafael Lalive, Président
Prof. Yves Pigneur, expert interne

Prof. Periklis Andritsos, expert externe
Prof. Jean-Henry Morin, expert externe

LAUSANNE
2019

	

	 	

FACULTÉ DES HAUTES ÉTUDES COMMERCIALES

DÉPARTEMENT DES SYSTÈMES D’INFORMATION

THE ORIGINS OF SEVERE SOFTWARE DEFECTS ON
EVOLVING INFORMATION SYSTEMS: A DOUBLE

CASE STUDY

THÈSE DE DOCTORAT

présentée à la

Faculté des Hautes Études Commerciales
de l'Université de Lausanne

pour l’obtention du grade de
Docteur ès Sciences en systèmes d’information

par

Nico HILLAH

Directeur de thèse
Prof. Thibault Estier

Jury

Prof. Rafael Lalive, Président
Prof. Yves Pigneur, expert interne

Prof. Periklis Andritsos, expert externe
Prof. Jean-Henry Morin, expert externe

LAUSANNE
2019

UNIL I Un,vers,te de Lausanne

HEC Lausanne

Le Decanat
Batiment Internet
CH-1015 Lausanne

IMPRIMATUR

Sans se prononcer sur les opinions de l'auteur, la Faculte des Hautes Etudes

Commerciales de l'Universite de Lausanne autorise !'impression de la these de

Monsieur Nico HILLAH, titulaire d'un bachelor en Technologies de l'information de

Methodist University College Ghana, et d'un master en Systemes d'information de

l'Universite de Neuchatel, en vue de l'obtention du grade de docteur es Sciences en

system es d' information.

La these est intitulee

THE ORIGINS OF SEVERE SOFTWARE DEFECTS ON

EVOLVING INFORMATION SYSTEMS: A DOUBLE CASE STUDY

Lausanne, le 10 janvier 20 I 9

Le doyen

HEC Lausanne

I I II 111
Le Decanat
Tel. +41 21 692 33 40 I Fax +41 21 692 33 05
www.hec.unil.ch I hecdoyen@unil.ch EQUIS

.acc•1,11rt•

< \.�Ms'.A: ¥ ACCREDITED EM

Members	of	the	thesis	committee	

Dr. Thibault Estier

Senior Lecturer and Researcher at the Faculty of Business and Economics (HEC) of the

University of Lausanne

Thesis supervisor

Professor Rafael Lalive

Professor at the Faculty of Business and Economics (HEC) of the University of Lausanne

President of the Jury

Professor Yves Pigneur

Professor at the Faculty of Business and Economics (HEC) of the University of Lausanne

Internal member of the thesis committee

Professor Jean-Henry Morin

Professor at the Institute of Information Service Science of the University of Geneva

External member of the thesis committee

Professor Periklis Andritsos

Professor at the Faculty of Information of the University of Toronto

External member of the thesis committee

i

Abstract	

Version française au recto

Software problems do not only induce high financial loss, but also sometimes induce human

loss. Those problems are due to the presence of software bugs, failures, errors, and defects in

software systems. These software anomalies, and in particular the software defects, have a huge

impact not only on business activities but also on the cost of developing and maintaining these

software systems. In order to identify their sources, particularly the ones causing severe impacts

on the systems’ operations, we conducted two case studies. We analyzed software defects of

two systems over a period of a year and a half. We classified these software defects, according

to their trigger factors and according to their severity impact. Conducting these studies led us

to propose “the origins of severe software defects method” order to identify trigger factors that

cause severe software defects on a given evolving system. We also found that the group of

technology trigger factors causes more severe defects than the other groups of trigger factors

for this type of systems.

We divide this manuscript into two main parts. In the first part, we will present the synthesis of

our four published research papers. In the second part, we will present these four published

articles in full.

ii

Résumé	

English version at the front

Les pannes de logiciels n’entraînent pas uniquement d’immenses pertes financières, mais

provoquent parfois aussi des pertes en termes de vies humaines. Ces pannes sont la plupart du

temps provoquées par la présence de bugs, d’erreurs, de failles ou de défauts au sein de ces

logiciels. A savoir que ces anomalies, en particulier les défauts, ont un impact considérable sur

les activités économiques et sur le coût de développement et de maintien des systèmes de ces

logiciels. Afin d’identifier les facteurs qui sont à la source des défauts les plus coûteux, nous

avons étudié deux systèmes évolutifs. A travers plusieurs études, nous avons analysé les défauts

de ces systèmes sur une période d’une année et demie. Ces études nous ont permis de classer

les défauts sur la base de leurs facteurs déclencheurs d’une part, et sur la base du degré de

sévérité d’autre part. Ceci nous a amené à proposer la méthode “the origins of severe software

defects method” pour aider à l’identification des facteurs déclenchants les défauts coûteux d’un

système évolutif. En plus de cette méthode, ces études nous ont permis d’identifier que les

facteurs du type technologique, comparés aux autres types de facteurs, sont à l’origine de la

majorité des défauts coûteux pour ce type de systèmes.

Ce manuscrit est divisé en deux parties. En première partie, nous allons présenter la synthèse

de nos articles publiés et animés lors de diverses conférences scientifiques à travers le monde.

Enfin, dans la seconde partie, nous mettrons à disposition du lecteur l’intégralité de ces quatre

articles.

iii

Acknowledgements		

First of all, I would like to thank the almighty knowledge, wisdom, and mystery. I would also

like to thank people who directly or indirectly helped me to conduct this research. More

specifically, I would like to thank my professor Thibault E. for giving me the opportunity to

conduct this research. I also want to say thank you to him for his time, advice and guidance

during this research journey. I would also like to thank my contacts in the Swiss government

body who provided me with the necessary data and information to conduct this study.

A special thanks to my jury members, namely Jean-Henry M., Yves P., Periklis A., Thibault E.,

and Rafael L. for their time and guidance.

I want to send my gratitude to all the past and present professors of the DESI department as

well as other universities for the fruitful conversations I had with them, especially Solange G.,

Stéphanie M., Jacques D., Yves P., Christine L., Alessandro V., Benoît G., Marco T., and

Mauro C. I will also thank my colleagues for their support and the great moments they accepted

to share with me during all these years, especially Thomas, Gabriella, Bertil, Laurent, Ricardo,

Martin, Kenny, Gael, Natacha, Gabor, Alexandre, Jean-Sebastien, Fabio, Hazbi, Dina, Dana,

Bastien, Laura, Vaibhav, Manon, Clement and all the student assistants I collaborated with. I

will thank also the past and present secretaries of the DESI department, as well as all the

administrative staff of the HEC Lausanne faculty, for the time and advices. A special thanks to

Sophie M. for her professional contribution to the success of this project.

I will also thank my family and friends for their support in special, Nana C. H., Angelis G.,

Dzifa A., Amavi H., Dzidonou A., Ama A., Ayele H., Joseph H., Kweku D., Adwoa A., Kafui

D., George, Albert H., Kendra S., Danielle S., and Bernadette M.

Finally, a special thank you to all the people I met during this journey who directly or indirectly

led me to successfully conduct this research. To all nations God bless you all.

iv

List	of	Abbreviations	
Abbreviation Explanation

ACH IS architecture

ASD Analyzed Software Defect

B.IS Business/IS alignment

CRs Change Requests

E-type Evolving type

ETL Extract, Transform, and Load

EVOLIS EVOLution of Information Systems

IEEE Institute of Electrical and Electronics Engineers

IS Information Systems

KPI Key Performance Indicator

SD Software Defect

SDLC Software Development Life Cycle

SDM SD Management system

SDs Software Defects

TCH Technology

UI IS/user fit

W- Weighted score

v

Table	of	Contents	
1 Introduction... 1

1.1 Motivation and Context .. 1

1.1.1 Motivation .. 1

1.1.2 Context ... 3

1.2 Research Gap ... 3

1.3 Research Question .. 4

1.4 Methodology: Case Study Presentation .. 5

1.5 Concept of Study: Software Defects Management .. 5

1.5.1 Software Defects Management .. 5

1.5.2 Software Defects Classification ... 6

1.6 Plan .. 6

2 Literature Review .. 9

2.1 Information Systems’ Evolution Paradigm ... 9

2.2 Definition of Software Evolution and Software Maintenance 11

2.2.1 Software Evolution ... 11

2.2.2 Software Maintenance ... 12

2.3 Software Anomalies ... 13

2.3.1 Definitions .. 13

2.3.2 Relationships... 14

2.3.3 Lifecycle ... 16

2.4 Software Defects Management ... 17

2.4.1 SDs Collection and Storing ... 17

2.4.2 Assigning and Solving of SDs ... 18

2.4.3 SDs Triage and Mining Approaches .. 18

3 Methodology ... 21

3.1 Case Study Definition and Types ... 22

3.2 Why Case Study Methodology? ... 23

3.3 Presentation of the Institution ... 26

vi

3.3.1 Agile Methodology and Scrum Method ... 26

3.3.2 Software Defect Life Cycle in the Studies’ Projects. .. 27

3.4 Severe SD Trigger Method ... 29

3.5 Pre-step 0: Data Collection ... 30

3.6 Step 1: Trigger factors Identification (EVOLIS Classification) 32

3.6.1 The EVOLIS Framework .. 33

3.6.2 EVOLIS Classification .. 35

3.7 Step 2: Evaluation of SD Impact on E-type Systems (Severity Classification) 39

3.7.1 The Roles of Evaluating SD Severity Impact ... 39

3.7.2 Evaluation of SD Impact on our E-types Studied Systems 39

3.8 Step 3: Identification of Trigger Factors Causing Severe SDs on our Studied Systems
(Classification based on both EVOLIS and Severity) .. 44

4 Results Analysis .. 47

4.1 Data Collection of SDs (Step 0).. 47

4.2 First Classification: EVOLIS Classification (Step 1) .. 47

4.2.1 Analysis .. 47

4.2.2 Change Indicator Concept ... 49

4.2.3 Discussion ... 52

4.2.4 Change Indicator Conceptual Tool .. 53

4.3 Second Classification: Severity Classification (Step 2) ... 54

4.3.1 Weighting Model .. 55

4.3.2 Discussion ... 58

4.3.3 SD Managerial Conceptual Tool ... 59

4.3.4 Applying the Managerial Conceptual Tool on System B 62

4.4 Third Classification: EVOLIS & Severity Classifications (Step 3).......................... 65

4.4.1 Definition of Severe Software Defect .. 65

4.4.2 Discussion ... 66

4.4.3 The Origins of Severe Software Defects Method ... 72

5 Conclusion .. 75

vii

5.1 Contributions ... 75

5.1.1 Conceptual Tools .. 76

5.1.2 The Method to Identify the Origins of Severe SDs of E-type Systems 77

5.1.3 Relationships between SD Trigger Factors and the Severity Impact they have on

E-type systems .. 79

5.2 Limitations and Future Works .. 79

5.2.1 Limitations .. 79

5.2.2 Future Works .. 80

6 References .. 83

Part II: Synthesis Published Papers .. 91

Appendix 1. The Application of Change Indicators in Mining Software Repositories 91

1 Introduction... 92

2 Literature review ... 93

2.1 Software Change Request ... 93

2.2 Presentation of EVOLIS framework ... 94

3 Methodology ... 95

3.1 Data Analysis ... 95

4 Change Indicator ... 96

4.1 Data Analysis of System A ... 96

4.2 Definition and Implementation of the Change Indicator on System A 97

4.3 Evaluation of the Change Indicator with System B ... 99

5 Contributions .. 100

6 Conclusion .. 102

7 References .. 102

Appendix 2. A Conceptual Tool to Improve the Management of Software Defects 105

 Introduction... 106

2 Related Works ... 106

3 Presentation of the Conceptual Tool .. 107

4 The Application of the Software Defects Managerial Conceptual Tool 109

viii

4.1 Stage 1 and 2: Strategy Definition and Set of Objectives 110

4.2 Stage 3: The Classification of SDs of System A ... 110

4.3 Stage 4: The Section of Control Measures .. 111

5 Discussion and Contribution.. 113

6 Conclusion .. 114

7 References .. 114

Appendix 3. Severe Software Defects Trigger Factors: A Case Study of a School Management

System ... 117

 Introduction... 118

2 Related Works ... 118

3 Methodology ... 119

3.1 The Classification of SDs Based on Severity .. 119

3.2 The Classification of SDs Based on the EVOLIS Framework 120

4 Discussion and Contribution.. 121

5 Conclusion .. 124

6 References .. 124

Appendix 4. Classification of Software Defects Triggers: A Case Study of School Resource

Management System .. 127

 Introduction... 128

2 Related Works ... 128

2.1 The EVOLIS Framework ... 128

2.2 Software Defects .. 129

3 Methodology ... 130

3.1 Case Presentation ... 130

3.2 Classification Method .. 130

4 Discussion and Contribution.. 131

4.1 Discussion .. 131

4.2 Similar Case Study: Classifications of SDs of System A 134

4.3 Contribution ... 135

5 Conclusion .. 137

ix

6 References .. 137

Appendix 5. Data of System A ... 139

5.1 EVOLIS Classification ... 139

5.2 EVOLIS Indicator .. 140

5.3 Severity Classification.. 141

5.4 EVOLIS & Severity Classifications ... 142

5.5 EVOLIS & Severity Weighted ... 143

5.6 System A Weighted Score .. 144

Appendix 6. Data of System B ... 145

6.1 EVOLIS Classification ... 145

6.2 EVOLIS Indicator .. 146

6.3 Severity Classification .. 147

6.4 Severity & EVOLIS Classifications.. 148

6.5 Severity & EVOLIS Weighted ... 149

6.6 Severity Indicator ... 150

6.7 System B Weighted Score .. 151

Appendix 7. Raw Data - Examples of a Software Defect .. 153

x

List	of	Figures	
FIG. 2.1 IEEE STANDARD 1044-2009’S RELATIONSHIPS MODELED AS AN ENTITY RELATIONSHIP DIAGRAM [19] 15
FIG. 3.1 SOFTWARE DEFECT LIFE CYCLE WITHIN THE STUDIED PROJECTS ... 28
FIG. 3.2 STEPS TO IDENTIFY TRIGGER FACTORS CAUSING MOST OF SEVERE SDS TO A SYSTEM .. 29
FIG. 3.3 ILLUSTRATION OF THE STEPS TO IDENTIFY SEVERE SD TRIGGER FACTORS USING THE IS ARCHITECTURE FACTORS 30
FIG. 3.4 PROJECT’ DATABASE SCHEMA .. 32
FIG. 3.5 THE FIVE BLOCKS OF EVOLIS (ADAPTED FROM THE OF EVOLIS FRAMEWORK) [9] .. 34
FIG. 4.1 SDS OF SYSTEM A AND B CLASSIFIED BASED ON EVOLIS [9] ... 48
FIG. 4.2 APPLICATION OF CHANGE INDICATOR ON SYSTEM A .. 51
FIG. 4.3 APPLICATION OF CHANGE INDICATOR ON SYSTEM B .. 52
FIG. 4.4 THE STEPS IN MINING SDS AND SETTING CHANGE INDICATOR AND MITIGATING ACTIONS [29] 54
FIG. 4.5 SDS OF SYSTEM A AND B CLASSIFIED BASED ON THEIR SEVERITY ... 55
FIG. 4.6 SOFTWARE DEFECT MANAGERIAL CONCEPTUAL TOOL [30] .. 61
FIG. 4.7 APPLICATION OF THE SOFTWARE INDICATOR ON THE SYSTEM B’S SDS CLASSIFICATION BASED ON THEIR SEVERITY 64
FIG. 4.8 TRIGGER FACTORS AND SEVERITY OF SYSTEM A’S SDS.. 66
FIG. 4.9 SEVERE SDS TRIGGERS OF SYSTEM A .. 67
FIG. 4.10 SYSTEM A’S TOTAL WEIGHTED SCORE FOR SEVERITY AND EVOLIS CLASSIFICATIONS .. 68
FIG. 4.11 TRIGGER FACTORS AND SEVERITY OF SYSTEM B’S SDS .. 69
FIG. 4.12 SEVERE SDS TRIGGERS OF SYSTEM B ... 70
FIG. 4.13 SYSTEM B TOTAL WEIGHTED SCORE FOR SEVERITY AND EVOLIS CLASSIFICATIONS... 71
FIG. 4.14 THE ORIGINS OF SEVERE SOFTWARE DEFECTS METHOD. .. 73
FIG. 5.1 THE ORIGINS OF SEVERE SOFTWARE DEFECTS METHOD. .. 78

xi

List	of	Tables	
TABLE. 1.1 RESEARCH SUMMARY .. 8
TABLE. 2.1 LEHMAN’S LAWS OF SOFTWARE EVOLUTION [43] ... 12
TABLE. 2.2 SOFTWARE ANOMALIES DEFINITIONS [19] .. 14
TABLE. 2.3 RELATIONSHIPS AMONG SOFTWARE ANOMALIES [19] .. 16
TABLE. 3.1 TYPE OF CASE STUDIES RESEARCH [71] ... 23
TABLE. 3.2 KEY CHARACTERISTICS OF AN IS CASE STUDY [10] ... 24
TABLE. 3.3 THE CHARACTERISTICS OF OUR CASE PROJECT... 25
TABLE. 3.4 SUMMARY OF STUDIED SYSTEMS .. 26
TABLE. 3.5 DATA ATTRIBUTES AND THEIR DESCRIPTION ... 31
TABLE. 3.6 OUR DEFINED SEVEN CLASSES .. 35
TABLE. 3.7 CLASSIFICATION OF THE SEVEN CLASSES INTO EVOLIS SD TRIGGER FACTOR CATEGORIES .. 36
TABLE. 3.8 IDENTIFICATION OF SD TRIGGER FACTORS EXAMPLES ... 37
TABLE. 3.9 SEVERITY VALUES [19]... 40
TABLE. 3.10 EVALUATION OF THE SEVERITY VALUE OF A SD ... 42
TABLE. 4.1 THE WEIGHTING FACTORS FOR THE SEVERITY LEVELS [31]. .. 56
TABLE. 4.2 WEIGHTED SCORE FOR SYSTEM A AND B .. 56
TABLE. 4.3 MONTHLY WEIGHTED SCORES FOR SYSTEM A... 57
TABLE. 4.4 MONTHLY WEIGHTED SCORES FOR SYSTEM B ... 58
TABLE. 4.5 SEVERE SDS TRIGGERS OF SYSTEM A ... 67
TABLE. 4.6 SEVERE SDS TRIGGERS OF SYSTEM B.. 70

1

Introduction

Part I: Synthesis of Published Papers

1 Introduction	

1.1 Motivation	and	Context	

1.1.1 Motivation	
In common language, it is usual to call software defects (SDs) bugs. As software systems are

part of our daily life, so problems come with their usage. Nowadays, there is no single day in

the world without a bug affecting our daily activities. Not only do they affect our daily

operations, but they also cause a huge financial loss when they happen. This loss ranges from

one to billions of dollars. Unfortunately, the consequence of a software defect (SD) may

concern more than money, but also cause loss of human lives. All domains of business and non-

business activities are concerned: from banking to hospital, from education to nuclear activities,

from economy to transportation. Here are some famous financial and human life loss caused by

a software bug in our history:

• IT companies

o In 1999, half a million British citizens discover that their passports could not be

issued on time due to bugs in a new system brought on by Siemens, and the

incapacity of the staff using this system in their daily routine. In fact, Siemens

did not provide a good training for system users; this prevented them to

accurately use the system [1].

• Education domain

o A group of hackers had stolen data from 77 million users from the Edmodo

online educational platform in May 2017 [2]. The stolen data belonged to

students using this platform, to their parents, and to their teachers.

« Gnothi seauton »

Temple of Delphi (Pytho).

2

Introduction

• Transportation domain

o A bug that affected the IT system of British Airways made the company cancel

all flights between Heathrow airport and Gatwick airport in May 2017.

o Ten years earlier, in 2007, at Los Angeles International Airport, US., more than

17,000 planes were grounded on the floor due to a bug which prevented the

entire network of the United States Customs and Border protection to shut down

[1]. According to them, a network card sending an incorrect message across the

shared network caused this bug until this message hit the USCBP systems.

• Military domain

o An attack killed 28 American soldiers in February 1991 in Saudi Arabia due to

an existing bug found later in the anti-missile software system.

• Financial domain

o On 1st August 2012, an American trading company named Knight Capital group

lost 440 million dollars in only 30 minutes due to a bug in its trading system [3].

In fact, this bug was able to cause this high damage due to the configuration of

the business processes.

• Cyber criminality and Health domain

o The virus WannaCry indeed made the National Health System of England cry

in May 2017, when a group of hackers used an unidentified SD in the Microsoft

Windows operating system to launch a ransomware attack not only in England

but also all over the world, causing cancellations of 19,000 health care

appointments [4].

o In September 2018, 50 million Facebook account logins were reset due to a data

breach. “The breach was caused by an exploit of three bugs in Facebook's code

that were introduced with the addition of a new video uploader in July of 2017”

[5].

We have to specify that the examples listed here are just the tip of the iceberg, the full visible

part cannot be covered, not even to mention the immersed part of it.

In this context, it becomes important to know these SDs in order to eliminate them. It is in that

respect that we conducted two case studies in the domain of education by studying the SDs of

two systems. We did this, in order to identify their sources as factors that trigger them, and

identify among these factors the ones that cause high severe impacts of the studied systems.

3

Introduction

1.1.2 Context		
According to Lehman, there are two classes of software: (1) software developed to meet a

fixed set of requirements, and (2) software developed to solve a real-world problem, which

changes with time. This second class of software is the evolving system (E-type system) [6].

We conducted this research on two E-type systems. We named them system A and system B.

In fact, these previous examples concern not all systems, but systems with evolving programs

(E-type programs). These E-type programs “are programs that depend on or interact with the

real world. They must always be adapted to match any changes in the real world that affect

whether the program satisfies its stakeholders ‘objectives’” [7]. Systems with E-type programs

are called E-type systems. One of their characteristics is that E-Type systems are under the

influence of different factors identified by Cook et al. [8]. There are (1) stakeholder factors such

as system users and developers; (2) architecture factors such as internal system components

(e.g. a relational database), and (3) global process factors such as the business processes of an

organization. Each of these factors may be a source of defect in a system while requesting a

change to it. In order to avoid financial losses similar to the examples we presented earlier, it

becomes essential to identify the ones that may cause such severe impacts on this type of

systems among these factors.

Another characteristic of E-type systems is their particularity to require a considerable financial

budget for their development project, and to have a costly maintenance phase (up to 80% of

their total cost). Furthermore, a large population of stakeholders over a long period (years) use

them. Our selected studied systems present all of these characteristics. In chapter three, we will

present these selected systems in more detail.

1.2 Research	Gap	

Even though one can argue that SDs are all made from human error, studies have shown that

at the time the SD goes on live or manifest itself, they have been triggered by different sources.

Different researchers have studied software systems in order to identify the sources of their

errors [8], [9]. Considering the list of examples provided earlier in this section, we could

observe that these sources vary from one to another. The origins of some of these SDs are

related to the system itself or its internal components, e.g. the Facebook attack; while others

were caused by the inability of system users to use the system, e.g. the case of the British

passport delay. Others are related to business processes, e.g. Knight Capital group case, and

4

Introduction

finally, a SD in a different system can cause a crash of another system, e.g. the L.A airport case.

This raises two fundamental questions: Firstly, which origins or sources of SDs cause more

losses to E-type systems, to the system owner as well as to the community using these types of

systems? And secondly, derived from the preceding question, how to identify these sources?

To provide an answer to these questions are the goals of this research. In the next section, we

will define our research question in detail, present the methodology as well as the concept of

this research, and then present the plan of this thesis.

1.3 Research	Question		

 The main research question we address in this thesis is “Which types of trigger factors

generate the most severe SDs on a given E-type software system?”. Answering this question

led us to a related question, “How to identify the origins of severe defects on evolving

information systems?”.

In order to answer our main research question, we conducted case studies on two E-type

systems. We used a case study methodology to study these SDs in their natural environment,

and to get the sense of how they happened and were treated. We studied the change history data

of these systems. In addition, in order to provide an answer to the main question, we divided

the question into two sub-questions as follows:

(1) The first sub-question aims to identify factors that trigger most SDs. To answer this sub-

question, we studied two systems by classifying their SDs based on their trigger factors. In fact,

we identified the trigger factor for each SD. To perform this classification, we used EVOLIS

framework [9], a framework which proposes the grouping of “factors having a direct influence

on information systems” [9]. We presented the results of this part in detail in our first published

paper (see Appendix 1).

(2) The second sub-question consists of evaluating the impact that a SD has on a given E-type

system. To answer this second sub-question, we also performed a second classification of the

SDs of the same systems by classifying these SDs based on their severity impact. We used a

severity scale model to do this classification. We also validated the results of this classification

in our second published paper (see Appendix 2).

Finally, we combined the results of both sub-questions in order to answer the main question of

this research. We presented the results of this part in two published papers (see Appendix 3 and

4).

5

Introduction

Furthermore, answering this research question led us to find and propose a method on how to

determine these severe trigger factors of a given E-type system. We will present this method in

chapter three (see section 3.4). In the next section, we will present how we conducted this

research.

1.4 Methodology:	Case	Study	Presentation	

To conduct this research, we used a quantitative case study methodology. According to

Benbasat et al. [10] one of the reasons the case study methodology is viable in the information

systems field is that “the researcher can study information systems in a natural setting, learn

about the state of the art, and generate theories from practice.” In fact, in order to observe SDs

in their natural settings, we conducted two case studies on two different systems. The first case

study was on a school management system used to manage students’ grades and different

certificates. We named this system “system A”. The second case was also on a school

management system, but this system function was to help school directors in planning their

school classes and assign teachers to their duties. We named this second system “system B”.

Both systems are used for more than 95,000 students and for more than 10,000 teachers. These

systems are developed in-house using the scrum agile method. In the next section, we will

present the concept under which this research falls.

1.5 Concept	of	Study:	Software	Defects	Management	

1.5.1 	Software	Defects	Management	
The SDs management is crucial to any software team and software owners. There are

different studies, which attempt to provide a solution on how to control or manage these SDs

[11]–[13]. SD management consists of identifying SDs, collecting them, correcting, and mining

them in order to subtract knowledge and understand their characteristics. This research mainly

focused on their mining aspect. The mining of defects helps the software development teams to

reduce the cost of correcting them, to detect defective modules, and to have efficient resource

planning. There are different choices in mining software engineering data, e.g. code base data

[14], execution traces data, change history data, mailing lists [15]. For this research, we

analyzed the change history data of both systems. Different researchers propose models, tools,

and schemas for mining SDs. The most prominent ones are: taxonomies [16],[17], root cause

analysis [18], classification schemes and standards SDs [19],[20]. Wagner presents a complete

6

Introduction

definition of these approaches as follows: “Defect taxonomies are categorizations of faults,

mostly in code, that are based on the details of the implementation solution, e.g., Wrong type

declaration, wrong variable scope, or wrong interrupt handling. A well-known example of this

kind is the taxonomy of Beizer [21]. An even more detailed approach is root cause analysis

where not only the faults themselves are analyzed, but also their cause, i.e., the mistakes made

by the development team. The goal is to identify these root causes and eliminate them to prevent

faults in the future. Root cause analysis has, for example, been used at IBM [22]. In general,

root cause analysis is perceived as rather elaborate and the cost/benefit relation is not clear.

Therefore, defect classifications aim at reducing the costs, but sustain the benefits at the same

time. The categorization uses more coarse-grained defect types that typically have multiple

dimensions.” [13]. We conducted our research under the umbrella of the defect classification

approach.

1.5.2 Software	Defects	Classification	
In the software life cycle, the classification of defects presents many advantages [23]. There

are different existing schemes and standards in classifying SDs [20]. (1) The Orthogonal Defect

Classification (ODC) of IBM was developed in 1992 by R. Chillarege et al. [24] and it classifies

defects across “the dimensions (1) defect type, (2) source, (3) impact, (4) trigger, (5) phase

found, and (6) severity” [13]. (2) The HP Defect Origins, Types and Modes, the approach of

Hewlett Packard, was developed by the HP software metrics in 1986 [25] and this scheme

classifies the defects according to their types, their origins, and their mode [13]. (3) The IEEE

standard 1044-2009 [19] is proposed by IEEE standard bodies on how to classify software

anomalies. Other defect classification studies have performed SDs classification using classical

data mining techniques and algorithm such association rules [26], Naïve Bayes Model [27], and

clustering analysis [28]. In the next section, we will present the plan of this thesis.

1.6 Plan	

The presentation of our research will be in two parts. In the first part, we present a synthesis

of our research. In the second part, we will present the four papers we published in order to

communicate the results of this research to the scientific community. The structure of the thesis

is presented as follows:

Chapter 1 is the introduction. In this current chapter, we presented the context as well as the

motivation of our work and the plan of the thesis.

7

Introduction

In chapter 2, we will present the literature review. In this chapter, we will present the concepts

and paradigms of information system evolution, of SD mining and software maintenance. We

will also present software anomalies, in particular, the SD and its lifecycle.

