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Abstract	
 

Version française au recto 

Software problems do not only induce high financial loss, but also sometimes induce human 

loss. Those problems are due to the presence of software bugs, failures, errors, and defects in 

software systems. These software anomalies, and in particular the software defects, have a huge 

impact not only on business activities but also on the cost of developing and maintaining these 

software systems. In order to identify their sources, particularly the ones causing severe impacts 

on the systems’ operations, we conducted two case studies. We analyzed software defects of 

two systems over a period of a year and a half. We classified these software defects, according 

to their trigger factors and according to their severity impact. Conducting these studies led us 

to propose “the origins of severe software defects method” order to identify trigger factors that 

cause severe software defects on a given evolving system. We also found that the group of 

technology trigger factors causes more severe defects than the other groups of trigger factors 

for this type of systems.  

We divide this manuscript into two main parts. In the first part, we will present the synthesis of 

our four published research papers. In the second part, we will present these four published 

articles in full. 
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Résumé	
 

English version at the front 

Les pannes de logiciels n’entraînent pas uniquement d’immenses pertes financières, mais 

provoquent parfois aussi des pertes en termes de vies humaines. Ces pannes sont la plupart du 

temps provoquées par la présence de bugs, d’erreurs, de failles ou de défauts au sein de ces 

logiciels. A savoir que ces anomalies, en particulier les défauts, ont un impact considérable sur 

les activités économiques et sur le coût de développement et de maintien des systèmes de ces 

logiciels. Afin d’identifier les facteurs qui sont à la source des défauts les plus coûteux, nous 

avons étudié deux systèmes évolutifs. A travers plusieurs études, nous avons analysé les défauts 

de ces systèmes sur une période d’une année et demie. Ces études nous ont permis de classer 

les défauts sur la base de leurs facteurs déclencheurs d’une part, et sur la base du degré de 

sévérité d’autre part. Ceci nous a amené à proposer la méthode “the origins of severe software 

defects method” pour aider à l’identification des facteurs déclenchants les défauts coûteux d’un 

système évolutif. En plus de cette méthode, ces études nous ont permis d’identifier que les 

facteurs du type technologique, comparés aux autres types de facteurs, sont à l’origine de la 

majorité des défauts coûteux pour ce type de systèmes. 

Ce manuscrit est divisé en deux parties. En première partie, nous allons présenter la synthèse 

de nos articles publiés et animés lors de diverses conférences scientifiques à travers le monde. 

Enfin, dans la seconde partie, nous mettrons à disposition du lecteur l’intégralité de ces quatre 

articles.  
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1 

Introduction 

Part I: Synthesis of Published Papers  

1 Introduction	

1.1 Motivation	and	Context	

1.1.1 Motivation	
In common language, it is usual to call software defects (SDs) bugs. As software systems are 

part of our daily life, so problems come with their usage. Nowadays, there is no single day in 

the world without a bug affecting our daily activities. Not only do they affect our daily 

operations, but they also cause a huge financial loss when they happen. This loss ranges from 

one to billions of dollars. Unfortunately, the consequence of a software defect (SD) may 

concern more than money, but also cause loss of human lives. All domains of business and non-

business activities are concerned: from banking to hospital, from education to nuclear activities, 

from economy to transportation. Here are some famous financial and human life loss caused by 

a software bug in our history:  

• IT companies 

o In 1999, half a million British citizens discover that their passports could not be 

issued on time due to bugs in a new system brought on by Siemens, and the 

incapacity of the staff using this system in their daily routine. In fact, Siemens 

did not provide a good training for system users; this prevented them to 

accurately use the system [1]. 

• Education domain 

o A group of hackers had stolen data from 77 million users from the Edmodo 

online educational platform in May 2017 [2]. The stolen data belonged to 

students using this platform, to their parents, and to their teachers.  

« Gnothi seauton » 

Temple of Delphi (Pytho). 
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• Transportation domain 

o A bug that affected the IT system of British Airways made the company cancel 

all flights between Heathrow airport and Gatwick airport in May 2017. 

o Ten years earlier, in 2007, at Los Angeles International Airport, US., more than 

17,000 planes were grounded on the floor due to a bug which prevented the 

entire network of the United States Customs and Border protection to shut down 

[1]. According to them, a network card sending an incorrect message across the 

shared network caused this bug until this message hit the USCBP systems. 

• Military domain 

o An attack killed 28 American soldiers in February 1991 in Saudi Arabia due to 

an existing bug found later in the anti-missile software system. 

• Financial domain 

o On 1st August 2012, an American trading company named Knight Capital group 

lost 440 million dollars in only 30 minutes due to a bug in its trading system [3]. 

In fact, this bug was able to cause this high damage due to the configuration of 

the business processes.  

• Cyber criminality and Health domain 

o The virus WannaCry indeed made the National Health System of England cry 

in May 2017, when a group of hackers used an unidentified SD in the Microsoft 

Windows operating system to launch a ransomware attack not only in England 

but also all over the world, causing cancellations of 19,000 health care 

appointments [4]. 

o In September 2018, 50 million Facebook account logins were reset due to a data 

breach. “The breach was caused by an exploit of three bugs in Facebook's code 

that were introduced with the addition of a new video uploader in July of 2017” 

[5]. 

We have to specify that the examples listed here are just the tip of the iceberg, the full visible 

part cannot be covered, not even to mention the immersed part of it.  

In this context, it becomes important to know these SDs in order to eliminate them. It is in that 

respect that we conducted two case studies in the domain of education by studying the SDs of 

two systems. We did this, in order to identify their sources as factors that trigger them, and 

identify among these factors the ones that cause high severe impacts of the studied systems.  
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1.1.2 Context		
According to Lehman, there are two classes of software: (1) software developed to meet a 

fixed set of requirements, and (2) software developed to solve a real-world problem, which 

changes with time. This second class of software is the evolving system (E-type system) [6]. 

We conducted this research on two E-type systems. We named them system A and system B. 

In fact, these previous examples concern not all systems, but systems with evolving programs 

(E-type programs). These E-type programs “are programs that depend on or interact with the 

real world. They must always be adapted to match any changes in the real world that affect 

whether the program satisfies its stakeholders ‘objectives’” [7]. Systems with E-type programs 

are called E-type systems. One of their characteristics is that E-Type systems are under the 

influence of different factors identified by Cook et al. [8]. There are (1) stakeholder factors such 

as system users and developers; (2) architecture factors such as internal system components 

(e.g. a relational database), and (3) global process factors such as the business processes of an 

organization. Each of these factors may be a source of defect in a system while requesting a 

change to it. In order to avoid financial losses similar to the examples we presented earlier, it 

becomes essential to identify the ones that may cause such severe impacts on this type of 

systems among these factors. 

Another characteristic of E-type systems is their particularity to require a considerable financial 

budget for their development project, and to have a costly maintenance phase (up to 80% of 

their total cost). Furthermore, a large population of stakeholders over a long period (years) use 

them. Our selected studied systems present all of these characteristics. In chapter three, we will 

present these selected systems in more detail. 

1.2 Research	Gap	

Even though one can argue that SDs are all made from human error, studies have shown that 

at the time the SD goes on live or manifest itself, they have been triggered by different sources. 

Different researchers have studied software systems in order to identify the sources of their 

errors [8], [9]. Considering the list of examples provided earlier in this section, we could 

observe that these sources vary from one to another. The origins of some of these SDs are 

related to the system itself or its internal components, e.g. the Facebook attack; while others 

were caused by the inability of system users to use the system, e.g. the case of the British 

passport delay. Others are related to business processes, e.g. Knight Capital group case, and 
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finally, a SD in a different system can cause a crash of another system, e.g. the L.A airport case. 

This raises two fundamental questions: Firstly, which origins or sources of SDs cause more 

losses to E-type systems, to the system owner as well as to the community using these types of 

systems? And secondly, derived from the preceding question, how to identify these sources? 

To provide an answer to these questions are the goals of this research. In the next section, we 

will define our research question in detail, present the methodology as well as the concept of 

this research, and then present the plan of this thesis. 

1.3 Research	Question		

 The main research question we address in this thesis is “Which types of trigger factors 

generate the most severe SDs on a given E-type software system?”. Answering this question 

led us to a related question, “How to identify the origins of severe defects on evolving 

information systems?”.  

In order to answer our main research question, we conducted case studies on two E-type 

systems. We used a case study methodology to study these SDs in their natural environment, 

and to get the sense of how they happened and were treated. We studied the change history data 

of these systems. In addition, in order to provide an answer to the main question, we divided 

the question into two sub-questions as follows:  

(1) The first sub-question aims to identify factors that trigger most SDs. To answer this sub-

question, we studied two systems by classifying their SDs based on their trigger factors. In fact, 

we identified the trigger factor for each SD. To perform this classification, we used EVOLIS 

framework [9], a framework which proposes the grouping of “factors having a direct influence 

on information systems” [9]. We presented the results of this part in detail in our first published 

paper (see Appendix 1). 

(2) The second sub-question consists of evaluating the impact that a SD has on a given E-type 

system. To answer this second sub-question, we also performed a second classification of the 

SDs of the same systems by classifying these SDs based on their severity impact. We used a 

severity scale model to do this classification. We also validated the results of this classification 

in our second published paper (see Appendix 2). 

Finally, we combined the results of both sub-questions in order to answer the main question of 

this research. We presented the results of this part in two published papers (see Appendix 3 and 

4).  
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Furthermore, answering this research question led us to find and propose a method on how to 

determine these severe trigger factors of a given E-type system. We will present this method in 

chapter three (see section 3.4). In the next section, we will present how we conducted this 

research.  

1.4 Methodology:	Case	Study	Presentation	

To conduct this research, we used a quantitative case study methodology. According to 

Benbasat et al. [10] one of the reasons the case study methodology is viable in the information 

systems field is that “the researcher can study information systems in a natural setting, learn 

about the state of the art, and generate theories from practice.” In fact, in order to observe SDs 

in their natural settings, we conducted two case studies on two different systems. The first case 

study was on a school management system used to manage students’ grades and different 

certificates. We named this system “system A”. The second case was also on a school 

management system, but this system function was to help school directors in planning their 

school classes and assign teachers to their duties. We named this second system “system B”. 

Both systems are used for more than 95,000 students and for more than 10,000 teachers. These 

systems are developed in-house using the scrum agile method. In the next section, we will 

present the concept under which this research falls. 

1.5 Concept	of	Study:	Software	Defects	Management	

1.5.1 	Software	Defects	Management	
The SDs management is crucial to any software team and software owners. There are 

different studies, which attempt to provide a solution on how to control or manage these SDs 

[11]–[13]. SD management consists of identifying SDs, collecting them, correcting, and mining 

them in order to subtract knowledge and understand their characteristics. This research mainly 

focused on their mining aspect. The mining of defects helps the software development teams to 

reduce the cost of correcting them, to detect defective modules, and to have efficient resource 

planning. There are different choices in mining software engineering data, e.g. code base data 

[14], execution traces data, change history data, mailing lists [15]. For this research, we 

analyzed the change history data of both systems. Different researchers propose models, tools, 

and schemas for mining SDs. The most prominent ones are: taxonomies [16],[17], root cause 

analysis [18], classification schemes and standards SDs [19],[20]. Wagner presents a complete 
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definition of these approaches as follows: “Defect taxonomies are categorizations of faults, 

mostly in code, that are based on the details of the implementation solution, e.g., Wrong type 

declaration, wrong variable scope, or wrong interrupt handling. A well-known example of this 

kind is the taxonomy of Beizer [21]. An even more detailed approach is root cause analysis 

where not only the faults themselves are analyzed, but also their cause, i.e., the mistakes made 

by the development team. The goal is to identify these root causes and eliminate them to prevent 

faults in the future. Root cause analysis has, for example, been used at IBM [22]. In general, 

root cause analysis is perceived as rather elaborate and the cost/benefit relation is not clear. 

Therefore, defect classifications aim at reducing the costs, but sustain the benefits at the same 

time. The categorization uses more coarse-grained defect types that typically have multiple 

dimensions.” [13]. We conducted our research under the umbrella of the defect classification 

approach.   

1.5.2 Software	Defects	Classification	
In the software life cycle, the classification of defects presents many advantages [23]. There 

are different existing schemes and standards in classifying SDs [20]. (1) The Orthogonal Defect 

Classification (ODC) of IBM was developed in 1992 by R. Chillarege et al. [24] and it classifies 

defects across “the dimensions (1) defect type, (2) source, (3) impact, (4) trigger, (5) phase 

found, and (6) severity” [13]. (2) The HP Defect Origins, Types and Modes, the approach of 

Hewlett Packard, was developed by the HP software metrics in 1986 [25] and this scheme 

classifies the defects according to their types, their origins, and their mode [13]. (3) The IEEE 

standard 1044-2009 [19] is proposed by IEEE standard bodies on how to classify software 

anomalies. Other defect classification studies have performed SDs classification using classical 

data mining techniques and algorithm such association rules [26], Naïve Bayes Model [27], and 

clustering analysis [28]. In the next section, we will present the plan of this thesis. 

1.6 Plan	

The presentation of our research will be in two parts. In the first part, we present a synthesis 

of our research. In the second part, we will present the four papers we published in order to 

communicate the results of this research to the scientific community. The structure of the thesis 

is presented as follows:  

Chapter 1 is the introduction. In this current chapter, we presented the context as well as the 

motivation of our work and the plan of the thesis.  
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In chapter 2, we will present the literature review. In this chapter, we will present the concepts 

and paradigms of information system evolution, of SD mining and software maintenance. We 

will also present software anomalies, in particular, the SD and its lifecycle. 

In chapter 3, we will present the methodology we used to conduct this research. We will also 

present the systems on which the case studies were done and present the data we collected to 

perform this research. This chapter presents in detail the different steps we followed in order to 

identify trigger factors of severe SDs on a given E-type system.  

In chapter 4, we will present our results as well as some difficulties we faced while conducting 

this research. We will also provide explanations for our findings, and finally, we will propose 

a method we named “the origins of severe software defects method” as the main contribution 

of this research. 

Chapter 5 consists of presenting our theoretical and practical contributions before concluding 

our work with possible future works.  

In order to give an insight of the papers we published to communicate our findings, we add 

them to this manuscript in the form of appendices. This part represents the second part of the 

manuscript.  

Appendix 1 consists of the first paper we published concerning the identification of SDs trigger 

factors on both systems (A and B) [29]. Here we also presented a conceptual tool in mining 

change requests (CRs) as SDs in our case. 

Appendix 2 consists of the second published paper. In this paper, we presented the evaluation 

of SDs impacts based on a severity scale model [30]. We conducted this study on only system 

A. Here, we also presented a conceptual tool to improve the management of SDs.  

Appendix 3 is the first paper we published concerning which type of SDs triggers have severe 

impacts on our studied E-type systems [31]. We conducted this study only on system A. 

Appendix 4 is the second paper we published concerning which type of SDs triggers have 

severe impact on our E-type systems. In this paper, we also present our method to identify the 

factors triggering severe SDs on E-type systems [32]. The study was only on system B. 

In Appendices 5, 6, and 7 we will present in detail the data analysis and two examples of the 

raw data from our studied systems. 

In summary, our research consists of three studies. For each study, there is a question, a 

methodology, and the method used to answer this question, the results or solution we found, 
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and the paper in which we communicate our findings. We summarized all this information in 

Table 1.1. 

Table. 1.1 Research summary 

 Study 1 Study 2 Study 3 
Question (Which) Sub-question 1: How 

to identify factors 
that trigger most 
SDs? 

Sub-question 2: 
Evaluation of impacts 
a SD has on a given E-
type system. 

Research question: 
Which types of trigger 
factors generate the 
most severe SDs on a 
given E-type software 
system? 

Methodology/Method 
or tools (How) 

Case study/EVOLIS 
Framework [9] 

Case study/Severity 
Attribute of IEEE 
Standard 1044-2009 
[19] 

Case study/severe SD 
trigger factors method 

 

Findings (Solution, 
Results) 

Change indicator 
conceptual tool [29]  

SD Managerial tool 
[30] 

Technology and 
architecture severe 
trigger factors as leading 
trigger factors [31].  

A four-step method to 
identify trigger factors 
causing severe SDs on 
an E-type system [32] 

The origins of severe 
software defects method 

Published paper 
(Where) 

Appendix 1: The 
Application of 
Change Indicators in 
Mining Software 
Repositories [29] 

Appendix 2: A 
Conceptual Tool to 
Improve the 
Management of 
Software Defects [30] 

Appendix 3: Severe 
Software Defects 
Trigger Factors A Case 
Study of School 
Management System 
[31], and 

Appendix 4: 
Classification of 
Software Defects 
Triggers: A Case Study 
of School Resource 
Management System 
[32] 
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2 Literature	Review	

In this part, we will confront the environment of SDs by defining the existing paradigms and 

theories related to our research. A reported SD is called a “change request (CR)”. The 

implementation of solutions to a CR in the form of “change response” drives the evolution of 

E-type systems. In fact, Evolution is defined as the gradual development of something [33]. 

This thing can be an electronic system, an organism, or a software system. In our case, this 

thing is a software system. Different theories and laws have emerged in regards to the concept 

of evolution, e.g. Lehman’s laws [6], Moore’s laws [34], and the theory of Darwin [35] which 

is the best known evolution theory in the world. We will first introduce the information systems’ 

evolution paradigm followed by the software evolution, software maintenance activities, and 

then software anomalies with a particular attention to the SDs management field. 

2.1 Information	Systems’	Evolution	Paradigm	

“Information systems are combinations of hardware, software, and telecommunications 

networks that people build and use to collect, create, and distribute useful data, typically in 

organizational settings.” [36]. The Evolution of information systems (IS) is a new paradigm 

that emerged from the work of Truex et al. [37] who defined this paradigm as “the notion of 

continuous change”. Researchers have analyzed the question of information systems’ evolution 

from different perspectives. IS researchers tackle this question using either a technical lens or 

a managerial lens, both lenses are interdependent. 

The first group of researchers provided an answer to the IS evolution question by analyzing 

characteristics that the IS must have, in order to evolve. This group constitutes the technical 

lens. A second group provided a more general management answer in the form of technology 
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strategy, e.g., technology road mapping. Finally, a third group provided an answer to this 

question by designing artifacts such as EVOLIS framework [9], and models such as the 

software evolution laws [6] where Lehman presented five laws that guide the software 

evolution. These second and third groups fall under the managerial perspective.  

• Technical lens 

Under the technical lens, researchers have defined, analyzed, and presented the characteristic 

an IS component must possess for a system to evolve effectively over time during its life cycle. 

These systems are mainly E-type systems, which are computer programs that must undergo 

continual evolution to remain satisfactory and operate or address a problem or an activity in the 

real world [38]. The evolution is manifested through the maintenance of these systems. System 

maintenance is the implementation of the change response as a solution to software anomalies 

such as software failures or software defects. One of the important characteristics these systems 

must possess according to IS evolution paradigm is flexibility. Thus, J.H et al. [39] defined 

flexibility as the ability to respond to change. In regard to information systems, they insisted on 

the fact that “a flexible system can be modified in a timely and cost-effective way in order to 

satisfy different requirements at different points in time.” [39]. 

• Managerial lens 

Under the managerial lens, IS researchers have proposed artifacts in order to study the IS 

evolution question; for example, frameworks such as EVOLIS [9]; a technology managerial 

tool such as technology road mapping; and models such as the Chapin et al. maintenance model 

[40]. Considering the technology road mapping tool, it represents a powerful technique for 

supporting technology management and planning, especially for exploring and communicating 

the dynamic linkages between technological resources, organizational objectives and the 

changing environment [41]. It also helps IS decision makers to design a concrete plan and be 

able to manage effectively the evolution of their IS. There are different types of technology 

road mapping such as integrated planning, long-range planning, and service/capability 

planning. 

Among the IS elements, our focus is on software systems. The research field that studies the 

software system is called “software engineering”. Software Engineering is defined as “the 

application of a systematic, disciplined, quantifiable approach to the development, operation, 

and maintenance of software; that is, the application of engineering to software.” [42]. In the 
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next part, we will present the software evolution paradigm, a branch of software engineering 

under which we conducted this research.  

2.2 Definition	of	Software	Evolution	and	Software	
Maintenance	

2.2.1 Software	Evolution	
Software evolution is part of the IS evolution paradigm and falls under both the technical and 

the managerial lens approaches. It addresses only the software system as the principal subject 

of study. It emerged from the software maintenance and evolution work of Lehman in 1969. As 

a precursor of this domain, he theorized the software evolution by providing eight laws that are 

known as laws of software evolution [43]. These laws are summarized in Table 2.1. In addition 

to these laws, he also clarified the possible approaches to study software evolution. They made 

a distinction between the “how” of software evolution and the “what” of software evolution. 

Cook et al.[7] also presented a similar definition for both approaches as follows: 

• “Explanatory: concerned with understanding causes, processes and effects. This approach 

attempts to achieve a holistic view and considers, for example, the impact of software 

evolution on the effectiveness of organizations and the planning of organizational change. 

• Process improvement: concerned with the development of better methods and tools. This 

approach addresses such questions as ‘how should software engineering activities such as 

design, maintenance [40],[44] refactoring [45], reengineering etc., be used to manage the 

effects of software evolution?’.” [7].  

Our research falls under the process improvement category, more precisely under the software 

maintenance activities. In fact, software evolution is manifested through the maintenance of 

these systems. System maintenance is the implementation of the change response as a solution 

to software anomalies such as software failures or SDs. In the next section, we will present the 

software maintenance activities.  
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Table. 2.1 Lehman’s Laws of software evolution [43] 

No. Brief Name Law 
I. 1974 Continuing Change E-type systems must be continually adapted, else, 

they become progressively less satisfactory. 
II. 1974 Increasing Complexity As an E-type system evolves, its complexity increases 

unless work is done to maintain or reduce it. 
III. 1974 Self-Regulation E-type system evolution process is self-regulating 

with distribution of product and process measures 
close to normal.  

IV. 1980 Conversation of 
Organizational Stability 
(invariant work rate) 

The average effective global activity rate in an 
evolving E-type system is invariant over product 
lifetime. 

V. 1980 Conversation of 
Familiarity 

As an E-type system evolves, all associated with it, 
developers, sale personnel, users, for example, must 
maintain mastery of its content and behavior [6] to 
achieve satisfactory evolution. Excessive growth 
diminishes that mastery. Hence, the average 
incremental growth remains invariant as the system 
evolves. 

VI. 1980 Continuing Growth The functional content of E-type systems must be 
continually increased to maintain user satisfaction 
over lifetime. 

VII. 1996 Declining Quality The quality of E-type system will appear to be 
declining unless they are rigorously maintained and 
adapted to operational environment changes. 

VIII. 1996 Feedback System (first 
stated 1974, formalized as 
law 1996) 

E-type evolution processes constitute multi-level, 
multi-loop, multi-agent feedback system and must be 
treated as such to achieve significant improvement 
over any reasonable base.  

 

2.2.2 Software	Maintenance	
Software maintenance is the activity performed to change software systems. These changes 

are the sources of software evolution as well. Software maintenance is defined in IEEE Standard 

1219-1998 [46] as: “The modification of a software product after delivery to correct faults, to 

improve performance or other attributes, or to adapt the product to a modified environment.” 

In this domain, not only Swanson was the first researcher to provide a classification of 

maintenance activities [47], but his work also laid the groundwork to conduct studies with it. 

He classified software maintenance activities into four main groups [47]:  

• Adaptive maintenance is a software maintenance activity performed in response to 

changes in data and processing environments.  
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• Corrective maintenance is a software maintenance activity performed in response to 

software failures such as processing failure and performance failure.  

• Perfective Maintenance is software maintenance performed to eliminate processing 

inefficiencies and enhance performance.  

• Preventive maintenance is a software maintenance activity performed to improve the 

maintainability of the system.  

In the study field of software maintenance, other prominent researchers such as K.H. Bennett 

and V.T. Rajlich [48] argue that software maintenance is not a “single uniform phase” as 

portrayed in the traditional Software Development Life Cycle (SDLC) [49] but rather it is 

comprised of several distinct stages, each of them with different technical and business 

perspectives. Their proposed model is called “Staged model” [48] and comprised these 

following stages: 

• Initial development - the first functioning version of the system is developed [48] . 

• Evolution - the engineers extend the capabilities and functionality of the system to meet 

the needs of its users, possibly in major ways [48]. 

• Servicing - the software is subjected to minor defect repairs and very simple changes in 

function [48] . 

• Phase out - no more servicing is being undertaken, and the owners seek to generate 

revenue from the use for as long as possible [48].  

• Close down - the software is withdrawn from the market, and any users directed to a 

replacement system if this exists [48] . 

Software teams perform software maintenance activities in order to correct software anomalies. 

In the next section, we will present different types of software anomalies, in particular the 

management of SDs.  

2.3 Software	Anomalies	

2.3.1 Definitions		
The Oxford dictionary defines anomaly as “Something that deviates from what is standard, 

normal, or expected.” [50]. Similarly, IEEE standard 1044-2009 [19] suggested that the word 

anomaly is used to refer to any abnormality, irregularity, inconsistency, or variance from 

expectations. It may be used to refer to a condition or an event, to an appearance or a behavior, 
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to a form or a function: “Different terms such as error, bug, problem, incident, failure, fault, 

defects, have been used as synonyms of software anomaly” [46].  

Thus, current studies used these terms to refer to software anomalies; some refer to it as a bug 

[51], or as a defect [24], [52], and others as an error [53]. The IEEE standard 1044-2009 [19] 

provides a simple and complete definition of the most significant anomalies in the context of 

software systems. We summarize these definitions in Table 2.2.    

Table. 2.2 Software anomalies definitions [19] 

Software 
Anomalies 

Definition 

Failure Termination of the ability of a product to perform a required function or its 
inability to perform within previously specified limits.  

Error A human action that produces an incorrect result. 

Fault  A manifestation of an error in a software. 

Defect An imperfection or deficiency in a work product where that work product 
does not meet its requirements or specifications and needs to be either 
repaired or replaced (adapted from the Project Management Institute). 

 

2.3.2 Relationships	
The IEEE standard 1044-2009 [19] presents the description of the existing relationship 

between these terms (see Table 2.3). Furthermore, they provide a simple entity relationship 

diagram to understand these existing relations (see Fig. 2.1).  
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Fig. 2.1 IEEE standard 1044-2009’s relationships modeled as an entity relationship diagram [19] 

 



 

16 

Literature Review 

Table. 2.3 Relationships among software anomalies [19] 

Class/entity pair  Relationships 
Problem-Failure A problem may be caused by one or more failures. 

A failure may cause one or more problems. 
Failure-Fault A failure may be caused by (and thus indicate the presence of) a fault. 

A fault may cause one or more failures. 
Fault-Defect A fault is a subtype of the super type defect. 

Every fault is a defect, but not every defect is a fault. 

A defect is a fault if it is encountered during software execution (thus 
causing a failure). 

A defect is not a fault if it is detected by inspection or static analysis and 
removed prior to executing the software. 

Defect-Change 

Request 

A defect may be removed via completion of a corrective change request. 

A corrective change request is intended to remove a defect. 

(A change request may also be initiated to perform adaptive or perfective 
maintenance.) 

 

2.3.3 Lifecycle	
In this part, we will present the occurrence of these anomalies in the life cycle of a software 

system. In the traditional SDLC model, a software system life cycle starts with the requirement 

phase [49]. In this phase, the user sends a software system requirement to the development 

team. Followed by the specification phase where the requirements are formalized in terms of 

output, input, and functionalities. The third phase is the design phase where the architecture of 

the system is determined. In the fourth phase, which is called the implementation phase, a 

development team implements the specifications in the form of codes. In implementing the 

coding of these different modules, a software team may introduce an error into the system. 

Before deploying the system to users, the system is tested. At this point, when software teams 

identify system errors they refer to them as software defects. The new software defect will be 

corrected if the software developers detect it. If not, it will be part of the deployed system to 

the users. In this case, according to the IEEE standard 1044-2009 [19] , this defect becomes a 

system fault. System fault may cause one or more failures. In case it causes failures, the system 

users will report those failures to the software maintenance team. In the last phase, which is the 
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maintenance phase, a software team analyzes software failures to identify the fault, which is 

causing the failure(s) and corrects it. This correction activity is expressed in the form of a CR. 

In this case, the change is named a corrective CR. The correction takes the form of a corrective 

maintenance in this case. The adaptive and the perfective CR are the other types of CRs (see 

Fig. 2.1). 

We must specify that this presented lifecycle differed from the one we have in this research. 

The reason being that the methodology used to develop our studies’ system is the agile scrum 

method [54]. We will present this methodology in detail in the next chapter (see section 3.3.1), 

and present our SD lifecycle in the same chapter (see section 3.3.2).  

Among these software anomalies, our focus will be on the software defects as they are the main 

subject of this research. In the next section we will present this software anomaly and its actual 

position within the IS and computer science field in more detail. 

2.4 Software	Defects	Management		

Nowadays, the management of SDs does not only consist of identifying, assigning, and 

correcting them but also in mining them. IEEE standard 1044-2009 defines a defect as: “An 

imperfection or deficiency in a work product where that work product does not meet its 

requirements or specifications and needs to be either repaired or replaced” [19]. Not only the 

software defects (SDs) are present in the whole life cycle of a software product, but different 

studies also proved that 80% of the total cost of the software life cycle is associated with the 

management of the SDs [23]. Having this high impact on the software product, SDs 

management must be crucial to software teams as well as to organizations.  

In the last decade, SDs management has received a considerable amount of attention from 

researchers. In fact, SDs management has been the center of interest for many studies in 

different software studies’ subdomains such as software project management, software 

engineering and evolution [12], [30], [55]–[57]. Due to the diversity of these studies, we group 

them into branches based on their interest in SDs management.  

2.4.1 SDs	Collection	and	Storing	
The first branch deals with questions such as how to collect and store these SDs. Studies 

related to this branch provided answers to questions such as how to collect SDs or which SDs 

characteristics must be documented [55]. These studies propose solution tools named bug-
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tracking systems to help to collect SDs. They are in the form of a central hub accessible by 

project managers and software developers to manage the software products. Some of these 

online tools are Jira [56] and Bugzilla [57]. 

2.4.2 Assigning	and	Solving	of	SDs	
The second branch deals with questions such as how to assign SDs to developers or how to 

deal with the problem of an SDs duplication [58]. The research in this branch proposes 

techniques and methods such as algorithms to automatically assign SDs to the right developer 

[59]–[61] and also techniques to eliminate the duplication of SDs [59]. 

2.4.3 SDs	Triage	and	Mining	Approaches	
The third branch deals with the triage and the mining of SDs. There are different studies 

which propose solutions on how to mine SDs [60], [61]. The defects are the source of software 

failures and problems. Software failures are defined as “Termination of the ability of a product 

to perform a required function or its inability to perform within previously specified limits” 

[19]. In the software life cycle, the mining of defects presents many advantages [23]. 

Researchers as well as practitioners in this branch proposed schema and taxonomies for mining 

SDs. Well-known schemas are (1) The Orthogonal Defect Classification (ODC) of IBM [24]: 

this model was developed in 1992 by R. Chillarege et al. [24] and it classifies defects across 

“the dimensions (1) defect type, (2) source, (3) impact, (4) trigger, (5) phase found, and (6) 

severity” [62]; (2) The HP Defect Origins, Types and Modes, being Hewlett Packard’s 

approach. The HP software metrics developed this model in 1986 [25]. This scheme classifies 

the defects according to their types, their origins and their mode [13], the root cause analysis 

[18], and standards like the IEEE standard 1044-2009 [19]. In the same context, they also apply 

data mining methods such as the Naïve Bayes Model [27], clustering [28], or the regression 

model [23] to classify SDs. In fact, the classification of the defects helps the software 

development teams to reduce the cost of correcting SDs, and to detect defective modules. These 

studies are not an exhaustive list of studies related to SDs management. The value generated 

from SDs has made its management crucial to software teams as well as to organizations. 

In order to identify the origins of SDs, The ODC, HP defects origins, root cause analysis and 

other enumerated mining schemas limited their analysis on software code. They analyzed this 

internal component (software code) of software systems in other to identify existing errors. 

Thus, they only focus on the technology factors as origins of SDs. Other internal and external 

factors that influence E-type systems such as systems’ users and business processes are not 
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addressed. The goal of this research is to fill this gap by proposing a method. This method helps 

identifying the source of SDs by considering internal as well as external SDs trigger factors. 

Furthermore, it also helps us to answer our research question, which is to identify the ones 

triggering most of the severe SDs on a given E-type system among these factors.  

After reviewing the concepts and backgrounds of this research, we will present how we 

conducted this research in the next chapter.  
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3 Methodology	

For our research, we conducted two case studies on two different systems. We named them 

System A and System B. The method used to conduct these studies is described in the following 

steps: 

• Pre-step 0. Data collection: this pre-step consists of collecting SDs of the E-type system 

to study. In our case, we collected the SDs of system A and B from the Jira repository 

[56]. 

• Step 1. Identification of trigger factors for each SD: in this step, we classify the SDs 

based on the EVOLIS framework [9] in order to identify their trigger factors. In this 

research, we refer to this step as “EVOLIS classification”. 

• Step 2. Evaluation of the impact a SD has on the studied E-type system: here we classify 

the same SDs based on their severity level using the severity attribute of IEEE standard 

1044-2009 [19]. We refer to this classification as “Severity classification”. 

• Step 3. Identification of SDs that cause high severe impact on our studied E-type 

systems: at this level, we classify the SDs based on both the EVOLIS framework and 

the severity attribute of IEEE standard 1044-2009 [19]. We named it “EVOLIS and 

Severity classifications”. 

We performed these steps on each system studied. In the next section, we will present the case 

study methodology, followed by the presentation of the studied systems. Then, we will proceed 

to present our method in general, and then present each step in detail.  
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3.1 Case	Study	Definition	and	Types	

Case study research can be either a qualitative, a quantitative research methodology, or both 

[63]. There are numerous definitions of case research [64]–[68]. Nevertheless, Benbasat et al. 

[10] provided the one that is most suitable in the IS research field. They define case research as 

follows: “A case study examines a phenomenon in its natural setting, employing multiple 

methods of data collection to gather information from one or a few entities (people, groups, or 

organizations). The boundaries of the phenomenon are not clearly evident at the outset of the 

research and no experimental control or manipulation is used” [10]. Yin [65], [69] and Stake 

[70] make major contributions with their works to the field of case studies research. Based on 

their work, Baxter and Jack [71] proposed a résumé of existing types of case study research 

(see Table 3.1). In the context of this research, our goal is to observe the similarity between 

cases. Thus, we adopted the multiple-case studies approach for this research.  
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Table. 3.1 Type of case studies research [71] 

Case Study 
Type  

Type Definition  

Explanatory This type of case study would be used if you were seeking to answer a question that 
sought to explain the presumed causal links in real-life interventions that are too 
complex for the survey or experimental strategies. In evaluation language, the 
explanations would link program implementation with program effects [69]. 

Exploratory This type of case study is used to explore those situations in which the intervention 
being evaluated has no clear, single set of outcomes [69]. 

Descriptive This type of case study is used to describe an intervention or phenomenon and the 
real-life context in which it occurred [69]. 

Multiple-case 
studies 

A multiple case study enables the researcher to explore differences within and 
between cases. The goal is to replicate findings across cases. Because comparisons 
will be drawn, it is imperative that the cases are chosen carefully so that the 
researcher can predict similar results across cases, or predict contrasting results based 
on a theory [69]  

Intrinsic Stake [70] uses the term intrinsic and suggests that researchers who have a genuine 
interest in the case should use this approach when the intent is to better understand the 
case. It is not undertaken primarily because the case represents other cases or because 
it illustrates a particular trait or problem, but because in all its particularity and 
ordinariness, the case itself is of interest. The purpose is NOT to come to understand 
some abstract construct or generic phenomenon. The purpose is NOT to build theory 
(although that is an option; [70]). 

Instrumental Is used to accomplish something other than understanding a particular situation. It 
provides in sighting to an issue or helps to refine a theory. The case is of secondary 
interest; it plays a supportive role, facilitating our understanding of something else. 
The case is often looked at in depth, its contexts scrutinized, its ordinary activities 
detailed, and because it helps the researcher pursue the external interest. The case may 
or may not be seen as typical of other cases [70]. 

Collective Collective case studies are similar in nature and description to multiple case studies 
[69]. 

 

3.2 Why	Case	Study	Methodology?	

To be able to analyze the impact of system defects reported by system users as well as system 

developers, and the change derived from the occurrence of this failure, we have to observe two 

systems in their natural settings. We use case study methodology to conduct this research since 

it addressed contemporary phenomena in their natural context. Considering the contemporary 

phenomena, we are looking at CRs done on software systems developed using the agile method. 

In the natural context, we are considering two sub-units of the same institution, which are in 

charge of managing the SDs of these systems.  
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Furthermore, to know if this methodology is more suitable for our research project or not, we 

also identify and compare the characteristics of our research with the ones proposed by Benneth 

et al. [48] by providing an answer to each of these 11 points. In fact, they presented 11 key 

characteristics of case studies research must possess (see Table 3.2) [10]. The results of the 

comparison between the proposed characteristics and our research project are presented in 

Table. 3.3.  

Table. 3.2 Key characteristics of an IS case study [10] 

1. Phenomenon is examined in a natural setting. 

2. Data are collected by multiple means. 

3. One or few entities (person, group, or organization) are examined. 

4. The complexity of the unit is studied intensively. 

5. Case studies are more suitable for the exploration, classification and hypothesis 

development stages of the knowledge building process; the investigator should have a 

receptive attitude towards exploration. 

6. No experimental controls or manipulation are involved. 

7. The investigator may not specify the set of independent and dependent variables in 

advance. 

8. The results derived depend heavily on the integrative powers of the investigator. 

9. Changes in site selection and data collection methods could take place as the 

investigator develops new hypotheses. 

10. Case research is useful in the study of "why" and "how" questions, because these deal 

with operational links to be traced over time rather than with frequency or incidence. 

11. The focus is on contemporary events 
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Table. 3.3 The characteristics of our case project. 

Key Characteristics of Case studies Key Characteristics of our Research. 
Phenomenon is examined in a natural 
setting. 

Our project consists of studying software 
defects of two systems in an organizational 
context. These systems had been observed in 
their natural setting which is the organization 
managing them.  

Data are collected by multiple means. We collected data from two main sources: the 
first one is a software failure reporting system 
(EasyVista [72]). The second is a software 
repository system (Jira [56]). 

One or few entities (person, group, or 
organization) are examined. 

The studied systems belong to one institution, 
with two different project groups in charge of 
each one of them.  

The complexity of the unit is studied 
intensively 

We analyzed each software defect in detail by 
looking at its description and summary.  

Case studies are more suitable for the 
exploration, classification and hypothesis 
development stages of the knowledge 
building process; the investigator should 
have a receptive attitude towards 
exploration. 

Our main goal is to classify the software 
defects, according to their severity and factors 
that trigger them.  

No experimental controls or 
manipulation are involved. 

We did not conduct any experimental or 
manipulation during this research. 

The investigator may not specify the set 
of independent and dependent variables 
in advance. 

No independent variable nor dependent 
variables were set in advance of the studies. 

The results derived depend heavily on the 
integrative powers of the investigator. 

We were able to combine in an innovative 
manner, both classifications to reach the main 
objective of this study.  

Changes in site selection and data 
collection methods could take place as the 
investigator develops new hypothesis. 

We had collected data from another software 
project to evaluate our hypothesis.  

Case research is useful in the study of 
"why" and "how" questions because 
these deal with operational links to be 
traced over time rather than with 
frequency or incidence. 

How to identify trigger factors causing the most 
severe SDs on E-type systems? 

How do software defect triggers affect the 
operation and the functionalities of the 
systems? These are questions we address with 
our studies. 

The focus is on contemporary events. Managing software defects activities represent 
up to 80% of the total cost of a software system. 
In addition, SDs cause huge financial losses to 
government bodies, organization, and 
individuals.  
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3.3 Presentation	of	the	Institution		

The institution we choose to conduct this study on is a governmental educational institution, 

which is in charge of providing software solutions to the public college schools in one of the 

French regions in Switzerland. Among the systems that they provided, two main ones draw our 

attention and have the necessary characteristics for our study. In fact, we choose these systems 

because they continuously evolved since their deployment and the project team has kept track 

of their SDs. In other words, they have a complete SDs report history data. They are: 

System A: this system is a grading management system for schools. More than 10,000 teachers 

use it to manage the evaluations, school reports, and grades of more than 95,000 students. They 

also use it to deliver school certificate as well as control the students’ attendance. It was 

deployed in the ending of 2012 (see Table 3.4).  

System B: it is used to manage the repartition of teachers and students in different schools and 

classes. It addresses the administrative management of public schools in the region. It is used 

by more than 80 schools with almost 1,500 users (deans and directors), and it manages the 

records of students (more than 95,000), teachers (more than 10,000), and 5,000 teaching 

assistants (see Table 3.4). 

 Table. 3.4 Summary of studied systems 

 System A System B 
Data Range January 2015-April 2016 January 2015-April 2016 
Number of SDs 675 581 
Number of Users 15000 1500 
Development Budget 
(including maintenance) 

More than 1.5 million dollars More than 2.5 million dollars 

 

Both systems are developed based on the agile scrum method. In the next section, we will 

present this method. 

3.3.1 Agile	Methodology	and	Scrum	Method	
For the purpose of our study, let us briefly look at the characteristics of agile methodology 

and scrum method in particular.   

There are different definitions of this agile methodology. For Henderson-Sellers and Serour 

[73], agility involves both the ability to adapt to different changes and to refine and fine-tune 

development processes as needed [73]. Lee and Xia [74] define software development agility 
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“as the software team’s capability to efficiently and effectively respond to and incorporate user 

requirement changes during the project life cycle” [74]. Agile methodology proposes different 

methods such as a dynamic software development method. The popular one is extreme 

programing, Scrum [75]. To provide software systems’ solutions to its clients, the institution 

uses the Scrum method in developing these systems. “Scrum method consists of focusing on 

project management in situations where it is difficult to plan ahead, with mechanisms for 

‘empirical process control’; where feedback loops constitute the core element. Software is 

developed by a self-organizing team in increments (called ‘sprints’), starting with planning and 

ending with views. Features to be implemented in the system are registered in a backlog. Then, 

the product owner decides which backlog items should be developed in the following sprint. 

Team members coordinate their work in a daily stand-up meeting. One team member, the scrum 

master, is in charge of solving incidents that stop the team from working effectively” [76].  

3.3.2 Software	Defect	Life	Cycle	in	the	Studies’	Projects.		
In this section, we will present the state of software anomalies in the context of this research. 

The software studies are developed using the scrum methodology; meaning that the scrum 

master—in this case the project leader—is the person that controls the evolution of the software 

project, by requesting software changes from the software development team and adding new 

functionalities to the existing system. The process of the SD and CR goes as follows:  

System users report failures they encountered using a particular system to a help desk member. 

This help desk person reports the failure into a bug repository system (EasyVista [72]) to be 

solved. A sub-team of the help desk analyzes the reported failure and addresses it. In case this 

sub-team person provides a solution to correct this failure, they communicate the solution to 

the client and close the case. If not, the failure is then reassigned to the software development 

project team. They analyze this failure in turn to identify the software defect causing it. After 

identifying the SDs, they proceed to request a change to correct the detected SD. These SDs 

and their requests are saved into a software repository tool which, in our case, is Jira [56]. From 

this point on, the outsourced software development team takes charge of the implementation of 

a response to achieve the requested change. We summarized this process in Fig. 3.1 



 

28 

Methodology 

 

Fig. 3.1 Software defect life cycle within the studied projects 
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3.4 Severe	SD	Trigger	Method	

As said in the beginning of this chapter, our method of conducting this research consisted of 

a pre-step and three main steps. We applied this method on both case studies. The overview of 

this method goes as follows: 

In the pre-step (0), we collected SDs of a selected system for studying. In the first step (1) 

(EVOLIS classification), we took each SD to find its trigger factor or source. In the second step 

(2) (Severity classification), we took again each SD and evaluated its severity impact (cost) on 

the system. We then took each couple of “trigger factor-impact” and classified them into two 

groups: “the severe group” and “the no-severe group”. This classification is based on our 

severity-weighting model. We will present in detail this severity-weighting model in the next 

chapter (see section 4.3.1). In the final step (3), we only concentrated on the severe couples and 

ranked them according to the level of damage they may do on system operations (EVOLIS-

Severity classifications). We present these steps as well as the activities we conducted under 

each one of them in Fig. 3.2.  

 

 

Fig. 3.2 Steps to identify trigger factors causing most of severe SDs to a system 

0. Collect SDs
•Selection of a system to study and collect its SDs

1. Identification of trigger factors causing most of 
SDs
•In our cases, we used EVOLIS framework [11] to identify 
these factors (EVOLIS classifcation).

2. Evaluation of the impact of SD in terms of severity 
on systems
•In our cases, we used the IEEE standard 1044-2009 [21] to 
weight the severe impact of SDs on our studied systems. 
(Severity classification).

3. Integrate the results of step 1 and 2 in order to identify 
SD trigger factors causing high severity impacts to an E-
type system
•In our cases, we combined the results of EVOLIS classification & 
Severity classification. 



 

30 

Methodology 

In addition, we illustrate this process with the IS architecture trigger factors block of EVOLIS 

framework [9] (see Fig. 3.3). We present this framework in one coming section (see section 

3.6.1). We applied the same process to each SD analyzed of both studied systems. In the next 

section, we will present each step of this process in detail.  