In chapter 3, we will present the methodology we used to conduct this research. We will also

present the systems on which the case studies were done and present the data we collected to

perform this research. This chapter presents in detail the different steps we followed in order to

identify trigger factors of severe SDs on a given E-type system.

In chapter 4, we will present our results as well as some difficulties we faced while conducting

this research. We will also provide explanations for our findings, and finally, we will propose

a method we named “the origins of severe software defects method” as the main contribution

of this research.

Chapter 5 consists of presenting our theoretical and practical contributions before concluding

our work with possible future works.

In order to give an insight of the papers we published to communicate our findings, we add

them to this manuscript in the form of appendices. This part represents the second part of the

manuscript.

Appendix 1 consists of the first paper we published concerning the identification of SDs trigger

factors on both systems (A and B) [29]. Here we also presented a conceptual tool in mining

change requests (CRs) as SDs in our case.

Appendix 2 consists of the second published paper. In this paper, we presented the evaluation

of SDs impacts based on a severity scale model [30]. We conducted this study on only system

A. Here, we also presented a conceptual tool to improve the management of SDs.

Appendix 3 is the first paper we published concerning which type of SDs triggers have severe

impacts on our studied E-type systems [31]. We conducted this study only on system A.

Appendix 4 is the second paper we published concerning which type of SDs triggers have

severe impact on our E-type systems. In this paper, we also present our method to identify the

factors triggering severe SDs on E-type systems [32]. The study was only on system B.

In Appendices 5, 6, and 7 we will present in detail the data analysis and two examples of the

raw data from our studied systems.

In summary, our research consists of three studies. For each study, there is a question, a

methodology, and the method used to answer this question, the results or solution we found,

8

Introduction

and the paper in which we communicate our findings. We summarized all this information in

Table 1.1.

Table. 1.1 Research summary

 Study 1 Study 2 Study 3
Question (Which) Sub-question 1: How

to identify factors
that trigger most
SDs?

Sub-question 2:
Evaluation of impacts
a SD has on a given E-
type system.

Research question:
Which types of trigger
factors generate the
most severe SDs on a
given E-type software
system?

Methodology/Method
or tools (How)

Case study/EVOLIS
Framework [9]

Case study/Severity
Attribute of IEEE
Standard 1044-2009
[19]

Case study/severe SD
trigger factors method

Findings (Solution,
Results)

Change indicator
conceptual tool [29]

SD Managerial tool
[30]

Technology and
architecture severe
trigger factors as leading
trigger factors [31].

A four-step method to
identify trigger factors
causing severe SDs on
an E-type system [32]

The origins of severe
software defects method

Published paper
(Where)

Appendix 1: The
Application of
Change Indicators in
Mining Software
Repositories [29]

Appendix 2: A
Conceptual Tool to
Improve the
Management of
Software Defects [30]

Appendix 3: Severe
Software Defects
Trigger Factors A Case
Study of School
Management System
[31], and

Appendix 4:
Classification of
Software Defects
Triggers: A Case Study
of School Resource
Management System
[32]

9

Literature Review

2 Literature	Review	

In this part, we will confront the environment of SDs by defining the existing paradigms and

theories related to our research. A reported SD is called a “change request (CR)”. The

implementation of solutions to a CR in the form of “change response” drives the evolution of

E-type systems. In fact, Evolution is defined as the gradual development of something [33].

This thing can be an electronic system, an organism, or a software system. In our case, this

thing is a software system. Different theories and laws have emerged in regards to the concept

of evolution, e.g. Lehman’s laws [6], Moore’s laws [34], and the theory of Darwin [35] which

is the best known evolution theory in the world. We will first introduce the information systems’

evolution paradigm followed by the software evolution, software maintenance activities, and

then software anomalies with a particular attention to the SDs management field.

2.1 Information	Systems’	Evolution	Paradigm	

“Information systems are combinations of hardware, software, and telecommunications

networks that people build and use to collect, create, and distribute useful data, typically in

organizational settings.” [36]. The Evolution of information systems (IS) is a new paradigm

that emerged from the work of Truex et al. [37] who defined this paradigm as “the notion of

continuous change”. Researchers have analyzed the question of information systems’ evolution

from different perspectives. IS researchers tackle this question using either a technical lens or

a managerial lens, both lenses are interdependent.

The first group of researchers provided an answer to the IS evolution question by analyzing

characteristics that the IS must have, in order to evolve. This group constitutes the technical

lens. A second group provided a more general management answer in the form of technology

10

Literature Review

strategy, e.g., technology road mapping. Finally, a third group provided an answer to this

question by designing artifacts such as EVOLIS framework [9], and models such as the

software evolution laws [6] where Lehman presented five laws that guide the software

evolution. These second and third groups fall under the managerial perspective.

• Technical lens

Under the technical lens, researchers have defined, analyzed, and presented the characteristic

an IS component must possess for a system to evolve effectively over time during its life cycle.

These systems are mainly E-type systems, which are computer programs that must undergo

continual evolution to remain satisfactory and operate or address a problem or an activity in the

real world [38]. The evolution is manifested through the maintenance of these systems. System

maintenance is the implementation of the change response as a solution to software anomalies

such as software failures or software defects. One of the important characteristics these systems

must possess according to IS evolution paradigm is flexibility. Thus, J.H et al. [39] defined

flexibility as the ability to respond to change. In regard to information systems, they insisted on

the fact that “a flexible system can be modified in a timely and cost-effective way in order to

satisfy different requirements at different points in time.” [39].

• Managerial lens

Under the managerial lens, IS researchers have proposed artifacts in order to study the IS

evolution question; for example, frameworks such as EVOLIS [9]; a technology managerial

tool such as technology road mapping; and models such as the Chapin et al. maintenance model

[40]. Considering the technology road mapping tool, it represents a powerful technique for

supporting technology management and planning, especially for exploring and communicating

the dynamic linkages between technological resources, organizational objectives and the

changing environment [41]. It also helps IS decision makers to design a concrete plan and be

able to manage effectively the evolution of their IS. There are different types of technology

road mapping such as integrated planning, long-range planning, and service/capability

planning.

Among the IS elements, our focus is on software systems. The research field that studies the

software system is called “software engineering”. Software Engineering is defined as “the

application of a systematic, disciplined, quantifiable approach to the development, operation,

and maintenance of software; that is, the application of engineering to software.” [42]. In the

11

Literature Review

next part, we will present the software evolution paradigm, a branch of software engineering

under which we conducted this research.

2.2 Definition	of	Software	Evolution	and	Software	
Maintenance	

2.2.1 Software	Evolution	
Software evolution is part of the IS evolution paradigm and falls under both the technical and

the managerial lens approaches. It addresses only the software system as the principal subject

of study. It emerged from the software maintenance and evolution work of Lehman in 1969. As

a precursor of this domain, he theorized the software evolution by providing eight laws that are

known as laws of software evolution [43]. These laws are summarized in Table 2.1. In addition

to these laws, he also clarified the possible approaches to study software evolution. They made

a distinction between the “how” of software evolution and the “what” of software evolution.

Cook et al.[7] also presented a similar definition for both approaches as follows:

• “Explanatory: concerned with understanding causes, processes and effects. This approach

attempts to achieve a holistic view and considers, for example, the impact of software

evolution on the effectiveness of organizations and the planning of organizational change.

• Process improvement: concerned with the development of better methods and tools. This

approach addresses such questions as ‘how should software engineering activities such as

design, maintenance [40],[44] refactoring [45], reengineering etc., be used to manage the

effects of software evolution?’.” [7].

Our research falls under the process improvement category, more precisely under the software

maintenance activities. In fact, software evolution is manifested through the maintenance of

these systems. System maintenance is the implementation of the change response as a solution

to software anomalies such as software failures or SDs. In the next section, we will present the

software maintenance activities.

12

Literature Review

Table. 2.1 Lehman’s Laws of software evolution [43]

No. Brief Name Law
I. 1974 Continuing Change E-type systems must be continually adapted, else,

they become progressively less satisfactory.
II. 1974 Increasing Complexity As an E-type system evolves, its complexity increases

unless work is done to maintain or reduce it.
III. 1974 Self-Regulation E-type system evolution process is self-regulating

with distribution of product and process measures
close to normal.

IV. 1980 Conversation of
Organizational Stability
(invariant work rate)

The average effective global activity rate in an
evolving E-type system is invariant over product
lifetime.

V. 1980 Conversation of
Familiarity

As an E-type system evolves, all associated with it,
developers, sale personnel, users, for example, must
maintain mastery of its content and behavior [6] to
achieve satisfactory evolution. Excessive growth
diminishes that mastery. Hence, the average
incremental growth remains invariant as the system
evolves.

VI. 1980 Continuing Growth The functional content of E-type systems must be
continually increased to maintain user satisfaction
over lifetime.

VII. 1996 Declining Quality The quality of E-type system will appear to be
declining unless they are rigorously maintained and
adapted to operational environment changes.

VIII. 1996 Feedback System (first
stated 1974, formalized as
law 1996)

E-type evolution processes constitute multi-level,
multi-loop, multi-agent feedback system and must be
treated as such to achieve significant improvement
over any reasonable base.

2.2.2 Software	Maintenance	
Software maintenance is the activity performed to change software systems. These changes

are the sources of software evolution as well. Software maintenance is defined in IEEE Standard

1219-1998 [46] as: “The modification of a software product after delivery to correct faults, to

improve performance or other attributes, or to adapt the product to a modified environment.”

In this domain, not only Swanson was the first researcher to provide a classification of

maintenance activities [47], but his work also laid the groundwork to conduct studies with it.

He classified software maintenance activities into four main groups [47]:

• Adaptive maintenance is a software maintenance activity performed in response to

changes in data and processing environments.

13

Literature Review

• Corrective maintenance is a software maintenance activity performed in response to

software failures such as processing failure and performance failure.

• Perfective Maintenance is software maintenance performed to eliminate processing

inefficiencies and enhance performance.

• Preventive maintenance is a software maintenance activity performed to improve the

maintainability of the system.

In the study field of software maintenance, other prominent researchers such as K.H. Bennett

and V.T. Rajlich [48] argue that software maintenance is not a “single uniform phase” as

portrayed in the traditional Software Development Life Cycle (SDLC) [49] but rather it is

comprised of several distinct stages, each of them with different technical and business

perspectives. Their proposed model is called “Staged model” [48] and comprised these

following stages:

• Initial development - the first functioning version of the system is developed [48] .

• Evolution - the engineers extend the capabilities and functionality of the system to meet

the needs of its users, possibly in major ways [48].

• Servicing - the software is subjected to minor defect repairs and very simple changes in

function [48] .

• Phase out - no more servicing is being undertaken, and the owners seek to generate

revenue from the use for as long as possible [48].

• Close down - the software is withdrawn from the market, and any users directed to a

replacement system if this exists [48] .

Software teams perform software maintenance activities in order to correct software anomalies.

In the next section, we will present different types of software anomalies, in particular the

management of SDs.

2.3 Software	Anomalies	

2.3.1 Definitions		
The Oxford dictionary defines anomaly as “Something that deviates from what is standard,

normal, or expected.” [50]. Similarly, IEEE standard 1044-2009 [19] suggested that the word

anomaly is used to refer to any abnormality, irregularity, inconsistency, or variance from

expectations. It may be used to refer to a condition or an event, to an appearance or a behavior,

14

Literature Review

to a form or a function: “Different terms such as error, bug, problem, incident, failure, fault,

defects, have been used as synonyms of software anomaly” [46].

Thus, current studies used these terms to refer to software anomalies; some refer to it as a bug

[51], or as a defect [24], [52], and others as an error [53]. The IEEE standard 1044-2009 [19]

provides a simple and complete definition of the most significant anomalies in the context of

software systems. We summarize these definitions in Table 2.2.

Table. 2.2 Software anomalies definitions [19]

Software
Anomalies

Definition

Failure Termination of the ability of a product to perform a required function or its
inability to perform within previously specified limits.

Error A human action that produces an incorrect result.

Fault A manifestation of an error in a software.

Defect An imperfection or deficiency in a work product where that work product
does not meet its requirements or specifications and needs to be either
repaired or replaced (adapted from the Project Management Institute).

2.3.2 Relationships	
The IEEE standard 1044-2009 [19] presents the description of the existing relationship

between these terms (see Table 2.3). Furthermore, they provide a simple entity relationship

diagram to understand these existing relations (see Fig. 2.1).

15

Literature Review

Fig. 2.1 IEEE standard 1044-2009’s relationships modeled as an entity relationship diagram [19]

16

Literature Review

Table. 2.3 Relationships among software anomalies [19]

Class/entity pair Relationships
Problem-Failure A problem may be caused by one or more failures.

A failure may cause one or more problems.
Failure-Fault A failure may be caused by (and thus indicate the presence of) a fault.

A fault may cause one or more failures.
Fault-Defect A fault is a subtype of the super type defect.

Every fault is a defect, but not every defect is a fault.

A defect is a fault if it is encountered during software execution (thus
causing a failure).

A defect is not a fault if it is detected by inspection or static analysis and
removed prior to executing the software.

Defect-Change

Request

A defect may be removed via completion of a corrective change request.

A corrective change request is intended to remove a defect.

(A change request may also be initiated to perform adaptive or perfective
maintenance.)

2.3.3 Lifecycle	
In this part, we will present the occurrence of these anomalies in the life cycle of a software

system. In the traditional SDLC model, a software system life cycle starts with the requirement

phase [49]. In this phase, the user sends a software system requirement to the development

team. Followed by the specification phase where the requirements are formalized in terms of

output, input, and functionalities. The third phase is the design phase where the architecture of

the system is determined. In the fourth phase, which is called the implementation phase, a

development team implements the specifications in the form of codes. In implementing the

coding of these different modules, a software team may introduce an error into the system.

Before deploying the system to users, the system is tested. At this point, when software teams

identify system errors they refer to them as software defects. The new software defect will be

corrected if the software developers detect it. If not, it will be part of the deployed system to

the users. In this case, according to the IEEE standard 1044-2009 [19] , this defect becomes a

system fault. System fault may cause one or more failures. In case it causes failures, the system

users will report those failures to the software maintenance team. In the last phase, which is the

17

Literature Review

maintenance phase, a software team analyzes software failures to identify the fault, which is

causing the failure(s) and corrects it. This correction activity is expressed in the form of a CR.

In this case, the change is named a corrective CR. The correction takes the form of a corrective

maintenance in this case. The adaptive and the perfective CR are the other types of CRs (see

Fig. 2.1).

We must specify that this presented lifecycle differed from the one we have in this research.

The reason being that the methodology used to develop our studies’ system is the agile scrum

method [54]. We will present this methodology in detail in the next chapter (see section 3.3.1),

and present our SD lifecycle in the same chapter (see section 3.3.2).

Among these software anomalies, our focus will be on the software defects as they are the main

subject of this research. In the next section we will present this software anomaly and its actual

position within the IS and computer science field in more detail.

2.4 Software	Defects	Management		

Nowadays, the management of SDs does not only consist of identifying, assigning, and

correcting them but also in mining them. IEEE standard 1044-2009 defines a defect as: “An

imperfection or deficiency in a work product where that work product does not meet its

requirements or specifications and needs to be either repaired or replaced” [19]. Not only the

software defects (SDs) are present in the whole life cycle of a software product, but different

studies also proved that 80% of the total cost of the software life cycle is associated with the

management of the SDs [23]. Having this high impact on the software product, SDs

management must be crucial to software teams as well as to organizations.

In the last decade, SDs management has received a considerable amount of attention from

researchers. In fact, SDs management has been the center of interest for many studies in

different software studies’ subdomains such as software project management, software

engineering and evolution [12], [30], [55]–[57]. Due to the diversity of these studies, we group

them into branches based on their interest in SDs management.

2.4.1 SDs	Collection	and	Storing	
The first branch deals with questions such as how to collect and store these SDs. Studies

related to this branch provided answers to questions such as how to collect SDs or which SDs

characteristics must be documented [55]. These studies propose solution tools named bug-

18

Literature Review

tracking systems to help to collect SDs. They are in the form of a central hub accessible by

project managers and software developers to manage the software products. Some of these

online tools are Jira [56] and Bugzilla [57].

2.4.2 Assigning	and	Solving	of	SDs	
The second branch deals with questions such as how to assign SDs to developers or how to

deal with the problem of an SDs duplication [58]. The research in this branch proposes

techniques and methods such as algorithms to automatically assign SDs to the right developer

[59]–[61] and also techniques to eliminate the duplication of SDs [59].

2.4.3 SDs	Triage	and	Mining	Approaches	
The third branch deals with the triage and the mining of SDs. There are different studies

which propose solutions on how to mine SDs [60], [61]. The defects are the source of software

failures and problems. Software failures are defined as “Termination of the ability of a product

to perform a required function or its inability to perform within previously specified limits”

[19]. In the software life cycle, the mining of defects presents many advantages [23].

Researchers as well as practitioners in this branch proposed schema and taxonomies for mining

SDs. Well-known schemas are (1) The Orthogonal Defect Classification (ODC) of IBM [24]:

this model was developed in 1992 by R. Chillarege et al. [24] and it classifies defects across

“the dimensions (1) defect type, (2) source, (3) impact, (4) trigger, (5) phase found, and (6)

severity” [62]; (2) The HP Defect Origins, Types and Modes, being Hewlett Packard’s

approach. The HP software metrics developed this model in 1986 [25]. This scheme classifies

the defects according to their types, their origins and their mode [13], the root cause analysis

[18], and standards like the IEEE standard 1044-2009 [19]. In the same context, they also apply

data mining methods such as the Naïve Bayes Model [27], clustering [28], or the regression

model [23] to classify SDs. In fact, the classification of the defects helps the software

development teams to reduce the cost of correcting SDs, and to detect defective modules. These

studies are not an exhaustive list of studies related to SDs management. The value generated

from SDs has made its management crucial to software teams as well as to organizations.

In order to identify the origins of SDs, The ODC, HP defects origins, root cause analysis and

other enumerated mining schemas limited their analysis on software code. They analyzed this

internal component (software code) of software systems in other to identify existing errors.

Thus, they only focus on the technology factors as origins of SDs. Other internal and external

factors that influence E-type systems such as systems’ users and business processes are not

19

Literature Review

addressed. The goal of this research is to fill this gap by proposing a method. This method helps

identifying the source of SDs by considering internal as well as external SDs trigger factors.

Furthermore, it also helps us to answer our research question, which is to identify the ones

triggering most of the severe SDs on a given E-type system among these factors.

After reviewing the concepts and backgrounds of this research, we will present how we

conducted this research in the next chapter.

21

Methodology

3 Methodology	

For our research, we conducted two case studies on two different systems. We named them

System A and System B. The method used to conduct these studies is described in the following

steps:

• Pre-step 0. Data collection: this pre-step consists of collecting SDs of the E-type system

to study. In our case, we collected the SDs of system A and B from the Jira repository

[56].

• Step 1. Identification of trigger factors for each SD: in this step, we classify the SDs

based on the EVOLIS framework [9] in order to identify their trigger factors. In this

research, we refer to this step as “EVOLIS classification”.

• Step 2. Evaluation of the impact a SD has on the studied E-type system: here we classify

the same SDs based on their severity level using the severity attribute of IEEE standard

1044-2009 [19]. We refer to this classification as “Severity classification”.

• Step 3. Identification of SDs that cause high severe impact on our studied E-type

systems: at this level, we classify the SDs based on both the EVOLIS framework and

the severity attribute of IEEE standard 1044-2009 [19]. We named it “EVOLIS and

Severity classifications”.

We performed these steps on each system studied. In the next section, we will present the case

study methodology, followed by the presentation of the studied systems. Then, we will proceed

to present our method in general, and then present each step in detail.

22

Methodology

3.1 Case	Study	Definition	and	Types	

Case study research can be either a qualitative, a quantitative research methodology, or both

[63]. There are numerous definitions of case research [64]–[68]. Nevertheless, Benbasat et al.

[10] provided the one that is most suitable in the IS research field. They define case research as

follows: “A case study examines a phenomenon in its natural setting, employing multiple

methods of data collection to gather information from one or a few entities (people, groups, or

organizations). The boundaries of the phenomenon are not clearly evident at the outset of the

research and no experimental control or manipulation is used” [10]. Yin [65], [69] and Stake

[70] make major contributions with their works to the field of case studies research. Based on

their work, Baxter and Jack [71] proposed a résumé of existing types of case study research

(see Table 3.1). In the context of this research, our goal is to observe the similarity between

cases. Thus, we adopted the multiple-case studies approach for this research.

23

Methodology

Table. 3.1 Type of case studies research [71]

Case Study
Type

Type Definition

Explanatory This type of case study would be used if you were seeking to answer a question that
sought to explain the presumed causal links in real-life interventions that are too
complex for the survey or experimental strategies. In evaluation language, the
explanations would link program implementation with program effects [69].

Exploratory This type of case study is used to explore those situations in which the intervention
being evaluated has no clear, single set of outcomes [69].

Descriptive This type of case study is used to describe an intervention or phenomenon and the
real-life context in which it occurred [69].

Multiple-case
studies

A multiple case study enables the researcher to explore differences within and
between cases. The goal is to replicate findings across cases. Because comparisons
will be drawn, it is imperative that the cases are chosen carefully so that the
researcher can predict similar results across cases, or predict contrasting results based
on a theory [69]

Intrinsic Stake [70] uses the term intrinsic and suggests that researchers who have a genuine
interest in the case should use this approach when the intent is to better understand the
case. It is not undertaken primarily because the case represents other cases or because
it illustrates a particular trait or problem, but because in all its particularity and
ordinariness, the case itself is of interest. The purpose is NOT to come to understand
some abstract construct or generic phenomenon. The purpose is NOT to build theory
(although that is an option; [70]).

Instrumental Is used to accomplish something other than understanding a particular situation. It
provides in sighting to an issue or helps to refine a theory. The case is of secondary
interest; it plays a supportive role, facilitating our understanding of something else.
The case is often looked at in depth, its contexts scrutinized, its ordinary activities
detailed, and because it helps the researcher pursue the external interest. The case may
or may not be seen as typical of other cases [70].

Collective Collective case studies are similar in nature and description to multiple case studies
[69].

3.2 Why	Case	Study	Methodology?	

To be able to analyze the impact of system defects reported by system users as well as system

developers, and the change derived from the occurrence of this failure, we have to observe two

systems in their natural settings. We use case study methodology to conduct this research since

it addressed contemporary phenomena in their natural context. Considering the contemporary

phenomena, we are looking at CRs done on software systems developed using the agile method.

In the natural context, we are considering two sub-units of the same institution, which are in

charge of managing the SDs of these systems.

24

Methodology

Furthermore, to know if this methodology is more suitable for our research project or not, we

also identify and compare the characteristics of our research with the ones proposed by Benneth

et al. [48] by providing an answer to each of these 11 points. In fact, they presented 11 key

characteristics of case studies research must possess (see Table 3.2) [10]. The results of the

comparison between the proposed characteristics and our research project are presented in

Table. 3.3.

Table. 3.2 Key characteristics of an IS case study [10]

1. Phenomenon is examined in a natural setting.

2. Data are collected by multiple means.

3. One or few entities (person, group, or organization) are examined.

4. The complexity of the unit is studied intensively.

5. Case studies are more suitable for the exploration, classification and hypothesis

development stages of the knowledge building process; the investigator should have a

receptive attitude towards exploration.

6. No experimental controls or manipulation are involved.

7. The investigator may not specify the set of independent and dependent variables in

advance.

8. The results derived depend heavily on the integrative powers of the investigator.

9. Changes in site selection and data collection methods could take place as the

investigator develops new hypotheses.

10. Case research is useful in the study of "why" and "how" questions, because these deal

with operational links to be traced over time rather than with frequency or incidence.

11. The focus is on contemporary events

25

Methodology

Table. 3.3 The characteristics of our case project.

Key Characteristics of Case studies Key Characteristics of our Research.
Phenomenon is examined in a natural
setting.

Our project consists of studying software
defects of two systems in an organizational
context. These systems had been observed in
their natural setting which is the organization
managing them.

Data are collected by multiple means. We collected data from two main sources: the
first one is a software failure reporting system
(EasyVista [72]). The second is a software
repository system (Jira [56]).

One or few entities (person, group, or
organization) are examined.

The studied systems belong to one institution,
with two different project groups in charge of
each one of them.

The complexity of the unit is studied
intensively

We analyzed each software defect in detail by
looking at its description and summary.

Case studies are more suitable for the
exploration, classification and hypothesis
development stages of the knowledge
building process; the investigator should
have a receptive attitude towards
exploration.

Our main goal is to classify the software
defects, according to their severity and factors
that trigger them.

No experimental controls or
manipulation are involved.

We did not conduct any experimental or
manipulation during this research.

The investigator may not specify the set
of independent and dependent variables
in advance.

No independent variable nor dependent
variables were set in advance of the studies.

The results derived depend heavily on the
integrative powers of the investigator.

We were able to combine in an innovative
manner, both classifications to reach the main
objective of this study.

Changes in site selection and data
collection methods could take place as the
investigator develops new hypothesis.

We had collected data from another software
project to evaluate our hypothesis.

Case research is useful in the study of
"why" and "how" questions because
these deal with operational links to be
traced over time rather than with
frequency or incidence.

How to identify trigger factors causing the most
severe SDs on E-type systems?

How do software defect triggers affect the
operation and the functionalities of the
systems? These are questions we address with
our studies.

The focus is on contemporary events. Managing software defects activities represent
up to 80% of the total cost of a software system.
In addition, SDs cause huge financial losses to
government bodies, organization, and
individuals.

26

Methodology

3.3 Presentation	of	the	Institution		

The institution we choose to conduct this study on is a governmental educational institution,

which is in charge of providing software solutions to the public college schools in one of the

French regions in Switzerland. Among the systems that they provided, two main ones draw our

attention and have the necessary characteristics for our study. In fact, we choose these systems

because they continuously evolved since their deployment and the project team has kept track

of their SDs. In other words, they have a complete SDs report history data. They are:

System A: this system is a grading management system for schools. More than 10,000 teachers

use it to manage the evaluations, school reports, and grades of more than 95,000 students. They

also use it to deliver school certificate as well as control the students’ attendance. It was

deployed in the ending of 2012 (see Table 3.4).

System B: it is used to manage the repartition of teachers and students in different schools and

classes. It addresses the administrative management of public schools in the region. It is used

by more than 80 schools with almost 1,500 users (deans and directors), and it manages the

records of students (more than 95,000), teachers (more than 10,000), and 5,000 teaching

assistants (see Table 3.4).

 Table. 3.4 Summary of studied systems

 System A System B
Data Range January 2015-April 2016 January 2015-April 2016
Number of SDs 675 581
Number of Users 15000 1500
Development Budget
(including maintenance)

More than 1.5 million dollars More than 2.5 million dollars

Both systems are developed based on the agile scrum method. In the next section, we will

present this method.

3.3.1 Agile	Methodology	and	Scrum	Method	
For the purpose of our study, let us briefly look at the characteristics of agile methodology

and scrum method in particular.

There are different definitions of this agile methodology. For Henderson-Sellers and Serour

[73], agility involves both the ability to adapt to different changes and to refine and fine-tune

development processes as needed [73]. Lee and Xia [74] define software development agility

27

Methodology

“as the software team’s capability to efficiently and effectively respond to and incorporate user

requirement changes during the project life cycle” [74]. Agile methodology proposes different

methods such as a dynamic software development method. The popular one is extreme

programing, Scrum [75]. To provide software systems’ solutions to its clients, the institution

uses the Scrum method in developing these systems. “Scrum method consists of focusing on

project management in situations where it is difficult to plan ahead, with mechanisms for

‘empirical process control’; where feedback loops constitute the core element. Software is

developed by a self-organizing team in increments (called ‘sprints’), starting with planning and

ending with views. Features to be implemented in the system are registered in a backlog. Then,

the product owner decides which backlog items should be developed in the following sprint.

Team members coordinate their work in a daily stand-up meeting. One team member, the scrum

master, is in charge of solving incidents that stop the team from working effectively” [76].

3.3.2 Software	Defect	Life	Cycle	in	the	Studies’	Projects.		
In this section, we will present the state of software anomalies in the context of this research.

The software studies are developed using the scrum methodology; meaning that the scrum

master—in this case the project leader—is the person that controls the evolution of the software

project, by requesting software changes from the software development team and adding new

functionalities to the existing system. The process of the SD and CR goes as follows:

System users report failures they encountered using a particular system to a help desk member.