 

 

Fig. 3.3 Illustration of the steps to identify severe SD trigger factors using the IS architecture 

factors 

3.5 Pre-step	0:	Data	Collection	

We collected our data from two main databases. The first one is EasyVista [72]: it contains 

both information related to software incidents or failures, as well as SDs or CRs. The second 

one is Jira [56] and only contains data related to SDs or CRs. We only considered data related 

to SDs in our project. Therefore, in both cases, we only focused on data related to the SDs and 

CRs. We performed our data collection in three steps:  

• The first step is to choose systems having a software defect repository. This was 

an important step because not all systems and organizations we contacted have put 

this repository in place.  

• The second step consists of collecting the SDs data. For the selected systems, we 

collected archival data from a software repository for both systems. The data were 

presented in tabular format (Microsoft Excel) with the following information:  
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For each system, there is the SD unique ID; the name of the person or organization who reports 

the software failure; the help desk person who receives the complaint; the date of reporting, and 

the date the defect was fixed; the name of the person who implemented the CR, the department 

or service concerned with the reporting; the description of the SD; the summary (resumé) of the 

change to implement; and finally, the project member team who confirmed the defect. 

• The third step consists of designing a database (see Fig. 3.4) for each studied 

system. In this step, we also proceeded to identify essential data that we needed to 

conduct our research. We had grouped these data in a database. We present the 

essential data retained for our study in Table 3.5. In this table, not only do we 

describe the essential data, but we also present the classification data. The essential 

data needed for our study are divided among four tables (see Fig. 3.4). In fact, our 

database is made up of four tables. There are EVOLIS, System, Severity, and the 

SoftwareDefects tables. The relationships among these tables are described as 

follows: A system has zero or more SDs. A SD falls under one type of severity or 

not. Similarly, a SD may fall under one type of EVOLIS block (category) or not.   

Table. 3.5 Data attributes and their description 

Attributes Definition 
ID The unique number of each reported SD 
Reported Date The SD reporting date 
Description  The description of the SD 
Résumé The possible action to perform to correct the SD 
Type of Request The type of request from the SD reporter 
Severity The type of Severity 
EVOLIS The type of SD trigger factor 
Solved Date The SD solving date 
Status If the SD has been solved or not 
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Fig. 3.4 Project’ database schema 

We collected data over the period of three years from January 2013 until December 2016. 

However, for specific use cases we selected segments of data over a period of 16 months from 

January 2015-April 2016 for both systems A and B. System A has nine released versions over 

this period. The first version of the system A had been released mid-2012. System B has 10 

released versions over the same period of time. System A had 675 SDs and system B had 581 

SDs (see Table 3.4). In the following sections, we will present the classifications of these SDs. 

3.6 Step	1:	Trigger	factors	Identification	(EVOLIS	
Classification)		

We conducted this first classification on both systems. The main goal of this first 

classification is to group SDs according to their trigger factors. We validated the results of this 

first classification in our first paper published in Trends and Advances in Information Systems 

and Technologies Volume 2, 2018 [29] (see Appendix 1). We did this classification for three 

main reasons: 

1. To identify SD groups that have a sudden rise over a period of time. 

2. To propose a model to manage SDs or CR implementation and manage their 

unexpected rise. 

3. To improve decision making in the domain of software maintenance. 

We did this classification based on the EVOLIS framework [9]. In the next section, we will 

present this framework in detail. 
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3.6.1 The	EVOLIS	Framework	
 One of the concepts we used to conduct this research is the EVOLIS (EVOLution of 

Information Systems) framework [9]. This framework was proposed by two researchers of the 

Evolution lab in the Information System department of HEC Lausanne. In fact, Dr. A. Métrailler 

presented this framework as part of his PhD thesis directed by Dr. T. Estier. The main purpose 

of this framework is to help software portfolio managers to manage the evolution of their 

systems. 

3.6.1.1 Definition	
The EVOLIS framework [9] groups the factors having a direct influence on a system into 

four blocks. It provides a means of studying software defect reports with their CR based on 

their trigger factors. According to the authors, EVOLIS [9] framework classified SDs as an 

evolution based on factors that trigger them: “EVOLIS can be caused by a large variety of 

factors: bugs that need to be fixed, users that wish to have new functionalities, new market 

opportunities that require new software features, performance standards that the system must 

reach, technical changes in the environment with which the system must interact, obsolescence 

of applications and so on” [9]. EVOLIS presents four main categories or blocks of SDs with a 

fifth-block as the cost to compare the different phases of system evolution with each other (see 

Fig. 3.5). The cost block is related to the financial impact that will result from a change in a 

system: “It is the consideration the cost-benefit in case of evolving an IS” [9]. The four main 

blocks are the IS architecture change requests block, the Technology change requests block, the 

IS/user fit change requests block, and the Business/IS alignment change requests block. In the 

next section, we will present each of these blocks in detail. 

3.6.1.2 IS	architecture	
The IS architecture change requests block (ACH), is a group of factors that triggers software 

change based on integration and interoperability needs. According to the authors, this type of 

change request concerns “different types of integration evolution, namely an evolution of 

integration among components of the system, among business functionalities, or an integration 

with systems outside of the company.” [9]. 

3.6.1.3 Technology		
The Technology change requests block (TCH) is related to factors that trigger software 

change based on the operational needs of the software as well as the hardware platforms as 

information system components. As an example, they stated that “when reason like 



 

34 

Methodology 

performance, updates, preventive maintenance and so on motivate evolutions of the software 

or hardware.” [9]. 

3.6.1.4 IS/user	fit	
The IS/user fit change requests block (UI) is related to factors that trigger software change 

based on the system users’ satisfaction in terms of ease of use and usefulness of the system [77]. 

They defined it as any request related to the user interface, the user documentation, and aptitude 

to use the system. Simply said, the authors “classify as IS/user fit each activity during an 

evolution regarding directly users or when the evolution only alters the fit between IS and users 

without altering business functionalities” [9]. 

3.6.1.5 Business/IS	alignment	
The Business/IS alignment change requests block (B.IS) is a group of factors that triggers 

software change based on the IS alignment with business process and activities. It “addresses 

the co-alignment between business and information systems.” [9]. There are two types of 

alignment under this category: company external environment alignment, and evolution-

oriented alignment. 

 

 

Fig. 3.5 The five Blocks of EVOLIS (Adapted from the of EVOLIS Framework) [9] 

 

IS Architecture Technology

IS/user Fit Business/IS 
Alignment

Cost
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3.6.2 EVOLIS	Classification			
As described earlier, each software failure report is characterized by a source, a description, 

and a help desk person handling the failure. The failures that could not be solved by the help 

desk team became SDs. These SDs were saved in the repository (Jira [56]). The classification 

of the SDs is done based on our EVOLIS classification approach. In the next section we will 

present in detail how we adapted the EVOLIS framework to classify our SDs data. 

3.6.2.1 Our	EVOLIS	classification	adapted	method	
Overall, our EVOLIS classification adapted method is described as follows: 

Based on the definition of EVOLIS blocks and SD descriptions, we defined seven classes (see 

Table 3.6). Each of these seven classes is associated with one of the four blocks of EVOLIS 

(see Table 3.7). Each of these classes is composed of two or more subclasses. Each subclass is 

then characterized by defined key factors. Factors are combined keywords that are identified 

based on the semantic analysis of the SDs résumé and description. The semantic analysis is 

conducted on the raw description and résumé of the SDs we collected for both systems. 

 E.g., the EVOLIS user fit block is composed of user, user interface, and user testing classes. 

The user interface class is made up of two subclasses: ease of use and system usefulness. The 

ease of use subclass is characterized by key factors such as display, button, click, screen, color 

and visual. These factors are keywords identified while conducting a semantic analysis on SD’s 

descriptions in French.  

Table. 3.6 Our defined seven classes 

1. SDs related to the user ability to manipulate the system 
2. SDs related to the user interface 
3. SDs related to system error or system bug 
4. SDs related to another system different from the system in use 
5. SDs related to the business and processing rules 
6. SDs related to the system database and based mainly on user access privileges 
7. SDs related to testing of the system done by the user.  
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Table 3.7 presents the classification of the seven main classes into the EVOLIS blocks. 

Table. 3.7 Classification of the seven classes into EVOLIS SD trigger factor categories 

  User User 
Interface 

User 
test 

System 
Bug 

Another 
system 

Rules/ 

Process 

User 
Privilege/ 

Database 
EVOLIS Business/IS 

alignment 

(B.IS) 

     
 

 

IS/user fit (UI) 
   

    
Technology 
(TCH) 

   
 

  
 

IS architecture 
(ACH) 

    
 

  

 

3.6.2.2 Application	of	our	EVOLIS	classification	adapted	method		
We applied this method in analyzing both the data we collected for system A and B. For each 

SD, we proceeded as follows. 

First, we conducted a semantic analysis of the reported description and résumé of the SD to 

identify some keywords. Second, based on the semantic analysis, we combined two or more 

keywords as key factors. Third, based on the SD’ key factors, we assigned the SD to its 

corresponding subclass. Fourth, based on the SD’ subclass, we classified the SD according to 

the corresponding class. Finally, we classified the SD in one of the four EVOLIS blocks based 

on its corresponding class identified previously. In summary, the classification of each SD is 

done by following these steps: 

1. Semantic analysis of the SD description and résumé to identify keywords 

2. Identification of factors based on the SD description and résumé keywords 

3. Classification of the SD into a subclass 

4. Classification of the SD into one of the seven classes 

5. Classification of the SD into one of the four blocks of EVOLIS 

E.g. here are some examples of how we identified a trigger factor of a SD using our EVOLIS 

classification. These examples are based on the raw data in French (see Appendix 7) we 

collected for both systems (see Table 3.8). 
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Table. 3.8 Identification of SD trigger factors examples 

Steps Examples 
Semantic analysis of 
the SD description 
in French 

 

(keywords are 
marked in bold) 

Raw Description : 

"Ici, le bouton + est affiché dans 
l'écran (capture 2). Il existait car il y 
avait des travaux qui étaient 
concernés par cet affichage. Ces 
travaux ont été déplacés et/ou 
supprimés. Il n'y a plus de travaux 
liés. Le + reste affiché. L'ouverture 
de la fenêtre (capture 1) montre qu'il 
n'y a pas de travaux. Si les travaux 
n'existent pas ou plus, le + ne devrait 
pas s'afficher." 

Résumé: Fenêtre "Note de l'élève 
des groupes liés" persistante 

Raw Description : 

Bonjour, Je n'arrive pas à transférer 
à Prilly primaire une élève futur 1P 
qui va déménager de Crissier à 
prilly ! "Une erreur est apparue !" 

 

Résumé : erreur applicative/de 
développement 

Identification of key 
factors in the SD 
description and 
résumé 

 

Le bouton affiché, écran, affichage, 
fenêtre. 

(In English, these keywords are 
button, screen, window, display) 

Erreur, erreur applicative, erreur 
de dévéloppement  

(In English, these key factors are 
error, system error, software error)  

Classification into a 
subclass 

Key factors display, and window fall 
under the ease of use subclass  

System error fall under the subclass 
of system fault 

Classification of the 
SD into one of the 
seven classes 

Ease of use subclass falls under the 
user interface class 

The system fault subclass falls 
under the system Bug class  

Classification into 
one of the four 
blocks of EVOLIS 

The interface class is associated to 
the user fit block of EVOLIS. Thus, 
the trigger factor of this SD is an IS 
user-fit factor. 

The system bug class is associated 
to the technology block. Thus, the 
trigger factor of this SD is a 
technology factor. 

 

The results of applying this EVOLIS adapted method on system A and B are as follows: 
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• Results of System A EVOLIS classification 
EVOLIS ACH B.IS TCH UI Total 

2015 133 93 144 149 519 
Jan 12 8 16 7 43 
Feb 10 5 12 4 31 
Mar 15 13 19 16 63 
Apr 22 11 10 12 55 
May 4 8 10 7 29 
Jun 9 2 19 11 41 
Jul 1 1 2 6 10 
Aug 1 4 9 13 27 
Sep 15 8 8 22 53 
Oct 16 4 9 10 39 
Nov 23 19 18 23 83 
Dec 5 10 12 18 45 
2016 12 47 26 71 156 
Jan 3 15 11 26 55 
Feb 4 4 6 10 24 
Mar 0 13 6 27 46 
Apr 5 15 3 8 31 
Total 145 140 170 220 675 

 

• Results of System B EVOLIS classification 

EVOLIS ACH B.IS TCH UI Total 
2015 87 22 251 90 450 
Jan 7 2 25 12 46 
Feb 7 3 11 2 23 
Mar 6 2 20 5 33 
Apr 7 1 17 17 42 
May 12 4 31 13 60 
Jun 17 3 59 15 94 
Jul 5 3 20 9 37 
Aug 4 2 17 1 24 
Sep 6 1 18 6 31 
Oct 3 1 4 5 13 
Nov 4 0 12 3 19 
Dec 9 0 17 2 28 
2016 20 8 73 30 131 
Jan 9 0 16 6 31 
Feb 5 2 27 12 46 
Mar 1 2 13 1 17 
Apr 5 4 17 11 37 
Total 107 30 324 120 581 

 



 

39 

Methodology 

The analysis of these results at this step led us to propose a “change indicator conceptual tool”. 

The purpose of this conceptual tool is to help software maintenance teams and software 

portfolio managers to identify sudden rises of SDs by putting in place the right process. We will 

present this conceptual tool in the next chapter in detail (see section 4.2.4).  

3.7 Step	2:	Evaluation	of	SD	Impact	on	E-type	Systems	
(Severity	Classification)		

3.7.1 The	Roles	of	Evaluating	SD	Severity	Impact	
The aim of this second classification is to distinguish the severity impact of each SD on our 

studied systems, and to improve the project management of mining SDs. One of the proposed 

classification methods recommended by IEEE standard 1044-2009 [19] is the classification of 

SDs based on severity. They argue that “having a standard way to classify software anomalies 

enables better communication and exchange of information regarding anomalies among 

developers and organization” [19]. In addition, “it enables insight into the types of anomalies 

that organization produce during development of their project” [19]. For these reasons, for our 

second classification we selected the severity attribute of IEEE standard 1044-2009 [19] (see 

Table 3.9).  

There are three main goals for this classification: 

1. To identify the degree of severity impact each SD has on the system.  

2. To improve the project management of mining SDs or CRs.  

3. To improve SDs’ mining decision making by implementing control measures. 

3.7.2 Evaluation	of	SD	Impact	on	our	E-types	Studied	Systems	
The IEEE standard 1044-2009 [19] defines the severity attribute as “The highest failure 

impact that the defect could (or did) cause, as determined by (from the perspective of) the 

organization responsible for software engineering.” [19]. The five values of severity are 

classified from the most significant to the least significant ones (see Table 3.9).  
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Table. 3.9 Severity values [19] 

Attribute Value Definition 
Severity Blocking (B) Operation is inhibited or suspended pending correction 

or identification of suitable workaround. 
 Critical (C) Essential operations are unavoidably disrupted, safety is 

jeopardized, and security is compromised. 
Major (Maj) Essential operations are affected but can proceed. 
Minor (Min) Nonessential operations are disrupted. 
Inconsequential (Inc) No significant impact on operations. 

 

As defined by the IEEE standard 1044-2009 [19], this classification is done based on the 

judgment of the impact a SD has on its system. This judgment is done by the people responsible 

for software engineering. The people responsible for software engineering are either the 

software maintenance team or the software development team. In determining a SD severity 

impact on a system, they must also consider the context of the organization in which the 

software system is used. In our case, the people responsible for software engineering are both 

the software development and the software maintenance teams. 

For our studied systems, either the software development team or the software maintenance 

team or both make the determination of the severity values of the SDs. As recommended by 

IEEE standard 1044-2009 [19], the classification of SD severity is done as follows in our 

research:   

• If the SD completely prevents the system to process its essential operations, or prevents 

an entire component of the system to be operational (complete shutdown of the system 

component) then it is considered having a blocking severity impact on the system. Any 

SD of this sort falls under the Blocking severity level.  

E.g., “Enseignant : impossible d'assigner un enseignant dans un nouvel établissement s'il a le 

statut EXT.”. Assigning a teacher to a class is an essential operation of this system. The 

description of this SD states that “Teacher: Impossible to assign a teacher to a new school if he 

has EXT status (external status)”. This SD completely prevents the system to process this 

essential operation, thus this SD has a blocking severity impact on the system and falls under 

the Blocking severity value category.  

• If a SD partially prevents the system to run its essential operation, and compromises the 

security of the system, then this SD is considered having a critical severity impact on 

the system. Thus, this SD falls under the Critical severity level.  
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• If a SD affected essential operations of a system without interrupting them to proceed, 

then the SD is considered having a major severity impact on the system. This type of 

SD falls under the Major severity level. 

• If a SD affects only the non-essential operation of a system, then the SD is considered 

having a minor severity impact on the system. Thus, the SD is classified under the Minor 

severity level.  

E.g., “Dans le cas de rôles multiples (SUPPORT + ADMIN + CDIR), la création d'un message 

en mode ADMIN porte la mention CDIR.”. Creating a message using the system is a non-

essential operation. The résumé of this SD in French states, “In the case of multiple roles 

(SUPPORT + ADMIN + CIDR), the creation of a message in ADMIN mode is marked CDIR.”. 

This SD does not prevent the system administrator to create or send a message but only shows 

the wrong message marked in the admin mode. Thus, this SD has a minor severity impact on 

the system. It is classified under the Minor severity level.   

• If a SD does not have any significant impact on neither the essential operation nor the 

non-essential ones, then it is considered having an inconsequential severity impact on 

the system. Thus, a SD of this sort falls under the Inconsequential severity value 

category.  

Based on this “if then” approach, we proposed a summary of the characteristics a SD has under 

each severity level (see Table 3.10). We proposed this table to inform others SD mining 

researchers and practitioners on how to determine the severity impact or value of a SD (see 

Table 3.10). 

In fact, to determine the severity level of a SD, an answer must be provided for each of these 

following questions: 

• Question 1 (Q1): Did the SD have an impact on essential operations? 

• Question 2 (Q2): Did the SD have an impact on non-essential operations? 

• Question 3 (Q3): Can essential operations proceed? 

• Question 4 (Q4): Can non-essential operations proceed? 

There are three possible answers to each of these questions, either: NO or YES or Partially. The 

combination of the answers to these questions determine the level of severity of a SD. E.g., if 

the analysis of the SD provides the following answers (YES to the first two questions and NO 

to the last two questions), then this SD falls into the Blocking severity level.   
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Table. 3.10 Evaluation of the severity value of a SD 

 Impact of a SD System operational status 
Q1. Impact on 
Essential 
Operations 

Q2. Impact Non-
essential 
Operations 

Q3. Essential 
Operations can 
proceed 

Q4. Non-
Essential 
Operations can 
proceed 

Severity Value     
Blocking YES YES NO NO 
Critical YES YES Partially NO 
Major Partially YES Partially NO 
Minor NO YES YES Partially 
Inconsequential NO Partially YES YES 

 

For the purpose of this study, we define any SD as severe as long as it belongs to one of these 

severity levels: (1) Blocking (B), (2) Critical (C), and (3) Major (Maj). The Minor (Min) and 

the Inconsequential (Inc) are not considered as severe SDs. Furthermore, we also introduced a 

weighting model to express the value of each SD’s severity according to their severity impact. 

We will present this model and the results of applying it, in the next chapter (see section 4.3). 

We also presented this weighting model and the results of this second classification in detail in 

our second and third paper. In addition, in the second paper, we also proposed a “SD managerial 

conceptual tool” to help SD mining teams to align their mining strategy and objectives with the 

ones of the software owners. We will present this second conceptual tool in the next chapter 

(see section 4.3.3). The second paper is published in Business Modeling and Software Design 

– 8th International Symposium, BMSD 2018 [30] (see Appendix 2), and the third paper is 

published in Digital Science 2018 Advances in Intelligent Systems and Computing, vol 850 pp 

389-396 [33] (see Appendix 3). 
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• Results of System A Severity classification 

Severity Blocking Critical Major Minor Inconsequential Total 
2015 51 60 266 127 15 519 
Jan 2 3 28 10 0 43 
Feb 1 5 14 11 0 31 
Mar 7 8 34 14 0 63 
Apr 2 5 37 9 2 55 
May 3 1 20 5 0 29 
Jun 0 2 25 14 0 41 
Jul 0 1 5 4 0 10 
Aug 2 7 8 7 3 27 
Sep 5 11 18 15 4 53 
Oct 7 4 22 6 0 39 
Nov 15 8 37 20 3 83 
Dec 7 5 18 12 3 45 
2016 25 24 64 43 0 156 
Jan 8 9 25 13 0 55 
Feb 5 3 10 6 0 24 
Mar 5 9 15 17 0 46 
Apr 7 3 14 7 0 31 
Total 76 84 330 170 15 675 

 

• Results of System B Severity classification 

Severity Blocking Critical Major Minor Inconsequential Total 
2015 57 112 135 145 1 450 
Jan 3 13 12 18 0 46 
Feb 2 4 9 8 0 23 
Mar 4 6 14 8 1 33 
Apr 5 9 7 21 0 42 
May 16 13 15 16 0 60 
Jun 6 32 29 27 0 94 
Jul 7 3 16 11 0 37 
Aug 4 8 10 2 0 24 
Sep 4 10 8 9 0 31 
Oct 3 2 3 5 0 13 
Nov 0 4 5 10 0 19 
Dec 3 8 7 10 0 28 
2016 18 18 29 65 1 131 
Jan 3 7 7 14 0 31 
Feb 4 3 13 26 0 46 
Mar 4 2 2 9 0 17 
Apr 7 6 7 16 1 37 
Total 75 130 164 210 2 581 
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3.8 Step	3:	Identification	of	Trigger	Factors	Causing	Severe	
SDs	on	our	Studied	Systems	(Classification	based	on	both	

EVOLIS	and	Severity)	

We combined the two results in order to answer our main research question which is to 

“identify trigger factors that cause most severe SDs”. Subsequently, we grouped these results 

into a two-dimensional table. Each dimension represents the results obtained for each previous 

classification project. We also presented these studies in detail in our third and fourth papers. 

This third paper is published in Digital Science 2018 Advances in Intelligent Systems and 

Computing, vol 850 pp 389-396 [31] (see Appendix 3). The fourth paper is published in 

ICITS19 [32] Advances in Intelligent Systems and Computing, vol 918 (see Appendix 4). 

 

• System A 

EVOLIS 

Severity 
ACH B.IS TCH UI Total 

Blocking 18 24 19 15 76 
Critical 12 21 30 21 84 
Major 100 66 93 71 330 
Minor 15 28 27 100 170 

Inconsequential 0 1 1 13 15 
Total 145 140 170 220 675 

 

• System B 

EVOLIS 

Severity 
ACH B.IS TCH UI Total 

Blocking 16 2 51 6 75 
Critical 30 5 74 21 130 
Major 34 8 92 30 164 
Minor 27 15 107 61 210 

Inconsequential 0 0 0 2 2 
Total 107 30 324 120 581 
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In the next section, we will discuss these results and highlight the contributions we made out of 

them.  
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4 Results	Analysis	

In this section, we will present our results and findings. For each classification, we will 

present and discuss its results and other solutions these results lead us to. We analyzed the 

results in three steps: first, we started with the EVOLIS [9] classification, followed by the 

Severity classification, and finally, the integrated classification for both systems.  

4.1 Data	Collection	of	SDs	(Step	0)	

As shown in chapter 3 (see section 3.5), the results we obtained in this pre-step were 

determinant to proceed with the rest of our studies. In fact, in this pre-step, we obtained data 

with sufficient quality necessary to perform our three classifications (steps).  

4.2 First	Classification:	EVOLIS	Classification	(Step	1)	

4.2.1 Analysis	
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Fig. 4.1 SDs of system A and B classified based on EVOLIS [9] 

We obtained the following results by only focusing on a fixed period for both systems. In 

fact, knowing the time each SD was reported helps us consider only the SDs which happened 

during this time interval for both systems. The time period set for this study went from January 

2015 to April 2016. In addition, being aware of the reporting time of SDs helped us to do a 

comparison of both systems during the same interval of time. We did this comparison in order 

to observe their evolution over the same period and identify some of their characteristics such 

as the number of SDs per trigger factors during this time interval.   

In overall, we can say that over the studied period the majority of SDs were triggered either by 

the IS/user fit factors (220 SDs) for system A, or by the Technology factors (324 SDs) for 

system B (see Fig. 4.1). For each system, the results showed that: 

For system A, the IS/user fit factors were in the lead with 220 SDs, followed by the Technology 

factors (170 SDs), the IS architecture factors (145 SDs), and finally the Business/IS alignment 

factors (140 SDs). 

For system B, the Technology factors (324 SDs) came first, followed by the IS/user fit factors 

(120 SDs), then the IS architecture (107 SDs), and finally the Business/IS alignment factors (30 

SDs).  

Therefore, to sum up based on our first classification; there are two main factors trigger SDs in 

the context of the studied systems. They are either IS/user fit or Technology trigger factors. 

Going further in our analysis by looking at these results monthly, we have faced two main 

questions that we will present in the next section, as well as the solution we propose to solve 

them. We presented similar results concerning this EVOLIS classification in our first published 
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paper in Trends and Advances in Information Systems and Technologies Volume 2, 2018 [29] 

(see Appendix 1). 

4.2.2 Change	Indicator	Concept	

4.2.2.1 Monthly	analysis	
In order to study the evolution of our E-type systems over time in more detail, we decided to 

use the month as unit of time. In fact, to choose the month as time unit allowed us to observe 

the variations of the number of SDs per trigger factors over this specific period and compare it 

to the results we obtained over the entire period of our study. Considering this monthly period 

helped us identifying the sudden rise of SDs. This particular rise is recurrent over the years for 

a specific period, e.g., for each year covered by our research, we found that the month of March 

has a number of user fit SDs which are problematic. This observation led us to propose the 

“change indicator conceptual tool” in order to detect similar anomalies and control the evolution 

of the SDs of E-type systems.  

During the analysis of the EVOLIS classification results for both systems, we observed that the 

number of SDs varied not only among different blocks or among categories of triggers, but also 

from one month to another. These observations raised two questions: (1) How to evaluate the 

status of SDs level? (2) On which bases can one prove that SDs of one month are overloaded 

compared to other months? To answer these questions, we have introduced a change indicator 

concept. We derived this concept from the existing Key performance indicator. 

4.2.2.2 Brief	presentation	of	Key	Performance	Indicator	(KPI)	
In management, performance measurement [78] is crucial for the survival of each business 

unit: “The measurement of performance is important because it identifies current performance 

gaps between current and desired performance and provides an indication of progress towards 

closing the gaps.” [79]. Key performance indicators [80] are set to evaluate the performance of 

business units. They are used for different objectives. In case the defined objectives are not 

reached, different actions are put in place to reach them. Similarly, in our context, based on 

questions that we identified in classifying these SDs, we introduce a conceptual tool as solution 

to identify when goals defined by system owners have not been met, and when to take corrective 

actions to reach those defined goals. In the next section, we will present the application of the 

change indicator on both systems.  
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4.2.2.3 Definition	the	change	indicator		
The absence of standards to evaluate which month has the number of SDs overload compared 

to others has prompted us to introduce an indicator as the accepted limit of SDs over a fixed 

period of time. In our cases, we selected a monthly period. The purpose of this indicator is to 

alert software maintenance teams on the status of the SDs level in each category. In addition, 

this is set as a limit for each category of SDs above which SDs must not only be solved, but the 

concerned category may possibly be investigated. 

The Oxford English dictionary defines indicator as "A thing that indicates the state or level of 

something." [81]. Based on this definition, we set the indicator artifact as an arithmetic value 

that informs us on the SDs level in each category. We defined the condition of this artifact 

indicator as follows: "If the number of change requests for a particular month in a category is 

greater than twice the total average so far within the same category; then an investigation may 

be conducted for this month, within this category". This investigation will lead to identify 

possible hidden problems, and derives actions to correct them. The condition of our indicators 

is expressed as follows: 

n being the total number of months 

And X, being the monthly Software defect number to test 

𝐼𝑓				𝑋% > 2(
∑ 𝑋*%+,
*-,

𝑛 − 1 ) 

Then investigate & adopt mitigation actions 

We must underline that the set limit of measures to observe depends on the goal set by each 

software team or each organization [47]. In our case, our emphasis is on the sudden increase in 

SDs in a month compared to the number of SDs in previous months. The application of this 

formula implies that the change indicator calculated for the first month is irrelevant. 

Furthermore, in case of a progressive rise in SDs, another formula will be most appropriate for 

setting the indicators. Our indicator rule is only an example of the form a change indicator may 

have. 

4.2.2.4 Implementation	of	the	change	indicator	on	system	A		
The results obtained by applying the change indicator to system A are summarized in Fig. 

4.2 (see Appendix 5.2). 
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Fig. 4.2 Application of change indicator on system A       

(ACH-I stands for IS architecture Indicator, B.IS-I for Business/IS alignment Indicator, TCH-I 

for Technology Indicator, and UI-I for IS/user fit Indicator). 

4.2.2.5 Implementation	of	the	change	indicator	on	system	B	
The results obtained by applying the indicator to the system B are summarized in Fig. 4.3 

and also presented in Appendix 6.2 
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Fig. 4.3 Application of change indicator on system B  

(ACH-I stands for IS architecture Indicator, B.IS-I for Business/IS alignment Indicator, TCH-I 

for Technology Indicator and UI-I for IS/user fit Indicator).  

4.2.3 Discussion		
Months with SDs that pass the set indicators are marked in red in both figures. Concerning 

system A, in the category of IS/user fit SDs we have four months (March 2015, September 

2016, January 2016, and March 2016) for which the total number of SDs is two times greater 

than the average of previous SDs. Consequently, we investigated, and we found that those 

months correspond to a time period during which a special event took place—such as the start 

of a school period—where the system users demanded and reported a lot of system failures and 

defects they encountered when using the system. Both the IS architecture block and the 

Business/IS alignment block show the month of November 2015 as being a problematic month. 

When investigating this case, it was revealed that a module has been added to system A; this 
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module had affected some processes as well as the interaction this system A had with another 

governmental system where student records were stored.   

This implies that the interaction between system A and the other systems are crucial for the 

users to perform their activities. A possible set of actions to put in place in this situation would 

be the allocation of enough human resources to face the peak of these types of demands.  

For system B, only the Business/IS alignment block has two months with SDs two times greater 

than the average. They are the month of May 2015 and April 2016. These months correspond 

to an introduction of new modules in this system. Both the Technology and the IS architecture 

block show the month of June as being problematic. Investigations reveal that a new version of 

the system was deployed in order to prepare the schools reopening in August that year.  

4.2.4 Change	Indicator	Conceptual	Tool	
We proposed a conceptual tool as a summary to describe the main steps we followed in this 

first classification [29]. This conceptual tool describes actions to perform in order to mine SDs 

with the application of the change indicator.  

The process to follow to classify SDs and set SDs indicators is summarized in these four steps:  

1. Collection of the SDs into a repository: For this purpose, there are existing tools 

such as Jira [56]. 

2. Classification or triage of these SDs into categories: The triage features are 

integrated into the existing SDs’ repositories cited in the previous step. In case 

this incorporated feature does not satisfy the software team or the project 

manager, there are other frameworks and models, or the traditional data mining 

techniques such as clustering or classification algorithms [82] with which this 

classification can be done. In our case, we used EVOLIS [9] as a CR framework 

to classify the SDs.  

3. Set a limit for each type of SD over a defined period: At this level, one or more 

indicator must be defined to track the evolution of each type of SDs’ category. 

In addition, in this step, the indicator definition depends on the objectives set by 

the organization [47] or the project team. Indicators can be defined as a ratio or 

as a target number to reach [81], [83]. In defining these parameters, the team 

must also consider the population size of stakeholders who can report a SD. 
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4. Investigation step: Define a set of actions to undertake when an indicator is 

reached, for instance, organize a user training section in case the category related 

to the user-fit indicators is reached.  

Following, Fig. 4.4 where we present the diagram that describes our proposed four-step process 

of setting the change indicators. 

 

Fig. 4.4 The steps in mining SDs and setting change indicator and mitigating actions [29] 

As answer to the first sub-question “which SD factors trigger most SDs?”, we found that the 

factors triggering most SDs of an E-type system vary according to the system. In fact, for our 

studied systems, we found that IS/user fit for system A and the Technology trigger factors for 

system B are responsible for most of SDs. In the next section, we will present our second 

classification. 

4.3 Second	Classification:	Severity	Classification	(Step	2)	

Similarly, to the first classification, we obtained these results by focusing on a fixed period 

ranging from January 2015 to April 2016 for both systems. We set this fixed period in order to 

evaluate the impact SDs over this period have on each system. It also allowed us to compare 

the evolution of both systems during this time. Having this defined period helped us identifying 

the type of impacts these systems had over this period.  

In fact, with this second classification, our main goal is to identify the number of SDs for each 

severity level. In overall, the SDs having a Major severity impact on the system are the highest 

for system A. System B has the Minor type as the highest. For each system, the ranking goes 

as follows: for system A, the Major type of SDs comes first with 330 SDs, followed by the 
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Minor type (170 SDs), the Critical type (84 SDs), then the Blocking type (76 SDs), and finally 

the Inconsequential with only 15 SDs (see Fig. 4.5). As stated in chapter 3, we validated the 

results of this severity classification in our second paper published in Business Modeling and 

Software Design – 8th International Symposium, BMSD 2018 [30] (see Appendix 2).   

For system B, the Minor type comes first with 210 SDs, followed by the Major type (164 SDs), 

the Critical type (130 SDs), the Blocking type with 75 SDs, and finally the Inconsequential type 

with only 2 SDs (see Fig. 4.5). 

 

Fig. 4.5 SDs of system A and B classified based on their severity  

4.3.1 Weighting	Model	
As stated in chapter three, we will present the weighting model in detail in this section. Doing 

the previous analysis, we realized that limiting the results only to the number of SDs for each 

severity level group raises an ambiguity. In fact, counting only the number of SDs per severity 

level does not give us the clear response on which level of impact has the highest severity 

damage on the system. E.g., how can we determine if five Blocking SDs have more effect on a 

system than eight Critical SDs? In order to clear this ambiguity, we associated a weighting 

factor to each level of severity according to their impact on the system’s operation (see Table 

4.1.). In fact, with this severity scale, we attributed the highest weight to the Blocking type, 

because they completely stopped the system operations, and we gave the least weight to the 

Inconsequential type, because they do not affect in any way the system’s operations. 
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Table. 4.1 The weighting factors for the severity levels [31].  

Severity level Weighting Factor 
Blocking 40% 
Critical 30% 
Major 20% 
Minor 8% 
Inconsequential 2% 
Total 100% 

 

We then calculated the weighted score (W) for each system based on the severity weight model 

(see table 4.2).  

Table. 4.2 Weighted score for system A and B 
 

Weight Number of 
SDs of 
System A 

Weighted 
A 

Number of 
SDs of 
System B 

Weighted B 

Blocking (B) 0.4 76 30.4 75 30 
Critical (C) 0.3 84 25.2 130 39 
Major (Maj) 0.2 330 66 164 32.8 
Minor (Min) 0.08 170 13.6 210 16.8 
Inconsequential 
(Inc) 

0.02 15 0.3 2 0.04 

 

Applying the weighting model showed us the following: for system A, the Major type has the 

highest weighted score with 66 followed by the Blocking type with a 30.4-weighted score and 

the Critical type with a 25.2 weighted score. The Minor type only scores 13.6 even though their 

number was twice as big as the Blocking SDs’ number.  

For system B, the Critical type is the highest with a 39-weighted score, followed by the Major 

type with a 32.8 weighted score, and the Blocking with a weighted score of 30. Even though 

the number of Minor SDs is the highest, their weighted score is only 16.8. Meaning, their impact 

on the system are half as many as the Critical SDs with 130 SDs initially. These results show 

us that the impact of SDs depends not on their number, but rather on the level of effect they can 

have on the system operations. Thus, counting only their number is inefficient to identify their 

effect on systems.  

Similarly, we applied this weighting model on the monthly results to appreciate the real impact 

these SDs have on the systems on a monthly basis. 
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Table. 4.3 Monthly weighted scores for system A 

Year Month B W-B C W-
C 

Maj W-
Maj 

Min W-
Min 

Inc W-
Inc 

2015 Jan 2 0.8 3 0.9 28 5.6 10 0.8 0 0  
Feb 1 0.4 5 1.5 14 2.8 11 0.88 0 0  
Mar 7 2.8 8 2.4 34 6.8 14 1.12 0 0  
Apr 2 0.8 5 1.5 37 7.4 9 0.72 2 0.04  
May 3 1.2 1 0.3 20 4 5 0.4 0 0  
Jun 0 0 2 0.6 25 5 14 1.12 0 0  
Jul 0 0 1 0.3 5 1 4 0.32 0 0  
Aug 2 0.8 7 2.1 8 1.6 7 0.56 3 0.06  
Sep 5 2 11 3.3 18 3.6 15 1.2 4 0.08  
Oct 7 2.8 4 1.2 22 4.4 6 0.48 0 0  
Nov 15 6 8 2.4 37 7.4 20 1.6 3 0.06  
Dec 7 2.8 5 1.5 18 3.6 12 0.96 3 0.06 

2016 Jan 8 3.2 9 2.7 25 5 13 1.04 0 0  
Feb 5 2 3 0.9 10 2 6 0.48 0 0  
Mar 5 2 9 2.7 15 3 17 1.36 0 0  
Apr 7 2.8 3 0.9 14 2.8 7 0.56 0 0 

 

Considering the month of September for system A, we can see that although the number of SDs 

of the Minor type are three times higher than the Blocking ones, their impact on the system is 

lesser than the one of the Blocking type. In fact, the Minor SDs are 15 and their weighted score 

is 1.2, while the Blocking type number is five, but their calculated weighted score is two (see 

Table 4.3). Same observation goes for the month of March 2015 where the number for Major 

SDs is five times higher than the one for Blocking, but the Blocking SDs have more impact on 

the system than the Major SDs during this month.  
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Table. 4.4 Monthly weighted scores for system B 

Year Month B W-B C W-
C  

Maj  W-
Maj 

Min W-
Min 

Inc W-
Inc 

2015 Jan 3 1.2 13 3.9 12 2.4 18 1.44 0 0  
Feb 2 0.8 4 1.2 9 1.8 8 0.64 0 0  
Mar 4 1.6 6 1.8 14 2.8 8 0.64 1 0.02  
Apr 5 2 9 2.7 7 1.4 21 1.68 0 0  
May 16 6.4 13 3.9 15 3 16 1.28 0 0  
Jun 6 2.4 32 9.6 29 5.8 27 2.16 0 0  
Jul 7 2.8 3 0.9 16 3.2 11 0.88 0 0  
Aug 4 1.6 8 2.4 10 2 2 0.16 0 0  
Sep 4 1.6 10 3 8 1.6 9 0.72 0 0  
Oct 3 1.2 2 0.6 3 0.6 5 0.4 0 0  
Nov 0 0 4 1.2 5 1 10 0.8 0 0  
Dec 3 1.2 8 2.4 7 1.4 10 0.8 0 0 

2016 Jan 3 1.2 7 2.1 7 1.4 14 1.12 0 0  
Feb 4 1.6 3 0.9 13 2.6 26 2.08 0 0  
Mar 4 1.6 2 0.6 2 0.4 9 0.72 0 0  
Apr 7 2.8 6 1.8 7 1.4 16 1.28 1 0.02 

 

For system B, we have similar observations as for system A. In fact, for the month of April 

2015, the number of Minor SDs type is 21, four times higher than the ones of the Blocking type 

(5) but the impact of these Blocking SDs (2 weighted score) on the system is higher than the 

ones of the Minor ones (1.68) (see Table 4.4.). We have a similar observation for April 2016, 

where the number of Minor SDs type (11) is almost four time higher than the ones of Critical 

(3) but the impact of Critical SDs (0.9) on the system is higher than the ones of Minor (0.88). 

4.3.2 Discussion	
These different results demonstrate that the impact of a SD depends not only on their number 

but also on the type of severity category under which it falls. Thus, efficient management of 

SDs required their classification based on a severity scale in order to evaluate their real impact 

on a given system. This proves that to efficiently manage these SDs, it is necessary not only to 

mine them, but also to classify them based on their severity. Furthermore, this second 

classification demonstrates that—in some situations—mining SDs could provide uncompleted 

or insignificant results for software teams and to system owners. These situations happened 

when the objectives, the mining techniques, and the analysis were not well defined or the right 

interpretation was not put in place. To avoid such situations, we propose a conceptual tool to 

guide practitioners in elaborating SDs strategy and objectives. In fact, we named this conceptual 
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tool “the SD managerial conceptual tool” [30]. The SD managerial conceptual tool is a 

combination of a refinement of the change indicator conceptual tool we presented in the 

EVOLIS classification, and “the strategic management model” proposed by Wheelen and 

Hunger in the business field [84]. In difference to the strategic management model, our 

conceptual tool is designed to target the field of SDs mining management. The aim of this 

conceptual tool is to help software portfolio managers as well as software maintenance teams 

to define their SDs mining management strategy and to specify concrete actions to put in place 

with this strategy in mining SDs. We will present this conceptual tool in the next section. 

4.3.3 SD	Managerial	Conceptual	Tool	

4.3.3.1 	The	motivation	and	the	role	of	the	SD	managerial	conceptual	tool		
The SDs mining falls under the software evolution and maintenance phase. In fact, mining 

SDs is a complex set of activities; it goes from selecting a technique to mine the SDs, 

interpreting the obtained results, to taking a decision based on the obtained results. Moreover, 

each software system is unique, thus needs a specific SDs mining management strategy, e.g., 

the SDs of the system Waterfox [85] are not the same for Firefox [86], even though they have 

similar functionalities and purpose. Due to this complexity, inefficient SDs mining can lead to 

situations such as: 

1. the results obtained from the SDs’ mining are inaccurate for the SDs team as well as for 

the maintenance team and consequently, irrelevant for the SD product owner; 

2. the SDs mining is requiring much more resources than planned and software portfolio 

manager, the maintenance team, and the mining team failed to take appropriate 

decisions in order to improve the quality of the software system based on the mining 

results; 

3. the mining goals are poorly aligned with the strategy and the objectives of SDs 

management and the product owner’s business needs, and; 

4. control and evaluation measures for obtained results are missing. To avoid these 

problems, we are proposing this conceptual tool to guide SDs miners wishing to improve 

their mining project. 

In order to provide a solution that not only addresses these types of situations, but also guides 

software maintenance teams to manage accurately the mining of their software system, we 

proposed this conceptual tool.  
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With this tool, we empower the software portfolio manager to manage efficiently and 

effectively the mining of the SDs of their systems. It is used when the system is in its 

maintenance phase, and only if there is a gathering of SDs or CRs on the system overtime. It 

also empowers any researcher or practitioner to conduct the mining of the SDs of any E-type 

system, which reach a maintenance phase. This tool has two main levels: the strategy level and 

the operational level. 

At the strategy level, the application of this tool suggests to both the software portfolio 

managers and the SDs mining team leader to adopt a SDs mining strategy that is aligned with 

the objectives set by the software owners concerning the quality of their software system (stage 

1).  

At the operational level, this tool suggests to the SDs mining team to break down the selected 

mining strategy into concrete SDs mining goals (stage 2). At the same level, it also recommends 

that, for each objective or goal, a number of actions or activities need to be performed in order 

to reach the set objectives (stage 3). Finally, this tool recommends the implementation of 

corresponding control measures in order to evaluate the success of their actions (stage 4). We 

present this tool in form of a procedure to follow. In the next section, we present the four stages 

of this conceptual tool with a concrete example for each stage. 

4.3.3.2 Presentation	of	the	SD	managerial	conceptual	tool		
The conceptual tool is defined in four stages [30]:  

1. The first stage consists of defining the SDs mining management strategy in alignment 

with the needs of the software product owner. The strategy must be broken down into 

short- or medium-term goals to achieve. The software team as well as the product owner 

must approve these goals, e.g., a defect mining management strategy may improve the 

software quality with the development of programs with few SDs for each software 

version released. The approval of these goals will lead to the second stage. 

2. The second stage, which happens on the operational level, consists of converting this 

strategy into concrete objectives. Referring to the previous example, the set of objectives 

will be to improve the detection of the defect modules and predict SDs.  

3. Following this, each objective must be broken down into terms of specific actions to be 

performed, e.g., classifying SDs according to their priorities. In addition, members of 

the SDs mining team are responsible for implementing each of these actions.  
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4. Following this and depending on the actions put in place, software teams must carefully 

select control measures to evaluate the state of the actions, e.g., the ratio of the corrected 

high level prioritized SDs over the total number of SDs received. 

Finally, the software team must define a list of actions to establish in order to correct cases 

where the set objectives have not been reached, e.g. reorganization the process to detect SDs. 

Fig. 4.6 presents the process to follow to implement the proposed conceptual tool. In addition, 

we illustrate the application of this concept tool on system B’s data. 

 

 

Fig. 4.6 Software defect managerial conceptual tool [30] 
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In order to apply the proposed conceptual tool to improve and control the SDs mining 

management in practice, we decided to conduct a proof of concept of our software system B in 

the next section. 

4.3.4 Applying	the	Managerial	Conceptual	Tool	on	System	B	
• Stage 1 and 2: Strategy definition and set of objectives  

In alignment with the owner’s objective, our strategy was to mine SDs in order to reduce the 

impact of SDs on the system to limit the system’s unavailability time (stage 1). In the next step 

(stage 2), we cascaded the defined strategy into different objectives such as reducing the impact 

of defects on system B, and possibly improving the correcting process of the SDs. In the next 

step, we defined a set of actions to implement the objective of reducing the defects’ impact on 

the system (stage 3).  