This help desk person reports the failure into a bug repository system (EasyVista [72]) to be

solved. A sub-team of the help desk analyzes the reported failure and addresses it. In case this

sub-team person provides a solution to correct this failure, they communicate the solution to

the client and close the case. If not, the failure is then reassigned to the software development

project team. They analyze this failure in turn to identify the software defect causing it. After

identifying the SDs, they proceed to request a change to correct the detected SD. These SDs

and their requests are saved into a software repository tool which, in our case, is Jira [56]. From

this point on, the outsourced software development team takes charge of the implementation of

a response to achieve the requested change. We summarized this process in Fig. 3.1

28

Methodology

Fig. 3.1 Software defect life cycle within the studied projects

29

Methodology

3.4 Severe	SD	Trigger	Method	

As said in the beginning of this chapter, our method of conducting this research consisted of

a pre-step and three main steps. We applied this method on both case studies. The overview of

this method goes as follows:

In the pre-step (0), we collected SDs of a selected system for studying. In the first step (1)

(EVOLIS classification), we took each SD to find its trigger factor or source. In the second step

(2) (Severity classification), we took again each SD and evaluated its severity impact (cost) on

the system. We then took each couple of “trigger factor-impact” and classified them into two

groups: “the severe group” and “the no-severe group”. This classification is based on our

severity-weighting model. We will present in detail this severity-weighting model in the next

chapter (see section 4.3.1). In the final step (3), we only concentrated on the severe couples and

ranked them according to the level of damage they may do on system operations (EVOLIS-

Severity classifications). We present these steps as well as the activities we conducted under

each one of them in Fig. 3.2.

Fig. 3.2 Steps to identify trigger factors causing most of severe SDs to a system

0. Collect SDs
•Selection of a system to study and collect its SDs

1. Identification of trigger factors causing most of
SDs
•In our cases, we used EVOLIS framework [11] to identify
these factors (EVOLIS classifcation).

2. Evaluation of the impact of SD in terms of severity
on systems
•In our cases, we used the IEEE standard 1044-2009 [21] to
weight the severe impact of SDs on our studied systems.
(Severity classification).

3. Integrate the results of step 1 and 2 in order to identify
SD trigger factors causing high severity impacts to an E-
type system
•In our cases, we combined the results of EVOLIS classification &
Severity classification.

30

Methodology

In addition, we illustrate this process with the IS architecture trigger factors block of EVOLIS

framework [9] (see Fig. 3.3). We present this framework in one coming section (see section

3.6.1). We applied the same process to each SD analyzed of both studied systems. In the next

section, we will present each step of this process in detail.

Fig. 3.3 Illustration of the steps to identify severe SD trigger factors using the IS architecture

factors

3.5 Pre-step	0:	Data	Collection	

We collected our data from two main databases. The first one is EasyVista [72]: it contains

both information related to software incidents or failures, as well as SDs or CRs. The second

one is Jira [56] and only contains data related to SDs or CRs. We only considered data related

to SDs in our project. Therefore, in both cases, we only focused on data related to the SDs and

CRs. We performed our data collection in three steps:

• The first step is to choose systems having a software defect repository. This was

an important step because not all systems and organizations we contacted have put

this repository in place.

• The second step consists of collecting the SDs data. For the selected systems, we

collected archival data from a software repository for both systems. The data were

presented in tabular format (Microsoft Excel) with the following information:

31

Methodology

For each system, there is the SD unique ID; the name of the person or organization who reports

the software failure; the help desk person who receives the complaint; the date of reporting, and

the date the defect was fixed; the name of the person who implemented the CR, the department

or service concerned with the reporting; the description of the SD; the summary (resumé) of the

change to implement; and finally, the project member team who confirmed the defect.

• The third step consists of designing a database (see Fig. 3.4) for each studied

system. In this step, we also proceeded to identify essential data that we needed to

conduct our research. We had grouped these data in a database. We present the

essential data retained for our study in Table 3.5. In this table, not only do we

describe the essential data, but we also present the classification data. The essential

data needed for our study are divided among four tables (see Fig. 3.4). In fact, our

database is made up of four tables. There are EVOLIS, System, Severity, and the

SoftwareDefects tables. The relationships among these tables are described as

follows: A system has zero or more SDs. A SD falls under one type of severity or

not. Similarly, a SD may fall under one type of EVOLIS block (category) or not.

Table. 3.5 Data attributes and their description

Attributes Definition
ID The unique number of each reported SD
Reported Date The SD reporting date
Description The description of the SD
Résumé The possible action to perform to correct the SD
Type of Request The type of request from the SD reporter
Severity The type of Severity
EVOLIS The type of SD trigger factor
Solved Date The SD solving date
Status If the SD has been solved or not

32

Methodology

Fig. 3.4 Project’ database schema

We collected data over the period of three years from January 2013 until December 2016.

However, for specific use cases we selected segments of data over a period of 16 months from

January 2015-April 2016 for both systems A and B. System A has nine released versions over

this period. The first version of the system A had been released mid-2012. System B has 10

released versions over the same period of time. System A had 675 SDs and system B had 581

SDs (see Table 3.4). In the following sections, we will present the classifications of these SDs.

3.6 Step	1:	Trigger	factors	Identification	(EVOLIS	
Classification)		

We conducted this first classification on both systems. The main goal of this first

classification is to group SDs according to their trigger factors. We validated the results of this

first classification in our first paper published in Trends and Advances in Information Systems

and Technologies Volume 2, 2018 [29] (see Appendix 1). We did this classification for three

main reasons:

1. To identify SD groups that have a sudden rise over a period of time.

2. To propose a model to manage SDs or CR implementation and manage their

unexpected rise.

3. To improve decision making in the domain of software maintenance.

We did this classification based on the EVOLIS framework [9]. In the next section, we will

present this framework in detail.

33

Methodology

3.6.1 The	EVOLIS	Framework	
 One of the concepts we used to conduct this research is the EVOLIS (EVOLution of

Information Systems) framework [9]. This framework was proposed by two researchers of the

Evolution lab in the Information System department of HEC Lausanne. In fact, Dr. A. Métrailler

presented this framework as part of his PhD thesis directed by Dr. T. Estier. The main purpose

of this framework is to help software portfolio managers to manage the evolution of their

systems.

3.6.1.1 Definition	
The EVOLIS framework [9] groups the factors having a direct influence on a system into

four blocks. It provides a means of studying software defect reports with their CR based on

their trigger factors. According to the authors, EVOLIS [9] framework classified SDs as an

evolution based on factors that trigger them: “EVOLIS can be caused by a large variety of

factors: bugs that need to be fixed, users that wish to have new functionalities, new market

opportunities that require new software features, performance standards that the system must

reach, technical changes in the environment with which the system must interact, obsolescence

of applications and so on” [9]. EVOLIS presents four main categories or blocks of SDs with a

fifth-block as the cost to compare the different phases of system evolution with each other (see

Fig. 3.5). The cost block is related to the financial impact that will result from a change in a

system: “It is the consideration the cost-benefit in case of evolving an IS” [9]. The four main

blocks are the IS architecture change requests block, the Technology change requests block, the

IS/user fit change requests block, and the Business/IS alignment change requests block. In the

next section, we will present each of these blocks in detail.

3.6.1.2 IS	architecture	
The IS architecture change requests block (ACH), is a group of factors that triggers software

change based on integration and interoperability needs. According to the authors, this type of

change request concerns “different types of integration evolution, namely an evolution of

integration among components of the system, among business functionalities, or an integration

with systems outside of the company.” [9].

3.6.1.3 Technology		
The Technology change requests block (TCH) is related to factors that trigger software

change based on the operational needs of the software as well as the hardware platforms as

information system components. As an example, they stated that “when reason like

34

Methodology

performance, updates, preventive maintenance and so on motivate evolutions of the software

or hardware.” [9].

3.6.1.4 IS/user	fit	
The IS/user fit change requests block (UI) is related to factors that trigger software change

based on the system users’ satisfaction in terms of ease of use and usefulness of the system [77].

They defined it as any request related to the user interface, the user documentation, and aptitude

to use the system. Simply said, the authors “classify as IS/user fit each activity during an

evolution regarding directly users or when the evolution only alters the fit between IS and users

without altering business functionalities” [9].

3.6.1.5 Business/IS	alignment	
The Business/IS alignment change requests block (B.IS) is a group of factors that triggers

software change based on the IS alignment with business process and activities. It “addresses

the co-alignment between business and information systems.” [9]. There are two types of

alignment under this category: company external environment alignment, and evolution-

oriented alignment.

Fig. 3.5 The five Blocks of EVOLIS (Adapted from the of EVOLIS Framework) [9]

IS Architecture Technology

IS/user Fit Business/IS
Alignment

Cost

35

Methodology

3.6.2 EVOLIS	Classification			
As described earlier, each software failure report is characterized by a source, a description,

and a help desk person handling the failure. The failures that could not be solved by the help

desk team became SDs. These SDs were saved in the repository (Jira [56]). The classification

of the SDs is done based on our EVOLIS classification approach. In the next section we will

present in detail how we adapted the EVOLIS framework to classify our SDs data.

3.6.2.1 Our	EVOLIS	classification	adapted	method	
Overall, our EVOLIS classification adapted method is described as follows:

Based on the definition of EVOLIS blocks and SD descriptions, we defined seven classes (see

Table 3.6). Each of these seven classes is associated with one of the four blocks of EVOLIS

(see Table 3.7). Each of these classes is composed of two or more subclasses. Each subclass is

then characterized by defined key factors. Factors are combined keywords that are identified

based on the semantic analysis of the SDs résumé and description. The semantic analysis is

conducted on the raw description and résumé of the SDs we collected for both systems.

 E.g., the EVOLIS user fit block is composed of user, user interface, and user testing classes.

The user interface class is made up of two subclasses: ease of use and system usefulness. The

ease of use subclass is characterized by key factors such as display, button, click, screen, color

and visual. These factors are keywords identified while conducting a semantic analysis on SD’s

descriptions in French.

Table. 3.6 Our defined seven classes

1. SDs related to the user ability to manipulate the system
2. SDs related to the user interface
3. SDs related to system error or system bug
4. SDs related to another system different from the system in use
5. SDs related to the business and processing rules
6. SDs related to the system database and based mainly on user access privileges
7. SDs related to testing of the system done by the user.

36

Methodology

Table 3.7 presents the classification of the seven main classes into the EVOLIS blocks.

Table. 3.7 Classification of the seven classes into EVOLIS SD trigger factor categories

 User User
Interface

User
test

System
Bug

Another
system

Rules/

Process

User
Privilege/

Database
EVOLIS Business/IS

alignment

(B.IS)

IS/user fit (UI)

Technology
(TCH)

IS architecture
(ACH)

3.6.2.2 Application	of	our	EVOLIS	classification	adapted	method		
We applied this method in analyzing both the data we collected for system A and B. For each

SD, we proceeded as follows.

First, we conducted a semantic analysis of the reported description and résumé of the SD to

identify some keywords. Second, based on the semantic analysis, we combined two or more

keywords as key factors. Third, based on the SD’ key factors, we assigned the SD to its

corresponding subclass. Fourth, based on the SD’ subclass, we classified the SD according to

the corresponding class. Finally, we classified the SD in one of the four EVOLIS blocks based

on its corresponding class identified previously. In summary, the classification of each SD is

done by following these steps:

1. Semantic analysis of the SD description and résumé to identify keywords

2. Identification of factors based on the SD description and résumé keywords

3. Classification of the SD into a subclass

4. Classification of the SD into one of the seven classes

5. Classification of the SD into one of the four blocks of EVOLIS

E.g. here are some examples of how we identified a trigger factor of a SD using our EVOLIS

classification. These examples are based on the raw data in French (see Appendix 7) we

collected for both systems (see Table 3.8).

37

Methodology

Table. 3.8 Identification of SD trigger factors examples

Steps Examples
Semantic analysis of
the SD description
in French

(keywords are
marked in bold)

Raw Description :

"Ici, le bouton + est affiché dans
l'écran (capture 2). Il existait car il y
avait des travaux qui étaient
concernés par cet affichage. Ces
travaux ont été déplacés et/ou
supprimés. Il n'y a plus de travaux
liés. Le + reste affiché. L'ouverture
de la fenêtre (capture 1) montre qu'il
n'y a pas de travaux. Si les travaux
n'existent pas ou plus, le + ne devrait
pas s'afficher."

Résumé: Fenêtre "Note de l'élève
des groupes liés" persistante

Raw Description :

Bonjour, Je n'arrive pas à transférer
à Prilly primaire une élève futur 1P
qui va déménager de Crissier à
prilly ! "Une erreur est apparue !"

Résumé : erreur applicative/de
développement

Identification of key
factors in the SD
description and
résumé

Le bouton affiché, écran, affichage,
fenêtre.

(In English, these keywords are
button, screen, window, display)

Erreur, erreur applicative, erreur
de dévéloppement

(In English, these key factors are
error, system error, software error)

Classification into a
subclass

Key factors display, and window fall
under the ease of use subclass

System error fall under the subclass
of system fault

Classification of the
SD into one of the
seven classes

Ease of use subclass falls under the
user interface class

The system fault subclass falls
under the system Bug class

Classification into
one of the four
blocks of EVOLIS

The interface class is associated to
the user fit block of EVOLIS. Thus,
the trigger factor of this SD is an IS
user-fit factor.

The system bug class is associated
to the technology block. Thus, the
trigger factor of this SD is a
technology factor.

The results of applying this EVOLIS adapted method on system A and B are as follows:

38

Methodology

• Results of System A EVOLIS classification
EVOLIS ACH B.IS TCH UI Total

2015 133 93 144 149 519
Jan 12 8 16 7 43
Feb 10 5 12 4 31
Mar 15 13 19 16 63
Apr 22 11 10 12 55
May 4 8 10 7 29
Jun 9 2 19 11 41
Jul 1 1 2 6 10
Aug 1 4 9 13 27
Sep 15 8 8 22 53
Oct 16 4 9 10 39
Nov 23 19 18 23 83
Dec 5 10 12 18 45
2016 12 47 26 71 156
Jan 3 15 11 26 55
Feb 4 4 6 10 24
Mar 0 13 6 27 46
Apr 5 15 3 8 31
Total 145 140 170 220 675

• Results of System B EVOLIS classification

EVOLIS ACH B.IS TCH UI Total
2015 87 22 251 90 450
Jan 7 2 25 12 46
Feb 7 3 11 2 23
Mar 6 2 20 5 33
Apr 7 1 17 17 42
May 12 4 31 13 60
Jun 17 3 59 15 94
Jul 5 3 20 9 37
Aug 4 2 17 1 24
Sep 6 1 18 6 31
Oct 3 1 4 5 13
Nov 4 0 12 3 19
Dec 9 0 17 2 28
2016 20 8 73 30 131
Jan 9 0 16 6 31
Feb 5 2 27 12 46
Mar 1 2 13 1 17
Apr 5 4 17 11 37
Total 107 30 324 120 581

39

Methodology

The analysis of these results at this step led us to propose a “change indicator conceptual tool”.

The purpose of this conceptual tool is to help software maintenance teams and software

portfolio managers to identify sudden rises of SDs by putting in place the right process. We will

present this conceptual tool in the next chapter in detail (see section 4.2.4).

3.7 Step	2:	Evaluation	of	SD	Impact	on	E-type	Systems	
(Severity	Classification)		

3.7.1 The	Roles	of	Evaluating	SD	Severity	Impact	
The aim of this second classification is to distinguish the severity impact of each SD on our

studied systems, and to improve the project management of mining SDs. One of the proposed

classification methods recommended by IEEE standard 1044-2009 [19] is the classification of

SDs based on severity. They argue that “having a standard way to classify software anomalies

enables better communication and exchange of information regarding anomalies among

developers and organization” [19]. In addition, “it enables insight into the types of anomalies

that organization produce during development of their project” [19]. For these reasons, for our

second classification we selected the severity attribute of IEEE standard 1044-2009 [19] (see

Table 3.9).

There are three main goals for this classification:

1. To identify the degree of severity impact each SD has on the system.

2. To improve the project management of mining SDs or CRs.

3. To improve SDs’ mining decision making by implementing control measures.

3.7.2 Evaluation	of	SD	Impact	on	our	E-types	Studied	Systems	
The IEEE standard 1044-2009 [19] defines the severity attribute as “The highest failure

impact that the defect could (or did) cause, as determined by (from the perspective of) the

organization responsible for software engineering.” [19]. The five values of severity are

classified from the most significant to the least significant ones (see Table 3.9).

40

Methodology

Table. 3.9 Severity values [19]

Attribute Value Definition
Severity Blocking (B) Operation is inhibited or suspended pending correction

or identification of suitable workaround.
 Critical (C) Essential operations are unavoidably disrupted, safety is

jeopardized, and security is compromised.
Major (Maj) Essential operations are affected but can proceed.
Minor (Min) Nonessential operations are disrupted.
Inconsequential (Inc) No significant impact on operations.

As defined by the IEEE standard 1044-2009 [19], this classification is done based on the

judgment of the impact a SD has on its system. This judgment is done by the people responsible

for software engineering. The people responsible for software engineering are either the

software maintenance team or the software development team. In determining a SD severity

impact on a system, they must also consider the context of the organization in which the

software system is used. In our case, the people responsible for software engineering are both

the software development and the software maintenance teams.

For our studied systems, either the software development team or the software maintenance

team or both make the determination of the severity values of the SDs. As recommended by

IEEE standard 1044-2009 [19], the classification of SD severity is done as follows in our

research:

• If the SD completely prevents the system to process its essential operations, or prevents

an entire component of the system to be operational (complete shutdown of the system

component) then it is considered having a blocking severity impact on the system. Any

SD of this sort falls under the Blocking severity level.

E.g., “Enseignant : impossible d'assigner un enseignant dans un nouvel établissement s'il a le

statut EXT.”. Assigning a teacher to a class is an essential operation of this system. The

description of this SD states that “Teacher: Impossible to assign a teacher to a new school if he

has EXT status (external status)”. This SD completely prevents the system to process this

essential operation, thus this SD has a blocking severity impact on the system and falls under

the Blocking severity value category.

• If a SD partially prevents the system to run its essential operation, and compromises the

security of the system, then this SD is considered having a critical severity impact on

the system. Thus, this SD falls under the Critical severity level.

41

Methodology

• If a SD affected essential operations of a system without interrupting them to proceed,

then the SD is considered having a major severity impact on the system. This type of

SD falls under the Major severity level.

• If a SD affects only the non-essential operation of a system, then the SD is considered

having a minor severity impact on the system. Thus, the SD is classified under the Minor

severity level.

E.g., “Dans le cas de rôles multiples (SUPPORT + ADMIN + CDIR), la création d'un message

en mode ADMIN porte la mention CDIR.”. Creating a message using the system is a non-

essential operation. The résumé of this SD in French states, “In the case of multiple roles

(SUPPORT + ADMIN + CIDR), the creation of a message in ADMIN mode is marked CDIR.”.

This SD does not prevent the system administrator to create or send a message but only shows

the wrong message marked in the admin mode. Thus, this SD has a minor severity impact on

the system. It is classified under the Minor severity level.

• If a SD does not have any significant impact on neither the essential operation nor the

non-essential ones, then it is considered having an inconsequential severity impact on

the system. Thus, a SD of this sort falls under the Inconsequential severity value

category.

Based on this “if then” approach, we proposed a summary of the characteristics a SD has under

each severity level (see Table 3.10). We proposed this table to inform others SD mining

researchers and practitioners on how to determine the severity impact or value of a SD (see

Table 3.10).

In fact, to determine the severity level of a SD, an answer must be provided for each of these

following questions:

• Question 1 (Q1): Did the SD have an impact on essential operations?

• Question 2 (Q2): Did the SD have an impact on non-essential operations?

• Question 3 (Q3): Can essential operations proceed?

• Question 4 (Q4): Can non-essential operations proceed?

There are three possible answers to each of these questions, either: NO or YES or Partially. The

combination of the answers to these questions determine the level of severity of a SD. E.g., if

the analysis of the SD provides the following answers (YES to the first two questions and NO

to the last two questions), then this SD falls into the Blocking severity level.

42

Methodology

Table. 3.10 Evaluation of the severity value of a SD

 Impact of a SD System operational status
Q1. Impact on
Essential
Operations

Q2. Impact Non-
essential
Operations

Q3. Essential
Operations can
proceed

Q4. Non-
Essential
Operations can
proceed

Severity Value
Blocking YES YES NO NO
Critical YES YES Partially NO
Major Partially YES Partially NO
Minor NO YES YES Partially
Inconsequential NO Partially YES YES

For the purpose of this study, we define any SD as severe as long as it belongs to one of these

severity levels: (1) Blocking (B), (2) Critical (C), and (3) Major (Maj). The Minor (Min) and

the Inconsequential (Inc) are not considered as severe SDs. Furthermore, we also introduced a

weighting model to express the value of each SD’s severity according to their severity impact.

We will present this model and the results of applying it, in the next chapter (see section 4.3).

We also presented this weighting model and the results of this second classification in detail in

our second and third paper. In addition, in the second paper, we also proposed a “SD managerial

conceptual tool” to help SD mining teams to align their mining strategy and objectives with the

ones of the software owners. We will present this second conceptual tool in the next chapter

(see section 4.3.3). The second paper is published in Business Modeling and Software Design

– 8th International Symposium, BMSD 2018 [30] (see Appendix 2), and the third paper is

published in Digital Science 2018 Advances in Intelligent Systems and Computing, vol 850 pp

389-396 [33] (see Appendix 3).

43

Methodology

• Results of System A Severity classification

Severity Blocking Critical Major Minor Inconsequential Total
2015 51 60 266 127 15 519
Jan 2 3 28 10 0 43
Feb 1 5 14 11 0 31
Mar 7 8 34 14 0 63
Apr 2 5 37 9 2 55
May 3 1 20 5 0 29
Jun 0 2 25 14 0 41
Jul 0 1 5 4 0 10
Aug 2 7 8 7 3 27
Sep 5 11 18 15 4 53
Oct 7 4 22 6 0 39
Nov 15 8 37 20 3 83
Dec 7 5 18 12 3 45
2016 25 24 64 43 0 156
Jan 8 9 25 13 0 55
Feb 5 3 10 6 0 24
Mar 5 9 15 17 0 46
Apr 7 3 14 7 0 31
Total 76 84 330 170 15 675

• Results of System B Severity classification

Severity Blocking Critical Major Minor Inconsequential Total
2015 57 112 135 145 1 450
Jan 3 13 12 18 0 46
Feb 2 4 9 8 0 23
Mar 4 6 14 8 1 33
Apr 5 9 7 21 0 42
May 16 13 15 16 0 60
Jun 6 32 29 27 0 94
Jul 7 3 16 11 0 37
Aug 4 8 10 2 0 24
Sep 4 10 8 9 0 31
Oct 3 2 3 5 0 13
Nov 0 4 5 10 0 19
Dec 3 8 7 10 0 28
2016 18 18 29 65 1 131
Jan 3 7 7 14 0 31
Feb 4 3 13 26 0 46
Mar 4 2 2 9 0 17
Apr 7 6 7 16 1 37
Total 75 130 164 210 2 581

44

Methodology

3.8 Step	3:	Identification	of	Trigger	Factors	Causing	Severe	
SDs	on	our	Studied	Systems	(Classification	based	on	both	

EVOLIS	and	Severity)	

We combined the two results in order to answer our main research question which is to

“identify trigger factors that cause most severe SDs”. Subsequently, we grouped these results

into a two-dimensional table. Each dimension represents the results obtained for each previous

classification project. We also presented these studies in detail in our third and fourth papers.

This third paper is published in Digital Science 2018 Advances in Intelligent Systems and

Computing, vol 850 pp 389-396 [31] (see Appendix 3). The fourth paper is published in

ICITS19 [32] Advances in Intelligent Systems and Computing, vol 918 (see Appendix 4).

• System A

EVOLIS

Severity
ACH B.IS TCH UI Total

Blocking 18 24 19 15 76
Critical 12 21 30 21 84
Major 100 66 93 71 330
Minor 15 28 27 100 170

Inconsequential 0 1 1 13 15
Total 145 140 170 220 675

• System B

EVOLIS

Severity
ACH B.IS TCH UI Total

Blocking 16 2 51 6 75
Critical 30 5 74 21 130
Major 34 8 92 30 164
Minor 27 15 107 61 210

Inconsequential 0 0 0 2 2
Total 107 30 324 120 581

45

Methodology

In the next section, we will discuss these results and highlight the contributions we made out of

them.

47

Results Analysis

4 Results	Analysis	

In this section, we will present our results and findings. For each classification, we will

present and discuss its results and other solutions these results lead us to. We analyzed the

results in three steps: first, we started with the EVOLIS [9] classification, followed by the

Severity classification, and finally, the integrated classification for both systems.

4.1 Data	Collection	of	SDs	(Step	0)	

As shown in chapter 3 (see section 3.5), the results we obtained in this pre-step were

determinant to proceed with the rest of our studies. In fact, in this pre-step, we obtained data

with sufficient quality necessary to perform our three classifications (steps).

4.2 First	Classification:	EVOLIS	Classification	(Step	1)	

4.2.1 Analysis	

48

Results Analysis

Fig. 4.1 SDs of system A and B classified based on EVOLIS [9]

We obtained the following results by only focusing on a fixed period for both systems. In

fact, knowing the time each SD was reported helps us consider only the SDs which happened

during this time interval for both systems. The time period set for this study went from January

2015 to April 2016. In addition, being aware of the reporting time of SDs helped us to do a

comparison of both systems during the same interval of time. We did this comparison in order

to observe their evolution over the same period and identify some of their characteristics such

as the number of SDs per trigger factors during this time interval.

In overall, we can say that over the studied period the majority of SDs were triggered either by

the IS/user fit factors (220 SDs) for system A, or by the Technology factors (324 SDs) for

system B (see Fig. 4.1). For each system, the results showed that:

For system A, the IS/user fit factors were in the lead with 220 SDs, followed by the Technology

factors (170 SDs), the IS architecture factors (145 SDs), and finally the Business/IS alignment

factors (140 SDs).

For system B, the Technology factors (324 SDs) came first, followed by the IS/user fit factors

(120 SDs), then the IS architecture (107 SDs), and finally the Business/IS alignment factors (30

SDs).

Therefore, to sum up based on our first classification; there are two main factors trigger SDs in

the context of the studied systems. They are either IS/user fit or Technology trigger factors.

Going further in our analysis by looking at these results monthly, we have faced two main

questions that we will present in the next section, as well as the solution we propose to solve

them. We presented similar results concerning this EVOLIS classification in our first published

49

Results Analysis

paper in Trends and Advances in Information Systems and Technologies Volume 2, 2018 [29]

(see Appendix 1).

4.2.2 Change	Indicator	Concept	

4.2.2.1 Monthly	analysis	
In order to study the evolution of our E-type systems over time in more detail, we decided to

use the month as unit of time. In fact, to choose the month as time unit allowed us to observe

the variations of the number of SDs per trigger factors over this specific period and compare it

to the results we obtained over the entire period of our study. Considering this monthly period

helped us identifying the sudden rise of SDs. This particular rise is recurrent over the years for

a specific period, e.g., for each year covered by our research, we found that the month of March

has a number of user fit SDs which are problematic. This observation led us to propose the

“change indicator conceptual tool” in order to detect similar anomalies and control the evolution

of the SDs of E-type systems.

During the analysis of the EVOLIS classification results for both systems, we observed that the

number of SDs varied not only among different blocks or among categories of triggers, but also

from one month to another. These observations raised two questions: (1) How to evaluate the

status of SDs level? (2) On which bases can one prove that SDs of one month are overloaded

compared to other months? To answer these questions, we have introduced a change indicator

concept. We derived this concept from the existing Key performance indicator.

4.2.2.2 Brief	presentation	of	Key	Performance	Indicator	(KPI)	
In management, performance measurement [78] is crucial for the survival of each business

unit: “The measurement of performance is important because it identifies current performance

gaps between current and desired performance and provides an indication of progress towards

closing the gaps.” [79]. Key performance indicators [80] are set to evaluate the performance of

business units. They are used for different objectives. In case the defined objectives are not

reached, different actions are put in place to reach them. Similarly, in our context, based on

questions that we identified in classifying these SDs, we introduce a conceptual tool as solution

to identify when goals defined by system owners have not been met, and when to take corrective

actions to reach those defined goals. In the next section, we will present the application of the

change indicator on both systems.

50

Results Analysis

4.2.2.3 Definition	the	change	indicator		
The absence of standards to evaluate which month has the number of SDs overload compared

to others has prompted us to introduce an indicator as the accepted limit of SDs over a fixed

period of time. In our cases, we selected a monthly period. The purpose of this indicator is to

alert software maintenance teams on the status of the SDs level in each category. In addition,

this is set as a limit for each category of SDs above which SDs must not only be solved, but the

concerned category may possibly be investigated.