• Stage 3: The Classification of SDs of system B based on their severity  

As a concrete action to reduce the effect of SDs on this system, we decided to evaluate the 

severity impact by classifying them based on the IEEE 1044-2009 [19] severity attribute. We 

present the results of this classification as follows:  

• Results of System B Severity classification 

Severity Blocking Critical Major Minor Inconsequential Total 
2015 57 112 135 145 1 450 
Jan 3 13 12 18 0 46 
Feb 2 4 9 8 0 23 
Mar 4 6 14 8 1 33 
Apr 5 9 7 21 0 42 
May 16 13 15 16 0 60 
Jun 6 32 29 27 0 94 
Jul 7 3 16 11 0 37 
Aug 4 8 10 2 0 24 
Sep 4 10 8 9 0 31 
Oct 3 2 3 5 0 13 
Nov 0 4 5 10 0 19 
Dec 3 8 7 10 0 28 
2016 18 18 29 65 1 131 
Jan 3 7 7 14 0 31 
Feb 4 3 13 26 0 46 
Mar 4 2 2 9 0 17 
Apr 7 6 7 16 1 37 
Total 75 130 164 210 2 581 
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• Stage 4: The selection of control measures  

This stage is similar to stage 4 of our previous change indicators conceptual tool. There are 

two important aspects to consider when selecting the evaluation metrics at the fourth stage of 

this conceptual tool. The first one is to choose metrics based on the objective or action to 

evaluate, e.g., a ratio of the corrected SDs over the total number of SDs received to evaluate the 

SDs’ correction process. The second one is to take into consideration the Critical level [87] of 

the system being managed. This Critical level can relate to its business, security, and safety 

aspect. In addition, to determine the Critical level of the system, software teams must consult 

and get the approval of the product owner.  

To track and evaluate the success of our objective, we selected a metric as an indicator (stage 

4). In this regard, we defined the SDs indicator as a ratio of the weighted value of a type of SDs 

over the total weighted value of this type calculated for a month. This ratio informs us about 

the type of defects that is problematic during the month. We define a problematic case as 

follows: when the weighted value of a certain type of SDs is higher or equal to one-third of the 

total SDs weighted value in a month. One-third of the total weighted SDs is an agreed upon 

limited number a type of SDs may have during a month. The selection of this metric was based 

on system B’s critical mission, which is its availability during the exam periods. We defined 

the indicator as follows [30]: 

𝑛		𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑠	𝑡ℎ𝑒	𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦	𝑡𝑦𝑝𝑒	𝑜𝑓	𝑆𝐷𝑠	𝑡𝑜	𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 

𝑋, 𝑡ℎ𝑒	𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝑆𝐷𝑠 𝑎𝑛𝑑	𝑡	𝑏𝑒𝑖𝑛𝑔	𝑎	𝑡𝑖𝑚𝑒	𝑝𝑒𝑟𝑖𝑜𝑑 

𝐼𝑓	𝑋%𝑡 ≥
∑(𝑋)𝑡
3  

𝑡ℎ𝑒𝑛	𝑖𝑛𝑣𝑒𝑠𝑡𝑖𝑔𝑎𝑡𝑒 

 

 

 

 

Following this, we defined a list of possible actions to undertake in order to correct problematic 

cases: 

• Investigate within the problematic type of SDs to identify poor uncorrected 

defects; 

•  Reorganize the process of correcting the problematic type of SDs; 

• Check other indicators such as the number of correcting defects over the total SDs 

within this category. 
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We must clarify that the choice of action depends on the investigation results. In this regard, an 

investigation must be conducted when an indicator is reached, in order to identify the problem 

and to provide the right fix on time. In Fig. 4.7, we present the result of applying our proposed 

indicator on SDs of system B. 

 

  

  

Fig. 4.7 Application of the software indicator on the system B’s SDs classification based on their 

severity   

These results show us that the Blocking type of SDs counted none of their months as being 

problematic, while the Major type has four months being problematic and the Minor type has 

eight. This implies that although the number of Major type SDs is the highest, it also has been 

constant and not causing that many problems in managing SDs; meanwhile, although the 

number of Minor type SDs is small, it has caused more problems than the other types. Going 

further, we recommend software-mining teams to investigate with the aim of identifying the 

reasons for these problematic cases.  

As answer to the second sub-question, we found that the impact of SDs on an E-type system 

must be evaluated based on a well-defined severity scale. Thus, we found that system A was 
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mostly affected by the Major type of SDs (49%) followed by the Blocking type (22%), then the 

Critical (19%) and finally the Minor type (10%) (see Appendix 5.6). 

For system B, we found that it was mostly impacted by the Critical type of SDs (33%) followed 

by the Major type (28%), then the Blocking (25%), and finally the Minor type (14%) (see 

Appendix 6.7). In the next section, we will analyze the results of our third classification to 

identify which trigger factors generate the most severe SDs impact on our systems.  

4.4 Third	Classification:	EVOLIS	&	Severity	Classifications	
(Step	3)	

As mentioned in chapter 3, the results of this classification are presented in our third paper 

published in Digital Science 2018, Advances in Intelligent Systems and Computing, vol 850 

[31], and in our fourth paper published in ICTS19 Advances in Intelligent Systems and 

Computing, vol 918 [32] (see Appendix 3 and 4). 

After having provided an answer to the two sub-questions in the previous sections, we will now 

answer the main question of our research, which is: “Which SD trigger factors cause the most 

severe SDs?”, by integrating both of the answers obtained above.  

4.4.1 Definition	of	Severe	Software	Defect		
Based on their definition, we separated the severity level into two groups: the first group we 

called “severe SDs” and the second group we named “no severe SDs”. The severe SDs are any 

SD which impacts the system in a way that prevents it from being operational, and may cause 

financial loss or any considerable resource loss to the system owner as well as system users. 

They are Blocking, Critical, and Major severity types. 

The “no severe SDs” are any SD which has an impact level that does not affect the system 

operations: they are of Minor and Inconsequential type. Thus, we only consider the first group 

of severity level to be authentic severe SDs. 

For the rest of our analysis, we will only consider the severe SDs group. Thus, even though we 

will present the results of the Minor as well as the Inconsequential type, they are not part of our 

severe SDs. 
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4.4.2 Discussion	
In this section, we combine the results of classification based on the EVOLIS framework, 

and the second one based on the IEEE Standard 1044-2009 severity [19] attribute for each 

system studied. The combination of both classifications shows that: 

4.4.2.1 System	A	
For system A, the Technology factors are respectively responsible for 11%, 18%, 55%, and 

16% of Blocking SDs, Critical SDs, Major SDs, and Minor SDs (see Fig. 4.8). Similarly, the 

IS architecture triggers represent, respectively 13%, 8%, 69%, and 10% of Blocking SDs, 

Critical SDs, Major SDs, and Minor SDs (see Fig. 4.8). The Business/IS alignment factors 

trigger respectively 17%, 15%, 47%, 20%, and 1% of Blocking SDs, Critical SDs, and Major 

SDs, Minors, and Inconsequential SDs. Finally, the IS/user fit triggers represent, respectively, 

7%, 10%, 32%, 45%, and 6% of Blocking SDs, Critical SDs, Major SDs, Minor SDs, and 

Inconsequential SDs (see Fig. 4.8). 

  

  

Fig. 4.8 Trigger factors and severity of system A’s SDs   
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As we mentioned earlier in the severity classification section, limiting the severity SDs 

classification to only their number does not provide the right insight for understanding and 

interpreting the data. Therefore, we introduced our proposed weighting model into this third 

classification. We then calculated the weighted score (W) for each trigger factor group based 

on the severity weight. We then proceed to analyze only the data of severe SDs (see Table 4.5).  

Table. 4.5 Severe SDs triggers of system A 
 

Weight ACH W-
ACH 

TCH W-
TCH 

UI W-UI B.IS W-
B.IS 

Blocking 0.4 18 7.2 19 7.6 15 6 24 9.6 
Critical 0.3 12 3.6 30 9 21 6.3 21 6.3 
Major 0.2 100 20 93 18.6 71 14.2 66 13.2 
Total 0.9 130 30.8 142 35.2 107 26.5 111 29.1 

 

  

  

Fig. 4.9 Severe SDs Triggers of System A 
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Introducing the weighted model shows that for system A, the Technology trigger factors cause 

in the majority 53% of Major SDs followed by 25% of Critical SDs, and finally 22% of 

Blocking SDs (see Fig. 4.9). Similarly, the IS/user fit factors cause 53% of Major SDs, followed 

by 24% of Critical SDs, and finally 23% of Blocking SDs (see Fig. 4.9). The third group of 

trigger factors is the IS architecture trigger factors group. The IS architecture factors cause in 

majority 65% of Major SDs followed by 23% of Blocking SDs, and finally 12% of Critical SDs 

(see Fig. 4.9). Finally, the Business/IS alignment trigger factors cause 45% of the Major SDs, 

33% Blocking SDs, and 22% of Critical SDs (see Fig. 4.9). 

In overall, the results show for system A that the Technology trigger factors with the highest 

weighted score of 35.2 are responsible for most of the severe SDs followed by the IS 

architecture factors, with a weighted score of 30.8. Then the Business/IS alignment, with 29.1 

and finally the IS/user fit trigger factors, with a weighted score of 26.5 (see Fig. 4.10). 

 

Fig. 4.10 System A’s total weighted score for Severity and EVOLIS classifications 

4.4.2.2 System	B		
We performed the same analysis we did on system A on system B. The combination of the 

EVOLIS framework and the severity results for system B show that the Technology triggers 

represent 16% of Blocking SDs, 23% Critical SDs, 28% of Major SDs, and 33% of Minor SDs 

(see Fig. 4.11). The Inconsequential SDs do not have any Technology factor as a trigger. The 

second group of trigger factors, the IS architecture triggers, represent, respectively 15%, 28%, 
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32%, and 25% for Blocking SDs, Critical SDs, Major SDs, and Minor SDs (see Fig. 4.11). The 

Business/IS alignment factor triggers shows the first place being at 50% of Minor SDs, in 

second place 27% with Major SDs followed by 17% of Critical SDs, and 6% of Blocking SDs 

(see Fig. 4.11). There are no Inconsequential SDs in this group. More than the half of the SDs 

triggers by IS/user fit factors are of the Minor type (51%), then of Major type (25%), Critical 

type (17%), Blocking (5%), and finally of Inconsequential type (2%) (see Fig. 4.11). 

 

  

  

Fig. 4.11 Trigger factors and severity of system B’s SDs 

Similarly, as in the case of system A, we also calculated the weighted score (W) for each trigger 

factor group based on the severity weight for system B. We then proceeded to analyze only the 

data of severe SDs of this system (see Table 4.6). 
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Table. 4.6 Severe SDs triggers of system B 

  Weight ACH W-
ACH 

TCH W-
TCH 

UI W-UI B.IS W-
B.IS 

Blocking 0.4 16 6.4 51 20.4 6 2.4 2 0.8 
Critical 0.3 30 9 74 22.2 21 6.3 5 1.5 
Major 0.2 34 6.8 92 18.4 30 6 8 1.6 
Total  0.9 80 22.2 217 61 57 14.7 15 3.9 

 

  

  

Fig. 4.12 Severe SDs triggers of system B 

Similarly, looking at system A’s results, we can see that 40% of the severe SDs caused by the 

IS architecture trigger factors are of Critical type, followed by 31% that are of Major type, and 

29% that are of Blocking type (see Fig. 4.12). There is only a slight difference between the 

Major SDs group and the Blocking SDs group (see Fig. 4.12). The Business/IS alignment 

trigger factors cause 41% of Major SDs, 38% Critical, and 21% of Blocking SDs. The 
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Technology trigger factors cause in majority 36% of Critical SDs followed by 34% of Blocking 

SDs, and finally 30% of Major SDs (see Fig. 4.12). Finally, the IS/user fit factors cause 43% of 

Critical SDs, followed by 41% of Major SDs, and finally 16% of Blocking SDs (see Fig. 4.12).  

In overall, the results show for system B that the Technology trigger factors with the highest 

weighted score of 61 are responsible for most of the severe SDs, followed by the IS architecture 

trigger factors, with a weighted score of 22.2. Contrary to system A, the third position is held 

by the IS/user fit triggers with a weighted score of 14.7 and finally the Business/IS alignment 

coming in last with a weighted score of 3.9 (see Fig. 4.13).  

 

Fig. 4.13 System B total weighted score for Severity and EVOLIS classifications 

In summary, as answer to our main research question, “Which types of trigger factors generate 

the most severe SDs on a given E-type software system?”, we found that: 

Ranking first is the Technology trigger factor group with a weighted score of 35.2 for system 

A and a weighted score of 61 for system B. It is followed by the IS architecture trigger factors 

group with a weighted score of 30.8 for system A and a weighted score of 22.2 for system B. 

In the third position is the Business/IS alignment with 29.1 for the system A and IS/user fit with 

a weighted score of 14.7 for system B. In the last position are the Business/IS alignment with a 

weighted score of 3.9 for system B, as well as the IS/user fit alignment with a weighted score 

of 26.5 for system A. With these results, we can conclude that in our case the Technology and 
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the IS architecture trigger factors are the leading couple in causing severe SDs. We emphasize 

on the fact that we consider as a severe SD any SD having a Blocking, Critical, or Major severe 

impact on a system. 

4.4.3 The	Origins	of	Severe	Software	Defects	Method	
Based on the results of this third classification, we propose a method in order to identify the 

origins of severe SDs on any E-type system. This method is addressed to people responsible for 

managing and controlling software evolution such as software portfolio manager, software 

maintenance teams, software development teams, and to researchers studying software 

evolution and conducting studies in the SD/CR mining field. This method empowers these 

stakeholders to identify the origins or sources of severe SDs on any E-type system. We named 

this method “The origins of severe software defects method”.  

This method consists of three stages: SDs collection or acquisition stage, SDs analysis stage, 

and the SDs classification stage. We define each of these stages as follows: 

Ø 1st stage: The collection stage consists of collecting SDs into a software repository. 

Ø 2nd stage: The analysis stage consists of identifying the trigger factors (origins) of the 

SDs and evaluating their severity impact on the system. We named a SD having its 

origin and severity impact identified “Analyzed SD” (ASD). 

Ø 3rd stage: The classification stage consists of grouping the analyzed SDs (ASDs) at the 

precedent level into two groups: the group of severe SDs and the group of nonsevere 

SDs. Any ASD that causes a partial or total disruption on the system’s essential 

operations falls under the second group. The severity seriousness of the SDs is defined 

by the person responsible of software engineering in this context. Any other ASD having 

no impact on the system’s essential operations must be categorized into the group of 

nonsevere SDs. Performing this classification will lead to identify the origins of severe 

SDs of the E-type system being studied.  

We represent this method in pyramid form. The first stage being the initial phase, we place it at 

the base of the pyramid. It is followed by the second stage in the middle of the pyramid and 

then the third stage at the top of the pyramid (see Fig 4.14). In summary, the activities at the 

three stages are presented as follows: 

At the first stage (the collection stage), the activity to perform is: 

• The collection of SDs. 
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At the second stage (the analysis stage), the activities to perform are: 

• For each SD, identifying its trigger factor or origin, and identifying the severity of its 

impact on the system.  

At the third stage (the classification stage) the activity to perform is: 

• Classification of the ASDs based on their severity impact into severe and nonsevere 

groups.  

 

Fig. 4.14 The origins of severe software defects method. 

To answer the question “How to identify the origins of severe defects on evolving information 

systems?”, we provide “the origins of severe software defects method”. Applying this method 

will help researchers as well as practitioners in software management and controlling fields to 

identify the trigger factors of severe SDs of any E-type system.  
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5 Conclusion	

Not only do SDs cause huge financial loss to system owners, but their management also 

causes up to 80% of the total cost of a system during its life cycle [23]. In this context, 

identifying the ones which may potentially generate high financial damage was the goal of our 

research. To reach this goal, we conducted two case studies on two systems in the field of 

education. We studied the SDs of these systems over several months. We classified them based 

on two SD classification concepts: the EVOLIS [9] and their severity [19]. Each of these 

classifications was done to answer the two sub-questions necessary to be able to answer our 

main question. In the next part, we will present the answer we have for each question, as well 

as our contributions to and the limitations of this research.  

5.1 Contributions	

• The main practical and theoretical contributions of this research 

This thesis provides practical and theoretical contributions on identifying severe SD trigger 

factors of a given E-type system. The contributions of this research are represented in the 

following three points:  

1. In answering the two sub-questions, we proposed two conceptual tools in order to 

improve the management of SDs. 

2.  In answering our main research question, we proposed a method in order to identify the 

origins of severe SDs on an E-type system. We named it “the origins of severe software 

defects method” (see Fig. 5.1). 

3.  We identified the existing relationship between SD trigger factors and the impact of 

SDs they may cause to a given E-type system in terms of severity.  



 

76 

Conclusion 

• The role of time in these contributions 

These previous contributions could not be possible if we had not considered the notion of 

time. Time is a central aspect of this research. In fact, in order to study the evolution of these 

E-type systems and to propose tools to manage and control this evolution efficiently, we studied 

the dynamism of these two systems. These studies cover a long period from January 2014 to 

December 2016 in our four published papers. We analyzed in detail over a thousand SDs 

resulting in change requests. These change requests are the main drivers of the system change, 

thus leading to a system evolution over time. E.g., considering our first classification, we 

observed the monthly evolution of SDs. This observation led us to propose a conceptual tool 

that will help people concerned with the evolution of E-type systems such as software portfolio 

managers and software maintenance teams in controlling the SDs evolution of their E-type 

systems.  

Furthermore, this specific (monthly) period analysis allowed us to observe the impact some 

events in the studied system’s environment have on the evolution of the system. E.g. reopening 

of schools trigger an unusually high amount of SDs of IS user-fit type for system B.  

5.1.1 Conceptual	Tools	
• Software change indicator conceptual tool [29] 

We presented a conceptual tool as a summary of the steps we followed in this first study. We 

did this in order to provide a tool to software teams and researchers to be able to conduct similar 

studies on different systems. In addition, this conceptual tool provides guidelines on how to 

identify a sudden rise of SDs of a particular category. Furthermore, it provides 

recommendations on how to get prepared in order to handle a problematic rise of SDs of E-type 

systems. We named this tool “software change indicator conceptual tool” [29]. 

Furthermore, to the first sub-question—“which SD factors trigger most of SDs on our studied 

systems?”—we find that for system A, the IS/user fit trigger factors block is in the lead with 

33% of the total SDs, followed by the Technology block with 25%, and finally the Business/IS 

alignment and the IS architecture with 21% each (see Appendix 5.1).  

For system B, the Technology block is leading with 56% of the total SDs, followed by the 

IS/user fit 21%, then the IS architecture 18%, and finally the Business/IS alignment with 5% 

(see Appendix 6.1). 
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• Software defect managerial conceptual tool [30] 

At this point, we presented a refined version of our precedent conceptual tool. This new 

version incorporated the alignment between the strategy and objectives of software mining 

teams with the strategy and objectives of software owners. This tool is to help both parties in 

engaging in mining projects that are most useful for them. We named it “the software defect 

managerial concept tool” [30].  

We also provided an answer to our second sub-question while conducting this study. For the 

second sub-question, which was to evaluate the impact that a SD has on a given E-type system, 

we found that: 

For system A, the Major SDs group is in the lead position with a 66-weighted score, followed 

by the Blocking SDs group with a 30.4-weighted score, and then the Critical group with 25.2, 

the Minor with 13.6, and finally the Inconsequential with a 0.3-weighted score (see Table 4.2).  

For system B, the Critical severe impacts are in the lead with a weighted score of 39 followed 

by the Major type with 32.8, then the Blocking type with a weighted score of 30, the Minor 

group with a weighted score of 16.8, and finally the Inconsequential type with a weighted score 

of 0.04 (see Table 4.2). 

• Integration of results [31] 

Finally, in order to reach our main goal, we integrated both results of the classification by 

EVOLIS and severity. Doing this, we found that the factors triggering most of severe SDs are 

of the Technology type followed by the ones of the IS architecture type [31]. The third position 

is occupied by the factors of Business/IS alignment for system A and by the IS/user fit factors 

for system B. Furthermore, we also proposed a method in order to identify the sources or origins 

of severe SDs on any given E-type system. Researchers as well as practitioners may use this 

method to conduct similar studies on any given E-type system. This method represents a major 

contribution of this research and we will present it once again in more detail in the next section. 

5.1.2 The	Method	to	Identify	the	Origins	of	Severe	SDs	of	E-type	Systems	
To make it possible for other practitioners and other researchers to identify the trigger factors 

(origins) of severe SDs of E-type systems, we propose “the origins of severe software defects 

method”.  

This method consists of three stages: SDs collection stage, SDs analysis stage, and the SDs 

classification stage (see Fig. 5.1). We define each of these stages as follows: 
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Ø The collection stage consists of collecting SDs into a software repository. 

Ø The analysis stage consists of identifying the trigger factors (origins) of the SDs and 

evaluating their severity impact on the system. We named a SD having its origin and 

severity impact identified “Analyzed SD” (ASD). 

Ø The classification stage consists of grouping the analyzed SDs (ASDs) at the analysis 

stage into two groups: the group of severe SDs and the group of nonsevere SDs. Any 

ASD that causes a partial or total disruption on the system’s essential operations falls 

under the group of severe SDs. Any other ASD having no impact on the system’s 

essential operations must be categorized into the group of nonsevere SDs. Performing 

this classification will lead to identify the origins of severe SDs of the E-type system 

being studied.  

 

Fig. 5.1 The origins of severe software defects method.  
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5.1.3 Relationships	 between	 SD	 Trigger	 Factors	 and	 the	 Severity	
Impact	they	have	on	E-type	systems	

To the question of which SD factors trigger the most severe SDs, we found that: 

In the leading position come the Technology trigger factors with 29% of the total weighted 

score for system A and 60 % for system B. They are followed by the IS architecture trigger 

factors, with 25 % for system A and 22% for system B. We can see that in both cases the same 

type of SD trigger factors occupies the first and the second position. Opposed to this, the 

Business/IS alignment occupied third place with 24% for system A, and IS/user fit occupied 

the same rank with 14% for system B. The last position for system A is occupied by IS/user fit 

with 22%, and for system B by Business/IS alignment with 4% (see Appendices 5.5 and 6.5).  

In addition, our analysis portrays that there are two main couples of SDs trigger factor groups, 

one being composed of the Business/IS and the IS/user fit alignment, and the leading couple 

being composed of the Technology and the IS architecture trigger factors.  

Concerning the no severe SDs (we defined as no severe SD any SD having a Minor or 

Inconsequential severity impact on a system), we observed that the majority of the 

Inconsequential SDs were triggered by the IS/user fit factors. This implies that the probability 

of an Inconsequential SD being triggered by either the IS architecture, the Business/IS 

alignment, or the Technology factors is very low or barely existent. In addition, the Minor SDs 

are in majority triggered by the Technology factors for system B (107) followed by the IS/user 

fit triggers (61). For system B, the Minor SD types are triggered by the IS/user fit (100), 

followed by both the Business/IS alignment (28) and the Technology (27) (see Appendix 6.4).  