The Oxford English dictionary defines indicator as "A thing that indicates the state or level of

something." [81]. Based on this definition, we set the indicator artifact as an arithmetic value

that informs us on the SDs level in each category. We defined the condition of this artifact

indicator as follows: "If the number of change requests for a particular month in a category is

greater than twice the total average so far within the same category; then an investigation may

be conducted for this month, within this category". This investigation will lead to identify

possible hidden problems, and derives actions to correct them. The condition of our indicators

is expressed as follows:

n being the total number of months

And X, being the monthly Software defect number to test

𝐼𝑓				𝑋% > 2(
∑ 𝑋*%+,
*-,

𝑛 − 1)

Then investigate & adopt mitigation actions

We must underline that the set limit of measures to observe depends on the goal set by each

software team or each organization [47]. In our case, our emphasis is on the sudden increase in

SDs in a month compared to the number of SDs in previous months. The application of this

formula implies that the change indicator calculated for the first month is irrelevant.

Furthermore, in case of a progressive rise in SDs, another formula will be most appropriate for

setting the indicators. Our indicator rule is only an example of the form a change indicator may

have.

4.2.2.4 Implementation	of	the	change	indicator	on	system	A		
The results obtained by applying the change indicator to system A are summarized in Fig.

4.2 (see Appendix 5.2).

51

Results Analysis

Fig. 4.2 Application of change indicator on system A

(ACH-I stands for IS architecture Indicator, B.IS-I for Business/IS alignment Indicator, TCH-I

for Technology Indicator, and UI-I for IS/user fit Indicator).

4.2.2.5 Implementation	of	the	change	indicator	on	system	B	
The results obtained by applying the indicator to the system B are summarized in Fig. 4.3

and also presented in Appendix 6.2

52

Results Analysis

Fig. 4.3 Application of change indicator on system B

(ACH-I stands for IS architecture Indicator, B.IS-I for Business/IS alignment Indicator, TCH-I

for Technology Indicator and UI-I for IS/user fit Indicator).

4.2.3 Discussion		
Months with SDs that pass the set indicators are marked in red in both figures. Concerning

system A, in the category of IS/user fit SDs we have four months (March 2015, September

2016, January 2016, and March 2016) for which the total number of SDs is two times greater

than the average of previous SDs. Consequently, we investigated, and we found that those

months correspond to a time period during which a special event took place—such as the start

of a school period—where the system users demanded and reported a lot of system failures and

defects they encountered when using the system. Both the IS architecture block and the

Business/IS alignment block show the month of November 2015 as being a problematic month.

When investigating this case, it was revealed that a module has been added to system A; this

53

Results Analysis

module had affected some processes as well as the interaction this system A had with another

governmental system where student records were stored.

This implies that the interaction between system A and the other systems are crucial for the

users to perform their activities. A possible set of actions to put in place in this situation would

be the allocation of enough human resources to face the peak of these types of demands.

For system B, only the Business/IS alignment block has two months with SDs two times greater

than the average. They are the month of May 2015 and April 2016. These months correspond

to an introduction of new modules in this system. Both the Technology and the IS architecture

block show the month of June as being problematic. Investigations reveal that a new version of

the system was deployed in order to prepare the schools reopening in August that year.

4.2.4 Change	Indicator	Conceptual	Tool	
We proposed a conceptual tool as a summary to describe the main steps we followed in this

first classification [29]. This conceptual tool describes actions to perform in order to mine SDs

with the application of the change indicator.

The process to follow to classify SDs and set SDs indicators is summarized in these four steps:

1. Collection of the SDs into a repository: For this purpose, there are existing tools

such as Jira [56].

2. Classification or triage of these SDs into categories: The triage features are

integrated into the existing SDs’ repositories cited in the previous step. In case

this incorporated feature does not satisfy the software team or the project

manager, there are other frameworks and models, or the traditional data mining

techniques such as clustering or classification algorithms [82] with which this

classification can be done. In our case, we used EVOLIS [9] as a CR framework

to classify the SDs.

3. Set a limit for each type of SD over a defined period: At this level, one or more

indicator must be defined to track the evolution of each type of SDs’ category.

In addition, in this step, the indicator definition depends on the objectives set by

the organization [47] or the project team. Indicators can be defined as a ratio or

as a target number to reach [81], [83]. In defining these parameters, the team

must also consider the population size of stakeholders who can report a SD.

54

Results Analysis

4. Investigation step: Define a set of actions to undertake when an indicator is

reached, for instance, organize a user training section in case the category related

to the user-fit indicators is reached.

Following, Fig. 4.4 where we present the diagram that describes our proposed four-step process

of setting the change indicators.

Fig. 4.4 The steps in mining SDs and setting change indicator and mitigating actions [29]

As answer to the first sub-question “which SD factors trigger most SDs?”, we found that the

factors triggering most SDs of an E-type system vary according to the system. In fact, for our

studied systems, we found that IS/user fit for system A and the Technology trigger factors for

system B are responsible for most of SDs. In the next section, we will present our second

classification.

4.3 Second	Classification:	Severity	Classification	(Step	2)	

Similarly, to the first classification, we obtained these results by focusing on a fixed period

ranging from January 2015 to April 2016 for both systems. We set this fixed period in order to

evaluate the impact SDs over this period have on each system. It also allowed us to compare

the evolution of both systems during this time. Having this defined period helped us identifying

the type of impacts these systems had over this period.

In fact, with this second classification, our main goal is to identify the number of SDs for each

severity level. In overall, the SDs having a Major severity impact on the system are the highest

for system A. System B has the Minor type as the highest. For each system, the ranking goes

as follows: for system A, the Major type of SDs comes first with 330 SDs, followed by the

55

Results Analysis

Minor type (170 SDs), the Critical type (84 SDs), then the Blocking type (76 SDs), and finally

the Inconsequential with only 15 SDs (see Fig. 4.5). As stated in chapter 3, we validated the

results of this severity classification in our second paper published in Business Modeling and

Software Design – 8th International Symposium, BMSD 2018 [30] (see Appendix 2).

For system B, the Minor type comes first with 210 SDs, followed by the Major type (164 SDs),

the Critical type (130 SDs), the Blocking type with 75 SDs, and finally the Inconsequential type

with only 2 SDs (see Fig. 4.5).

Fig. 4.5 SDs of system A and B classified based on their severity

4.3.1 Weighting	Model	
As stated in chapter three, we will present the weighting model in detail in this section. Doing

the previous analysis, we realized that limiting the results only to the number of SDs for each

severity level group raises an ambiguity. In fact, counting only the number of SDs per severity

level does not give us the clear response on which level of impact has the highest severity

damage on the system. E.g., how can we determine if five Blocking SDs have more effect on a

system than eight Critical SDs? In order to clear this ambiguity, we associated a weighting

factor to each level of severity according to their impact on the system’s operation (see Table

4.1.). In fact, with this severity scale, we attributed the highest weight to the Blocking type,

because they completely stopped the system operations, and we gave the least weight to the

Inconsequential type, because they do not affect in any way the system’s operations.

56

Results Analysis

Table. 4.1 The weighting factors for the severity levels [31].

Severity level Weighting Factor
Blocking 40%
Critical 30%
Major 20%
Minor 8%
Inconsequential 2%
Total 100%

We then calculated the weighted score (W) for each system based on the severity weight model

(see table 4.2).

Table. 4.2 Weighted score for system A and B

Weight Number of
SDs of
System A

Weighted
A

Number of
SDs of
System B

Weighted B

Blocking (B) 0.4 76 30.4 75 30
Critical (C) 0.3 84 25.2 130 39
Major (Maj) 0.2 330 66 164 32.8
Minor (Min) 0.08 170 13.6 210 16.8
Inconsequential
(Inc)

0.02 15 0.3 2 0.04

Applying the weighting model showed us the following: for system A, the Major type has the

highest weighted score with 66 followed by the Blocking type with a 30.4-weighted score and

the Critical type with a 25.2 weighted score. The Minor type only scores 13.6 even though their

number was twice as big as the Blocking SDs’ number.

For system B, the Critical type is the highest with a 39-weighted score, followed by the Major

type with a 32.8 weighted score, and the Blocking with a weighted score of 30. Even though

the number of Minor SDs is the highest, their weighted score is only 16.8. Meaning, their impact

on the system are half as many as the Critical SDs with 130 SDs initially. These results show

us that the impact of SDs depends not on their number, but rather on the level of effect they can

have on the system operations. Thus, counting only their number is inefficient to identify their

effect on systems.

Similarly, we applied this weighting model on the monthly results to appreciate the real impact

these SDs have on the systems on a monthly basis.

57

Results Analysis

Table. 4.3 Monthly weighted scores for system A

Year Month B W-B C W-
C

Maj W-
Maj

Min W-
Min

Inc W-
Inc

2015 Jan 2 0.8 3 0.9 28 5.6 10 0.8 0 0
Feb 1 0.4 5 1.5 14 2.8 11 0.88 0 0
Mar 7 2.8 8 2.4 34 6.8 14 1.12 0 0
Apr 2 0.8 5 1.5 37 7.4 9 0.72 2 0.04
May 3 1.2 1 0.3 20 4 5 0.4 0 0
Jun 0 0 2 0.6 25 5 14 1.12 0 0
Jul 0 0 1 0.3 5 1 4 0.32 0 0
Aug 2 0.8 7 2.1 8 1.6 7 0.56 3 0.06
Sep 5 2 11 3.3 18 3.6 15 1.2 4 0.08
Oct 7 2.8 4 1.2 22 4.4 6 0.48 0 0
Nov 15 6 8 2.4 37 7.4 20 1.6 3 0.06
Dec 7 2.8 5 1.5 18 3.6 12 0.96 3 0.06

2016 Jan 8 3.2 9 2.7 25 5 13 1.04 0 0
Feb 5 2 3 0.9 10 2 6 0.48 0 0
Mar 5 2 9 2.7 15 3 17 1.36 0 0
Apr 7 2.8 3 0.9 14 2.8 7 0.56 0 0

Considering the month of September for system A, we can see that although the number of SDs

of the Minor type are three times higher than the Blocking ones, their impact on the system is

lesser than the one of the Blocking type. In fact, the Minor SDs are 15 and their weighted score

is 1.2, while the Blocking type number is five, but their calculated weighted score is two (see

Table 4.3). Same observation goes for the month of March 2015 where the number for Major

SDs is five times higher than the one for Blocking, but the Blocking SDs have more impact on

the system than the Major SDs during this month.

58

Results Analysis

Table. 4.4 Monthly weighted scores for system B

Year Month B W-B C W-
C

Maj W-
Maj

Min W-
Min

Inc W-
Inc

2015 Jan 3 1.2 13 3.9 12 2.4 18 1.44 0 0
Feb 2 0.8 4 1.2 9 1.8 8 0.64 0 0
Mar 4 1.6 6 1.8 14 2.8 8 0.64 1 0.02
Apr 5 2 9 2.7 7 1.4 21 1.68 0 0
May 16 6.4 13 3.9 15 3 16 1.28 0 0
Jun 6 2.4 32 9.6 29 5.8 27 2.16 0 0
Jul 7 2.8 3 0.9 16 3.2 11 0.88 0 0
Aug 4 1.6 8 2.4 10 2 2 0.16 0 0
Sep 4 1.6 10 3 8 1.6 9 0.72 0 0
Oct 3 1.2 2 0.6 3 0.6 5 0.4 0 0
Nov 0 0 4 1.2 5 1 10 0.8 0 0
Dec 3 1.2 8 2.4 7 1.4 10 0.8 0 0

2016 Jan 3 1.2 7 2.1 7 1.4 14 1.12 0 0
Feb 4 1.6 3 0.9 13 2.6 26 2.08 0 0
Mar 4 1.6 2 0.6 2 0.4 9 0.72 0 0
Apr 7 2.8 6 1.8 7 1.4 16 1.28 1 0.02

For system B, we have similar observations as for system A. In fact, for the month of April

2015, the number of Minor SDs type is 21, four times higher than the ones of the Blocking type

(5) but the impact of these Blocking SDs (2 weighted score) on the system is higher than the

ones of the Minor ones (1.68) (see Table 4.4.). We have a similar observation for April 2016,

where the number of Minor SDs type (11) is almost four time higher than the ones of Critical

(3) but the impact of Critical SDs (0.9) on the system is higher than the ones of Minor (0.88).

4.3.2 Discussion	
These different results demonstrate that the impact of a SD depends not only on their number

but also on the type of severity category under which it falls. Thus, efficient management of

SDs required their classification based on a severity scale in order to evaluate their real impact

on a given system. This proves that to efficiently manage these SDs, it is necessary not only to

mine them, but also to classify them based on their severity. Furthermore, this second

classification demonstrates that—in some situations—mining SDs could provide uncompleted

or insignificant results for software teams and to system owners. These situations happened

when the objectives, the mining techniques, and the analysis were not well defined or the right

interpretation was not put in place. To avoid such situations, we propose a conceptual tool to

guide practitioners in elaborating SDs strategy and objectives. In fact, we named this conceptual

59

Results Analysis

tool “the SD managerial conceptual tool” [30]. The SD managerial conceptual tool is a

combination of a refinement of the change indicator conceptual tool we presented in the

EVOLIS classification, and “the strategic management model” proposed by Wheelen and

Hunger in the business field [84]. In difference to the strategic management model, our

conceptual tool is designed to target the field of SDs mining management. The aim of this

conceptual tool is to help software portfolio managers as well as software maintenance teams

to define their SDs mining management strategy and to specify concrete actions to put in place

with this strategy in mining SDs. We will present this conceptual tool in the next section.

4.3.3 SD	Managerial	Conceptual	Tool	

4.3.3.1 	The	motivation	and	the	role	of	the	SD	managerial	conceptual	tool		
The SDs mining falls under the software evolution and maintenance phase. In fact, mining

SDs is a complex set of activities; it goes from selecting a technique to mine the SDs,

interpreting the obtained results, to taking a decision based on the obtained results. Moreover,

each software system is unique, thus needs a specific SDs mining management strategy, e.g.,

the SDs of the system Waterfox [85] are not the same for Firefox [86], even though they have

similar functionalities and purpose. Due to this complexity, inefficient SDs mining can lead to

situations such as:

1. the results obtained from the SDs’ mining are inaccurate for the SDs team as well as for

the maintenance team and consequently, irrelevant for the SD product owner;

2. the SDs mining is requiring much more resources than planned and software portfolio

manager, the maintenance team, and the mining team failed to take appropriate

decisions in order to improve the quality of the software system based on the mining

results;

3. the mining goals are poorly aligned with the strategy and the objectives of SDs

management and the product owner’s business needs, and;

4. control and evaluation measures for obtained results are missing. To avoid these

problems, we are proposing this conceptual tool to guide SDs miners wishing to improve

their mining project.

In order to provide a solution that not only addresses these types of situations, but also guides

software maintenance teams to manage accurately the mining of their software system, we

proposed this conceptual tool.

60

Results Analysis

With this tool, we empower the software portfolio manager to manage efficiently and

effectively the mining of the SDs of their systems. It is used when the system is in its

maintenance phase, and only if there is a gathering of SDs or CRs on the system overtime. It

also empowers any researcher or practitioner to conduct the mining of the SDs of any E-type

system, which reach a maintenance phase. This tool has two main levels: the strategy level and

the operational level.

At the strategy level, the application of this tool suggests to both the software portfolio

managers and the SDs mining team leader to adopt a SDs mining strategy that is aligned with

the objectives set by the software owners concerning the quality of their software system (stage

1).

At the operational level, this tool suggests to the SDs mining team to break down the selected

mining strategy into concrete SDs mining goals (stage 2). At the same level, it also recommends

that, for each objective or goal, a number of actions or activities need to be performed in order

to reach the set objectives (stage 3). Finally, this tool recommends the implementation of

corresponding control measures in order to evaluate the success of their actions (stage 4). We

present this tool in form of a procedure to follow. In the next section, we present the four stages

of this conceptual tool with a concrete example for each stage.

4.3.3.2 Presentation	of	the	SD	managerial	conceptual	tool		
The conceptual tool is defined in four stages [30]:

1. The first stage consists of defining the SDs mining management strategy in alignment

with the needs of the software product owner. The strategy must be broken down into

short- or medium-term goals to achieve. The software team as well as the product owner

must approve these goals, e.g., a defect mining management strategy may improve the

software quality with the development of programs with few SDs for each software

version released. The approval of these goals will lead to the second stage.

2. The second stage, which happens on the operational level, consists of converting this

strategy into concrete objectives. Referring to the previous example, the set of objectives

will be to improve the detection of the defect modules and predict SDs.

3. Following this, each objective must be broken down into terms of specific actions to be

performed, e.g., classifying SDs according to their priorities. In addition, members of

the SDs mining team are responsible for implementing each of these actions.

61

Results Analysis

4. Following this and depending on the actions put in place, software teams must carefully

select control measures to evaluate the state of the actions, e.g., the ratio of the corrected

high level prioritized SDs over the total number of SDs received.

Finally, the software team must define a list of actions to establish in order to correct cases

where the set objectives have not been reached, e.g. reorganization the process to detect SDs.

Fig. 4.6 presents the process to follow to implement the proposed conceptual tool. In addition,

we illustrate the application of this concept tool on system B’s data.

Fig. 4.6 Software defect managerial conceptual tool [30]

62

Results Analysis

In order to apply the proposed conceptual tool to improve and control the SDs mining

management in practice, we decided to conduct a proof of concept of our software system B in

the next section.

4.3.4 Applying	the	Managerial	Conceptual	Tool	on	System	B	
• Stage 1 and 2: Strategy definition and set of objectives

In alignment with the owner’s objective, our strategy was to mine SDs in order to reduce the

impact of SDs on the system to limit the system’s unavailability time (stage 1). In the next step

(stage 2), we cascaded the defined strategy into different objectives such as reducing the impact

of defects on system B, and possibly improving the correcting process of the SDs. In the next

step, we defined a set of actions to implement the objective of reducing the defects’ impact on

the system (stage 3).

• Stage 3: The Classification of SDs of system B based on their severity

As a concrete action to reduce the effect of SDs on this system, we decided to evaluate the

severity impact by classifying them based on the IEEE 1044-2009 [19] severity attribute. We

present the results of this classification as follows:

• Results of System B Severity classification

Severity Blocking Critical Major Minor Inconsequential Total
2015 57 112 135 145 1 450
Jan 3 13 12 18 0 46
Feb 2 4 9 8 0 23
Mar 4 6 14 8 1 33
Apr 5 9 7 21 0 42
May 16 13 15 16 0 60
Jun 6 32 29 27 0 94
Jul 7 3 16 11 0 37
Aug 4 8 10 2 0 24
Sep 4 10 8 9 0 31
Oct 3 2 3 5 0 13
Nov 0 4 5 10 0 19
Dec 3 8 7 10 0 28
2016 18 18 29 65 1 131
Jan 3 7 7 14 0 31
Feb 4 3 13 26 0 46
Mar 4 2 2 9 0 17
Apr 7 6 7 16 1 37
Total 75 130 164 210 2 581

63

Results Analysis

• Stage 4: The selection of control measures

This stage is similar to stage 4 of our previous change indicators conceptual tool. There are

two important aspects to consider when selecting the evaluation metrics at the fourth stage of

this conceptual tool. The first one is to choose metrics based on the objective or action to

evaluate, e.g., a ratio of the corrected SDs over the total number of SDs received to evaluate the

SDs’ correction process. The second one is to take into consideration the Critical level [87] of

the system being managed. This Critical level can relate to its business, security, and safety

aspect. In addition, to determine the Critical level of the system, software teams must consult

and get the approval of the product owner.

To track and evaluate the success of our objective, we selected a metric as an indicator (stage

4). In this regard, we defined the SDs indicator as a ratio of the weighted value of a type of SDs

over the total weighted value of this type calculated for a month. This ratio informs us about

the type of defects that is problematic during the month. We define a problematic case as

follows: when the weighted value of a certain type of SDs is higher or equal to one-third of the

total SDs weighted value in a month. One-third of the total weighted SDs is an agreed upon

limited number a type of SDs may have during a month. The selection of this metric was based

on system B’s critical mission, which is its availability during the exam periods. We defined

the indicator as follows [30]:

𝑛		𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑠	𝑡ℎ𝑒	𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦	𝑡𝑦𝑝𝑒	𝑜𝑓	𝑆𝐷𝑠	𝑡𝑜	𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒

𝑋, 𝑡ℎ𝑒	𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝑆𝐷𝑠 𝑎𝑛𝑑	𝑡	𝑏𝑒𝑖𝑛𝑔	𝑎	𝑡𝑖𝑚𝑒	𝑝𝑒𝑟𝑖𝑜𝑑

𝐼𝑓	𝑋%𝑡 ≥
∑(𝑋)𝑡
3

𝑡ℎ𝑒𝑛	𝑖𝑛𝑣𝑒𝑠𝑡𝑖𝑔𝑎𝑡𝑒

Following this, we defined a list of possible actions to undertake in order to correct problematic

cases:

• Investigate within the problematic type of SDs to identify poor uncorrected

defects;

• Reorganize the process of correcting the problematic type of SDs;

• Check other indicators such as the number of correcting defects over the total SDs

within this category.

64

Results Analysis

We must clarify that the choice of action depends on the investigation results. In this regard, an

investigation must be conducted when an indicator is reached, in order to identify the problem

and to provide the right fix on time. In Fig. 4.7, we present the result of applying our proposed

indicator on SDs of system B.

Fig. 4.7 Application of the software indicator on the system B’s SDs classification based on their

severity

These results show us that the Blocking type of SDs counted none of their months as being

problematic, while the Major type has four months being problematic and the Minor type has

eight. This implies that although the number of Major type SDs is the highest, it also has been

constant and not causing that many problems in managing SDs; meanwhile, although the

number of Minor type SDs is small, it has caused more problems than the other types. Going

further, we recommend software-mining teams to investigate with the aim of identifying the

reasons for these problematic cases.

As answer to the second sub-question, we found that the impact of SDs on an E-type system

must be evaluated based on a well-defined severity scale. Thus, we found that system A was

65

Results Analysis

mostly affected by the Major type of SDs (49%) followed by the Blocking type (22%), then the

Critical (19%) and finally the Minor type (10%) (see Appendix 5.6).

For system B, we found that it was mostly impacted by the Critical type of SDs (33%) followed

by the Major type (28%), then the Blocking (25%), and finally the Minor type (14%) (see

Appendix 6.7). In the next section, we will analyze the results of our third classification to

identify which trigger factors generate the most severe SDs impact on our systems.

4.4 Third	Classification:	EVOLIS	&	Severity	Classifications	
(Step	3)	

As mentioned in chapter 3, the results of this classification are presented in our third paper

published in Digital Science 2018, Advances in Intelligent Systems and Computing, vol 850

[31], and in our fourth paper published in ICTS19 Advances in Intelligent Systems and

Computing, vol 918 [32] (see Appendix 3 and 4).

After having provided an answer to the two sub-questions in the previous sections, we will now

answer the main question of our research, which is: “Which SD trigger factors cause the most

severe SDs?”, by integrating both of the answers obtained above.

4.4.1 Definition	of	Severe	Software	Defect		
Based on their definition, we separated the severity level into two groups: the first group we

called “severe SDs” and the second group we named “no severe SDs”. The severe SDs are any

SD which impacts the system in a way that prevents it from being operational, and may cause

financial loss or any considerable resource loss to the system owner as well as system users.

They are Blocking, Critical, and Major severity types.

The “no severe SDs” are any SD which has an impact level that does not affect the system

operations: they are of Minor and Inconsequential type. Thus, we only consider the first group

of severity level to be authentic severe SDs.

For the rest of our analysis, we will only consider the severe SDs group. Thus, even though we

will present the results of the Minor as well as the Inconsequential type, they are not part of our

severe SDs.

66

Results Analysis

4.4.2 Discussion	
In this section, we combine the results of classification based on the EVOLIS framework,

and the second one based on the IEEE Standard 1044-2009 severity [19] attribute for each

system studied. The combination of both classifications shows that:

4.4.2.1 System	A	
For system A, the Technology factors are respectively responsible for 11%, 18%, 55%, and

16% of Blocking SDs, Critical SDs, Major SDs, and Minor SDs (see Fig. 4.8). Similarly, the

IS architecture triggers represent, respectively 13%, 8%, 69%, and 10% of Blocking SDs,

Critical SDs, Major SDs, and Minor SDs (see Fig. 4.8). The Business/IS alignment factors

trigger respectively 17%, 15%, 47%, 20%, and 1% of Blocking SDs, Critical SDs, and Major

SDs, Minors, and Inconsequential SDs. Finally, the IS/user fit triggers represent, respectively,

7%, 10%, 32%, 45%, and 6% of Blocking SDs, Critical SDs, Major SDs, Minor SDs, and

Inconsequential SDs (see Fig. 4.8).

Fig. 4.8 Trigger factors and severity of system A’s SDs

67

Results Analysis

As we mentioned earlier in the severity classification section, limiting the severity SDs

classification to only their number does not provide the right insight for understanding and

interpreting the data. Therefore, we introduced our proposed weighting model into this third

classification. We then calculated the weighted score (W) for each trigger factor group based

on the severity weight. We then proceed to analyze only the data of severe SDs (see Table 4.5).

Table. 4.5 Severe SDs triggers of system A

Weight ACH W-
ACH

TCH W-
TCH

UI W-UI B.IS W-
B.IS

Blocking 0.4 18 7.2 19 7.6 15 6 24 9.6
Critical 0.3 12 3.6 30 9 21 6.3 21 6.3
Major 0.2 100 20 93 18.6 71 14.2 66 13.2
Total 0.9 130 30.8 142 35.2 107 26.5 111 29.1

Fig. 4.9 Severe SDs Triggers of System A

68

Results Analysis

Introducing the weighted model shows that for system A, the Technology trigger factors cause

in the majority 53% of Major SDs followed by 25% of Critical SDs, and finally 22% of

Blocking SDs (see Fig. 4.9). Similarly, the IS/user fit factors cause 53% of Major SDs, followed

by 24% of Critical SDs, and finally 23% of Blocking SDs (see Fig. 4.9). The third group of

trigger factors is the IS architecture trigger factors group. The IS architecture factors cause in

majority 65% of Major SDs followed by 23% of Blocking SDs, and finally 12% of Critical SDs

(see Fig. 4.9). Finally, the Business/IS alignment trigger factors cause 45% of the Major SDs,

33% Blocking SDs, and 22% of Critical SDs (see Fig. 4.9).

In overall, the results show for system A that the Technology trigger factors with the highest

weighted score of 35.2 are responsible for most of the severe SDs followed by the IS

architecture factors, with a weighted score of 30.8. Then the Business/IS alignment, with 29.1

and finally the IS/user fit trigger factors, with a weighted score of 26.5 (see Fig. 4.10).

Fig. 4.10 System A’s total weighted score for Severity and EVOLIS classifications

4.4.2.2 System	B		
We performed the same analysis we did on system A on system B. The combination of the

EVOLIS framework and the severity results for system B show that the Technology triggers

represent 16% of Blocking SDs, 23% Critical SDs, 28% of Major SDs, and 33% of Minor SDs

(see Fig. 4.11). The Inconsequential SDs do not have any Technology factor as a trigger. The

second group of trigger factors, the IS architecture triggers, represent, respectively 15%, 28%,

69

Results Analysis

32%, and 25% for Blocking SDs, Critical SDs, Major SDs, and Minor SDs (see Fig. 4.11). The

Business/IS alignment factor triggers shows the first place being at 50% of Minor SDs, in

second place 27% with Major SDs followed by 17% of Critical SDs, and 6% of Blocking SDs

(see Fig. 4.11). There are no Inconsequential SDs in this group. More than the half of the SDs

triggers by IS/user fit factors are of the Minor type (51%), then of Major type (25%), Critical

type (17%), Blocking (5%), and finally of Inconsequential type (2%) (see Fig. 4.11).

Fig. 4.11 Trigger factors and severity of system B’s SDs

Similarly, as in the case of system A, we also calculated the weighted score (W) for each trigger

factor group based on the severity weight for system B. We then proceeded to analyze only the

data of severe SDs of this system (see Table 4.6).

70

Results Analysis

Table. 4.6 Severe SDs triggers of system B

 Weight ACH W-
ACH

TCH W-
TCH

UI W-UI B.IS W-
B.IS

Blocking 0.4 16 6.4 51 20.4 6 2.4 2 0.8
Critical 0.3 30 9 74 22.2 21 6.3 5 1.5
Major 0.2 34 6.8 92 18.4 30 6 8 1.6
Total 0.9 80 22.2 217 61 57 14.7 15 3.9

Fig. 4.12 Severe SDs triggers of system B

Similarly, looking at system A’s results, we can see that 40% of the severe SDs caused by the

IS architecture trigger factors are of Critical type, followed by 31% that are of Major type, and

29% that are of Blocking type (see Fig. 4.12). There is only a slight difference between the

Major SDs group and the Blocking SDs group (see Fig. 4.12). The Business/IS alignment

trigger factors cause 41% of Major SDs, 38% Critical, and 21% of Blocking SDs. The

71

Results Analysis

Technology trigger factors cause in majority 36% of Critical SDs followed by 34% of Blocking

SDs, and finally 30% of Major SDs (see Fig. 4.12). Finally, the IS/user fit factors cause 43% of

Critical SDs, followed by 41% of Major SDs, and finally 16% of Blocking SDs (see Fig. 4.12).

In overall, the results show for system B that the Technology trigger factors with the highest

weighted score of 61 are responsible for most of the severe SDs, followed by the IS architecture

trigger factors, with a weighted score of 22.2. Contrary to system A, the third position is held

by the IS/user fit triggers with a weighted score of 14.7 and finally the Business/IS alignment

coming in last with a weighted score of 3.9 (see Fig. 4.13).

Fig. 4.13 System B total weighted score for Severity and EVOLIS classifications

In summary, as answer to our main research question, “Which types of trigger factors generate

the most severe SDs on a given E-type software system?”, we found that:

Ranking first is the Technology trigger factor group with a weighted score of 35.2 for system

A and a weighted score of 61 for system B. It is followed by the IS architecture trigger factors

group with a weighted score of 30.8 for system A and a weighted score of 22.2 for system B.

In the third position is the Business/IS alignment with 29.1 for the system A and IS/user fit with

a weighted score of 14.7 for system B. In the last position are the Business/IS alignment with a

weighted score of 3.9 for system B, as well as the IS/user fit alignment with a weighted score

of 26.5 for system A. With these results, we can conclude that in our case the Technology and

72

Results Analysis

the IS architecture trigger factors are the leading couple in causing severe SDs. We emphasize

on the fact that we consider as a severe SD any SD having a Blocking, Critical, or Major severe

impact on a system.

4.4.3 The	Origins	of	Severe	Software	Defects	Method	
Based on the results of this third classification, we propose a method in order to identify the

origins of severe SDs on any E-type system. This method is addressed to people responsible for

managing and controlling software evolution such as software portfolio manager, software

maintenance teams, software development teams, and to researchers studying software

evolution and conducting studies in the SD/CR mining field. This method empowers these

stakeholders to identify the origins or sources of severe SDs on any E-type system. We named

this method “The origins of severe software defects method”.

This method consists of three stages: SDs collection or acquisition stage, SDs analysis stage,

and the SDs classification stage. We define each of these stages as follows:

Ø 1st stage: The collection stage consists of collecting SDs into a software repository.

Ø 2nd stage: The analysis stage consists of identifying the trigger factors (origins) of the

SDs and evaluating their severity impact on the system. We named a SD having its

origin and severity impact identified “Analyzed SD” (ASD).

Ø 3rd stage: The classification stage consists of grouping the analyzed SDs (ASDs) at the

precedent level into two groups: the group of severe SDs and the group of nonsevere

SDs. Any ASD that causes a partial or total disruption on the system’s essential

operations falls under the second group. The severity seriousness of the SDs is defined

by the person responsible of software engineering in this context. Any other ASD having

no impact on the system’s essential operations must be categorized into the group of

nonsevere SDs. Performing this classification will lead to identify the origins of severe

SDs of the E-type system being studied.

We represent this method in pyramid form. The first stage being the initial phase, we place it at

the base of the pyramid. It is followed by the second stage in the middle of the pyramid and

then the third stage at the top of the pyramid (see Fig 4.14). In summary, the activities at the

three stages are presented as follows:

At the first stage (the collection stage), the activity to perform is:

• The collection of SDs.

73

Results Analysis

At the second stage (the analysis stage), the activities to perform are:

• For each SD, identifying its trigger factor or origin, and identifying the severity of its

impact on the system.

At the third stage (the classification stage) the activity to perform is:

• Classification of the ASDs based on their severity impact into severe and nonsevere

groups.

Fig. 4.14 The origins of severe software defects method.

To answer the question “How to identify the origins of severe defects on evolving information

systems?”, we provide “the origins of severe software defects method”. Applying this method

will help researchers as well as practitioners in software management and controlling fields to

identify the trigger factors of severe SDs of any E-type system.

75

Conclusion

5 Conclusion	

Not only do SDs cause huge financial loss to system owners, but their management also

causes up to 80% of the total cost of a system during its life cycle [23]. In this context,

identifying the ones which may potentially generate high financial damage was the goal of our

research. To reach this goal, we conducted two case studies on two systems in the field of

education. We studied the SDs of these systems over several months. We classified them based

on two SD classification concepts: the EVOLIS [9] and their severity [19]. Each of these

classifications was done to answer the two sub-questions necessary to be able to answer our

main question. In the next part, we will present the answer we have for each question, as well

as our contributions to and the limitations of this research.

5.1 Contributions	

• The main practical and theoretical contributions of this research

This thesis provides practical and theoretical contributions on identifying severe SD trigger

factors of a given E-type system. The contributions of this research are represented in the

following three points:

1. In answering the two sub-questions, we proposed two conceptual tools in order to

improve the management of SDs.

2. In answering our main research question, we proposed a method in order to identify the

origins of severe SDs on an E-type system. We named it “the origins of severe software

defects method” (see Fig. 5.1).

3. We identified the existing relationship between SD trigger factors and the impact of

SDs they may cause to a given E-type system in terms of severity.

76

Conclusion

• The role of time in these contributions

These previous contributions could not be possible if we had not considered the notion of

time. Time is a central aspect of this research. In fact, in order to study the evolution of these

E-type systems and to propose tools to manage and control this evolution efficiently, we studied

the dynamism of these two systems. These studies cover a long period from January 2014 to

December 2016 in our four published papers. We analyzed in detail over a thousand SDs

resulting in change requests. These change requests are the main drivers of the system change,

thus leading to a system evolution over time. E.g., considering our first classification, we

observed the monthly evolution of SDs. This observation led us to propose a conceptual tool

that will help people concerned with the evolution of E-type systems such as software portfolio

managers and software maintenance teams in controlling the SDs evolution of their E-type

systems.

Furthermore, this specific (monthly) period analysis allowed us to observe the impact some

events in the studied system’s environment have on the evolution of the system. E.g. reopening

of schools trigger an unusually high amount of SDs of IS user-fit type for system B.

5.1.1 Conceptual	Tools	
• Software change indicator conceptual tool [29]

We presented a conceptual tool as a summary of the steps we followed in this first study. We

did this in order to provide a tool to software teams and researchers to be able to conduct similar

studies on different systems. In addition, this conceptual tool provides guidelines on how to

identify a sudden rise of SDs of a particular category. Furthermore, it provides

recommendations on how to get prepared in order to handle a problematic rise of SDs of E-type

systems. We named this tool “software change indicator conceptual tool” [29].

Furthermore, to the first sub-question—“which SD factors trigger most of SDs on our studied

systems?”—we find that for system A, the IS/user fit trigger factors block is in the lead with

33% of the total SDs, followed by the Technology block with 25%, and finally the Business/IS

alignment and the IS architecture with 21% each (see Appendix 5.1).

For system B, the Technology block is leading with 56% of the total SDs, followed by the

IS/user fit 21%, then the IS architecture 18%, and finally the Business/IS alignment with 5%

(see Appendix 6.1).

77

Conclusion

• Software defect managerial conceptual tool [30]

At this point, we presented a refined version of our precedent conceptual tool. This new

version incorporated the alignment between the strategy and objectives of software mining

teams with the strategy and objectives of software owners. This tool is to help both parties in

engaging in mining projects that are most useful for them. We named it “the software defect

managerial concept tool” [30].

We also provided an answer to our second sub-question while conducting this study. For the

second sub-question, which was to evaluate the impact that a SD has on a given E-type system,

we found that:

For system A, the Major SDs group is in the lead position with a 66-weighted score, followed

by the Blocking SDs group with a 30.4-weighted score, and then the Critical group with 25.2,

the Minor with 13.6, and finally the Inconsequential with a 0.3-weighted score (see Table 4.2).

For system B, the Critical severe impacts are in the lead with a weighted score of 39 followed

by the Major type with 32.8, then the Blocking type with a weighted score of 30, the Minor

group with a weighted score of 16.8, and finally the Inconsequential type with a weighted score

of 0.04 (see Table 4.2).

• Integration of results [31]

Finally, in order to reach our main goal, we integrated both results of the classification by

EVOLIS and severity. Doing this, we found that the factors triggering most of severe SDs are

of the Technology type followed by the ones of the IS architecture type [31]. The third position

is occupied by the factors of Business/IS alignment for system A and by the IS/user fit factors

for system B. Furthermore, we also proposed a method in order to identify the sources or origins

of severe SDs on any given E-type system. Researchers as well as practitioners may use this

method to conduct similar studies on any given E-type system. This method represents a major

contribution of this research and we will present it once again in more detail in the next section.

5.1.2 The	Method	to	Identify	the	Origins	of	Severe	SDs	of	E-type	Systems	
To make it possible for other practitioners and other researchers to identify the trigger factors

(origins) of severe SDs of E-type systems, we propose “the origins of severe software defects

method”.

This method consists of three stages: SDs collection stage, SDs analysis stage, and the SDs

classification stage (see Fig. 5.1). We define each of these stages as follows:

78

Conclusion

Ø The collection stage consists of collecting SDs into a software repository.

Ø The analysis stage consists of identifying the trigger factors (origins) of the SDs and

evaluating their severity impact on the system. We named a SD having its origin and

severity impact identified “Analyzed SD” (ASD).

Ø The classification stage consists of grouping the analyzed SDs (ASDs) at the analysis

stage into two groups: the group of severe SDs and the group of nonsevere SDs. Any

ASD that causes a partial or total disruption on the system’s essential operations falls

under the group of severe SDs. Any other ASD having no impact on the system’s

essential operations must be categorized into the group of nonsevere SDs. Performing

this classification will lead to identify the origins of severe SDs of the E-type system

being studied.

Fig. 5.1 The origins of severe software defects method.

79

Conclusion

5.1.3 Relationships	 between	 SD	 Trigger	 Factors	 and	 the	 Severity	
Impact	they	have	on	E-type	systems	

To the question of which SD factors trigger the most severe SDs, we found that:

In the leading position come the Technology trigger factors with 29% of the total weighted

score for system A and 60 % for system B. They are followed by the IS architecture trigger

factors, with 25 % for system A and 22% for system B. We can see that in both cases the same

type of SD trigger factors occupies the first and the second position. Opposed to this, the

Business/IS alignment occupied third place with 24% for system A, and IS/user fit occupied

the same rank with 14% for system B. The last position for system A is occupied by IS/user fit

with 22%, and for system B by Business/IS alignment with 4% (see Appendices 5.5 and 6.5).

In addition, our analysis portrays that there are two main couples of SDs trigger factor groups,

one being composed of the Business/IS and the IS/user fit alignment, and the leading couple

being composed of the Technology and the IS architecture trigger factors.

Concerning the no severe SDs (we defined as no severe SD any SD having a Minor or

Inconsequential severity impact on a system), we observed that the majority of the

Inconsequential SDs were triggered by the IS/user fit factors. This implies that the probability

of an Inconsequential SD being triggered by either the IS architecture, the Business/IS

alignment, or the Technology factors is very low or barely existent. In addition, the Minor SDs

are in majority triggered by the Technology factors for system B (107) followed by the IS/user

fit triggers (61). For system B, the Minor SD types are triggered by the IS/user fit (100),

followed by both the Business/IS alignment (28) and the Technology (27) (see Appendix 6.4).

5.2 Limitations	and	Future	Works	

5.2.1 Limitations	
A common criticism the case study methodology faces in the literature is that its findings are

not representative enough to draw a general theory [88]. Similarly, the number of cases used

was a bit limited to generate a general theory concerning the factors that trigger severe SDs for

E-type systems. Nevertheless, both results show us that the Technology factors in particular

have the highest calculated weighted score to be at the source of severe SD. Thus, we argue that

a special attention must be paid to the system component presenting vulnerabilities towards the

technology trigger factors. In addition, it makes sense to pay particular attention to this type of

80

Conclusion

SDs because they can spread and affect other systems as well. Our results in fact confirm the

bug propagation concept [89], [90] because the technology triggers formed a couple with the

architecture triggers: one drives the other one. Furthermore, these findings can serve as

provisional truth and can be considered as informative knowledge to other software teams in

regards to the management of their E-type systems, more precisely for managing SDs of E-type

systems.

In addition, during this research, we only focused on the study of SDs without looking at the

data of real activities or actions performed by the software team members when correcting

them. A possible perspective would have been to analyze both the SDs and their change

response using our method in order to compare their results. This may be addressed in another

research project.

5.2.2 Future	Works	
Further exploration of the origins of severe software defects method opens an opportunity to

develop an artifact, which can automatically identify a SD’s source based on its description.

We will present this artifact in the next section.

5.2.2.1 Practical	perspective:	A	tool	to	manage	software	defects			
From a practical perspective, a possible future work will be to build an automatized SD

management system (SDM) based on our proposed method. Just like the method, this SDM

system will inform in real time on the real impact of SDs and their sources. This system will

help software maintenance teams and software portfolio managers in managing their system’s

SDs by deploying the right resource at the right moment on the right instance. It also allows

them to have an overview of the actual state of their systems. More precisely, to have an insight

of their system portfolio, with information such as which systems are requiring more resources

for maintenance. Having such knowledge will improve their decision-making in managing a

system’s life cycle. Thus, it will help them to pilot the evolution of their systems and surely

reduce the cost of the system maintenance.

The SDM system will be made up of four main components. Each component represents one

of the stages of the origins of severe software defects method.

• Component 1: SD collection

The first component is a data store component. Its role is to extract, transform, and load (ETL)

SDs data from software repositories and other software bug-reporting platforms (e.g., helpdesk,

81

Conclusion

emails, Jira [56]) into the SDM system. This component corresponds to the SDs collection

stage. This component will gather all the necessary information on SDs in one place for

analysis, and thus, allowing an easy access to SDs information for the software development

and maintenance teams.

• Component 2: SD trigger factors identification

The second component will be either a natural language processing (NLP) solution or an

artificial intelligence system. This component will have a double role. First, it will analyze each

SD description in order to retrieve the semantics of it. Second, based on the semantic of the SD

description it will identify the source of this SD. To assume these double roles, this component

will integrate notions in the domains of linguistic analysis, machine learning, and ontology

engineering. This component corresponds to the second stage of our method. It will be

connected to the first component in order to access SDs information. It will perform a

classification similar to the first classification we did for this research.

• Component 3: Evaluation of SD impact

The third component will evaluate the severity impact of each SD, as we did with our second

classification. To perform this evaluation, this component will consider on one side the type

and the amount of resources used to solve the SDs. On the other side, it will also consider the

financial loss a SD causes the system owner and system users. Based on these two evaluations,

this component may classify SDs according to their severity impact. This component also falls

under the second stage of the origins of severe SDs method. As well as the second component,

this third component will be also connected to the first component in order to have access to

SDs’ information.

• Component 4: A dashboard for displaying E-type systems’ SDs characteristics

Finally, a fourth component will integrate the results of the 2nd and 3rd components in order

to inform software teams on types of SDs having more impact on their E-type systems. This

last component will be a dashboard where software managers can consult the state of each

system within their software portfolio. It will present results such as the results we obtained

doing our third classification.

The actual state of existing knowledge does not provide enough tools in order to build such

system accurately. In fact, the existing semantic analysis tools are limited to a system to draw

accurately the semantic knowledge from a sentence [91], [92]. In the future, we hope there will

82

Conclusion

be enough improvement in this area of research in order to apply those novelties to design our

proposed SDM system.

5.2.2.2 Research	perspective	
The results we obtained from analyzing these systems correspond to events that those systems

went through during their life cycle. In fact, the system projects’ managers confirmed to us that

the peak of certain types of SDs at certain periods of time corresponded to special events that

happened to the systems during these periods of their life cycle. Based on these feedbacks, we

argue that applying our origins of severe SDs method to analyze more E-type systems over their

entire life will help to identify the evolving characteristics of E-type systems. These

characteristics can be classified into groups to represent different stages of evolution of E-type

systems. Thus, it will present as an artifact and its application will help both practitioners and

researchers to determine the life stages of E-type systems.

Finally, another future possibility will be to conduct more case studies on other E-type systems

of different domains. This not only in order to confirm our results, but also to compare these

results among themselves and possibly generate a theory from these future results as well as

our results.

83

References

6 References	

[1] C. Barker, “The top 10 IT disasters of all time,” ZDNet. [Online]. Available:
https://www.zdnet.com/article/the-top-10-it-disasters-of-all-time/. [Accessed: 27-Sep-2018].

[2] “77 Million Edmodo Users Are Hacked as Widespread Cyberattacks Hit the Ed Tech
World.” .

[3] “Knight Shows How to Lose $440 Million in 30 Minutes,” Bloomberg.com, 02-Aug-
2012.

[4] S. Neville, “NHS cyber attack far more extensive than thought, says report,” Financial
Times, 26-Oct-2017. [Online]. Available: https://www.ft.com/content/4110069a-ba3d-11e7-
8c12-5661783e5589. [Accessed: 01-Oct-2018].

[5] S. Gallagher, “50 million Facebook accounts breached by access-token-harvesting
attack,” Ars Technica, 28-Sep-2018. [Online]. Available: https://arstechnica.com/information-
technology/2018/09/50-million-facebook-accounts-breached-by-an-access-token-harvesting-
attack/. [Accessed: 01-Oct-2018].

[6] M. M. Lehman, “Programs, life cycles, and laws of software evolution,” Proceedings
of the IEEE, vol. 68, no. 9, pp. 1060–1076, 1980.

[7] S. Cook, R. Harrison, M. M. Lehman, and P. Wernick, “Evolution in software systems:
foundations of the SPE classification scheme,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. 18, no. 1, pp. 1–35, Jan. 2006.

[8] G. S. Walia and J. C. Carver, “A systematic literature review to identify and classify
software requirement errors,” Information and Software Technology, vol. 51, no. 7, pp. 1087–
1109, Jul. 2009.

[9] A. Métrailler and T. Estier, “EVOLIS Framework: A Method to Study Information
Systems Evolution Records,” in System Sciences (HICSS), 2014 47th Hawaii International
Conference on, 2014, pp. 3798–3807.

84

References

[10] I. Benbasat, D. K. Goldstein, and M. Mead, “The Case Research Strategy in Studies of
Information Systems,” MIS Quarterly, vol. 11, no. 3, p. 369, Sep. 1987.

[11] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?,” in Proceedings of
the 28th international conference on Software engineering, 2006, pp. 361–370.

[12] M. N. Li, Y. K. Malaiya, and J. Denton, “Estimating the number of defects: A simple
and intuitive approach,” in Proc. 7th Int’l Symposium on Software Reliability Engineering
(ISSRE), 1998, pp. 307–315.

[13] S. Wagner, “Defect classification and defect types revisited,” in Proceedings of the 2008
workshop on Defects in large software systems, 2008, pp. 39–40.

[14] Z. Li and Y. Zhou, “PR-Miner: Automatically Extracting Implicit Programming Rules
and Detecting Violations in Large Software Code,” p. 10.

[15] T. Xie, J. Pei, and A. E. Hassan, “Mining Software Engineering Data,” in 29th
International Conference on Software Engineering (ICSE’07 Companion), Minneapolis, MN,
2007, pp. 172–173.

[16] R. Binder, Testing object-oriented systems: models, patterns, and tools. Reading, Mass:
Addison-Wesley, 2000.

[17] D. Vallespir, F. Grazioli, and J. Herbert, “A framework to evaluate defect taxonomies,”
in XV Congreso Argentino de Ciencias de La Computación, 2009.

[18] M. Leszak, P. Dewayne E., and D. Stoll, “Classification and evaluation of defects in a
project retrospective,” The Journal of Systems and Software, no. 61, pp. 173–187, 2002.

[19] 1044-2009 IEEE Standard Classification for Software Anomalies. 2009.

[20] N. Mellegãrd, Improving Defect Management in Automotive Software Development,
LiDeC—A Light-weight Defect Classification Scheme. Chalmers University of Technology,
2013.

[21] Beizer, Boris, Software testing techniques, 2nd Edition. Thomson Learning, 1990.

[22] R. G. Mays, C. L. Jones, G. J. Holloway, D. P., and D.P. Studinski, “Experiences with
Defect Prevention.” IBM Systems Journal, 29(1):4, 32, 1990.

[23] G. K. Rajbahadur, S. Wang, Y. Kamei, and A. E. Hassan, “The impact of using
regression models to build defect classifiers,” in Proceedings of the 14th International
Conference on Mining Software Repositories, 2017, pp. 135–145.

[24] R. Chillarege et al., “Orthogonal defect classification-a concept for in-process
measurements,” IEEE Transactions on software Engineering, vol. 18, no. 11, pp. 943–956,
1992.

[25] J. T. Huber, “A Comparison of IBM’s Orthogonal Defect Classification to Hewlett
Packard’s Defect Origins, Types, and Modes.” Hewlett Packard Company, 1999.

[26] L. Yu and S. R. Schach, “Applying association mining to change propagation,”
International Journal of Software Engineering and Knowledge Engineering, vol. 18, no. 08,
pp. 1043–1061, 2008.

85

References

[27] G. Murphy and D. Cubranic, “Automatic bug triage using text categorization,” in
Proceedings of the Sixteenth International Conference on Software Engineering & Knowledge
Engineering, 2004.

[28] W. Dickinson, D. Leon, and A. Fodgurski, “Finding failures by cluster analysis of
execution profiles,” in Proceedings of the 23rd International Conference on Software
Engineering. ICSE 2001, Toronto, Ont., Canada, 2001, pp. 339–348.

[29] N. Hillah and T. Estier, “The Application of Change Indicators in Mining Software
Repositories,” in Trends and Advances in Information Systems and Technologies, vol. 746, Á.
Rocha, H. Adeli, L. P. Reis, and S. Costanzo, Eds. Cham: Springer International Publishing,
2018, pp. 418–428.

[30] N. Hillah, “A Conceptual Tool to Improve the Management of Software Defects,” in
Business Modeling and Software Design, vol. 319, B. Shishkov, Ed. Cham: Springer
International Publishing, 2018, pp. 443–451.

[31] N. Hillah, “Severe Software Defects Trigger Factors: A Case Study of a School
Management System,” in Digital Science, vol. 850, T. Antipova and A. Rocha, Eds. Cham:
Springer International Publishing, 2019, pp. 389–396.

[32] N. Hillah, “Classification of Software Defects Triggers: A Case Study of School
Resource Management System,” in Information Technology and Systems: Proceedings of
ICITS 2019, vol. 918, Á. Rocha et al., Ed. Cham: Springer International Publishing, 2019, p.
10.

[33] “evolution | Definition of evolution in English by Oxford Dictionaries,” Oxford
Dictionaries | English. [Online]. Available:
https://en.oxforddictionaries.com/definition/evolution. [Accessed: 03-Oct-2018].

[34] G. E. Moore, “Cramming More Components Onto Integrated Circuits,” Proceedings of
the IEEE, vol. 86, no. 1, pp. 82–85, Jan. 1998.

[35] M. Doyle, “The Project Gutenberg EBook of On the Origin of Species, by Charles
Darwin,” p. 362.

[36] Joseph Valacich and Christoph Schneider, Information Systems Today: Managing in the
Digital World, 4th Edition. Pearson, 2010.

[37] D. P. Truex, R. Baskerville, and H. Klein, “Growing systems in emergent
organizations,” Communications of the ACM, vol. 42, no. 8, pp. 117–123, Aug. 1999.

[38] M. M. Lehman and J. C. Fernáandez-Ramil, “Rules and Tools for Software Evolution
Planning and Management,” in Software Evolution and Feedback, N. H. Madhavji, J. C.
Fernández-Ramil, and D. E. Perry, Eds. Chichester, UK: John Wiley & Sons, Ltd, 2006, pp.
539–563.

[39] J. H. Saleh, D. E. Hastings, and D. J. Newman, “Flexibility in system design and
implications for aerospace systems,” Acta Astronautica, vol. 53, no. 12, pp. 927–944, Dec.
2003.

86

References

[40] N. Chapin, J. E. Hale, K. M. Khan, J. F. Ramil, and W.-G. Tan, “Types of software
evolution and software maintenance,” Journal of software maintenance and evolution:
Research and Practice, vol. 13, no. 1, pp. 3–30, 2001.

[41] R. Phaal, C. J. P. Farrukh, and D. R. Probert, “Technology roadmapping—A planning
framework for evolution and revolution,” Technological Forecasting and Social Change, vol.
71, no. 1–2, pp. 5–26, Jan. 2004.

[42] “Software and Systems Engineering Vocabulary.” [Online]. Available:
https://pascal.computer.org/sev_display/search.action;jsessionid=de3d8aeebd96a8bc6415bfff
1750. [Accessed: 04-Oct-2018].

[43] MM Lehman, J.F Ramil, P.D Wernick, D.E Perry, and W.M Turski, “Metrics and Laws
of Software Evolution- The Nineties View,”
http://www.ifi.uzh.ch/seal/teaching/courses/archive/hs10-1/evolution/LehmanRamil97-
Metrics-of-swevol.pdf, 1997. [Online]. Available:
http://www.ifi.uzh.ch/seal/teaching/courses/archive/hs10-1/evolution/LehmanRamil97-
Metrics-of-swevol.pdf. [Accessed: 07-Sep-2018].

[44] B. A. Kitchenham et al., “Towards an ontology of software maintenance,” Journal of
Software Maintenance: Research and Practice, vol. 11, no. 6, pp. 365–389, Nov. 1999.

[45] M. Fowler, K. Beck, and J. Brant, “Refactoring - Improving the Design of Existing
Code,” p. 337.

[46] IEEE Std 1219-1998: IEEE Standard for Software Maintenance, IEEE. .

[47] E. B. Swanson, “The dimensions of maintenance,” in Proceedings of the 2nd
international conference on Software engineering, 1976, pp. 492–497.

[48] K. H. Bennett and V. T. Rajlich, “The staged model of the software lifecycle: A new
perspective on software evolution,” p. 14.

[49] B. Boehm, “IEEE Transactions on Software Engineering, Vol. SE-10 (1),1984 pp. 4-
2,” p. 47.

[50] “anomaly | Definition of anomaly in English by Oxford Dictionaries,” Oxford
Dictionaries | English. [Online]. Available:
https://en.oxforddictionaries.com/definition/anomaly. [Accessed: 30-Jul-2018].

[51] X. Xia, D. Lo, X. Wang, and B. Zhou, “Dual analysis for recommending developers to
resolve bugs,” Journal of Software: Evolution and Process, vol. 27, no. 3, pp. 195–220, Mar.
2015.

[52] B. Freimut, C. Denger, and M. Ketterer, “An industrial case study of implementing and
validating defect classification for process improvement and quality management,” in Software
Metrics, 2005. 11th IEEE International Symposium, 2005, pp. 10–pp.

[53] B. S. Dhillon and Y. Liu, “Human error in maintenance: a review,” Journal of Quality
in Maintenance Engineering, vol. 12, no. 1, pp. 21–36, Jan. 2006.

87

References

[54] D. Greer and Y. Hamon, “Agile Software Development,” Software: Practice and
Experience, vol. 41, no. 9, pp. 943–944, Aug. 2011.

[55] Y. Tian, D. Lo, and C. Sun, “DRONE: Predicting Priority of Reported Bugs by Multi-
factor Analysis,” 2013, pp. 200–209.

[56] Atlassian, “Jira | Logiciel de suivi des tickets et des projets,” Atlassian. [Online].
Available: https://fr.atlassian.com/software/jira. [Accessed: 06-Apr-2018].

[57] “Home :: Bugzilla :: bugzilla.org.” [Online]. Available: https://www.bugzilla.org/.
[Accessed: 06-Apr-2018].

[58] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate defect reports
using natural language processing,” in Proceedings of the 29th international conference on
Software Engineering, 2007, pp. 499–510.

[59] P. A. da Mota Silveira Neto, D. Lucrédio, T. Vale, E. S. de Almeida, and S. R. de Lemos
Meira, “The bug report duplication problem: an exploratory study,” Software Quality Journal,
vol. 21, no. 1, pp. 39–66, Mar. 2013.

[60] G. Canfora and L. Cerulo, “Impact Analysis by Mining Software and Change Request
Repositories,” 2005, pp. 29–29.

[61] G. A. Di Lucca, M. Di Penta, and S. Gradara, “An approach to classify software
maintenance requests,” in Software Maintenance, 2002. Proceedings. International Conference
on, 2002, pp. 93–102.

[62] Y. C. Cavalcanti, P. A. da Mota Silveira Neto, I. do C. Machado, T. F. Vale, E. S. de
Almeida, and S. R. de L. Meira, “Challenges and opportunities for software change request
repositories: a systematic mapping study.,” Journal of Software: Evolution and Process, vol.
26, no. 7, pp. 620–653, Jul. 2014.

[63] K. M. Eisenhardt, “Building Theories from Case Study Research,” p. 20.

[64] B. Flyvbjerg, “Five Misunderstandings About Case-Study Research,” Qualitative
Inquiry, vol. 12, no. 2, pp. 219–245, Apr. 2006.

[65] R. K. Yin, Case Study Research, Design and Methods (2nd ed.), Sage Publications.
cations, Beverly Hills, CA, 1994.

[66] H. Simons, Case Study Research in Practice. SAGE, 2009.