5.2 Limitations	and	Future	Works	

5.2.1 Limitations	
A common criticism the case study methodology faces in the literature is that its findings are 

not representative enough to draw a general theory [88]. Similarly, the number of cases used 

was a bit limited to generate a general theory concerning the factors that trigger severe SDs for 

E-type systems. Nevertheless, both results show us that the Technology factors in particular 

have the highest calculated weighted score to be at the source of severe SD. Thus, we argue that 

a special attention must be paid to the system component presenting vulnerabilities towards the 

technology trigger factors. In addition, it makes sense to pay particular attention to this type of 
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SDs because they can spread and affect other systems as well. Our results in fact confirm the 

bug propagation concept [89], [90] because the technology triggers formed a couple with the 

architecture triggers: one drives the other one. Furthermore, these findings can serve as 

provisional truth and can be considered as informative knowledge to other software teams in 

regards to the management of their E-type systems, more precisely for managing SDs of E-type 

systems. 

In addition, during this research, we only focused on the study of SDs without looking at the 

data of real activities or actions performed by the software team members when correcting 

them. A possible perspective would have been to analyze both the SDs and their change 

response using our method in order to compare their results. This may be addressed in another 

research project.  

5.2.2 Future	Works	
Further exploration of the origins of severe software defects method opens an opportunity to 

develop an artifact, which can automatically identify a SD’s source based on its description. 

We will present this artifact in the next section.  

5.2.2.1 Practical	perspective:	A	tool	to	manage	software	defects			
From a practical perspective, a possible future work will be to build an automatized SD 

management system (SDM) based on our proposed method. Just like the method, this SDM 

system will inform in real time on the real impact of SDs and their sources. This system will 

help software maintenance teams and software portfolio managers in managing their system’s 

SDs by deploying the right resource at the right moment on the right instance. It also allows 

them to have an overview of the actual state of their systems. More precisely, to have an insight 

of their system portfolio, with information such as which systems are requiring more resources 

for maintenance. Having such knowledge will improve their decision-making in managing a 

system’s life cycle. Thus, it will help them to pilot the evolution of their systems and surely 

reduce the cost of the system maintenance.  

The SDM system will be made up of four main components. Each component represents one 

of the stages of the origins of severe software defects method. 

• Component 1: SD collection 

The first component is a data store component. Its role is to extract, transform, and load (ETL) 

SDs data from software repositories and other software bug-reporting platforms (e.g., helpdesk, 
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emails, Jira [56]) into the SDM system. This component corresponds to the SDs collection 

stage. This component will gather all the necessary information on SDs in one place for 

analysis, and thus, allowing an easy access to SDs information for the software development 

and maintenance teams.  

• Component 2: SD trigger factors identification 

The second component will be either a natural language processing (NLP) solution or an 

artificial intelligence system. This component will have a double role. First, it will analyze each 

SD description in order to retrieve the semantics of it. Second, based on the semantic of the SD 

description it will identify the source of this SD. To assume these double roles, this component 

will integrate notions in the domains of linguistic analysis, machine learning, and ontology 

engineering. This component corresponds to the second stage of our method. It will be 

connected to the first component in order to access SDs information. It will perform a 

classification similar to the first classification we did for this research. 

• Component 3: Evaluation of SD impact  

The third component will evaluate the severity impact of each SD, as we did with our second 

classification. To perform this evaluation, this component will consider on one side the type 

and the amount of resources used to solve the SDs. On the other side, it will also consider the 

financial loss a SD causes the system owner and system users. Based on these two evaluations, 

this component may classify SDs according to their severity impact. This component also falls 

under the second stage of the origins of severe SDs method. As well as the second component, 

this third component will be also connected to the first component in order to have access to 

SDs’ information. 

• Component 4: A dashboard for displaying E-type systems’ SDs characteristics  

Finally, a fourth component will integrate the results of the 2nd and 3rd components in order 

to inform software teams on types of SDs having more impact on their E-type systems. This 

last component will be a dashboard where software managers can consult the state of each 

system within their software portfolio. It will present results such as the results we obtained 

doing our third classification. 

The actual state of existing knowledge does not provide enough tools in order to build such 

system accurately. In fact, the existing semantic analysis tools are limited to a system to draw 

accurately the semantic knowledge from a sentence [91], [92]. In the future, we hope there will 
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be enough improvement in this area of research in order to apply those novelties to design our 

proposed SDM system.  

5.2.2.2 Research	perspective	
The results we obtained from analyzing these systems correspond to events that those systems 

went through during their life cycle. In fact, the system projects’ managers confirmed to us that 

the peak of certain types of SDs at certain periods of time corresponded to special events that 

happened to the systems during these periods of their life cycle. Based on these feedbacks, we 

argue that applying our origins of severe SDs method to analyze more E-type systems over their 

entire life will help to identify the evolving characteristics of E-type systems. These 

characteristics can be classified into groups to represent different stages of evolution of E-type 

systems. Thus, it will present as an artifact and its application will help both practitioners and 

researchers to determine the life stages of E-type systems.  

Finally, another future possibility will be to conduct more case studies on other E-type systems 

of different domains. This not only in order to confirm our results, but also to compare these 

results among themselves and possibly generate a theory from these future results as well as 

our results.  
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Abstract. This paper presents a framework to identify a problematic or uncontrollable rise in the 

number of software change requests and to take right actions to fix it. With this work, we propose the 

use of an acceptable limit number of change requests as indicators to track the evolution of software 

change requests. The change indicators are used to identify a periodical sharp rise in demands of change 

requests fast enough and provide the right fix on time. Not only these indicators track the evolution of 

change request, but they also help to identify the right solution to address the triggers of these change 

requests.  

 

Keywords: Change requests, Indicators, Maintenance 
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1 Introduction 

Software maintenance is defined in IEEE Standard 1219-1998 [1] as “The modification of a 

software product after delivery to correct faults, to improve the performance or other attributes, 

or to adapt the product to a modified environment” [p1,2]. Software developed in the agile 

context is not an exception to this IEEE definition. These faults corrections and performance 

improvements are expressed in the form of change requests (CRs). These CRs are collected and 

saved in repositories such as JIRA, and Redmine. CRs are classified into different categories 

[3], [4] based on different methods. They are classified either by their assignments [5], [6], their 

types  [3], their duplication [7]; or based on the type of activities performed to solve them [8] 

e.g. corrective maintenance, adaptive maintenance [9]. The maintenance team, as well as the 

development team, often implement these CRs without systematically checking the main 

original causes of these faults. This lack of attention may be encouraged by either a large and 

overwhelming number of CRs [10],[11] or by the limited resources to find, solve and implement 

these changes [12]. In fact, the sharp rise in the number of change requests on software becomes 

problematic in situations where the number of requests is extremely high and their correction 

is poorly done [7]. The probability that those poorly corrected bugs and implemented CRs lead 

to catastrophic failure, consequently huge cost in the near future are extremely high [13]. In 

addition, different studies have proved that the implementing software CRs activity cost up to 

90% of the total cost of software product [14],[15]and [16]. For these reasons, the question we 

address in this paper is “How can a dramatic rise in the number of CRs be identified and 

solved?”  

We conduct this study in three parts: (1) we classify change reports using the “EVOLution of 

Information System (EVOLIS)” [4] conceptual framework based on the factors that trigger 

software evolution. In our case, an evolution is as a group of CRs addressed to a system over 

its lifetime. (2) For each category of CRs, we propose to define a maximum number of CRs 

above which the software maintenance team must be alerted. This maximum is referred as the 

CR indicator. We set indicators for each category in order to track the evolution of these CRs 

and (3) we suggest possible actions to consider in some problematic cases. 

In the following sections of the paper, we first introduce the definition of a software change 

request and its characteristics. Second, we present the methodology we use and explain the 

steps in classifying the CRs before presenting our results. Finally, we present a four-step process 

to implement the indicators and the benefits they bring as a contribution of the paper. 
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2 Literature review  

2.1 Software Change Request  

Before a bug report or software problem becomes a change request (CR), it goes through a 

process similar to the incident management process proposed by ITIL [17]. The process 

proposes different system support levels. At level one or help desk, the user reports problems 

she faced using the software system. When a satisfactory answer could not be provided to the 

user at this level of support, the problem becomes a change request. From this point, each CR 

enters the CR cycle where an analysis determines whether it will be accepted or not, then to 

whom it will be assigned, and finally how it will be solved and tested to ensure that it has been 

solved [18]. This is called a Generic change request workflow [19] (see Fig. 1). At this stage of 

the cycle, the CRs and the associated decisions are saved in a repository.  

CRs are managed with the help of platforms where stakeholders such as managers, developers, 

and customers coordinate activities and share information [19]. These platforms support change 

request repositories. A CRs repository helps to conduct studies in different fields such as 

software evolution, change propagation in relation to the software coding, fault analysis, 

software complexity, and software reuse [20]. A CRs repository not only contributes to other 

software fields, but it is also a field of studies in itself. Mining CRs repository treats subjects 

such as how to eliminate duplication of CRs, how to choose a CRs repository [19]. It also 

presents solutions on how to manage CRs, from their classification to the choice of the 

developer who will solve them [8], [21]. However, analyzing the literature, we found that the 

question of how to manage these CRs, more precisely when and how to access their overload 

and which measures must be put in place to mitigate this overload, is not explored in detail 

[7],[10].We address this question in this paper by providing indicators to gauge the actual state 

of CRs. In the next section, we present the framework EVOLIS used to classify the CRs. 
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Fig. 1. Generic change request workflow [19]. 

2.2 Presentation of EVOLIS framework 

According to the authors, EVOLIS [4] framework classified CRs as evolution based on factors 

that trigger them. “EVOLIS can be caused by a large variety of factors: bugs that need to be 

fixed, users that wish to have new functionalities, new market opportunities that require new 

software features, performance standards that the system must reach, technical changes in the 

environment with which the system must interact, obsolescence of applications and so on” 

[p2,4]. EVOLIS presents four categories or blocks of CRs: (1) IS/Users fit change requests 

(U.F-CRs), defined as any request related to the user interface, the user documentation and 

aptitude to use the system. Simply, the authors “classify as IS/user fit each activity during an 

evolution regarding directly users or when the evolution only alters the fit between IS and users 

without altering business functionalities” [p4,4]. (2) The Technology change requests (T-CRs) 

are related to changes that concerns the software as well as the hardware platforms as 

information system components. As example, they stated that “when reason like performance, 

updates, preventive maintenance and so on motivate evolutions of the software or hardware” 

[p5,4]. (3) IS architecture change requests category (A-CRs), according to the authors this type 

of change request concerns “different types of integration evolution, namely an evolution of 

integration among components of the system, among business functionalities, or an integration 

with systems outside of the company.”  [p4,4].(4) The Business-IS alignment change requests 

(B.IS-CR) “addresses the co-alignment between business and information systems” [p3,4]. 

There are two type of alignment under this category: company external environment alignment 

and evolution-oriented alignment. For this study, we classified each change requests that is 

related to align IS to the actual or future business scenario and to the external organization 

environment alignment as the B.IS CRs. 
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3 Methodology 

To answer the question of this paper, we conducted two case studies. We chose this 

methodology to be able to study software CRs in a real life, in the organizational context [22]. 

This methodology allows us to study software CRs in their natural settings [23] and also to 

generate a framework from this observation. Thus, we collected the data from an educational 

organization CRs repository. Two software development and maintenance teams provided the 

data.  

Firstly, we conducted the case on software A. Secondly, we evaluated and confirmed our 

findings in case A by testing them on system B. The two systems are developed in-house using 

the scrum agile method. Both systems are school management systems. System A has been 

developed to help schools in managing grades, courses and posting of their students. The system 

B has been developed to manage the hiring process of teachers and their assignment to classes. 

The change repository tool used by this organization is JIRA. We analyzed the CRs of the two 

systems A and B, over a period of 16 months (January 2015-April 2016). System A has nine 

released versions over this period. The first version of the system A had been released middle 

2012. System B has 10 released versions over the same period. System A had 629 CRs and 

system B had 1450 CRs. We analyzed the CRs of these systems by classifying them with 

EVOLIS framework  [4].  

3.1 Data Analysis 

Each incident report (IR) is characterized by a source, a description and a help desk person 

handling the incident. Incidents that could not be solved by the help desk team become CRs 

and are saved in the repository. The classification of the IR is done in two parts. First, we group 

the change reports into seven groups based on their descriptions. Then we classify these groups 

into a four-trigger factor of CRs from EVOLIS. Based on the description of the change reports, 

we identified seven main groups:  

1. Change reports related to the user ability to manipulate the system 

2. Change reports related to the user interface 

3. Change reports related to system error or system bug 

4. Change reports related to another system different from the system in use 

5. Change reports related to the business and processing rules 

6. Change reports related to the system database and mainly on user access privileges 

7. Change reports related to testing of the system done by the user.  
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The seven groups have been classified into the four CRs groups of EVOLIS framework.  Table 

1, classification of change reports into EVOLIS CR trigger factors categories, presents this 

result.  

Table 1. Classification of the changes reports into EVOLIS CR trigger factors categories: 

   User User 
Interface 

User 
test 

System 
Bug 

Another 
system 

Rules/ 

Process 

User 
Privilege/ 

Database 
EVOLIS Business–IS 

Alignment 
(B.IS-
CR) 

       

IS/Users Fit (U.F-
CR) 

       

Technology (T-
CR) 

       

IS/Architecture (A-
CR) 

       

4 Change Indicator 

4.1 Data Analysis of System A 

The results of analyzing CRs on system A based on EVOLIS [4] framework are shown in Table 

2, System A change request categories. This table presents the number of CRs for each EVOLIS 

CRs category from January 2015 until April 2016 on system A. 
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Table 2. System A change request categories 

Month A-CRs B.IS-CRs T-CRs U.F-CRs Total 

CRs 
January 5 15 3 7 30 
February 0 12 6 27 45 
March 3 4 6 10 23 
April 2 14 9 25 50 
May 5 8 10 16 39 
June 19 20 17 25 81 
July 13 4 7 10 34 
August 9 8 6 20 43 
September 1 4 9 13 27 
October 1 1 2 6 10 
November 9 2 19 11 41 
December 4 8 10 6 28 
January 21 11 9 13 54 
February 16 13 20 16 65 
March 4 5 12 4 25 
April 10 8 10 6 34 
Total 122 137 155 215 629 

 

 

During the classification of CRs of system A based on their description or factors that trigger 

them (EVOLIS), we observe that the number of CRs varies among different categories and 

from one month to another. This raised two questions: (1) How to evaluate the level status of 

CRs? And (2) on which bases one can prove that CRs of one month are overloaded as against 

another month, to justify the need of allocating enough resources to address this excess of CRs? 

4.2 Definition and Implementation of the Change Indicator on System A 

 The absence of standards to evaluate which month has a CRs overload compared to the others 

has prompted us to introduce an indicator as the accepted limit of CRs over a fixed period of 

time, in our case monthly. The purpose of this indicator is to alert software maintenance team 

on the status of software CRs in each category. These categories or types of CRs depend on the 

repository mining techniques [19]. CR indicator is set as a certain limit for each category of 

change above which, CRs must not only be solved but the category concerned must be 

investigated. Due to the variance of the level of CRs month-to-month as well as category-to-

category, we could not base the limit on a fixed amount of change requests. Nevertheless, we 

decided to introduce CRs number limit as an indicator that will help us to identify cases where 
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the rise in the number of changes is unusual. The indicator helps to control the evolution of the 

change request. Moreover, it will trigger corrective actions. 

The Oxford English dictionary defines indicator as "A thing that indicates the state or level of 

something." [24]. Based on this definition, we set the indicator artifact as an arithmetic value 

that informs us on the CRs level in each category. We defined the condition of this artifact 

indicator as follows: "If the number of change requests for a particular month in a category is 

greater than twice the average number of all previous change requests up to this month in the 

same category; then an investigation must be conducted for this month, within this category". 

The condition of our indicators is expressed as follows:  

 

k = 1. . n, k	being	a	month	and 
x, the	change	requests	number	to	test 

𝐼𝑓		𝑥% > 2𝑥̅%+,	(1) 
then	investigate	&	adopt	mitigation	actions 

 

We must precise that the limit setting of the measures to observe depends on the goal set by 

each software team or each organization [9]. In our case, our emphasis is on the sudden increase 

in CRs for a month compared to the number of CRs of the previous months. The application of 

this formula implies that the change indicator calculated for the first month is irrelevant. In case 

of a progressive rise in CRs, another formula will be more appropriate for setting the indicators. 

Our indicator rule is only an example of the form a CR indicator may have. The results obtained 

in applying the indicator to the system A are summarized in Table 3. Months with CRs that 

pass the indicators as limit are marked with gray color in the table. Considering the system A 

and its architecture CRs category, we have three months (May, June, January) for which their 

total number of CRs is twice greater than the average of previous CRs. Consequently, we 

conducted an investigation and we found that those months correspond to a period of a special 

event such as examination as well as the reopen class sessions. This implies that the interaction 

between the system A and the other systems is crucial for the users to perform their activities. 

A possible set of actions to put in place in this situation will be to have a checking of the 

interacting systems before these major events (checking of APIs, of updates, etc.). In Fig.2, we 

present the result of applying CR indicator on system A classified CRs.  
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Fig. 2. System A change requests categories with the indicators 

Table 3. Applying the indicator to categories of CRs system A  

Month A-
CRs 

A-CRs 
Indicator 

B.IS-
CRs 

B.IS-CRs 
Indicator 

T-
CRs 

T-CRs 
Indicator 

U.F-
CRs 

U.F-CRs 
Indicator 

Total 
CRs 

January 5 5.0 15 15 3 3 7 7 30 
February 0 2.5 12 13.5 6 4.5 27 17 45 
March 3 1.5 4 8 6 6 10 18.5 23 
April 2 2.5 14 9 9 7.5 25 17.5 50 
May 5 3.5 8 11 10 9.5 16 20.5 39 
June 19 12.0 20 14 17 13.5 25 20.5 81 
July 13 16.0 4 12 7 12 10 17.5 34 
August 9 11.0 8 6 6 6.5 20 15 43 
September 1 5.0 4 6 9 7.5 13 16.5 27 
October 1 1.0 1 2.5 2 5.5 6 9.5 10 
November 9 5.0 2 1.5 19 10.5 11 8.5 41 
December 4 6.5 8 5 10 14.5 6 8.5 28 
January 21 12.5 11 9.5 9 9.5 13 9.5 54 
February 16 18.5 13 12 20 14.5 16 14.5 65 
March 4 10.0 5 9 12 16 4 10 25 
April 10 7.0 8 6.5 10 11 6 5 34 
Total 122  137  155  215  629 

4.3 Evaluation of the Change Indicator with System B 

In this second case, we applied the same classification and setting up indicator process to the 

system B CRs. Similarly, in the first case, there are some months where the CRs are 

problematic. The results are present in Fig 3, System B change requests with indicators. For 

instance, in the category of user-fit, the month of August has fallen under the investigating 



 

100 

Appendix 1. The Application of Change Indicators in Mining Software Repositories 

criteria. Conducting this investigation helped us to identify a problem related to a change done 

on the user interface; change that prevents users to correct manually the name of participants in 

certain activities.  

 

Fig. 3. System B change requests categories with the indicators 

5 Contributions 

In this section, we describe the four-step process organizations must implement to track the 

evolution of each type of CRs and must be able to identify the excessive ones.  We argue that 

implementing our proposed process will help software maintenance and development team to 

track the evolution of CRs, their state and triggers factors that generate excessive CRs. By 

adopting this process, organizations gain time and resources advantage. In fact, it allows 

software team to point to the exact modules or parts of the software system responsible for the 

sharp rise in CRs. Knowing these affected modules allows taking measures to stop the rise in 

CRs and provides the right solutions in fixing them. Consequently, it reduces the cost of 

software maintenance in general.  

The process to follow to classify CRs and set CR indicators is summarized in these four steps:  

1. Collection of the CRs into a repository. For this purpose, there are existing tools such 

as JIRA and Redmine. 
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2. Classification or triage of these CRs into categories. The triage features are integrated 

into the existing CR repositories cited in the previous step. In case this incorporated 

feature does not satisfy the software team or the project manager, there are other 

frameworks and models or the traditional data mining techniques such as clustering or 

classification algorithms [3]; with which this classification can be done. In our case, we 

use EVOLIS [4] as a CR framework to classify the CRs.  

3. Set a limit for each type of CR over a defined period. At this level, one or more 

indicators must be defined to track the evolution of each type of CRs category. In 

addition, at this step, the indicator definition depends on the objectives set by the 

organization [9] or the project team. Indicators can be defined as a ratio or as a target 

number to reach [24],[25]. In defining these parameters, the team must also consider the 

population size of stakeholders who can report a CR. 

4. Investigation step: Define a set of actions to undertake when an indicator is reached. For 

instance, organize a user training section in case the category related to the user-fit 

indicators is reached. 

Fig. 4 presents the diagram that describes our proposed four-step process in setting the CR 

indicators.  

 
Fig. 4.The steps in setting change request indicators and mitigating actions.  

In case of software emergency maintenance, the question on how to prioritize and manage these 

emergency CRs have already been studied [26],[27]. Different solutions emerged and suggested 

that the software maintenance team may put in place special means for reporting and tracking 

these emergency CRs. The team must also conduct a frequent investigation on these CRs by 

applying our proposed CR indicators concept. This will ensure that possible hidden problems 

and malfunctions related to the IS are identified, so that the right fix is provided on time.   
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6 Conclusion  

Tracking the CR evolution by classifying them based on factors that trigger them provides a 

means for decision-making in software maintenance. We analyzed the CRs of two systems 

using the conceptual framework EVOLIS [4]. As result, we found that tracking CRs only is not 

sufficient to propose the right actions to tackle their triggers, but it is also necessary to set 

indicators to monitor their evolution. In addition, a list of actions must be prepared to handle 

each problematic case. We summarized this result in the four-step process diagram. 

Implementing this four-step process diagram helps to identify which type of CRs trigger factors 

have most solicited the organization resources in maintaining and changing the software 

systems. 

In our future work, we will extend this analysis to the entire software ecosystem to identify all 

potential actors and factors that trigger software changes. We will also identify how to address 

the ones that cause the higher cost to the software development and maintenance. 
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Abstract. Software teams address software defect problems in a simple way: they identify them, 

assign them and resolve them. Nevertheless, studies have proven that having only these activities as 

approaches to handle a large and increasing number of software defects is inefficient. As a solution to 

this, we propose in this study a managerial conceptual tool for mining software defects in order to 

improve the management of SDs. With our proof of concept, we demonstrate how SDs mining 

management can be enhanced from a strategic and operational view. This is done through the precise 

definition of software defects’ management objectives in line with the objectives of the software product 

owner.  