[67] J. Gerring, Case Study Research: Principles and Practices. Cambridge University
Press, 2006.

[68] J. Gerring, “What Is a Case Study and What Is It Good for?,” American Political Science
Review, vol. 98, no. 02, pp. 341–354, May 2004.

[69] R. K. Yin, Case Study Research: Design and Methods. SAGE, 2003.

[70] R. E. Stake, The Art of Case Study Research. SAGE, 1995.

[71] P. Baxter and S. Jack, “Qualitative Case Study Methodology: Study Design and
Implementation for Novice Researchers,” p. 18.

88

References

[72] “Bienvenue sur le wiki EasyVista (Documentation.WebHome) - XWiki.” [Online].
Available: https://wiki.easyvista.com/xwiki/bin/view/Documentation/. [Accessed: 18-Sep-
2018].

[73] Henderson-Sellers, Brian, and M. K. Serour, “Creating a dual-agility method: The value
of method engineering.” Journal of database management 16.4, 2005.

[74] G. Lee and W. Xia, “Toward agile: an integrated analysis of quantitative and qualitative
field data on software development agility,” Mis Quarterly, vol. 34, no. 1, pp. 87–114, 2010.

[75] N. B. Moe, T. Dingsøyr, and T. Dybå, “A teamwork model for understanding an agile
team: A case study of a Scrum project,” Information and Software Technology, vol. 52, no. 5,
pp. 480–491, May 2010.

[76] K. Schwaber and M. Beedle, Agile Software Development with Scrum, Vol. 1 vols.
Upper Saddle River: Prentice Hall, 2002.

[77] V. Venkatesh and F. D. Davis, “A Theoretical Extension of the Technology Acceptance
Model: Four Longitudinal Field Studies,” Management Science, vol. 46, no. 2, pp. 186–204,
Feb. 2000.

[78] N. Venkatraman and V. Ramanujam, “Measurement of Business Performance in
Strategy Research: A Comparison of Approaches,” The Academy of Management Review, vol.
11, no. 4, p. 801, Oct. 1986.

[79] A. Weber and R. Thomas, “Key performance indicators,” Measuring and Managing the
Maintenance Function, Ivara Corporation, Burlington, 2005.

[80] R. S. Kaplan and D. P. Norton, “Transforming the balanced scorecard from performance
measurement to strategic management: Part I,” Accounting horizons, vol. 15, no. 1, pp. 87–104,
2001.

[81] “A definition of indicator,” https://en.oxforddictionaries.com. [Online]. Available:
https://en.oxforddictionaries.com/definition/indicator.

[82] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc, “Is it a bug or an
enhancement?: a text-based approach to classify change requests,” in Proceedings of the 2008
conference of the center for advanced studies on collaborative research: meeting of minds,
2008, p. 23.

[83] “Change Management: Best Practices,” Cisco. [Online]. Available:
https://www.cisco.com/c/en/us/products/collateral/services/high-
availability/white_paper_c11-458050.html. [Accessed: 26-Nov-2017].

[84] T. Wheelen and D. Hunger, “A Descriptive Model of Strategic Management,” Scribd.
[Online]. Available: https://www.scribd.com/document/29959620/A-Descriptive-Model-of-
Strategic-Management-Wheelen-amp-Hunger. [Accessed: 26-Apr-2018].

[85] “Access the Internet, built just for you.,” Waterfox. [Online]. Available:
https://www.waterfoxproject.org/en-US/. [Accessed: 26-Dec-2018].

89

References

[86] “The new, fast browser for Mac, PC and Linux | Firefox,” Mozilla. [Online]. Available:
https://www.mozilla.org/en-US/firefox/. [Accessed: 26-Dec-2018].

[87] J. Rushby, “Critical system properties: survey and taxonomy,” Reliability Engineering
& System Safety, vol. 43, no. 2, pp. 189–219, Jan. 1994.

[88] W. M. Tellis, “Application of a Case Study Methodology,” p. 21.

[89] D. Challet and A. Lombardoni, “Bug propagation and debugging in asymmetric
software structures,” Physical Review E, vol. 70, no. 4, Oct. 2004.

[90] A. E. Hassan and R. C. Holt, “Predicting change propagation in software systems,” in
20th IEEE International Conference on Software Maintenance, 2004. Proceedings., Chicago,
IL, USA, 2004, pp. 284–293.

[91] E. Isaeva, V. Bakhtin, and A. Tararkov, “Collecting the Database for the Neural
Network Deep Learning Implementation,” in Digital Science, vol. 850, T. Antipova and A.
Rocha, Eds. Cham: Springer International Publishing, 2019, pp. 12–18.

[92] A. Stavrianou, P. Andritsos, and N. Nicoloyannis, “Overview and semantic issues of
text mining,” ACM SIGMOD Record, vol. 36, no. 3, p. 23, Sep. 2007.

91

Appendix 1. The Application of Change Indicators in Mining Software Repositories

Part II: Synthesis Published Papers

Appendix	1.	The	Application	of	Change	

Indicators	in	Mining	Software	

Repositories	

Published in Trends and Advances in Information

Systems and Technologies

Volume 2 [WorldCIST'18, Naples, Italy, March 27-29, 2018]

Authors: Nico Hillah, Thibault Estier.

Pages: 418-428
Advances in Intelligent Systems and Computing 746,

Springer 2018, ISBN 978-3-319-77711-5

DOI: 10.1007/978-3-319-77712-2_40

Abstract. This paper presents a framework to identify a problematic or uncontrollable rise in the

number of software change requests and to take right actions to fix it. With this work, we propose the

use of an acceptable limit number of change requests as indicators to track the evolution of software

change requests. The change indicators are used to identify a periodical sharp rise in demands of change

requests fast enough and provide the right fix on time. Not only these indicators track the evolution of

change request, but they also help to identify the right solution to address the triggers of these change

requests.

Keywords: Change requests, Indicators, Maintenance

92

Appendix 1. The Application of Change Indicators in Mining Software Repositories

1 Introduction

Software maintenance is defined in IEEE Standard 1219-1998 [1] as “The modification of a

software product after delivery to correct faults, to improve the performance or other attributes,

or to adapt the product to a modified environment” [p1,2]. Software developed in the agile

context is not an exception to this IEEE definition. These faults corrections and performance

improvements are expressed in the form of change requests (CRs). These CRs are collected and

saved in repositories such as JIRA, and Redmine. CRs are classified into different categories

[3], [4] based on different methods. They are classified either by their assignments [5], [6], their

types [3], their duplication [7]; or based on the type of activities performed to solve them [8]

e.g. corrective maintenance, adaptive maintenance [9]. The maintenance team, as well as the

development team, often implement these CRs without systematically checking the main

original causes of these faults. This lack of attention may be encouraged by either a large and

overwhelming number of CRs [10],[11] or by the limited resources to find, solve and implement

these changes [12]. In fact, the sharp rise in the number of change requests on software becomes

problematic in situations where the number of requests is extremely high and their correction

is poorly done [7]. The probability that those poorly corrected bugs and implemented CRs lead

to catastrophic failure, consequently huge cost in the near future are extremely high [13]. In

addition, different studies have proved that the implementing software CRs activity cost up to

90% of the total cost of software product [14],[15]and [16]. For these reasons, the question we

address in this paper is “How can a dramatic rise in the number of CRs be identified and

solved?”

We conduct this study in three parts: (1) we classify change reports using the “EVOLution of

Information System (EVOLIS)” [4] conceptual framework based on the factors that trigger

software evolution. In our case, an evolution is as a group of CRs addressed to a system over

its lifetime. (2) For each category of CRs, we propose to define a maximum number of CRs

above which the software maintenance team must be alerted. This maximum is referred as the

CR indicator. We set indicators for each category in order to track the evolution of these CRs

and (3) we suggest possible actions to consider in some problematic cases.

In the following sections of the paper, we first introduce the definition of a software change

request and its characteristics. Second, we present the methodology we use and explain the

steps in classifying the CRs before presenting our results. Finally, we present a four-step process

to implement the indicators and the benefits they bring as a contribution of the paper.

93

Appendix 1. The Application of Change Indicators in Mining Software Repositories

2 Literature review

2.1 Software Change Request

Before a bug report or software problem becomes a change request (CR), it goes through a

process similar to the incident management process proposed by ITIL [17]. The process

proposes different system support levels. At level one or help desk, the user reports problems

she faced using the software system. When a satisfactory answer could not be provided to the

user at this level of support, the problem becomes a change request. From this point, each CR

enters the CR cycle where an analysis determines whether it will be accepted or not, then to

whom it will be assigned, and finally how it will be solved and tested to ensure that it has been

solved [18]. This is called a Generic change request workflow [19] (see Fig. 1). At this stage of

the cycle, the CRs and the associated decisions are saved in a repository.

CRs are managed with the help of platforms where stakeholders such as managers, developers,

and customers coordinate activities and share information [19]. These platforms support change

request repositories. A CRs repository helps to conduct studies in different fields such as

software evolution, change propagation in relation to the software coding, fault analysis,

software complexity, and software reuse [20]. A CRs repository not only contributes to other

software fields, but it is also a field of studies in itself. Mining CRs repository treats subjects

such as how to eliminate duplication of CRs, how to choose a CRs repository [19]. It also

presents solutions on how to manage CRs, from their classification to the choice of the

developer who will solve them [8], [21]. However, analyzing the literature, we found that the

question of how to manage these CRs, more precisely when and how to access their overload

and which measures must be put in place to mitigate this overload, is not explored in detail

[7],[10].We address this question in this paper by providing indicators to gauge the actual state

of CRs. In the next section, we present the framework EVOLIS used to classify the CRs.

94

Appendix 1. The Application of Change Indicators in Mining Software Repositories

Fig. 1. Generic change request workflow [19].

2.2 Presentation of EVOLIS framework

According to the authors, EVOLIS [4] framework classified CRs as evolution based on factors

that trigger them. “EVOLIS can be caused by a large variety of factors: bugs that need to be

fixed, users that wish to have new functionalities, new market opportunities that require new

software features, performance standards that the system must reach, technical changes in the

environment with which the system must interact, obsolescence of applications and so on”

[p2,4]. EVOLIS presents four categories or blocks of CRs: (1) IS/Users fit change requests

(U.F-CRs), defined as any request related to the user interface, the user documentation and

aptitude to use the system. Simply, the authors “classify as IS/user fit each activity during an

evolution regarding directly users or when the evolution only alters the fit between IS and users

without altering business functionalities” [p4,4]. (2) The Technology change requests (T-CRs)

are related to changes that concerns the software as well as the hardware platforms as

information system components. As example, they stated that “when reason like performance,

updates, preventive maintenance and so on motivate evolutions of the software or hardware”

[p5,4]. (3) IS architecture change requests category (A-CRs), according to the authors this type

of change request concerns “different types of integration evolution, namely an evolution of

integration among components of the system, among business functionalities, or an integration

with systems outside of the company.” [p4,4].(4) The Business-IS alignment change requests

(B.IS-CR) “addresses the co-alignment between business and information systems” [p3,4].

There are two type of alignment under this category: company external environment alignment

and evolution-oriented alignment. For this study, we classified each change requests that is

related to align IS to the actual or future business scenario and to the external organization

environment alignment as the B.IS CRs.

95

Appendix 1. The Application of Change Indicators in Mining Software Repositories

3 Methodology

To answer the question of this paper, we conducted two case studies. We chose this

methodology to be able to study software CRs in a real life, in the organizational context [22].

This methodology allows us to study software CRs in their natural settings [23] and also to

generate a framework from this observation. Thus, we collected the data from an educational

organization CRs repository. Two software development and maintenance teams provided the

data.

Firstly, we conducted the case on software A. Secondly, we evaluated and confirmed our

findings in case A by testing them on system B. The two systems are developed in-house using

the scrum agile method. Both systems are school management systems. System A has been

developed to help schools in managing grades, courses and posting of their students. The system

B has been developed to manage the hiring process of teachers and their assignment to classes.

The change repository tool used by this organization is JIRA. We analyzed the CRs of the two

systems A and B, over a period of 16 months (January 2015-April 2016). System A has nine

released versions over this period. The first version of the system A had been released middle

2012. System B has 10 released versions over the same period. System A had 629 CRs and

system B had 1450 CRs. We analyzed the CRs of these systems by classifying them with

EVOLIS framework [4].

3.1 Data Analysis

Each incident report (IR) is characterized by a source, a description and a help desk person

handling the incident. Incidents that could not be solved by the help desk team become CRs

and are saved in the repository. The classification of the IR is done in two parts. First, we group

the change reports into seven groups based on their descriptions. Then we classify these groups

into a four-trigger factor of CRs from EVOLIS. Based on the description of the change reports,

we identified seven main groups:

1. Change reports related to the user ability to manipulate the system

2. Change reports related to the user interface

3. Change reports related to system error or system bug

4. Change reports related to another system different from the system in use

5. Change reports related to the business and processing rules

6. Change reports related to the system database and mainly on user access privileges

7. Change reports related to testing of the system done by the user.

96

Appendix 1. The Application of Change Indicators in Mining Software Repositories

The seven groups have been classified into the four CRs groups of EVOLIS framework. Table

1, classification of change reports into EVOLIS CR trigger factors categories, presents this

result.

Table 1. Classification of the changes reports into EVOLIS CR trigger factors categories:

 User User
Interface

User
test

System
Bug

Another
system

Rules/

Process

User
Privilege/

Database
EVOLIS Business–IS

Alignment
(B.IS-
CR)

IS/Users Fit (U.F-
CR)

Technology (T-
CR)

IS/Architecture (A-
CR)

4 Change Indicator

4.1 Data Analysis of System A

The results of analyzing CRs on system A based on EVOLIS [4] framework are shown in Table

2, System A change request categories. This table presents the number of CRs for each EVOLIS

CRs category from January 2015 until April 2016 on system A.

97

Appendix 1. The Application of Change Indicators in Mining Software Repositories

Table 2. System A change request categories

Month A-CRs B.IS-CRs T-CRs U.F-CRs Total

CRs
January 5 15 3 7 30
February 0 12 6 27 45
March 3 4 6 10 23
April 2 14 9 25 50
May 5 8 10 16 39
June 19 20 17 25 81
July 13 4 7 10 34
August 9 8 6 20 43
September 1 4 9 13 27
October 1 1 2 6 10
November 9 2 19 11 41
December 4 8 10 6 28
January 21 11 9 13 54
February 16 13 20 16 65
March 4 5 12 4 25
April 10 8 10 6 34
Total 122 137 155 215 629

During the classification of CRs of system A based on their description or factors that trigger

them (EVOLIS), we observe that the number of CRs varies among different categories and

from one month to another. This raised two questions: (1) How to evaluate the level status of

CRs? And (2) on which bases one can prove that CRs of one month are overloaded as against

another month, to justify the need of allocating enough resources to address this excess of CRs?

4.2 Definition and Implementation of the Change Indicator on System A

 The absence of standards to evaluate which month has a CRs overload compared to the others

has prompted us to introduce an indicator as the accepted limit of CRs over a fixed period of

time, in our case monthly. The purpose of this indicator is to alert software maintenance team

on the status of software CRs in each category. These categories or types of CRs depend on the

repository mining techniques [19]. CR indicator is set as a certain limit for each category of

change above which, CRs must not only be solved but the category concerned must be

investigated. Due to the variance of the level of CRs month-to-month as well as category-to-

category, we could not base the limit on a fixed amount of change requests. Nevertheless, we

decided to introduce CRs number limit as an indicator that will help us to identify cases where

98

Appendix 1. The Application of Change Indicators in Mining Software Repositories

the rise in the number of changes is unusual. The indicator helps to control the evolution of the

change request. Moreover, it will trigger corrective actions.

The Oxford English dictionary defines indicator as "A thing that indicates the state or level of

something." [24]. Based on this definition, we set the indicator artifact as an arithmetic value

that informs us on the CRs level in each category. We defined the condition of this artifact

indicator as follows: "If the number of change requests for a particular month in a category is

greater than twice the average number of all previous change requests up to this month in the

same category; then an investigation must be conducted for this month, within this category".

The condition of our indicators is expressed as follows:

k = 1. . n, k	being	a	month	and
x, the	change	requests	number	to	test

𝐼𝑓		𝑥% > 2𝑥̅%+,	(1)
then	investigate	&	adopt	mitigation	actions

We must precise that the limit setting of the measures to observe depends on the goal set by

each software team or each organization [9]. In our case, our emphasis is on the sudden increase

in CRs for a month compared to the number of CRs of the previous months. The application of

this formula implies that the change indicator calculated for the first month is irrelevant. In case

of a progressive rise in CRs, another formula will be more appropriate for setting the indicators.

Our indicator rule is only an example of the form a CR indicator may have. The results obtained

in applying the indicator to the system A are summarized in Table 3. Months with CRs that

pass the indicators as limit are marked with gray color in the table. Considering the system A

and its architecture CRs category, we have three months (May, June, January) for which their

total number of CRs is twice greater than the average of previous CRs. Consequently, we

conducted an investigation and we found that those months correspond to a period of a special

event such as examination as well as the reopen class sessions. This implies that the interaction

between the system A and the other systems is crucial for the users to perform their activities.

A possible set of actions to put in place in this situation will be to have a checking of the

interacting systems before these major events (checking of APIs, of updates, etc.). In Fig.2, we

present the result of applying CR indicator on system A classified CRs.

99

Appendix 1. The Application of Change Indicators in Mining Software Repositories

Fig. 2. System A change requests categories with the indicators

Table 3. Applying the indicator to categories of CRs system A

Month A-
CRs

A-CRs
Indicator

B.IS-
CRs

B.IS-CRs
Indicator

T-
CRs

T-CRs
Indicator

U.F-
CRs

U.F-CRs
Indicator

Total
CRs

January 5 5.0 15 15 3 3 7 7 30
February 0 2.5 12 13.5 6 4.5 27 17 45
March 3 1.5 4 8 6 6 10 18.5 23
April 2 2.5 14 9 9 7.5 25 17.5 50
May 5 3.5 8 11 10 9.5 16 20.5 39
June 19 12.0 20 14 17 13.5 25 20.5 81
July 13 16.0 4 12 7 12 10 17.5 34
August 9 11.0 8 6 6 6.5 20 15 43
September 1 5.0 4 6 9 7.5 13 16.5 27
October 1 1.0 1 2.5 2 5.5 6 9.5 10
November 9 5.0 2 1.5 19 10.5 11 8.5 41
December 4 6.5 8 5 10 14.5 6 8.5 28
January 21 12.5 11 9.5 9 9.5 13 9.5 54
February 16 18.5 13 12 20 14.5 16 14.5 65
March 4 10.0 5 9 12 16 4 10 25
April 10 7.0 8 6.5 10 11 6 5 34
Total 122 137 155 215 629

4.3 Evaluation of the Change Indicator with System B

In this second case, we applied the same classification and setting up indicator process to the

system B CRs. Similarly, in the first case, there are some months where the CRs are

problematic. The results are present in Fig 3, System B change requests with indicators. For

instance, in the category of user-fit, the month of August has fallen under the investigating

100

Appendix 1. The Application of Change Indicators in Mining Software Repositories

criteria. Conducting this investigation helped us to identify a problem related to a change done

on the user interface; change that prevents users to correct manually the name of participants in

certain activities.

Fig. 3. System B change requests categories with the indicators

5 Contributions

In this section, we describe the four-step process organizations must implement to track the

evolution of each type of CRs and must be able to identify the excessive ones. We argue that

implementing our proposed process will help software maintenance and development team to

track the evolution of CRs, their state and triggers factors that generate excessive CRs. By

adopting this process, organizations gain time and resources advantage. In fact, it allows

software team to point to the exact modules or parts of the software system responsible for the

sharp rise in CRs. Knowing these affected modules allows taking measures to stop the rise in

CRs and provides the right solutions in fixing them. Consequently, it reduces the cost of

software maintenance in general.

The process to follow to classify CRs and set CR indicators is summarized in these four steps:

1. Collection of the CRs into a repository. For this purpose, there are existing tools such

as JIRA and Redmine.

101

Appendix 1. The Application of Change Indicators in Mining Software Repositories

2. Classification or triage of these CRs into categories. The triage features are integrated

into the existing CR repositories cited in the previous step. In case this incorporated

feature does not satisfy the software team or the project manager, there are other

frameworks and models or the traditional data mining techniques such as clustering or

classification algorithms [3]; with which this classification can be done. In our case, we

use EVOLIS [4] as a CR framework to classify the CRs.

3. Set a limit for each type of CR over a defined period. At this level, one or more

indicators must be defined to track the evolution of each type of CRs category. In

addition, at this step, the indicator definition depends on the objectives set by the

organization [9] or the project team. Indicators can be defined as a ratio or as a target

number to reach [24],[25]. In defining these parameters, the team must also consider the

population size of stakeholders who can report a CR.

4. Investigation step: Define a set of actions to undertake when an indicator is reached. For

instance, organize a user training section in case the category related to the user-fit

indicators is reached.

Fig. 4 presents the diagram that describes our proposed four-step process in setting the CR

indicators.

Fig. 4.The steps in setting change request indicators and mitigating actions.

In case of software emergency maintenance, the question on how to prioritize and manage these

emergency CRs have already been studied [26],[27]. Different solutions emerged and suggested

that the software maintenance team may put in place special means for reporting and tracking

these emergency CRs. The team must also conduct a frequent investigation on these CRs by

applying our proposed CR indicators concept. This will ensure that possible hidden problems

and malfunctions related to the IS are identified, so that the right fix is provided on time.

102

Appendix 1. The Application of Change Indicators in Mining Software Repositories

6 Conclusion

Tracking the CR evolution by classifying them based on factors that trigger them provides a

means for decision-making in software maintenance. We analyzed the CRs of two systems

using the conceptual framework EVOLIS [4]. As result, we found that tracking CRs only is not

sufficient to propose the right actions to tackle their triggers, but it is also necessary to set

indicators to monitor their evolution. In addition, a list of actions must be prepared to handle

each problematic case. We summarized this result in the four-step process diagram.

Implementing this four-step process diagram helps to identify which type of CRs trigger factors

have most solicited the organization resources in maintaining and changing the software

systems.

In our future work, we will extend this analysis to the entire software ecosystem to identify all

potential actors and factors that trigger software changes. We will also identify how to address

the ones that cause the higher cost to the software development and maintenance.

7 References

[1] IEEE Std 1219-1998: IEEE Standard for Software Maintenance, IEEE. .

[2] S. Brand, How buildings learn: what happens after they’re built, Rev. pbk. ed. London: Phoenix,
1997.

[3] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc, “Is it a bug or an
enhancement?: a text-based approach to classify change requests,” in Proceedings of the 2008
conference of the center for advanced studies on collaborative research: meeting of minds, 2008, p. 23.

[4] A. Métrailler and T. Estier, “EVOLIS Framework: A Method to Study Information Systems
Evolution Records,” in System Sciences (HICSS), 2014 47th Hawaii International Conference on, 2014,
pp. 3798–3807.

[5] G. A. Di Lucca, M. Di Penta, and S. Gradara, “An approach to classify software maintenance
requests,” in Software Maintenance, 2002. Proceedings. International Conference on, 2002, pp. 93–102.

[6] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?,” in Proceedings of the 28th
international conference on Software engineering, 2006, pp. 361–370.

[7] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an open bug repository,” 2005, pp. 35–39.

[8] N. Chapin, J. E. Hale, K. M. Khan, J. F. Ramil, and W.-G. Tan, “Types of software evolution
and software maintenance,” J. Softw. Maint. Evol. Res. Pract., vol. 13, no. 1, pp. 3–30, 2001.

103

Appendix 1. The Application of Change Indicators in Mining Software Repositories

[9] E. B. Swanson, “The dimensions of maintenance,” in Proceedings of the 2nd international
conference on Software engineering, 1976, pp. 492–497.

[10] X. Xia, D. Lo, X. Wang, and B. Zhou, “Dual analysis for recommending developers to resolve
bugs,” J. Softw. Evol. Process, vol. 27, no. 3, pp. 195–220, Mar. 2015.

[11] P. A. da Mota Silveira Neto, D. Lucrédio, T. Vale, E. S. de Almeida, and S. R. de Lemos Meira,
“The bug report duplication problem: an exploratory study,” Softw. Qual. J., vol. 21, no. 1, pp. 39–66,
Mar. 2013.

[12] R. W. Butler and G. B. Finelli, “The infeasibility of quantifying the reliability of life-critical
real-time software,” IEEE Trans. Softw. Eng., vol. 19, no. 1, pp. 3–12, 1993.

[13] K. T. Ryan, “Software processes for a changing world: Software processes for a changing
world,” J. Softw. Evol. Process, vol. 28, no. 4, pp. 236–240, Apr. 2016.

[14] B. Ulziit, Z. A. Warraich, C. Gencel, and K. Petersen, “A conceptual framework of challenges
and solutions for managing global software maintenance.,” J. Softw. Evol. Process, vol. 27, no. 10, pp.
763–792, Oct. 2015.

[15] M. M. Lehman, “Programs, life cycles, and laws of software evolution,” Proc. IEEE, vol. 68,
no. 9, pp. 1060–1076, 1980.

[16] F. Jaafar, Y.-G. Guéhéneuc, S. Hamel, and G. Antoniol, “Detecting asynchrony and dephase
change patterns by mining software repositories.,” J. Softw. Evol. Process, vol. 26, no. 1, pp. 77–106,
Jan. 2014.

[17] A. Hochstein, Z. Rüdiger, and B. Walter, “ITIL as common practice reference model for IT
service management: formal assessment and implications for practice,” In e-Technology, e-Commerce
and e-Service, 2005. EEE’05. Proceedings.

[18] H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Hammad, “Assigning change requests to
software developers,” J. Softw. Evol. Process, vol. 24, no. 1, pp. 3–33, Jan. 2012.

[19] Y. C. Cavalcanti, P. A. da Mota Silveira Neto, I. do C. Machado, T. F. Vale, E. S. de Almeida,
and S. R. de L. Meira, “Challenges and opportunities for software change request repositories: a
systematic mapping study.,” J. Softw. Evol. Process, vol. 26, no. 7, pp. 620–653, Jul. 2014.

[20] G. Canfora and L. Cerulo, “Impact Analysis by Mining Software and Change Request
Repositories,” 2005, pp. 29–29.

[21] I. Aljarah, S. Banitaan, S. Abufardeh, W. Jin, and S. Salem, “Selecting discriminating terms for
bug assignment: a formal analysis,” 2011, pp. 1–7.

[22] R. K. Yin, Case Study Research, Design and Methods (2nd ed.), Sage Publications. cations,
Beverly Hills, CA, 1994.

104

Appendix 1. The Application of Change Indicators in Mining Software Repositories

[23] I. Benbasat, D. K. Goldstein, and M. Mead, “The Case Research Strategy in Studies of
Information Systems,” MIS Q., vol. 11, no. 3, p. 369, Sep. 1987.

[24] “A definition of indicator,” https://en.oxforddictionaries.com. [Online]. Available:
https://en.oxforddictionaries.com/definition/indicator.

[25] “Change Management: Best Practices - Cisco.” [Online]. Available:
https://www.cisco.com/c/en/us/products/collateral/services/high-availability/white_paper_c11-
458050.html. [Accessed: 26-Nov-2017].

[26] J. Kanwal and O. Maqbool, “Bug Prioritization to Facilitate Bug Report Triage,” J. Comput.
Sci. Technol., vol. 27, no. 2, pp. 397–412, Mar. 2012.

[27] Y. Tian, D. Lo, and C. Sun, “DRONE: Predicting Priority of Reported Bugs by Multi-factor
Analysis,” 2013, pp. 200–209.

105

Appendix 2. A Conceptual Tool to Improve the Management of Software Defects

Appendix	2.	A	Conceptual	Tool	to	Improve	

the	Management	of	Software	Defects		

Published in Business Modeling and Software Design –

8th International Symposium, BMSD 2018,

Vienna, Austria, July 2-4, 2018, Proceedings.

Author: Hillah Nico

Pages: 443-451,

Lecture Notes in Business Information Processing 319,

Springer 2018, ISBN 978-3-319-94213-1

DOI: 10.1007/978-3-319-94214-8_35

Postprint Version.

Abstract. Software teams address software defect problems in a simple way: they identify them,

assign them and resolve them. Nevertheless, studies have proven that having only these activities as

approaches to handle a large and increasing number of software defects is inefficient. As a solution to

this, we propose in this study a managerial conceptual tool for mining software defects in order to

improve the management of SDs. With our proof of concept, we demonstrate how SDs mining

management can be enhanced from a strategic and operational view. This is done through the precise

definition of software defects’ management objectives in line with the objectives of the software product

owner.

Keywords: Defects mining, Software defect management, Control measures.

106

Appendix 2. A Conceptual Tool to Improve the Management of Software Defects

 Introduction

IEEE standard 1044-2009 [1] defines a defect as: “An imperfection or deficiency in a work

product where that work product does not meet its requirements or specifications and needs to

be either repaired or replaced”.

Not only the software defects (SDs) are present in the whole life cycle of a software product,

but different studies also proved that 80% of the total cost of the software life cycle is associated

with the management of the SDs [2]. Having this high impact on the software product, SDs

management must be crucial to software teams as well as to organizations. Nowadays, the

management of SDs does not only consists of identifying, assigning, and correcting them, but

also in mining them. The purpose of this study is to focus on the mining aspect of SDs

management.

In fact, there are different studies which propose solutions on how to mine SDs [2], [3], [4].

However, most of these existing techniques are limited to the collection, the classification, and

the assignment of the SDs. In addition, these techniques do not cover the question of how to

define specific SDs mining management objectives that are aligned with first, the SDs

management objective, and second, with the objectives of the software product owner. This

results in a poor resource allocation in mining SDs as well as in the absence of control over the

SDs management in a software life cycle. In this regard, the problem we address in this paper

is how to improve and control SDs mining management in alignment with the business

objectives of the software owner?

As a solution to this problem, we are proposing the use of our conceptual tool to control the

mining management of the SDs. This conceptual tool is a guideline with four stages.

The paper will proceed as follows: first, we will define the software defect and its management

approaches. Secondly, we will present the conceptual tool that we used to conduct the proof of

concept. Finally, we will present the results and the advantages that we gained from applying

it.

2 Related Works

The defects are the source of software failures and problems. Software failures are defined as

“Termination of the ability of a product to perform a required function or its inability to

perform within previously specified limits” [p5, 3].

107

Appendix 2. A Conceptual Tool to Improve the Management of Software Defects

In the last decade, SDs management has received a considerable amount of attention from

researchers. In fact, SDs management has been the center of interest for many studies in

different software studies subdomains such as software project management, software

engineering and evolution [6], [7]. Due to the diversity of these studies, we group them into

branches based on their interest in SDs management.

The first branch deals with questions such as how to collect and store these SDs. Studies related

to this branch provide answers to questions such as how to collect SDs or which SDs

characteristics must be documented [8]. These studies propose solution tools named bug-

tracking systems to help collect SDs. They take the form of a central hub accessible by project

managers and software developers to manage the software products. Some of these online tools

are Jira [9] and Bugzilla [10].

The second branch deals with questions such as how to assign SDs to developers or how to deal

with the problem of an SDs duplication [11]. The research in this branch proposes techniques

and methods such as algorithms to automatically assign SDs to the right developer [12], [13],

[14] and also techniques to eliminate the duplication of SDs [15].

The third branch deals with the triage and the mining of SDs. In the software life cycle, the

mining of defects presents many advantages [2]. Researchers as well as practitioners in this

branch have proposed schemas and taxonomies for mining SDs. The best-known schemas are

(1) The Orthogonal Defect Classification (ODC) of IBM [16], the root cause analysis [1], (2)

the HP Defect origins, types and modes [17] and standards like the IEEE standard 1044-2009

[5]. In the same context, they also apply data mining methods such as the Naïve Bayes Model

[13] or the regression model [2] to classify SDs. In fact, the classification of defects helps the

software development teams to reduce the cost of correcting SDs and helps them detect

defective modules. This study is conducted as part of this last branch. In fact, our goal is to

propose a conceptual tool to improve the quality of software mining results in an organization,

since these results will lead to decision making concerning the quality of the software systems.

The need to assure that the mining is rightly performed with defined targets will improve

decision making concerning the state of software quality.

3 Presentation of the Conceptual Tool

In order to provide a means to avoid the insignificant SDs mining results to software product

owners, we decided to propose this conceptual tool.

108

Appendix 2. A Conceptual Tool to Improve the Management of Software Defects

Mining SDs is a complex set of activities; it goes from selecting a technique to mine the SDs,

interpreting the obtained results, to taking a decision based on the obtained results. Moreover,

each software system is unique, thus needs a specific SDs mining management strategy, e.g.,

the SDs of the system Waterfox are not the same for Firefox, even though they have similar

functionalities and purpose. Due to this complexity, inefficient SDs mining can lead to

situations such as:

(1) the results obtained from the SDs mining are irrelevant for the product owner;

(2) the SDs mining is requiring much more resources than planned and software teams

failed to take decisions in order to improve the quality of the software system based on

the mining results;

(3) the mining goals are poorly aligned with the strategy and the objectives of SDs

management and the product owner’s business needs and;

(4) control and evaluation measures for obtained results are missing. To avoid these

problems, we are proposing this conceptual tool to guide SDs miners wishing to

improve their mining project.

Although there are similar existing conceptual tools in the literature for business domain [18],

our conceptual tool is designed to target the SDs mining management field. The aim of this

conceptual tool is to help software teams to define their SDs mining management strategy and

to specify concrete actions to put in place this strategy in mining SDs. The conceptual tool is

defined fourfold:

(1) The first step consists of defining the SDs mining management strategy in alignment

with the needs of the software product owner. The strategy must be broken down into

short or medium term goals to achieve. The software team, as well as the product owner,

must approve these goals, e.g., a defect mining management strategy may be the

improvement of the software quality by developing error-free programs for each

software version released. The approval of these goals will lead to the second stage.

(2) The next step, which is the operational level, is to convert this strategy into concrete

objectives. Referring to the previous example, the set of objectives will be to improve

the detection of the defect modules and predict SDs.

(3) Following this, each objective must be broken down into terms of specific actions to be

performed, e.g., classifying SDs according to their priorities. In addition, members of

the SDs mining are responsible to implement each of these actions.

109

Appendix 2. A Conceptual Tool to Improve the Management of Software Defects

(4) Following this and depending on the actions put in place, software teams must carefully

select control measures to evaluate the state of the actions, e.g., the ratio of the corrected

high level prioritized SDs over the total number of SDs received.

Finally, the software team must define a list of actions to establish in order to correct cases

where the set objectives have not been reached, e.g. reorganization of the process to detect SDs.

Fig 1 presents the process to follow to implement the proposed conceptual tool.

Fig. 1. The process of the conceptual tool

4 The Application of the Software Defects Managerial Conceptual Tool

In order to apply the proposed conceptual tool to improve and control the SDs mining

management in practice, we decided to conduct a proof of concept of a software system that we

will name system A. This system is developed using the scrum method. The owner of this

system A is an education company. Its purpose is to help schools in managing the grades of

their students. The overall objectives set by the owner of the system A is to have a software

system with a considerable high quality, with emphasis on its availability to the users, especially

110

Appendix 2. A Conceptual Tool to Improve the Management of Software Defects

during the exam period. In line with this objective, the software team objective aims to improve

the assignment and the correction of the SDs.

4.1 Stage 1 and 2: Strategy Definition and Set of Objectives

In alignment with the owner’s objective, our strategy would be to mine SDs in order to reduce

the impact of SDs on the system to limit the system’s unavailability time (stage 1). In the next

step (stage 2), we cascade the defined strategy in different objectives such as to reduce the

impact of defects on system A and possibly to improve the correcting process of the SDs. In

the next step, we defined a set of actions to implement the objective of reducing the impact of

defects on the system (stage 3). We first need to know the actual number of defects of this

system A and then classify them according to their impact. To do this, we classify SDs

according to their severity in order to analyze the different impact that they are having on the

system availability. In the next session, we will present how we classified the SDs of system A,

and then we will present the application of the final stage on this system A.

4.2 Stage 3: The Classification of SDs of System A

We analyzed the SDs of system A over a period of a year, from January 2015 to December

2015. System A has 522 SDs. We analyzed the SDs of this system by classifying them

according to the defect severity attribute of IEEE 1044-2009 standards (see Table 2). This

severity attribute is one of the most used attributes in SDs classification in practice [19]. The

main advantage of choosing the severity attribute is the possibility for managers to identify

which defect should be first corrected [19]. The IEEE's standard defines this attribute as “The

highest failure impact that the defect could (or did) cause, as determined by (from the

perspective of) the organization responsible for software engineering.” [5]. There are five

values of severity. They are classified from the most significant to the least significant (see

Table 1).

111

Appendix 2. A Conceptual Tool to Improve the Management of Software Defects

Table 1. Severity values [5]

Attribute Value Definition
Severity Blocking (B) Testing is inhibited or suspended pending

correction or identification of suitable
workaround.

 Critical (C) Essential operations are unavoidably disrupted,
safety is jeopardized, and security is
compromised.

Major (Mj) Essential operations are affected but can
proceed.

Minor (Mn) Nonessential operations are disrupted.
Inconsequential (I) No significant impact on operations.

Table 2. System A software defects classification

 Severity
B C Mj Mn I Total

Jan 2 3 28 10 0 43
Feb 1 5 15 11 0 32
Mar 7 8 34 14 0 63
Apr 2 5 38 9 2 56
May 3 1 20 5 0 29
June 0 2 25 15 0 42
July 0 1 5 4 0 10
Aug 2 7 8 7 3 27
Sept 5 11 18 15 4 53
Oct 7 4 22 6 0 39
Nov 15 8 37 20 3 83
Dec 7 5 18 12 3 45
 Total 51 60 268 128 15 522

4.3 Stage 4: The Section of Control Measures

There are two important aspects to consider when selecting the evaluation metrics at the fourth

stage of this conceptual tool. The first one is to choose metrics based on the objective or action

to evaluate, e.g. a ratio of the corrected SDs over the total number of SDs received to evaluate

the SDs’ correction process. The second one is to take into consideration the critical level [20]

of the system being managed. This critical level can relate to its business, security, and safety

aspect. In addition, to determine the critical level of the system, software teams must consult

and get the approval of the product owner.

112

Appendix 2. A Conceptual Tool to Improve the Management of Software Defects

To track and evaluate the success of our objective, we selected a metric as an indicator (stage

4). In this regard, we defined the SDs indicator as a ratio of the number of a type of SDs over

the total SDs number received within a month. This ratio informs us about the type of defects

that is problematic during the month. We define a problematic case as follows: when the number

of a certain type of SDs is higher or equal to one-third of the total SDs number of a month. One-

third of the total SDs is an agreed upon limited number a type of SDs may have during a month.

The selection of this metric was based on system A’s critical mission, which is its availability

during the exam periods. We defined the indicator as follows:

𝑛		𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑠	𝑡ℎ𝑒	𝑡𝑦𝑝𝑒	𝑜𝑓	𝑆𝐷𝑠	𝑡𝑜	𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒

𝑋, 𝑡ℎ𝑒	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝑆𝐷𝑠 𝑎𝑛𝑑	𝑡	𝑏𝑒𝑖𝑛𝑔	𝑎	𝑡𝑖𝑚𝑒	𝑝𝑒𝑟𝑖𝑜𝑑

𝐼𝑓	𝑋%𝑡 ≥
∑(𝑋)𝑡
3

𝑡ℎ𝑒𝑛	𝑖𝑛𝑣𝑒𝑠𝑡𝑖𝑔𝑎𝑡𝑒

(1)

Following this, we defined a list of actions to undertake in order to correct problematic cases.

These actions are:

• to investigate within the problematic type of SDs to identify miscorrected defects;

• to reorganize the process of correcting the problematic type of SDs;

• to check other indicators such as the number of correcting defects over the total SDs
within this category.

Our choice of action depends on the investigation results. In this regard, an investigation must

be conducted when an indicator is reached, in order to identify the problem and to provide the

right fix on time. In Fig. 2, we present the application of our indicator on SDs of system A in

2015.

113

Appendix 2. A Conceptual Tool to Improve the Management of Software Defects

Fig. 2. Classified SDs of system A with the indicators.

5 Discussion and Contribution

The results clearly show us that the group of minor, blocking, and critical SDs management has

reached the objective set in relation to the organization’s objectives. In opposition, the major

type of SDs failed to reach the fixed goal. In fact, from January until June, the number of the

major SDs was considerably high. After investigating those months, we found that the high

number of SDs of January was due to the duplication of SDs. Similarly, the month of March

inherited some of the SDs of January that were incorrect. E.g., mistakes found in the names of

some of the students were related to the use of ACSII format in system A and corrected in the

system in January; but the same mistakes reappeared in the month of March, due to the use of

an API to connect system A to an external system B. This information leads to the assignment

process reorganization for the major type of SDs.

Applying this conceptual tool gives not only the insight of the SDs mining management, but

also of the entire SDs management. In fact, knowing the status of each type of SDs will guide

the SDs manager to focus on the problematic group of SDs and to reorganize the resource

0

20

40

60

80

100

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
ne Ju
ly

Au
g

Se
pt O
ct

N
ov D
ec

N
um

be
r o

f S
D

s

Minor	SDs

Minor Total SDs Indicator

0

20
40

60
80

100

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
ne Ju
ly

Au
g

Se
pt O
ct

N
ov D
ec

N
um

be
r o

f S
D

s

Major	SDs

Major Total SDs Indicator

0

20

40

60

80

100

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
ne Ju
ly

Au
g

Se
pt O
ct

N
ov D
ec

N
um

be
ro

f S
D

s

Critical	SDs	

Critical Total SDs Indicator

0

20

40

60

80

100

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
ne Ju
ly

Au
g

Se
pt O
ct

N
ov D
ec

N
U

m
be

r o
f S

D
s

Blocking	SDs

Blocking Total SDs Indicator

114

Appendix 2. A Conceptual Tool to Improve the Management of Software Defects

allocation in handling these groups of SDs. This improves the decision-making in managing

SDs. Consequently, it improves the SDs management altogether.

The application of this conceptual tool is a manner not only to improve the management of SDs

but also to align this management with the objectives of the software product owner. Its

implementation is also flexible concerning the objectives set by each organization and its

software department. In addition, the selection of control measures to evaluate the management

must be customized for each software product.

This conceptual tool alerted us to bring the management of SDs into line. Most of all, it did not

demand many interventions from us once we set it up. We propose this conceptual tool not

only as contribution, but we also demonstrate its application in a real case.

6 Conclusion

Our proof of concept presents some of the advantages that software teams can gain from

implementing our conceptual tool. This tool not only helps to define the precise objectives in

line with the objectives of software owners in the context of SDs mining management but also

guides the owners to evaluate the state of their SDs management. Indeed, the defined control

measures will alert them to possible existing problems related to the management of their SDs

and, therefore, of their software products. Knowing this, they will be able to take the right

actions to handle the SDs. Herewith they will, on the one hand, considerably achieve the set

goals, on the other hand, improve the quality of the software product, and reduce the cost of its

development or maintenance. In our future work, we will provide a deep insight into the process

of defining and implementing appropriate SDs management strategies by looking at the

interdependence among the SDs management branches.

7 References

1. M. Leszak, P. Dewayne E., and D. Stoll, “Classification and evaluation of defects in a project
retrospective,” Elsevier, no. 61, pp. 173–187, 2002.

2. G. K. Rajbahadur, S. Wang, Y. Kamei, and A. E. Hassan, “The impact of using regression
models to build defect classifiers,” in Proceedings of the 14th International Conference on Mining
Software Repositories, 2017, pp. 135–145.

3. H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and taxonomy of approaches for mining
software repositories in the context of software evolution,” J. Softw. Maint. Evol. Res. Pract., vol. 19,
no. 2, pp. 77–131, Mar. 2007.

115

Appendix 2. A Conceptual Tool to Improve the Management of Software Defects

4. S. Davies, M. Roper, and M. Wood, “Comparing text-based and dependence-based approaches
for determining the origins of bugs: COMPARING APPROACHES FOR DETERMINING BUG
ORIGINS,” J. Softw. Evol. Process, vol. 26, no. 1, pp. 107–139, Jan. 2014.

5. 1044-2009 IEEE Standard Classification for Software Anomalies. 2009.

6. M. Fischer, M. Pinzger, and H. Gall, “Analyzing and relating bug report data for feature
tracking,” in WCRE, 2003, vol. 3, p. 90.

7. Y. C. Cavalcanti, P. A. da Mota Silveira Neto, I. do C. Machado, T. F. Vale, E. S. de Almeida,
and S. R. de L. Meira, “Challenges and opportunities for software change request repositories: a
systematic mapping study.,” J. Softw. Evol. Process, vol. 26, no. 7, pp. 620–653, Jul. 2014.

8. Y. Tian, D. Lo, and C. Sun, “DRONE: Predicting Priority of Reported Bugs by Multi-factor
Analysis,” 2013, pp. 200–209.

9. Atlassian, “Jira | Logiciel de suivi des tickets et des projets,” Atlassian. [Online]. Available:
https://fr.atlassian.com/software/jira. [Accessed: 06-Apr-2018].

10. “Home :: Bugzilla :: bugzilla.org.” [Online]. Available: https://www.bugzilla.org/. [Accessed:
06-Apr-2018].

11. P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate defect reports using
natural language processing,” in Proceedings of the 29th international conference on Software
Engineering, 2007, pp. 499–510.

12. J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?,” in Proceedings of the 28th
international conference on Software engineering, 2006, pp. 361–370.

13. G. Murphy and D. Cubranic, “Automatic bug triage using text categorization,” in Proceedings
of the Sixteenth International Conference on Software Engineering & Knowledge Engineering, 2004.

14. I. Aljarah, S. Banitaan, S. Abufardeh, W. Jin, and S. Salem, “Selecting discriminating terms for
bug assignment: a formal analysis,” 2011, pp. 1–7.

15. P. A. da Mota Silveira Neto, D. Lucrédio, T. Vale, E. S. de Almeida, and S. R. de Lemos Meira,
“The bug report duplication problem: an exploratory study,” Softw. Qual. J., vol. 21, no. 1, pp. 39–66,
Mar. 2013.

16. R. Chillarege et al., “Orthogonal defect classification-a concept for in-process measurements,”
IEEE Trans. Softw. Eng., vol. 18, no. 11, pp. 943–956, 1992.

17. J. T. Huber, “A Comparison of IBM’s Orthogonal Defect Classification to Hewlett Packard’s
Defect Origins, Types, and Modes.” Hewlett Packard Company, 1999.

18. T. Wheelen and D. Hunger, “A Descriptive Model of Strategic Management,” Scribd. [Online].
Available: https://www.scribd.com/document/29959620/A-Descriptive-Model-of-Strategic-
Management-Wheelen-amp-Hunger. [Accessed: 26-Apr-2018].

116

Appendix 2. A Conceptual Tool to Improve the Management of Software Defects

19. S. Wagner, “Defect classification and defect types revisited,” in Proceedings of the 2008
workshop on Defects in large software systems, 2008, pp. 39–40.

20. J. Rushby, “Critical system properties: survey and taxonomy,” Reliab. Eng. Syst. Saf., vol. 43,
no. 2, pp. 189–219, Jan. 1994.

117

Appendix 3. Severe Software Defects Trigger Factors: A Case Study of a School Management System

Appendix	3.	Severe	Software	Defects	

Trigger	Factors:	A	Case	Study	of	a	School	

Management	System	

Published in Digital Science. DSIC18 2018.

Advances in Intelligent Systems and Computing,

 vol 850. Springer, Cham

Author: Nico Hillah

DOI: 10.1007/978-3-030-02351-5_44

Print ISBN 978-3-030-02350-8

Postprint Version.

Abstract. In this paper, we identify the groups of triggers that are responsible for severe software

failures. These failures prevent any essential operation or activity to be conducted through the concerned

system or other systems connected to it. In fact, the occurrence of these failures causes a double financial

cost to organizations: one in fixing them and the other one because of the unavailability of the system

or systems. We targeted three types of software defects as sources of these failures. We conducted this

study by classifying 665 software defects of a school management system and we found that the top two

trigger groups are the technology and the IS architecture groups.

Keywords: Software defect severity, Software defect triggers, Software defect classification.

118

Appendix 3. Severe Software Defects Trigger Factors: A Case Study of a School Management System

 Introduction

In this age of information, every organization uses software systems to perform all types of

activities in different domains. Unfortunately, most of the time, they are subject to failures [1],

[2]. Software failures are defined as “Termination of the ability of a product to perform a

required function or its inability to perform within previously specified limits” [p5, 3].

In fact, depending on their severity, these failures induce not only financial loss to

organizations, but also time and resource loss in correcting them. Software defects (SDs) are

the sources of these failures. IEEE standard 1044-2009 [p5, 3] defines a defect as: “An

imperfection or deficiency in a work product where that work product does not meet its

requirements or specifications and needs to be either repaired or replaced”. Different studies

have investigated the sources and factors triggering SDs [4], [5]. Nevertheless, there is no

existing literature on the types of triggers associated with the level of SDs severity that they

generate. Knowing which types of triggers generate which level of SDs severity will help

systems administrators in particular and organizations in general to better allocate their

resources in order to address software failures. In this regard, the question we address in this

paper is which types of trigger factors generate the most severe SDs?

 To answer this question, we conducted a case study on a software system. In fact, we performed

two main classifications of its SDs. The first classification was to identify the severity of SDs;

then we classified the same SDs based on the trigger factors using EVOLIS framework [4].

The paper is structured as follows: first, we will introduce existing techniques software defects

classification; secondly, we will present the methodology that we used in conducting this study;

then, we will show the results that we obtained; and finally, we will present our contribution.

2 Related Works

In the software life cycle, the classification of defects presents many advantages [6]. The

classification of defects helps the software development teams to reduce the cost of correcting

them, to detect defective modules and to have efficient resource planning. Various studies have

proposed and evaluated different approaches to collect and to analyze these SDs. The main

approaches are (1) taxonomies [7], [8], root cause analysis [9], schemes [3] and the

classification of these SDs [10].

There are different existing schemes in classifying SDs [10]. (1) The Orthogonal Defect

Classification (ODC) of IBM [11] was developed in 1992 by R. Chillarege et al. [11] and it

119

Appendix 3. Severe Software Defects Trigger Factors: A Case Study of a School Management System

classifies defects across “the dimensions (1) defect type, (2) source, (3) impact, (4) trigger, (5)

phase found, and (6) severity” [12]. (2) The HP Defect Origins, Types and Modes, the approach

of Hewlett Packard, was developed by the HP software metrics in 1986 [13] and this scheme

classifies the defects according to their types, their origins and their mode [12]. (3) The IEEE

standard 1044-2009 is the scheme we retain for our first classification project. We selected this

approach because it proposes the most complete definition of the SDs severity types among the

three schemes. Moreover, this severity attribute is one of the most used attributes in SDs

classification in practice [12]. The main advantage of choosing the severity attribute is the

possibility for managers to identify which defect to correct first [12]. We retain the severity

attribute for our first classification.

3 Methodology

To be able to understand the relation existing between triggering factors for SDs and the

severity of SDs, we conducted a case study of a system that we will name system A. This system

is developed by an educational organization and it is a school management system. Its purpose

is to help schools in managing the grades of their students. It is used for managing more than

90000 students’ grades. The first version of the system A had been released middle 2012. We

classified 665 SDs of system A. The collection of SDs covers a period of one year and four

months from January 2015 to April 2016. System A has nine released versions over this period.

The defects repository tool used by this organization is Jira [14].

Our objective is to classify SDs according to their severity and then classify these same SDs

according to the factors that trigger them. In fact, we analyzed the SDs of this system A by

classifying them according to the defect severity attribute of IEEE 1044-2009 standards [3] and

then by classifying them with EVOLIS framework [4]. The software team in charge of

maintenance of the system A and a member of our research team had conducted both

classification.

3.1 The Classification of SDs Based on Severity

Our first classification is done based on the severity attribute of the IEEE standard (see Table

2.). The IEEE's standard defines this attribute as “The highest failure impact that the defect

could (or did) cause, as determined by (from the perspective of) the organization responsible

for software engineering.” [3]. The five values of severity are classified from the most

significant to the least significant ones (see Table 1). For the purpose of this study, we define

120

Appendix 3. Severe Software Defects Trigger Factors: A Case Study of a School Management System

any software defect (SD) as severe as long as it belongs to one of these severity levels: (1)

Blocking (B), (2) Critical (C) and (3) Major (Maj). The Minor (Min) and the Inconsequential

(Inc) are not considered as severe SDs.

 Table 1. Severity values [3]

Attribute Value Definition
Severity Blocking (B) Testing is inhibited or suspended pending,

correction or identification of suitable
workaround.

 Critical (C) Essential operations are unavoidably disrupted,
safety is jeopardized, and security is
compromised.

Major (Maj) Essential operations are affected but can
proceed.

Minor (Min) Nonessential operations are disrupted.
Inconsequential
(Inc)

No significant impact on operations.

Table 2. Classification of System A’s SDs based on their severity

B C Maj Min Inc Total
Jan 10 12 46 22 0 90
Feb 5 8 24 17 0 54
March 12 17 49 31 0 109
April 9 8 50 16 2 85
May 3 1 20 5 0 29
June 0 2 25 14 0 41
July 0 1 5 4 0 10
Aug 2 7 8 7 3 27
Sept 5 11 18 15 4 53
Oct 7 4 22 6 0 39
Nov 15 8 37 20 3 83
Dec 7 5 18 12 3 45
Total 75 84 322 169 15 665

3.2 The Classification of SDs Based on the EVOLIS Framework

For our second classification project, we chose the EVOLIS framework [4] (see Table 3.). This

framework proposes a technique to classify SDs according to the factors that trigger them.

“EVOLIS can be caused by a large variety of factors: bugs that need to be fixed, users that wish

to have new functionalities, new market opportunities that require new software features,

performance standards that the system must reach, technical changes in the environment with

which the system must interact, obsolescence of applications and so on” [3]. EVOLIS identifies

four main groups of factors that triggers SDs: (1) IS/users fit (U.F) triggers that are defined as

121

Appendix 3. Severe Software Defects Trigger Factors: A Case Study of a School Management System

any failure related to the user interface, the user documentation and aptitude to use the system.

(2) The technology (TCH) triggers are related to defects that concern the software as well as

the hardware platforms as information system components. (3) According to the authors, the IS

architecture (ACH) triggers concern “different types of integration evolution, namely an

evolution of integration among components of the system, among business functionalities, or

an integration with systems outside of the company.” [3]; and finally (4) the Business-IS (Bs-

IS) alignment triggers that “address the co-alignment between business and information

systems” [3].

Table 3. Classification of System A’s SDs based on their trigger factors

ACH Bs-IS TCH U.F Total
Jan 13 23 21 33 90
Feb 13 9 18 14 54
March 15 26 25 43 109
April 27 26 13 19 85
May 4 8 10 7 29
June 9 2 19 11 41
July 1 1 2 6 10
Aug 1 4 9 13 27
Sept 15 8 8 22 53
Oct 16 4 9 10 39
Nov 23 19 18 23 83
Dec 5 10 12 18 45
Total 142 140 164 219 665

Subsequently, we grouped these results into a two-dimensional table (see Table 4.). Each

dimension represents the results obtained for each classification project.

Table 4. Two-dimensional classification of SDs of system A

 B C Maj Min Inc Total
ACH 17 12 99 14 0 142
Bs-IS 24 21 66 28 1 140
TCH 19 30 87 27 1 164
U.F 15 21 70 100 13 219
Total 75 84 322 169 15 665

4 Discussion and Contribution

We analyzed the results threefold: the results of severity classification, followed by the results

of EVOLIS and then we combined and analyzed both results together. First, the severity

122

Appendix 3. Severe Software Defects Trigger Factors: A Case Study of a School Management System

classification showed us that the top three high types of SDs are respectively the major type of

SDs with 322 SDs, followed by the minor type with 169 and the critical type with 84 SDs (see

Table 2.). Second, the EVOLIS classification showed us that the top three groups of factors that

trigger SDs are respectively the IS/users factors with 219, followed by the technology factors

with 164 and then the factors related to the IS architecture and business-IS alignment (see Table.

3). These last trigger groups have almost the same number of SDs: 142 SDs for the IS

architecture and 140 SDs for the business-IS alignment SDs. Further, the analysis of both

combined results showed us that technology triggers represent respectively 12%, 18% and 53%

for blocking SDs, critical SDs and major SDs (see Fig. 1). In total, the technology triggers are

responsible for 83% of the severe SDs. Similarly, the architecture triggers represent respectively

12%, 8% and 70% for blocking SDs, critical SDs and major SDs (see Fig. 1). The business-IS

alignment represents respectively 17%, 15% and 47% for blocking SDs, critical SDs and major

SDs. Finally, the IS/users triggers represent 20% of the total of severe SDs (see Fig. 1).

Fig. 1. Trigger factors and severity of SDs of System A

Analyzing these results separately did not give so much information to organize the SDs

management. However, when we put them together, we found that some type of SDs trigger

Blocking
12%

Critical
18%

Major
53%

Minor
16%

Inconseq
uential

1%

TECHNOLOGY

Blocking
17%

Critical
15%

Major
47%

Minor
20%

Inconseq
uential

1%

BUSINESS-IS ALIGNMENT

Blocking
12%

Critical
8%

Major
70%

Minor
10%

Inconseq
uential

0%

IS ARCHITECTURE

Blocking
7% Critical

9%

Major
32%

Minor
46%

Inconseq
uential

6%

IS/USER FIT

123

Appendix 3. Severe Software Defects Trigger Factors: A Case Study of a School Management System

factors are the source of some specific severe groups of SDs. In fact, we observed that the

majority of the inconsequential SDs are triggered by the IS/users fit factors.