 

Keywords: Defects mining, Software defect management, Control measures. 
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 Introduction 

IEEE standard 1044-2009 [1] defines a defect as: “An imperfection or deficiency in a work 

product where that work product does not meet its requirements or specifications and needs to 

be either repaired or replaced”.  

Not only the software defects (SDs) are present in the whole life cycle of a software product, 

but different studies also proved that 80% of the total cost of the software life cycle is associated 

with the management of the SDs [2]. Having this high impact on the software product, SDs 

management must be crucial to software teams as well as to organizations. Nowadays, the 

management of SDs does not only consists of identifying, assigning, and correcting them, but 

also in mining them. The purpose of this study is to focus on the mining aspect of SDs 

management.  

In fact, there are different studies which propose solutions on how to mine SDs [2], [3], [4]. 

However, most of these existing techniques are limited to the collection, the classification, and 

the assignment of the SDs. In addition, these techniques do not cover the question of how to 

define specific SDs mining management objectives that are aligned with first, the SDs 

management objective, and second, with the objectives of the software product owner. This 

results in a poor resource allocation in mining SDs as well as in the absence of control over the 

SDs management in a software life cycle. In this regard, the problem we address in this paper 

is how to improve and control SDs mining management in alignment with the business 

objectives of the software owner? 

As a solution to this problem, we are proposing the use of our conceptual tool to control the 

mining management of the SDs. This conceptual tool is a guideline with four stages. 

The paper will proceed as follows: first, we will define the software defect and its management 

approaches. Secondly, we will present the conceptual tool that we used to conduct the proof of 

concept. Finally, we will present the results and the advantages that we gained from applying 

it. 

2 Related Works  

The defects are the source of software failures and problems. Software failures are defined as 

“Termination of the ability of a product to perform a required function or its inability to 

perform within previously specified limits” [p5, 3]. 
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In the last decade, SDs management has received a considerable amount of attention from 

researchers. In fact, SDs management has been the center of interest for many studies in 

different software studies subdomains such as software project management, software 

engineering and evolution [6], [7]. Due to the diversity of these studies, we group them into 

branches based on their interest in SDs management.  

The first branch deals with questions such as how to collect and store these SDs. Studies related 

to this branch provide answers to questions such as how to collect SDs or which SDs 

characteristics must be documented [8]. These studies propose solution tools named bug-

tracking systems to help collect SDs. They take the form of a central hub accessible by project 

managers and software developers to manage the software products. Some of these online tools 

are Jira [9] and Bugzilla [10]. 

The second branch deals with questions such as how to assign SDs to developers or how to deal 

with the problem of an SDs duplication [11]. The research in this branch proposes techniques 

and methods such as algorithms to automatically assign SDs to the right developer [12], [13], 

[14] and also techniques to eliminate the duplication of SDs [15]. 

The third branch deals with the triage and the mining of SDs. In the software life cycle, the 

mining of defects presents many advantages [2]. Researchers as well as practitioners in this 

branch have proposed schemas and taxonomies for mining SDs. The best-known schemas are 

(1) The Orthogonal Defect Classification (ODC) of IBM [16], the root cause analysis [1], (2) 

the HP Defect origins, types and modes [17] and standards like the IEEE standard 1044-2009 

[5]. In the same context, they also apply data mining methods such as the Naïve Bayes Model 

[13] or the regression model [2] to classify SDs. In fact, the classification of defects helps the 

software development teams to reduce the cost of correcting SDs and helps them detect 

defective modules. This study is conducted as part of this last branch. In fact, our goal is to 

propose a conceptual tool to improve the quality of software mining results in an organization, 

since these results will lead to decision making concerning the quality of the software systems. 

The need to assure that the mining is rightly performed with defined targets will improve 

decision making concerning the state of software quality.  

3 Presentation of the Conceptual Tool 

In order to provide a means to avoid the insignificant SDs mining results to software product 

owners, we decided to propose this conceptual tool.  
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Mining SDs is a complex set of activities; it goes from selecting a technique to mine the SDs, 

interpreting the obtained results, to taking a decision based on the obtained results. Moreover, 

each software system is unique, thus needs a specific SDs mining management strategy, e.g., 

the SDs of the system Waterfox are not the same for Firefox, even though they have similar 

functionalities and purpose. Due to this complexity, inefficient SDs mining can lead to 

situations such as: 

(1) the results obtained from the SDs mining are irrelevant for the product owner;  

(2) the SDs mining is requiring much more resources than planned and software teams 

failed to take decisions in order to improve the quality of the software system based on 

the mining results;  

(3) the mining goals are poorly aligned with the strategy and the objectives of SDs 

management and the product owner’s business needs and; 

(4) control and evaluation measures for obtained results are missing. To avoid these 

problems, we are proposing this conceptual tool to guide SDs miners wishing to 

improve their mining project. 

Although there are similar existing conceptual tools in the literature for business domain [18], 

our conceptual tool is designed to target the SDs mining management field. The aim of this 

conceptual tool is to help software teams to define their SDs mining management strategy and 

to specify concrete actions to put in place this strategy in mining SDs. The conceptual tool is 

defined fourfold: 

(1) The first step consists of defining the SDs mining management strategy in alignment 

with the needs of the software product owner. The strategy must be broken down into 

short or medium term goals to achieve. The software team, as well as the product owner, 

must approve these goals, e.g., a defect mining management strategy may be the 

improvement of the software quality by developing error-free programs for each 

software version released. The approval of these goals will lead to the second stage. 

(2) The next step, which is the operational level, is to convert this strategy into concrete 

objectives. Referring to the previous example, the set of objectives will be to improve 

the detection of the defect modules and predict SDs.  

(3) Following this, each objective must be broken down into terms of specific actions to be 

performed, e.g., classifying SDs according to their priorities. In addition, members of 

the SDs mining are responsible to implement each of these actions.  
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(4) Following this and depending on the actions put in place, software teams must carefully 

select control measures to evaluate the state of the actions, e.g., the ratio of the corrected 

high level prioritized SDs over the total number of SDs received. 

Finally, the software team must define a list of actions to establish in order to correct cases 

where the set objectives have not been reached, e.g. reorganization of the process to detect SDs. 

Fig 1 presents the process to follow to implement the proposed conceptual tool.  

 

Fig. 1. The process of the conceptual tool 

4 The Application of the Software Defects Managerial Conceptual Tool  

In order to apply the proposed conceptual tool to improve and control the SDs mining 

management in practice, we decided to conduct a proof of concept of a software system that we 

will name system A. This system is developed using the scrum method. The owner of this 

system A is an education company. Its purpose is to help schools in managing the grades of 

their students. The overall objectives set by the owner of the system A is to have a software 

system with a considerable high quality, with emphasis on its availability to the users, especially 
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during the exam period. In line with this objective, the software team objective aims to improve 

the assignment and the correction of the SDs.  

4.1 Stage 1 and 2: Strategy Definition and Set of Objectives  

In alignment with the owner’s objective, our strategy would be to mine SDs in order to reduce 

the impact of SDs on the system to limit the system’s unavailability time (stage 1). In the next 

step (stage 2), we cascade the defined strategy in different objectives such as to reduce the 

impact of defects on system A and possibly to improve the correcting process of the SDs. In 

the next step, we defined a set of actions to implement the objective of reducing the impact of 

defects on the system (stage 3). We first need to know the actual number of defects of this 

system A and then classify them according to their impact. To do this, we classify SDs 

according to their severity in order to analyze the different impact that they are having on the 

system availability. In the next session, we will present how we classified the SDs of system A, 

and then we will present the application of the final stage on this system A. 

4.2 Stage 3: The Classification of SDs of System A 

We analyzed the SDs of system A over a period of a year, from January 2015 to December 

2015. System A has 522 SDs. We analyzed the SDs of this system by classifying them 

according to the defect severity attribute of IEEE 1044-2009 standards (see Table 2). This 

severity attribute is one of the most used attributes in SDs classification in practice [19]. The 

main advantage of choosing the severity attribute is the possibility for managers to identify 

which defect should be first corrected [19]. The IEEE's standard defines this attribute as “The 

highest failure impact that the defect could (or did) cause, as determined by (from the 

perspective of) the organization responsible for software engineering.” [5]. There are five 

values of severity. They are classified from the most significant to the least significant (see 

Table 1). 
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Table 1. Severity values [5] 

 

Attribute Value Definition 
Severity Blocking (B) Testing is inhibited or suspended pending 

correction or identification of suitable 
workaround. 

 Critical (C) Essential operations are unavoidably disrupted, 
safety is jeopardized, and security is 
compromised. 

Major (Mj) Essential operations are affected but can 
proceed. 

Minor (Mn) Nonessential operations are disrupted. 
Inconsequential (I) No significant impact on operations. 

 
Table 2. System A software defects classification 

 

 Severity  
B C Mj Mn I Total 

Jan 2 3 28 10 0 43 
Feb 1 5 15 11 0 32 
Mar 7 8 34 14 0 63 
Apr 2 5 38 9 2 56 
May 3 1 20 5 0 29 
June 0 2 25 15 0 42 
July 0 1 5 4 0 10 
Aug 2 7 8 7 3 27 
Sept 5 11 18 15 4 53 
Oct 7 4 22 6 0 39 
Nov 15 8 37 20 3 83 
Dec 7 5 18 12 3 45 
 Total 51 60 268 128 15 522 

4.3 Stage 4: The Section of Control Measures  

There are two important aspects to consider when selecting the evaluation metrics at the fourth 

stage of this conceptual tool. The first one is to choose metrics based on the objective or action 

to evaluate, e.g. a ratio of the corrected SDs over the total number of SDs received to evaluate 

the SDs’ correction process. The second one is to take into consideration the critical level [20] 

of the system being managed. This critical level can relate to its business, security, and safety 

aspect. In addition, to determine the critical level of the system, software teams must consult 

and get the approval of the product owner.  
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To track and evaluate the success of our objective, we selected a metric as an indicator (stage 

4). In this regard, we defined the SDs indicator as a ratio of the number of a type of SDs over 

the total SDs number received within a month. This ratio informs us about the type of defects 

that is problematic during the month. We define a problematic case as follows: when the number 

of a certain type of SDs is higher or equal to one-third of the total SDs number of a month. One-

third of the total SDs is an agreed upon limited number a type of SDs may have during a month. 

The selection of this metric was based on system A’s critical mission, which is its availability 

during the exam periods. We defined the indicator as follows: 

𝑛		𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑠	𝑡ℎ𝑒	𝑡𝑦𝑝𝑒	𝑜𝑓	𝑆𝐷𝑠	𝑡𝑜	𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 

𝑋, 𝑡ℎ𝑒	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝑆𝐷𝑠 𝑎𝑛𝑑	𝑡	𝑏𝑒𝑖𝑛𝑔	𝑎	𝑡𝑖𝑚𝑒	𝑝𝑒𝑟𝑖𝑜𝑑 

𝐼𝑓	𝑋%𝑡 ≥
∑(𝑋)𝑡
3  

𝑡ℎ𝑒𝑛	𝑖𝑛𝑣𝑒𝑠𝑡𝑖𝑔𝑎𝑡𝑒 

 

 

(1) 

 

Following this, we defined a list of actions to undertake in order to correct problematic cases. 

These actions are: 

• to investigate within the problematic type of SDs to identify miscorrected defects; 

• to reorganize the process of correcting the problematic type of SDs; 

• to check other indicators such as the number of correcting defects over the total SDs 
within this category. 

Our choice of action depends on the investigation results. In this regard, an investigation must 

be conducted when an indicator is reached, in order to identify the problem and to provide the 

right fix on time. In Fig. 2, we present the application of our indicator on SDs of system A in 

2015. 
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Fig. 2. Classified SDs of system A with the indicators. 

5 Discussion and Contribution 

The results clearly show us that the group of minor, blocking, and critical SDs management has 

reached the objective set in relation to the organization’s objectives. In opposition, the major 

type of SDs failed to reach the fixed goal. In fact, from January until June, the number of the 

major SDs was considerably high. After investigating those months, we found that the high 

number of SDs of January was due to the duplication of SDs. Similarly, the month of March 

inherited some of the SDs of January that were incorrect. E.g., mistakes found in the names of 

some of the students were related to the use of ACSII format in system A and corrected in the 

system in January; but the same mistakes reappeared in the month of March, due to the use of 

an API to connect system A to an external system B. This information leads to the assignment 

process reorganization for the major type of SDs.  

Applying this conceptual tool gives not only the insight of the SDs mining management, but 

also of the entire SDs management. In fact, knowing the status of each type of SDs will guide 

the SDs manager to focus on the problematic group of SDs and to reorganize the resource 
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allocation in handling these groups of SDs. This improves the decision-making in managing 

SDs. Consequently, it improves the SDs management altogether. 

The application of this conceptual tool is a manner not only to improve the management of SDs 

but also to align this management with the objectives of the software product owner. Its 

implementation is also flexible concerning the objectives set by each organization and its 

software department. In addition, the selection of control measures to evaluate the management 

must be customized for each software product.  

This conceptual tool alerted us to bring the management of SDs into line. Most of all, it did not 

demand many interventions from us once we set it up.  We propose this conceptual tool not 

only as contribution, but we also demonstrate its application in a real case.  

6 Conclusion  

Our proof of concept presents some of the advantages that software teams can gain from 

implementing our conceptual tool. This tool not only helps to define the precise objectives in 

line with the objectives of software owners in the context of SDs mining management but also 

guides the owners to evaluate the state of their SDs management. Indeed, the defined control 

measures will alert them to possible existing problems related to the management of their SDs 

and, therefore, of their software products. Knowing this, they will be able to take the right 

actions to handle the SDs. Herewith they will, on the one hand, considerably achieve the set 

goals, on the other hand, improve the quality of the software product, and reduce the cost of its 

development or maintenance. In our future work, we will provide a deep insight into the process 

of defining and implementing appropriate SDs management strategies by looking at the 

interdependence among the SDs management branches.  
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Abstract. In this paper, we identify the groups of triggers that are responsible for severe software 

failures. These failures prevent any essential operation or activity to be conducted through the concerned 

system or other systems connected to it. In fact, the occurrence of these failures causes a double financial 

cost to organizations: one in fixing them and the other one because of the unavailability of the system 

or systems. We targeted three types of software defects as sources of these failures. We conducted this 

study by classifying 665 software defects of a school management system and we found that the top two 

trigger groups are the technology and the IS architecture groups. 
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 Introduction 

In this age of information, every organization uses software systems to perform all types of 

activities in different domains. Unfortunately, most of the time, they are subject to failures [1], 

[2]. Software failures are defined as “Termination of the ability of a product to perform a 

required function or its inability to perform within previously specified limits” [p5, 3]. 

In fact, depending on their severity, these failures induce not only financial loss to 

organizations, but also time and resource loss in correcting them. Software defects (SDs) are 

the sources of these failures. IEEE standard 1044-2009 [p5, 3] defines a defect as: “An 

imperfection or deficiency in a work product where that work product does not meet its 

requirements or specifications and needs to be either repaired or replaced”. Different studies 

have investigated the sources and factors triggering SDs [4], [5]. Nevertheless, there is no 

existing literature on the types of triggers associated with the level of SDs severity that they 

generate. Knowing which types of triggers generate which level of SDs severity will help 

systems administrators in particular and organizations in general to better allocate their 

resources in order to address software failures. In this regard, the question we address in this 

paper is which types of trigger factors generate the most severe SDs?  

 To answer this question, we conducted a case study on a software system. In fact, we performed 

two main classifications of its SDs. The first classification was to identify the severity of SDs; 

then we classified the same SDs based on the trigger factors using EVOLIS framework [4].  

The paper is structured as follows: first, we will introduce existing techniques software defects 

classification; secondly, we will present the methodology that we used in conducting this study; 

then, we will show the results that we obtained; and finally, we will present our contribution.  

2 Related Works 

In the software life cycle, the classification of defects presents many advantages [6]. The 

classification of defects helps the software development teams to reduce the cost of correcting 

them, to detect defective modules and to have efficient resource planning. Various studies have 

proposed and evaluated different approaches to collect and to analyze these SDs. The main 

approaches are (1) taxonomies [7], [8], root cause analysis [9], schemes [3] and the 

classification of these SDs [10].  

There are different existing schemes in classifying SDs [10]. (1) The Orthogonal Defect 

Classification (ODC) of IBM [11] was developed in 1992 by R. Chillarege et al. [11] and it 
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classifies defects across “the dimensions (1) defect type, (2) source, (3) impact, (4) trigger, (5) 

phase found, and (6) severity” [12]. (2) The HP Defect Origins, Types and Modes, the approach 

of Hewlett Packard, was developed by the HP software metrics in 1986 [13] and this scheme 

classifies the defects according to their types, their origins and their mode [12]. (3) The IEEE 

standard 1044-2009 is the scheme we retain for our first classification project. We selected this 

approach because it proposes the most complete definition of the SDs severity types among the 

three schemes. Moreover, this severity attribute is one of the most used attributes in SDs 

classification in practice [12]. The main advantage of choosing the severity attribute is the 

possibility for managers to identify which defect to correct first [12]. We retain the severity 

attribute for our first classification.  

3 Methodology 

To be able to understand the relation existing between triggering factors for SDs and the 

severity of SDs, we conducted a case study of a system that we will name system A. This system 

is developed by an educational organization and it is a school management system. Its purpose 

is to help schools in managing the grades of their students. It is used for managing more than 

90000 students’ grades. The first version of the system A had been released middle 2012. We 

classified 665 SDs of system A. The collection of SDs covers a period of one year and four 

months from January 2015 to April 2016. System A has nine released versions over this period. 

The defects repository tool used by this organization is Jira [14].  

Our objective is to classify SDs according to their severity and then classify these same SDs 

according to the factors that trigger them. In fact, we analyzed the SDs of this system A by 

classifying them according to the defect severity attribute of IEEE 1044-2009 standards [3] and 

then by classifying them with EVOLIS framework [4]. The software team in charge of 

maintenance of the system A and a member of our research team had conducted both 

classification. 

3.1 The Classification of SDs Based on Severity 

Our first classification is done based on the severity attribute of the IEEE standard (see Table 

2.). The IEEE's standard defines this attribute as “The highest failure impact that the defect 

could (or did) cause, as determined by (from the perspective of) the organization responsible 

for software engineering.” [3]. The five values of severity are classified from the most 

significant to the least significant ones (see Table 1). For the purpose of this study, we define 
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any software defect (SD) as severe as long as it belongs to one of these severity levels: (1) 

Blocking (B), (2) Critical (C) and (3) Major (Maj). The Minor (Min) and the Inconsequential 

(Inc) are not considered as severe SDs. 

 Table 1. Severity values [3] 

Attribute Value Definition 
Severity Blocking (B) Testing is inhibited or suspended pending, 

correction or identification of suitable 
workaround. 

 Critical (C) Essential operations are unavoidably disrupted, 
safety is jeopardized, and security is 
compromised. 

Major (Maj) Essential operations are affected but can 
proceed. 

Minor (Min) Nonessential operations are disrupted. 
Inconsequential 
(Inc) 

No significant impact on operations. 

Table 2. Classification of System A’s SDs based on their severity 
 

B C Maj Min Inc Total 
Jan 10 12 46 22  0 90 
Feb 5 8 24 17  0 54 
March 12 17 49 31  0 109 
April 9 8 50 16 2 85 
May 3 1 20 5 0  29 
June 0  2 25 14  0 41 
July  0 1 5 4  0 10 
Aug 2 7 8 7 3 27 
Sept 5 11 18 15 4 53 
Oct 7 4 22 6  0 39 
Nov 15 8 37 20 3 83 
Dec 7 5 18 12 3 45 
Total 75 84 322 169 15 665 

3.2 The Classification of SDs Based on the EVOLIS Framework  

For our second classification project, we chose the EVOLIS framework [4] (see Table 3.). This 

framework proposes a technique to classify SDs according to the factors that trigger them. 

“EVOLIS can be caused by a large variety of factors: bugs that need to be fixed, users that wish 

to have new functionalities, new market opportunities that require new software features, 

performance standards that the system must reach, technical changes in the environment with 

which the system must interact, obsolescence of applications and so on” [3]. EVOLIS identifies 

four main groups of factors that triggers SDs: (1) IS/users fit (U.F) triggers that are defined as 
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any failure related to the user interface, the user documentation and aptitude to use the system. 

(2) The technology (TCH) triggers are related to defects that concern the software as well as 

the hardware platforms as information system components. (3) According to the authors, the IS 

architecture (ACH) triggers concern “different types of integration evolution, namely an 

evolution of integration among components of the system, among business functionalities, or 

an integration with systems outside of the company.” [3]; and finally (4) the Business-IS (Bs-

IS) alignment triggers that “address the co-alignment between business and information 

systems” [3]. 

Table 3. Classification of System A’s SDs based on their trigger factors 
 

ACH Bs-IS TCH U.F Total 
Jan 13 23 21 33 90 
Feb 13 9 18 14 54 
March 15 26 25 43 109 
April 27 26 13 19 85 
May 4 8 10 7 29 
June 9 2 19 11 41 
July 1 1 2 6 10 
Aug 1 4 9 13 27 
Sept 15 8 8 22 53 
Oct 16 4 9 10 39 
Nov 23 19 18 23 83 
Dec 5 10 12 18 45 
Total 142 140 164 219 665 

 

Subsequently, we grouped these results into a two-dimensional table (see Table 4.). Each 

dimension represents the results obtained for each classification project. 

Table 4. Two-dimensional classification of SDs of system A 

 B C Maj Min Inc Total 
ACH 17 12 99 14 0 142 
Bs-IS 24 21 66 28 1 140 
TCH 19 30 87 27 1 164 
U.F 15 21 70 100 13 219 
Total 75 84 322 169 15 665 

4 Discussion and Contribution  

We analyzed the results threefold: the results of severity classification, followed by the results 

of EVOLIS and then we combined and analyzed both results together. First, the severity 
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classification showed us that the top three high types of SDs are respectively the major type of 

SDs with 322 SDs, followed by the minor type with 169 and the critical type with 84 SDs (see 

Table 2.). Second, the EVOLIS classification showed us that the top three groups of factors that 

trigger SDs are respectively the IS/users factors with 219, followed by the technology factors 

with 164 and then the factors related to the IS architecture and business-IS alignment (see Table. 

3). These last trigger groups have almost the same number of SDs: 142 SDs for the IS 

architecture and 140 SDs for the business-IS alignment SDs. Further, the analysis of both 

combined results showed us that technology triggers represent respectively 12%, 18% and 53% 

for blocking SDs, critical SDs and major SDs (see Fig. 1). In total, the technology triggers are 

responsible for 83% of the severe SDs. Similarly, the architecture triggers represent respectively 

12%, 8% and 70% for blocking SDs, critical SDs and major SDs (see Fig. 1). The business-IS 

alignment represents respectively 17%, 15% and 47% for blocking SDs, critical SDs and major 

SDs. Finally, the IS/users triggers represent 20% of the total of severe SDs (see Fig. 1). 