This implies that the probability of an inconsequential SDs to be triggered by either the IS

architecture, the business-IS alignment or the technology factors are very low or barely existent.

Furthermore, we assigned weighting factors to each severity level according to their importance

as followed (see Table 5.):

Table 5. The weighting factors for the severity level.

Severity level Weighting factor
Blocking 40%
Critical 30%
Major 20%
Minor 8%
Inconsequential 2%

We then apply this weighted scoring model to our two-dimension table to calculate the weighted

scores (W) for severe SDs per trigger factor (see Table 6.).

Table 6. Severe SDs weighted score.

Severe
SD

Weight

(W)

Bs-
IS

W-
Bs-
IS

ACH W-
ARC

TCH W-
TCH

U.F W-
U.F

Blocking 0.4 24 9.6 17 6.8 19 7.6 15 6
Critical 0.3 21 6.3 12 3.6 30 9 21 6.3
Major 0.2 66 13.2 99 19.8 87 17.4 70 14
Total 0.9 111 29.1 128 30.2 136 34 106 26.3

Looking at these results, we can conclude that the technology trigger factors, with the highest

weighted score 34, are responsible for most of the severe SDs followed by the IS architecture

factors, with 30 weighted score. Then the business-IS alignment, with 29.1, and finally the

IS/users fit triggers, with 26.3 (see Fig. 2.). We can also notice that there is a considerable gap

between the number of SDs of the first two groups of triggers (IS architecture and technology

and the last two of them (business-IS alignment and IS/user fit).

124

Appendix 3. Severe Software Defects Trigger Factors: A Case Study of a School Management System

Fig. 2. Trigger factors by weighted severity of system A

5 Conclusion

To the question of which groups of SDs triggers generate the most severe SDs, we answered

that the technology triggers are at the head position with a total of 34 weighted score. In the

second position is the IS architecture triggers which comes with 30.2 weighted score, and then

followed by the business-IS alignment triggers with 29.1. The last position is occupied by the

IS/users fit triggers with 26.3 weighted score of the total severe SDs analyzed. We also found

that the majority of the defects triggered by IS/user factors are either minor or inconsequent

types of SDs.

The results obtained from this study will help software managers to improve the management

of SDs by allocating the SDs correction resources more accurately thus reduce the cost of

managing SDs. In our future work, we will analyze other software systems and compare their

results to the ones we obtained in this study. We will also investigate in depth this close relation

between the first couple of trigger groups (IS architecture and technology) and the last couple

of trigger groups (business-IS alignment and IS/users fit).

6 References

[1] R. N. Charette, “Why software fails [software failure],” Ieee Spectr., vol. 42.9, pp. 42–49, 2005.

[2] R. Kaur and D. J. Sengupta, “Software Process Models and Analysis on Failure of Software
Development Projects,” Int. J. Sci. Eng. Res., vol. 2, no. 2, p. 4.

W-Bs-IS
24%

W-ARC
25%

W-TCH
29%

W-U.F
22%

TRIGGER FACTORS BY WEIGHTED SEVERITY

125

Appendix 3. Severe Software Defects Trigger Factors: A Case Study of a School Management System

[3] 1044-2009 IEEE Standard Classification for Software Anomalies. 2009.

[4] A. Métrailler and T. Estier, “EVOLIS Framework: A Method to Study Information Systems
Evolution Records,” in System Sciences (HICSS), 2014 47th Hawaii International Conference on, 2014,
pp. 3798–3807.

[5] A. A. Alshazly, A. M. Elfatatry, and M. S. Abougabal, “Detecting defects in software
requirements specification,” Alex. Eng. J., vol. 53, no. 3, pp. 513–527, Sep. 2014.

[6] G. K. Rajbahadur, S. Wang, Y. Kamei, and A. E. Hassan, “The impact of using regression
models to build defect classifiers,” in Proceedings of the 14th International Conference on Mining
Software Repositories, 2017, pp. 135–145.

[7] R. Binder, Testing object-oriented systems: models, patterns, and tools. Reading, Mass:
Addison-Wesley, 2000.

[8] D. Vallespir, F. Grazioli, and J. Herbert, “A framework to evaluate defect taxonomies,” in XV
Congreso Argentino de Ciencias de La Computación, 2009.

[9] M. Leszak, P. Dewayne E., and D. Stoll, “Classification and evaluation of defects in a project
retrospective,” Elsevier, no. 61, pp. 173–187, 2002.

[10] N. Mellegãrd, Improving Defect Management in Automotive Software Development, LiDeC—A
Light-weight Defect Classification Scheme. Chalmers University of Technology, 2013.

[11] R. Chillarege et al., “Orthogonal defect classification-a concept for in-process measurements,”
IEEE Trans. Softw. Eng., vol. 18, no. 11, pp. 943–956, 1992.

[12] S. Wagner, “Defect classification and defect types revisited,” in Proceedings of the 2008
workshop on Defects in large software systems, 2008, pp. 39–40.

[13] J. T. Huber, “A Comparison of IBM’s Orthogonal Defect Classification to Hewlett Packard’s
Defect Origins, Types, and Modes.” Hewlett Packard Company, 1999.

[14] Atlassian, “Jira | Logiciel de suivi des tickets et des projets,” Atlassian. [Online]. Available:
https://fr.atlassian.com/software/jira. [Accessed: 06-Apr-2018].

127

Appendix 4. Classification of Software Defects Triggers: A Case Study of School Resource Management
System

Appendix	4.	Classification	of	Software	

Defects	Triggers:	A	Case	Study	of	School	

Resource	Management	System	

Published in the 2019 International Conference

on Information Technology & Systems. ICITS 2019.

Advances in Intelligent Systems and Computing,

 vol 918. Springer.

Author: Nico Hillah

ISBN 978-3-030-11889-1

 DOI: 10.1007/978-3-030-11890-7_30

Postprint Version.

Abstract. In this work, we identify trigger factors of software defects that are responsible for severe

defects. We conducted a case study on a system by classifying 842 defects according to their trigger

factors and then identified the level of severity they have on this system. Knowing these types of triggers

helps software maintenance teams improving the management of software defects by reducing the cost

of maintaining the system, consequently the cost of software projects.

Keywords: Software Defect Triggers, Software Severity, Defects Classification.

128

Appendix 4. Classification of Software Defects Triggers: A Case Study of School Resource Management
System

 Introduction

IEEE standard 1044-2009 [1] defines Software defects (SDs) as “An imperfection or deficiency

in a work product where that work product does not meet its requirements or specifications and

needs to be either repaired or replaced.” [1].

The classification of SDs helps the maintenance teams reducing the cost of correcting software

bugs, detecting defective modules, and having efficient resource planning. Various studies have

proposed and evaluated different approaches to collect and to analyze these SDs [1]–[4]. Other

studies target the source of these defects by providing schemas and frameworks to help

identifying these sources [5]–[8]. For our project, we have retained the EVOLIS framework [7]

to identify the trigger factors that are at the source of the SDs.

To be able to know which factors among these trigger factors have a more severe impact on the

system, we conducted a case study on a school resources management system. In fact, we

studied the SDs of this system by identifying their trigger factors based on the EVOLIS

framework [7] and then identified their severity weight on the system. The question we address

in this paper is “how to identify problematic SDs trigger groups using their severity weight?”

The paper will proceed as follows; first, we will define the software defect and its classification

approaches. Second, we will present the case study, the classification results, and our

contribution.

2 Related Works

2.1 The EVOLIS Framework

For our first classification project, we chose the EVOLIS framework [7]. This framework

proposes a technique to classify SDs according to the factors that trigger them. “EVOLIS can

be caused by a large variety of factors: bugs that need to be fixed, users that wish to have new

functionalities, new market opportunities that require new software features, performance

standards that the system must reach, technical changes in the environment with which the

system must interact, obsolescence of applications and so on” [7]. EVOLIS identifies four main

groups of factors that trigger SDs: (1) IS/users fit triggers (U.F) that are defined as any defect

related to the user interface, the user documentation, and aptitude to use the system. (2) The

technology triggers (TCH) are related to defects that concern the software as well as the

hardware platforms as information system components. (3) According to the authors, the IS

architecture triggers (ACH) concern “different types of integration evolution, namely an

129

Appendix 4. Classification of Software Defects Triggers: A Case Study of School Resource Management
System

evolution of integration among components of the system, among business functionalities, or

an integration with systems outside of the company.” [7], and finally (4) the business-IS

alignment triggers (B.IS) that “address the co-alignment between business and information

systems” [7].

2.2 Software Defects

Previous research studies have proposed different approaches and schemas to classify SDs: the

best-known schemas are (1) The Orthogonal Defect Classification (ODC) of IBM [6], the root

cause analysis [5], (2) the HP Defect origins, types, and modes [8], and standards like the IEEE

standard 1044-2009 [1]. In the same context, they also apply to data mining methods such as

the Naïve Bayes Model [9], Clustering [10] or the regression model [11] to classify SDs. IEEE

standard1044-2009 also proposed a SDs classification approach based on their severity,

priority, and origins. The IEEE standard 1044-2009 is the classification approach we retain for

our second classification project. In fact, our objective is to classify SDs according to their

trigger factors and their severity [1].

The approach of IEEE standard 1044-2009 proposes a simple and complete definition of the

SDs severity types. Moreover, this severity attribute is one of the most used attributes in SDs

classification in practice [12]. Our second SDs classification project is based on this attribute.

The main advantage of choosing the severity attribute is the possibility for managers to identify

which defects to correct first [12]. The IEEE's standard defines this attribute as “The highest

failure impact that the defect could (or did) cause, as determined by (from the perspective of)

the organization responsible for software engineering.” [1]. There are five values of severity.

They are classified by the most significant to the least significant ones in terms of the impact

they have on the system (see Table 1).

130

Appendix 4. Classification of Software Defects Triggers: A Case Study of School Resource Management
System

Table 1. Severity values [1]

Attribute Value Definition
Severity Blocking Testing is inhibited or suspended pending

correction or identification of suitable
workaround.

 Critical Essential operations are unavoidably
disrupted, safety is jeopardized, and security is
compromised.

Major Essential operations are affected but can
proceed.

Minor Nonessential operations are disrupted.
Inconsequential No significant impact on operations.

3 Methodology

3.1 Case Presentation

In order to identify the trigger factors that generate defects with the highest severity impact on

the system, we conducted a case study of a school resources management system that we will

name system B. The software development method used to develop system B is the scrum agile

method [13]. A government institution owns it. The system is used for the human and material

resources management of public schools. We classified 842 SDs of system B. The collection of

SDs covers a period of 23 months from June 2014 to May 2016. The bug repository tool used

by this organization is Jira [14]. The first version of the system B had been deployed at the

beginning of 2013.

Each of these defects has the following information: the identity of the failure reporter, the date

of reporting and solving the software defect (SD). In addition, each SD contains its description,

the person who reported the case and the person who treated it. We only take into consideration

the description characteristic in classifying these SDs.

3.2 Classification Method

Overall, we did three main classifications. First, we analyzed the SDs of system B by classifying

them with the EVOLIS framework [7] (see Table 2.). Second, we classified the same SDs

according to the defect severity attribute of IEEE 1044-2009 standards [1] (see Table 3.). Third,

we combined both classifications. In detail, our method of classifying these SDs consists of

four main steps:

In the first step, we collected SDs of system B from the Jira repository [14].

131

Appendix 4. Classification of Software Defects Triggers: A Case Study of School Resource Management
System

In the second step, we took each SD and identified its trigger factor or source based on its

description. At this stage, we used the EVOLIS framework. We named this step “EVOLIS

Classification”

In the third step (Severity Classification), we took again each SD and evaluated its severity

impact (cost) on the system. This classification is done based on our severity-weighting model

(see table 4).

 In the final step, we took each EVOLIS-Severity couple and ranked them according to the level

of damage they may have on system operations (EVOLIS-severity classification).

Table 2. Classification of System B’s SDs based on their trigger factors (EVOLIS)

Years IS
architecture

business-IS
alignment

technolo
gy

IS/users
fit

Total

2014 61 11 118 57 247
2015 87 22 251 90 450
2016 23 10 78 34 145
Total 171 43 447 181 842

Table 3. Classification of System B’s SDs based on their severity

Year Blocking Critical Major Minor Inconsequential Total
2014 31 57 71 85 3 247
2015 57 112 135 145 1 450
2016 21 19 33 71 1 145
Total 109 188 239 301 5 842

4 Discussion and Contribution

4.1 Discussion

In this section, we analyzed the classification results threefold: the results of EVOLIS

classification, followed by the results of severity classification, and finally, we combined and

analyzed both results together.

First, the EVOLIS classification showed us that the top three groups of factors that trigger SDs

are respectively the technology factors with 447 SDs, followed by the IS/Users factors with 181

SDs, and then the factors related to the IS architecture with 171 SDs. In the last position is the

business-IS alignment with 43 SDs (see Table 2.).

Second, the severity classification showed us that the top three high types of SDs are

respectively the Minor type of SDs with 301 SDs, followed by the Major type with 239, and

132

Appendix 4. Classification of Software Defects Triggers: A Case Study of School Resource Management
System

the Critical type with 188 SDs. The Blocking types are fourth with 109 SDs, and, in the last

position, we find the Inconsequential SDs type with only five SDs (see Table 3.).

We combined the two results in order to identify the groups of triggering factors that cause

severe SDs (see Fig. 1.). Doing so, we realized that limiting the results only to the number of

SDs for each severity level group raises an ambiguity. In fact, counting only the number of SDs

per trigger factor group does not give us the clear response on which trigger factors are

responsible for severe SDs. E.g., how can we determine if five Blocking SDs have affected a

system more than eight Critical SDs? In order to clear this ambiguity, we have associated a

weighting factor to each level of severity according to their impact on the system (see table 4.).

In addition, based on their definition, we separated the severity level into two groups: the first

group we called “severe SDs” and the second group we named “no severe SDs”. The severe

SDs are any SD that has an impact preventing the system to be operational. This group of SDs

usually causes financial loss or any considerable resource loss to the system owner and to the

system users. They are Blocking, Critical, and Major severity types.

The “no severe SDs” are any SD that has an impact level that do not affect the system’s

operation: they are Minor and Inconsequential severity type. Thus, for the purpose of this study,

we only considered the first group of severity level to be authentic severe SDs.

133

Appendix 4. Classification of Software Defects Triggers: A Case Study of School Resource Management
System

Fig. 1. Trigger factors by severity of system B

Table 4. The weighting factors for the severity level.

Severity level Weighting Factor
Blocking 40%
Critical 30%
Major 20%
Minor 8%
Inconsequential 2%

We then calculated the weighted score (W) for each trigger factor group based on the severity

weight (see table 5.).

Table 5. Severe SDs weighted score of system B

Weight ACH W-

ACH
B.IS W-

B.IS
TCH W-

TCH
U.F W-

U.F
Blocking 0.4 25 10 4 1.6 68 27.2 12 4.8
Critical 0.3 49 14.7 6 1.8 109 32.7 24 7.2
Major 0.2 50 10 15 3 129 25.8 45 9
Total 0.9 124 34.7 25 6.4 306 85.7 81 21

Integrating both, results allow us to identify SD triggers that are causing more severe impact to

the system. These results show that the technology trigger factors with the highest weighted

score of 85.7, are responsible for most of the severe SDs followed by the IS architecture factors,

with a weighted score of 34.7. Then come the IS/users fit triggers with a 21, and finally the

business-IS alignment, with 6.4 (see Fig. 2.).

134

Appendix 4. Classification of Software Defects Triggers: A Case Study of School Resource Management
System

Fig. 2. Trigger factors by weighted severity of system B

4.2 Similar Case Study: Classifications of SDs of System A

Similarly, in our previous publication we conducted the same study on another system we

named system A [15]. In this section, we will present this second case and compare its results

to the one of system B.

System A is a school management system and it belongs to an educational institute. Its purpose

is to help schools in managing the grades of their students. More than 1500 teachers use this

system for managing more than 90000 student grades. The first version of the system A had

been released mid- 2012. We classified in total 665 SDs of this system. The collection of SDs

covered a period of 16 months, from January 2015 to April 2016. System A has released nine

versions over this period [15]. The integrated classifications’ results we obtained from this study

are as follows (see Table 6):

Table 6. Severe Weighted score of system A

Severe
SD

Weight B.IS W-
B.IS

ACH W-
ARC

TCH W-
TCH

U.F W-
U.F

Blocking 0.4 24 9.6 17 6.8 19 7.6 15 6
Critical 0.3 21 6.3 12 3.6 30 9 21 6.3
Major 0.2 66 13.2 99 19.8 87 17.4 70 14
Total 0.9 111 29.1 128 30.2 136 34 106 26.3

 The results of system A showed that the technology trigger factors, with

the highest weighted score 34, are responsible for most of the severe SDs followed by the IS

architecture factors, with a weighted score of 30.2. Then come the business-IS alignment, with

135

Appendix 4. Classification of Software Defects Triggers: A Case Study of School Resource Management
System

a 29.1, and, finally the IS/users fit triggers, with 26.3 (see Fig. 3). We can also notice that there

is a considerable gap between the number of SDs of the first two groups of triggers (IS

architecture and technology) and the last two of them (business-IS alignment and IS/users fit).

In the next section, we will present our contributions.

Fig. 3. Trigger factors by weighted severity of system A

4.3 Contribution

The contribution of this paper is twofold:

First, to the question, “how to identify problematic SDs trigger groups using their severity

weight?” we proposed our 4-steps method.

In order to make possible for other practitioners and other researchers to conduct and possibly

observe similar results on their systems we summarized our method as follows:

• Step 1. Data collection: this step consists of collecting SDs of the system to study.

• Step 2. Identification of each SD triggering factor: in this step, we classify the SDs based on

the EVOLIS framework in order to identify their trigger factors (EVOLIS classification).

• Step 3. Weighting of the severity level of each SD on the system. Here we classify the same

SDs based on the severity attribute of IEEE standard 1044-2009 (Severity classification).

• Step 4. Integrate results of steps 2 and 3: At this level, we classified the SDs based on both

EVOLIS and IEEE 1044-2009 severity attribute in order to identify SDs having high severe

impacts on the studied systems. This step is our EVOLIS and Severity classification.

136

Appendix 4. Classification of Software Defects Triggers: A Case Study of School Resource Management
System

We summarized these steps in Fig. 4. We must also point out that step 2 and 3 are

interchangeable.

Fig. 4. 4-steps method to identify trigger factors causing most of severe SDs to a system

 Second, to the question of which SD factors trigger most of severe SDs, we found that the

following:

In the leading position are the technology trigger factors with 29% of the total weighted score

for system A and 58% for system B. They are followed by the architecture trigger factors with

25% (30.8 weighted score) for system A and 24% for system B. We can see that in both cases,

the same type of SD trigger factors occupies the first and the second position. In contrary, the

third position is occupied by the business-IS alignment with 24% for system A while the

IS/users fit occupied the same rank with 14% for system B. Finally, the business-IS alignment

with 4% occupied the last place for system B, and IS/user fit with 22% occupied this position

for system A.

137

Appendix 4. Classification of Software Defects Triggers: A Case Study of School Resource Management
System

5 Conclusion

With this case study, we have shown that severe SDs are mostly caused by technology and

architecture trigger factors. We did so by classifying SDs according to four groups of trigger

factors and matched them with the SDs severity level. The obtained results show us that the

technology triggers are leading with 85.7 weighted scores. In the second position are the IS

architecture triggers which come with 34.7 weighted scores, and are then followed by the

IS/users fit triggers with 21. The last position is occupied by the business-IS alignment triggers

with 6.4 weighted scores of the total SDs analyzed. As contribution, we also presented a method

in order to identify problematic SDs trigger groups using their severity weight.

 The results obtained from this study will help software teams to reallocate the resources of

maintaining systems and help them to prioritize certain categories of SDs, thus reduce the cost

of maintaining software systems.

In our future work, we will analyze other software systems and compare their results to the ones

we obtained in this study. We will also investigate if there is any correlation between the first

couple of trigger factor groups (IS architecture and technology) and the last couple of trigger

factor groups (business-IS alignment and IS/users fit).

6 References

[1] 1044-2009 IEEE Standard Classification for Software Anomalies. 2009.

[2] R. B. Grady, “Software Failure Analysis for High-Return Process Improvement Decisions,” p.
12.

[3] M. Grottke and K. S. Trivedi, “A Classification of Software Faults,” p. 3.

[4] Richard O. Duda, Peter E . Hart, and David G. Stork, “Pattern Classification.” John Wiley &
Sons, Inc, 2000.

[5] M. Leszak, P. Dewayne E., and D. Stoll, “Classification and evaluation of defects in a project
retrospective,” The Journal of Systems and Software, no. 61, pp. 173–187, 2002.

[6] R. Chillarege et al., “Orthogonal defect classification-a concept for in-process measurements,”
IEEE Transactions on software Engineering, vol. 18, no. 11, pp. 943–956, 1992.

[7] A. Métrailler and T. Estier, “EVOLIS Framework: A Method to Study Information Systems
Evolution Records,” in System Sciences (HICSS), 2014 47th Hawaii International Conference on, 2014,
pp. 3798–3807.

138

Appendix 4. Classification of Software Defects Triggers: A Case Study of School Resource Management
System

[8] J. T. Huber, “A Comparison of IBM’s Orthogonal Defect Classification to Hewlett Packard’s
Defect Origins, Types, and Modes.” Hewlett Packard Company, 1999.

[9] G. Murphy and D. Cubranic, “Automatic bug triage using text categorization,” in Proceedings
of the Sixteenth International Conference on Software Engineering & Knowledge Engineering, 2004.

[10] W. Dickinson, D. Leon, and A. Fodgurski, “Finding failures by cluster analysis of execution
profiles,” in Proceedings of the 23rd International Conference on Software Engineering. ICSE 2001,
Toronto, Ont., Canada, 2001, pp. 339–348.

[11] G. K. Rajbahadur, S. Wang, Y. Kamei, and A. E. Hassan, “The impact of using regression
models to build defect classifiers,” in Proceedings of the 14th International Conference on Mining
Software Repositories, 2017, pp. 135–145.

[12] S. Wagner, “Defect classification and defect types revisited,” in Proceedings of the 2008
workshop on Defects in large software systems, 2008, pp. 39–40.

[13] E. Hossain, M. A. Babar, and H. Paik, “Using Scrum in Global Software Development: A
Systematic Literature Review,” 2009, pp. 175–184.

[14] Atlassian, “Jira | Logiciel de suivi des tickets et des projets,” Atlassian. [Online]. Available:
https://fr.atlassian.com/software/jira. [Accessed: 06-Apr-2018].

[15] N. Hillah, “Severe Software Defects Trigger Factors: A Case Study of a School Management
System,” in Digital Science, vol. 850, T. Antipova and A. Rocha, Eds. Cham: Springer International
Publishing, 2019, pp. 389–396.

139

Appendix 5. Data of System A

Appendix	5.	Data	of	System	A		

5.1				EVOLIS	Classification		

 	

140

Appendix 5. Data of System A

5.2				EVOLIS	Indicator		

141

Appendix 5. Data of System A

5.3				Severity	Classification	

142

Appendix 5. Data of System A

5.4				EVOLIS	&	Severity	Classifications	

143

Appendix 5. Data of System A

5.5				EVOLIS	&	Severity	Weighted	

144

Appendix 5. Data of System A

5.6				System	A	Weighted	Score			

145

Appendix 6. Data of System B

Appendix	6.	Data	of	System	B	

6.1 EVOLIS	Classification	

146

Appendix 6. Data of System B

6.2 EVOLIS	Indicator	

147

Appendix 6. Data of System B

6.3 Severity	Classification	

148

Appendix 6. Data of System B

6.4 Severity	&	EVOLIS	Classifications	

149

Appendix 6. Data of System B

6.5 Severity	&	EVOLIS	Weighted	

150

Appendix 6. Data of System B

6.6 Severity	Indicator		

151

Appendix 6. Data of System B

6.7 System	B	Weighted	Score			

153

Appendix 7. Raw Data - Examples of a Software Defect

Appendix	7.	Raw	Data	-	Examples	of	a	

Software	Defect		

• Example I

Projet ABX

Clé A-1316

Résumé org.apache.jasper.el.JspELException: /WEB-INF/ui/saisieNoteTS.jsp(12,1)

Type de

demande

Correction

Etat Fermée

Severité Majeur

Résolution Validée

Attribution Non attribuée

Rapporteur XXXXXXX

Création 05.01.15

Dernier

affichage

Mise à jour 15.01.15

Résolue 15.01.15

Affecte la/les

version(s)

A V8.0.9

154

Appendix 7. Raw Data - Examples of a Software Defect

Version(s)

corrigée(s)

A V8.0.10

Composants A

Date d'échéance

Gérer les

observateurs

1

Images

Estimation

originale

Estimation

restante

Temps consacré

Ratio du travail

réel comparé à

l'estimation

Sous-tâches

Demandes liées

Environnement

Descriptif Hello, On a une forte occurrence de l'erreur suivante en production.

En fait cette erreur apparaît lorsque l'utilisateur laisse la cocher la case 'Evaluer'

et ne saisi aucune note pour un des élèves sur la page de saisie de notes de TS. Il

serait préférable d'avoir le même comportement

qui existe sur la page de saisie des ETA. Serait il possible de ce corriger

SVP? XX

--- Stack-trace

org.apache.jasper.JasperException: org.apache.jasper.el.JspELException:

/WEB-INF/ui/saisieNoteTS.jsp(12,1)

'${A:isSaisieNotesReadOnly(evaluationsTravail.travailEvalue, isBlocageEnCours,

auteurs)}'

Problems calling function 'A:isSaisieNotesReadOnly'

155

Appendix 7. Raw Data - Examples of a Software Defect

at

org.apache.jasper.servlet.JspServletWrapper.handleJspException(JspServletWrapp

er.java:549)

at

org.apache.jasper.servlet.JspServletWrapper.service(JspServletWrapper.java:470)

at org.apache.jasper.servlet.JspServlet.serviceJspFile(JspServlet.java:390)

... 114 more

Niveau de

sécurité

Progression

Σ Progrès

Σ Temps

consacré

Σ Estimation

restante

Σ Estimation

originale

Étiquettes P1

Épopée/thème

Sprint

Logbook

Date d'Annonce 05/janv./15 3:21 PM

Lien d'épopée

Effort estimé

Origine de la

demande

AAA-BBB

Version(s)

vérifiée(s)

A V8.0.10

Validation

156

Appendix 7. Raw Data - Examples of a Software Defect

Version

planifiée

Impact

Migration

Complexité

QcBugId

QC

Synchronisatio

n

N

Aléas

indicateur

Environnement

-liste

Production

Estimation

Spécifications

Non-Qualité

Classement 1|hzuxen:

Estimation

Tests

Estimation

Développement

Résolue

Date de

livraison

15/janv./15 9:45 AM

Date début de

traitement

07/janv./15 3:59 PM

157

Appendix 7. Raw Data - Examples of a Software Defect

• Example II

Projet ABX

Clé ABS-1979

Résumé Totaux des points de groupe avec discipline famille

Type de

demande

Correction

Etat Livrée

Sévérité Bloquant

Résolution Déployée

Attribution XXXX

Rapporteur XXXXXXX

Création 15.04.2016

Dernier

affichage

20.04.2016

Mise à jour 19.04.2016

Résolue 19.04.2016

Affecte la/les

version(s)

ABS V12.1.1

Version(s)

corrigée(s)

ABS V12.1.2

Composants ABX

Date d'échéance

Gérer les

observateurs

1

Images

Estimation

originale

158

Appendix 7. Raw Data - Examples of a Software Defect

Estimation

restante

Temps consacré

Ratio du travail

réel comparé à

l'estimation

Sous-tâches

Demandes liées

Environnement

Descriptif Le calcul des totaux des points des groupe avec une discipline famille est

faux. C'est la moyenne finale de la discipline famille qui doit être prise

en compte et non la moyenne finale de la discipline mère.

Niveau de

sécurité

Progression

Σ Progrès

Σ Temps

consacré

Σ Estimation

restante

Σ Estimation

originale

Étiquettes

Épopée/thème

Sprint

Logbook

Date d'Annonce 18/avr./16 5:59 PM

159

Appendix 7. Raw Data - Examples of a Software Defect

Lien d'épopée

Effort estimé

Origine de la

demande

XXXXI-Test

Version(s)

vérifiée(s)

Validation

Version

planifiée

Impact

Migration

Complexité

QcBugId

QC

Synchronisation

N

Aléas 15

indicateur

Environnement-

liste

Intégration

Estimation

Spécifications

Non-Qualité 15

Classement 1|i007tj:

Estimation

Tests

Estimation

Développement

160

Appendix 7. Raw Data - Examples of a Software Defect

Résolue

Date de

livraison

19/avr./16 7:33 AM

Date début de

traitement

18/avr./16 5:59 PM