 

  

  

Fig. 1. Trigger factors and severity of SDs of System A   

Analyzing these results separately did not give so much information to organize the SDs 

management. However, when we put them together, we found that some type of SDs trigger 
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factors are the source of some specific severe groups of SDs. In fact, we observed that the 

majority of the inconsequential SDs are triggered by the IS/users fit factors.  

This implies that the probability of an inconsequential SDs to be triggered by either the IS 

architecture, the business-IS alignment or the technology factors are very low or barely existent. 

Furthermore, we assigned weighting factors to each severity level according to their importance 

as followed (see Table 5.):  

Table 5. The weighting factors for the severity level.  

Severity level  Weighting factor 
Blocking 40% 
Critical 30% 
Major 20% 
Minor  8% 
Inconsequential 2% 

  

We then apply this weighted scoring model to our two-dimension table to calculate the weighted 

scores (W) for severe SDs per trigger factor (see Table 6.).  

Table 6. Severe SDs weighted score.  

Severe 
SD 

Weight 

(W) 

Bs-
IS 

W-
Bs-
IS 

ACH W-
ARC 

TCH W-
TCH 

U.F W-
U.F 

Blocking 0.4 24 9.6 17 6.8 19 7.6 15 6 
Critical 0.3 21 6.3 12 3.6 30 9 21 6.3 
Major 0.2 66 13.2 99 19.8 87 17.4 70 14 
Total 0.9 111 29.1 128 30.2 136 34 106 26.3 

 

Looking at these results, we can conclude that the technology trigger factors, with the highest 

weighted score 34, are responsible for most of the severe SDs followed by the IS architecture 

factors, with 30 weighted score. Then the business-IS alignment, with 29.1, and finally the 

IS/users fit triggers, with 26.3 (see Fig. 2.). We can also notice that there is a considerable gap 

between the number of SDs of the first two groups of triggers (IS architecture and technology 

and the last two of them (business-IS alignment and IS/user fit).  
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Fig. 2. Trigger factors by weighted severity of system A 

5 Conclusion   

To the question of which groups of SDs triggers generate the most severe SDs, we answered 

that the technology triggers are at the head position with a total of 34 weighted score. In the 

second position is the IS architecture triggers which comes with 30.2 weighted score, and then 

followed by the business-IS alignment triggers with 29.1. The last position is occupied by the 

IS/users fit triggers with 26.3 weighted score of the total severe SDs analyzed. We also found 

that the majority of the defects triggered by IS/user factors are either minor or inconsequent 

types of SDs. 

The results obtained from this study will help software managers to improve the management 

of SDs by allocating the SDs correction resources more accurately thus reduce the cost of 

managing SDs. In our future work, we will analyze other software systems and compare their 

results to the ones we obtained in this study. We will also investigate in depth this close relation 

between the first couple of trigger groups (IS architecture and technology) and the last couple 

of trigger groups (business-IS alignment and IS/users fit).  
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Abstract. In this work, we identify trigger factors of software defects that are responsible for severe 

defects. We conducted a case study on a system by classifying 842 defects according to their trigger 

factors and then identified the level of severity they have on this system. Knowing these types of triggers 

helps software maintenance teams improving the management of software defects by reducing the cost 

of maintaining the system, consequently the cost of software projects.  
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 Introduction 

IEEE standard 1044-2009 [1] defines Software defects (SDs) as “An imperfection or deficiency 

in a work product where that work product does not meet its requirements or specifications and 

needs to be either repaired or replaced.” [1].  

The classification of SDs helps the maintenance teams reducing the cost of correcting software 

bugs, detecting defective modules, and having efficient resource planning. Various studies have 

proposed and evaluated different approaches to collect and to analyze these SDs [1]–[4]. Other 

studies target the source of these defects by providing schemas and frameworks to help 

identifying these sources [5]–[8]. For our project, we have retained the EVOLIS framework [7] 

to identify the trigger factors that are at the source of the SDs.  

To be able to know which factors among these trigger factors have a more severe impact on the 

system, we conducted a case study on a school resources management system. In fact, we 

studied the SDs of this system by identifying their trigger factors based on the EVOLIS 

framework [7] and then identified their severity weight on the system. The question we address 

in this paper is “how to identify problematic SDs trigger groups using their severity weight?” 

The paper will proceed as follows; first, we will define the software defect and its classification 

approaches. Second, we will present the case study, the classification results, and our 

contribution. 

2 Related Works  

2.1 The EVOLIS Framework 

For our first classification project, we chose the EVOLIS framework [7]. This framework 

proposes a technique to classify SDs according to the factors that trigger them. “EVOLIS can 

be caused by a large variety of factors: bugs that need to be fixed, users that wish to have new 

functionalities, new market opportunities that require new software features, performance 

standards that the system must reach, technical changes in the environment with which the 

system must interact, obsolescence of applications and so on” [7]. EVOLIS identifies four main 

groups of factors that trigger SDs: (1) IS/users fit triggers (U.F) that are defined as any defect 

related to the user interface, the user documentation, and aptitude to use the system. (2) The 

technology triggers (TCH) are related to defects that concern the software as well as the 

hardware platforms as information system components. (3) According to the authors, the IS 

architecture triggers (ACH) concern “different types of integration evolution, namely an 
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evolution of integration among components of the system, among business functionalities, or 

an integration with systems outside of the company.” [7], and finally (4) the business-IS 

alignment triggers (B.IS) that “address the co-alignment between business and information 

systems” [7]. 

2.2 Software Defects 

Previous research studies have proposed different approaches and schemas to classify SDs: the 

best-known schemas are (1) The Orthogonal Defect Classification (ODC) of IBM [6], the root 

cause analysis [5], (2) the HP Defect origins, types, and modes [8], and standards like the IEEE 

standard 1044-2009 [1]. In the same context, they also apply to data mining methods such as 

the Naïve Bayes Model [9], Clustering [10] or the regression model [11] to classify SDs. IEEE 

standard1044-2009 also proposed a SDs classification approach based on their severity, 

priority, and origins. The IEEE standard 1044-2009 is the classification approach we retain for 

our second classification project. In fact, our objective is to classify SDs according to their 

trigger factors and their severity [1].  

The approach of IEEE standard 1044-2009 proposes a simple and complete definition of the 

SDs severity types. Moreover, this severity attribute is one of the most used attributes in SDs 

classification in practice [12]. Our second SDs classification project is based on this attribute. 

The main advantage of choosing the severity attribute is the possibility for managers to identify 

which defects to correct first [12]. The IEEE's standard defines this attribute as “The highest 

failure impact that the defect could (or did) cause, as determined by (from the perspective of) 

the organization responsible for software engineering.” [1]. There are five values of severity. 

They are classified by the most significant to the least significant ones in terms of the impact 

they have on the system (see Table 1). 
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Table 1. Severity values [1] 

Attribute Value Definition 
Severity Blocking Testing is inhibited or suspended pending 

correction or identification of suitable 
workaround. 

 Critical Essential operations are unavoidably 
disrupted, safety is jeopardized, and security is 
compromised. 

Major Essential operations are affected but can 
proceed. 

Minor Nonessential operations are disrupted. 
Inconsequential No significant impact on operations. 

3 Methodology 

3.1 Case Presentation 

In order to identify the trigger factors that generate defects with the highest severity impact on 

the system, we conducted a case study of a school resources management system that we will 

name system B. The software development method used to develop system B is the scrum agile 

method [13]. A government institution owns it. The system is used for the human and material 

resources management of public schools. We classified 842 SDs of system B. The collection of 

SDs covers a period of 23 months from June 2014 to May 2016. The bug repository tool used 

by this organization is Jira [14]. The first version of the system B had been deployed at the 

beginning of 2013.  

Each of these defects has the following information: the identity of the failure reporter, the date 

of reporting and solving the software defect (SD). In addition, each SD contains its description, 

the person who reported the case and the person who treated it. We only take into consideration 

the description characteristic in classifying these SDs. 

3.2 Classification Method 

Overall, we did three main classifications. First, we analyzed the SDs of system B by classifying 

them with the EVOLIS framework [7] (see Table 2.). Second, we classified the same SDs 

according to the defect severity attribute of IEEE 1044-2009 standards [1] (see Table 3.). Third, 

we combined both classifications.  In detail, our method of classifying these SDs consists of 

four main steps: 

In the first step, we collected SDs of system B from the Jira repository [14].  
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In the second step, we took each SD and identified its trigger factor or source based on its 

description. At this stage, we used the EVOLIS framework. We named this step “EVOLIS 

Classification” 

In the third step (Severity Classification), we took again each SD and evaluated its severity 

impact (cost) on the system. This classification is done based on our severity-weighting model 

(see table 4). 

 In the final step, we took each EVOLIS-Severity couple and ranked them according to the level 

of damage they may have on system operations (EVOLIS-severity classification). 

Table 2. Classification of System B’s SDs based on their trigger factors (EVOLIS) 

Years IS 
architecture 

business-IS 
alignment 

technolo
gy 

IS/users 
fit 

Total 

2014 61 11 118 57 247 
2015 87 22 251 90 450 
2016 23 10 78 34 145 
Total 171 43 447 181 842 

Table 3. Classification of System B’s SDs based on their severity 

Year Blocking Critical Major Minor Inconsequential Total 
2014 31 57 71 85 3 247 
2015 57 112 135 145 1 450 
2016 21 19 33 71 1 145 
Total 109 188 239 301 5 842 

4 Discussion and Contribution  

4.1 Discussion 

In this section, we analyzed the classification results threefold: the results of EVOLIS 

classification, followed by the results of severity classification, and finally, we combined and 

analyzed both results together.  

First, the EVOLIS classification showed us that the top three groups of factors that trigger SDs 

are respectively the technology factors with 447 SDs, followed by the IS/Users factors with 181 

SDs, and then the factors related to the IS architecture with 171 SDs. In the last position is the 

business-IS alignment with 43 SDs (see Table 2.). 

Second, the severity classification showed us that the top three high types of SDs are 

respectively the Minor type of SDs with 301 SDs, followed by the Major type with 239, and 
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the Critical type with 188 SDs. The Blocking types are fourth with 109 SDs, and, in the last 

position, we find the Inconsequential SDs type with only five SDs (see Table 3.). 

We combined the two results in order to identify the groups of triggering factors that cause 

severe SDs (see Fig. 1.). Doing so, we realized that limiting the results only to the number of 

SDs for each severity level group raises an ambiguity. In fact, counting only the number of SDs 

per trigger factor group does not give us the clear response on which trigger factors are 

responsible for severe SDs. E.g., how can we determine if five Blocking SDs have affected a 

system more than eight Critical SDs? In order to clear this ambiguity, we have associated a 

weighting factor to each level of severity according to their impact on the system (see table 4.).   

In addition, based on their definition, we separated the severity level into two groups: the first 

group we called “severe SDs” and the second group we named “no severe SDs”. The severe 

SDs are any SD that has an impact preventing the system to be operational. This group of SDs 

usually causes financial loss or any considerable resource loss to the system owner and to the 

system users. They are Blocking, Critical, and Major severity types. 

The “no severe SDs” are any SD that has an impact level that do not affect the system’s 

operation: they are Minor and Inconsequential severity type. Thus, for the purpose of this study, 

we only considered the first group of severity level to be authentic severe SDs. 
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Fig. 1. Trigger factors by severity of system B 

Table 4. The weighting factors for the severity level.  

Severity level Weighting Factor 
Blocking 40% 
Critical 30% 
Major 20% 
Minor 8% 
Inconsequential 2% 

 

We then calculated the weighted score (W) for each trigger factor group based on the severity 

weight (see table 5.).  

Table 5. Severe SDs weighted score of system B 

 
Weight ACH W-

ACH 
B.IS W-

B.IS 
TCH W-

TCH 
U.F W-

U.F 
Blocking 0.4 25 10 4 1.6 68 27.2 12 4.8 
Critical 0.3 49 14.7 6 1.8 109 32.7 24 7.2 
Major 0.2 50 10 15 3 129 25.8 45 9 
Total 0.9 124 34.7 25 6.4 306 85.7 81 21 

 

Integrating both, results allow us to identify SD triggers that are causing more severe impact to 

the system. These results show that the technology trigger factors with the highest weighted 

score of 85.7, are responsible for most of the severe SDs followed by the IS architecture factors, 

with a weighted score of 34.7. Then come the IS/users fit triggers with a 21, and finally the 

business-IS alignment, with 6.4 (see Fig. 2.). 
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Fig. 2. Trigger factors by weighted severity of system B 

4.2 Similar Case Study: Classifications of SDs of System A 

Similarly, in our previous publication we conducted the same study on another system we 

named system A [15].  In this section, we will present this second case and compare its results 

to the one of system B.  

System A is a school management system and it belongs to an educational institute. Its purpose 

is to help schools in managing the grades of their students. More than 1500 teachers use this 

system for managing more than 90000 student grades. The first version of the system A had 

been released mid- 2012. We classified in total 665 SDs of this system. The collection of SDs 

covered a period of 16 months, from January 2015 to April 2016. System A has released nine 

versions over this period [15]. The integrated classifications’ results we obtained from this study 

are as follows (see Table 6): 

Table 6. Severe Weighted score of system A 

Severe 
SD 

Weight B.IS W-
B.IS 

ACH W-
ARC 

TCH W-
TCH 

U.F W-
U.F 

Blocking 0.4 24 9.6 17 6.8 19 7.6 15 6 
Critical 0.3 21 6.3 12 3.6 30 9 21 6.3 
Major 0.2 66 13.2 99 19.8 87 17.4 70 14 
Total 0.9 111 29.1 128 30.2 136 34 106 26.3 

 

 The results of system A showed that the technology trigger factors, with 

the highest weighted score 34, are responsible for most of the severe SDs followed by the IS 

architecture factors, with a weighted score of 30.2. Then come the business-IS alignment, with 
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a 29.1, and, finally the IS/users fit triggers, with 26.3 (see Fig. 3). We can also notice that there 

is a considerable gap between the number of SDs of the first two groups of triggers (IS 

architecture and technology) and the last two of them (business-IS alignment and IS/users fit). 

In the next section, we will present our contributions. 

 

 

Fig. 3. Trigger factors by weighted severity of system A 

4.3 Contribution 

The contribution of this paper is twofold:  

First, to the question, “how to identify problematic SDs trigger groups using their severity 

weight?” we proposed our 4-steps method.  

In order to make possible for other practitioners and other researchers to conduct and possibly 

observe similar results on their systems we summarized our method as follows:  

• Step 1. Data collection: this step consists of collecting SDs of the system to study. 

• Step 2. Identification of each SD triggering factor: in this step, we classify the SDs based on 

the EVOLIS framework in order to identify their trigger factors (EVOLIS classification). 

• Step 3. Weighting of the severity level of each SD on the system. Here we classify the same 

SDs based on the severity attribute of IEEE standard 1044-2009 (Severity classification). 

• Step 4. Integrate results of steps 2 and 3: At this level, we classified the SDs based on both 

EVOLIS and IEEE 1044-2009 severity attribute in order to identify SDs having high severe 

impacts on the studied systems. This step is our EVOLIS and Severity classification. 
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We summarized these steps in Fig. 4. We must also point out that step 2 and 3 are 

interchangeable.  

 

 

Fig. 4. 4-steps method to identify trigger factors causing most of severe SDs to a system  

 Second, to the question of which SD factors trigger most of severe SDs, we found that the 

following: 

In the leading position are the technology trigger factors with 29% of the total weighted score 

for system A and 58% for system B. They are followed by the architecture trigger factors with 

25% (30.8 weighted score) for system A and 24% for system B. We can see that in both cases, 

the same type of SD trigger factors occupies the first and the second position. In contrary, the 

third position is occupied by the business-IS alignment with 24% for system A while the 

IS/users fit occupied the same rank with 14% for system B. Finally, the business-IS alignment 

with 4% occupied the last place for system B, and IS/user fit with 22% occupied this position 

for system A.  
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5 Conclusion   

With this case study, we have shown that severe SDs are mostly caused by technology and 

architecture trigger factors. We did so by classifying SDs according to four groups of trigger 

factors and matched them with the SDs severity level. The obtained results show us that the 

technology triggers are leading with 85.7 weighted scores. In the second position are the IS 

architecture triggers which come with 34.7 weighted scores, and are then followed by the 

IS/users fit triggers with 21. The last position is occupied by the business-IS alignment triggers 

with 6.4 weighted scores of the total SDs analyzed. As contribution, we also presented a method 

in order to identify problematic SDs trigger groups using their severity weight. 

 The results obtained from this study will help software teams to reallocate the resources of 

maintaining systems and help them to prioritize certain categories of SDs, thus reduce the cost 

of maintaining software systems.  

In our future work, we will analyze other software systems and compare their results to the ones 

we obtained in this study. We will also investigate if there is any correlation between the first 

couple of trigger factor groups (IS architecture and technology) and the last couple of trigger 

factor groups (business-IS alignment and IS/users fit).  
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5.2				EVOLIS	Indicator		
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5.3				Severity	Classification	
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5.4				EVOLIS	&	Severity	Classifications	
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5.5				EVOLIS	&	Severity	Weighted	
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5.6				System	A	Weighted	Score			
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Appendix	6.	Data	of	System	B	

6.1 EVOLIS	Classification	
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Appendix 6. Data of System B 

6.2 EVOLIS	Indicator	
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Appendix 6. Data of System B 

6.3 Severity	Classification	
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Appendix 6. Data of System B 

6.4 Severity	&	EVOLIS	Classifications	
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Appendix 6. Data of System B 

6.5 Severity	&	EVOLIS	Weighted	
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Appendix 6. Data of System B 

6.6 Severity	Indicator		
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Appendix 6. Data of System B 

6.7 System	B	Weighted	Score			
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Appendix	7.	Raw	Data	-	Examples	of	a	

Software	Defect		

• Example I 

Projet ABX 

Clé A-1316 

Résumé org.apache.jasper.el.JspELException: /WEB-INF/ui/saisieNoteTS.jsp(12,1) 

Type de 

demande 

Correction 

Etat Fermée 

Severité Majeur 

Résolution Validée 

Attribution Non attribuée 

Rapporteur XXXXXXX 

Création 05.01.15 

Dernier 

affichage 

 

Mise à jour 15.01.15 

Résolue 15.01.15 

Affecte la/les 

version(s) 

A V8.0.9 
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Version(s) 

corrigée(s) 

A V8.0.10 

Composants A 

Date d'échéance 
 

Gérer les 

observateurs 

1 

Images 
 

Estimation 

originale 

 

Estimation 

restante 

 

Temps consacré 
 

Ratio du travail 

réel comparé à 

l'estimation 

 

Sous-tâches 
 

Demandes liées 
 

Environnement 
 

Descriptif Hello, On a une forte occurrence de l'erreur suivante en production.  

En fait cette erreur apparaît lorsque l'utilisateur laisse la cocher la case 'Evaluer'  

et ne saisi aucune note pour un des élèves sur la page de saisie de notes de TS. Il 

serait préférable d'avoir le même comportement  

qui existe sur la page de saisie des ETA. Serait il possible de ce corriger  

SVP? XX 

--- Stack-trace  

org.apache.jasper.JasperException: org.apache.jasper.el.JspELException:  

/WEB-INF/ui/saisieNoteTS.jsp(12,1) 

'${A:isSaisieNotesReadOnly(evaluationsTravail.travailEvalue, isBlocageEnCours, 

auteurs)}'  

Problems calling function 'A:isSaisieNotesReadOnly'  
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at 

org.apache.jasper.servlet.JspServletWrapper.handleJspException(JspServletWrapp

er.java:549)  

at 

org.apache.jasper.servlet.JspServletWrapper.service(JspServletWrapper.java:470)  

at org.apache.jasper.servlet.JspServlet.serviceJspFile(JspServlet.java:390)  

... 114 more 

Niveau de 

sécurité 

 

Progression 
 

Σ Progrès 
 

Σ Temps 

consacré 

 

Σ Estimation 

restante 

 

Σ Estimation 

originale 

 

Étiquettes P1 

Épopée/thème 
 

Sprint 
 

Logbook 
 

Date d'Annonce 05/janv./15 3:21 PM 

Lien d'épopée 
 

Effort estimé 
 

Origine de la 

demande 

AAA-BBB 

Version(s) 

vérifiée(s) 

A V8.0.10 

Validation 
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Version 

planifiée 

 

Impact 

Migration 

 

Complexité 
 

QcBugId 
 

QC 

Synchronisatio

n 

N 

Aléas 
 

indicateur 
 

Environnement

-liste 

Production 

Estimation 

Spécifications 

 

Non-Qualité 
 

Classement 1|hzuxen:  

Estimation 

Tests 

 

Estimation 

Développement 

 

Résolue 
 

Date de 

livraison 

15/janv./15 9:45 AM 

Date début de 

traitement 

07/janv./15 3:59 PM 
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• Example II 

Projet ABX 

Clé ABS-1979 

Résumé Totaux des points de groupe avec discipline famille 

Type de 

demande 

Correction 

Etat Livrée 

Sévérité Bloquant 

Résolution Déployée 

Attribution XXXX 

Rapporteur XXXXXXX 

Création 15.04.2016 

Dernier 

affichage 

20.04.2016 

Mise à jour 19.04.2016 

Résolue 19.04.2016 

Affecte la/les 

version(s) 

ABS V12.1.1 

Version(s) 

corrigée(s) 

ABS V12.1.2 

Composants ABX 

Date d'échéance 
 

Gérer les 

observateurs 

1 

Images 
 

Estimation 

originale 
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Estimation 

restante 

 

Temps consacré 
 

Ratio du travail 

réel comparé à 

l'estimation 

 

Sous-tâches 
 

Demandes liées 
 

Environnement 
 

Descriptif Le calcul des totaux des points des groupe avec une discipline famille est 

faux. C'est la moyenne finale de la discipline famille qui doit être prise 

en compte et non la moyenne finale de la discipline mère. 

Niveau de 

sécurité 

 

Progression 
 

Σ Progrès 
 

Σ Temps 

consacré 

 

Σ Estimation 

restante 

 

Σ Estimation 

originale 

 

Étiquettes 
 

Épopée/thème 
 

Sprint 
 

Logbook 
 

Date d'Annonce 18/avr./16 5:59 PM 
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Lien d'épopée 
 

Effort estimé 
 

Origine de la 

demande 

XXXXI-Test 

Version(s) 

vérifiée(s) 

 

Validation 
 

Version 

planifiée 

 

Impact 

Migration 

 

Complexité 
 

QcBugId 
 

QC 

Synchronisation 

N 

Aléas 15 

indicateur 
 

Environnement-

liste 

Intégration 

Estimation 

Spécifications 

 

Non-Qualité 15 

Classement 1|i007tj:  

Estimation 

Tests 

 

Estimation 

Développement 
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Résolue 
 

Date de 

livraison 

19/avr./16 7:33 AM 

Date début de 

traitement 

18/avr./16 5:59 PM 

 

 



 

 

 

 




