Peripheral Neuropathy Is Linked to a Severe Form of Myotonic Dystrophy in Transgenic Mice

Petrica-Adrian Panaite, MD, PhD, Marie Kieler, MS, Rudolf Kraftsik, MS, Geneviève Gourdon, PhD, Thierry Kuntzer, MD, and Ibtissam Barakat-Walter, PhD

Abstract
Myotonic dystrophy type 1 (DM1) is a multisystem disorder with a variable phenotype. The involvement of peripheral nerves in DM1 disease is controversial. The DM1 animal model DM300 transgenic mice that carry 350 to 500 CTG repeats express a mild DM1 phenotype but do not exhibit motor or sensory pathology. Here, we investigated the presence or absence of peripheral neuropathy in transgenic mice (DMSXL) that carry more than 1,300 CTG repeats and display a severe form of DM1. Electrophysiologic, histologic, and morphometric methods were used to investigate the structure and function of peripheral nerves. We observed lower compound muscle action potentials recorded from hind limb muscles and slowing of sciatic nerve conduction velocity in DMSXL versus control mice. These results suggest that peripheral neuropathy can be linked to a large CTG expansion and a severe form of DM1.

Key Words: Compound muscle action potential, DMSXL transgenic mice, Motor neuropathy, Myotonic dystrophy, Neuromuscular junctions, Physical disector method.

INTRODUCTION
Myotonic dystrophy type 1 (DM1) is a multisystemic autosomal dominant disorder with a highly variable clinical phenotype (1, 2). The genetic basis for DM1 is the abnormal amplification of a cytosine-thymine-guanine (CTG) trinucleotide repeat in the 3' untranslated region of the DM protein kinase (DMPK) gene on chromosome 19q (3, 4). The number of DNA CTG repeats usually increases in successive generations of DM1 families, and the size of triplet correlates with the severity of the disease. In healthy individuals without DM1, 5 to 35 copies of repeat have been observed. Patients with CTG expansion containing 50 to 80 CTG repeats are almost asymptomatic. Individuals with 100 to 1,000 CTG repeats develop a disease in adult life (the classic form of DM1) that is characterized by progressive muscle wasting with myotonia. However, the most severe form of DM1 is congenital disease; the mutation becomes unstable, and after 3 to 4 generations, the CTG repeat lengths to up to 2,000 repeats (5). This form of disease is characterized by extreme myotonia and muscular atrophy (6). Other systemic manifestations such as cataracts, cardiac conduction defects, endocrine dysfunction, respiratory failure, and changes in the CNS with mental retardation and hypersomnia are recognized as common extramuscular manifestations in patients with DM1 (2, 7–11). Although a number of clinical reports have drawn attention to the occasional presence of a peripheral neuropathy in patients with DM1 (12–16), other reports dispute completely the presence of neuropathy in patients (17–21). Therefore, additional studies are needed to determine the involvement of the peripheral nervous system (PNS) in DM1.

During the last few years, the use of animal models for studying DM1 mechanisms has become more frequent because access to the nervous system is only possible at the end stage of the disease. To investigate the primary involvement of the PNS in DM1, we previously analyzed DM300 transgenic mice carrying 350 to 500 CTG repeats and displaying a mild DM1 phenotype and found that those mice do not exhibit sensory or motor neuropathy (1). To explore this issue further, we examined new transgenic mice carrying more than 1,300 CTGs and displaying more severe DM1 features (22).

MATERIALS AND METHODS
All animal procedures were conducted according to local guidelines for care and use of experimental animals, and all analyses and measurements were performed blinded to animal genotype.

Generation of DMSXL Transgenic Mice
Production of transgenic mice carrying the human genomic DM1 region with expanded repeats of approximately 350 to 500 CTGs has been reported (23). The mice are of a mixed background. Heterozygous, homozygous, and wildtype mice are obtained from the same litter. Recently, new transgenic mice carrying more than 1,300 CTG repeats were obtained, resulting from large expansions of the CTG repeat in successive generations. The newly generated mice (called DMSXL) display a severe phenotype: 1) they are remarkably

From the Department of Clinical Neurosciences (PAP, MK, TK, IBW), University Hospital, Department of Cell Biology and Morphology (RK, IBW), University of Lausanne, Lausanne, Switzerland; and INSERM (GG), U711, Université René Descartes, Hôpital Necker-Enfants Malades, Paris, France. Send correspondence and reprint requests to: Ibtissam Barakat-Walter, PhD, Department of Clinical Neurosciences, rue du Bugnon 9, 1005 Lausanne, Switzerland; E-mail: Ibtissam.Walter@unil.ch

This work was supported by the Association Française contre les Myopathies.
small; 2) they exhibit muscles abnormalities such as myotonia and muscle weakness; 3) they display abnormalities in the metabolism of multiple messenger RNAs, notably in brain, heart, and muscle; 4) their skeletal muscle showed abnormal splicing patterns for the insulin receptor and chloride channel 1 transcripts; and 5) they have a very high mortality rate, approximately 60% of them die before 7 months of age (22). Because heterozygous mice expressing a low level of DMPK transcripts have no obvious phenotype (22), only homozygous transgenic mice were used. Wild-type mice from the same litter were analyzed because they provide the best controls.

Electrophysiologic Studies

Electrophysiologic investigations were carried out with a Viking III EMG machine (Nicolet Biomedical Inc, Madison, WI), using platinum subdermal electrodes (10 mm/30 gauge) for stimulation, recording, and grounding. Sixteen mice (8 DMSXL mice with a body weight of 22.19 ± 2.5 g and 8 wild-type control mice with a body weight of 31.75 ± 3.06 g), aged 5 to 6 months, were studied. Each animal was anesthetized with ketamine (100 mg/kg) and xylazine (10 mg/kg) and fixed in the prone position. Right and left sciatic nerves were stimulated to record the supramaximal motor responses or compound muscle action potentials (CMAPs) from hind limb muscles (flexor digitorum brevis, gastrocnemius, and tibialis anterior), as previously described (24). Compound muscle action potential area and amplitude were measured using the negative peak and onset latency methods. To measure nerve conduction velocity (NCV) of the sciatic nerve, the stimulating electrodes were placed proximally near the sciatic nerve at the level of the limb girdle and distally at the level of the ankle with the recording electrodes placed just over the flexor digitorum brevis.

Animal Perfusion and Tissue Preparation

After electrophysiologic studies, the mice were deeply anesthetized and then transcardially perfused with 0.1-mol/L phosphate-buffered saline (PBS) containing 0.1% heparin and 0.1% procaine, followed by a solution of 4% paraformaldehyde in 0.1-mol/L PBS at pH 7.4. Sciatic nerves, lumbar spinal cord, and hind limb muscles (gastrocnemius and tibialis anterior) were removed from each animal. To prepare cryostat sections, tissues were first cryoprotected in 20% sucrose overnight, frozen in liquid N$_2$, and stored at −80°C. For semithin section preparation, the tissues were placed in 2% OsO$_4$ in PBS for 3 hours, followed by dehydration in a series of graded ethanols and embedded in Epon (1, 25).

Sciatic Nerve Section Analysis

For histologic and morphometric analysis, 1-μm-thick semithin transverse sections were cut from the common trunk of sciatic nerves and stained with toluidine blue. NeuroLucida Software and Stereoinvestigator program (both from MBF Bioscience, Williston, VT) were used to measure the area of nerve cross sections and the diameter of myelinated axons and to count the total number of myelinated axons on 10 nerve sections from 5 DMSXL and 5 wild-type control mice as described (1, 25).

To count only myelinated motor fibers, cryostat sciatic nerve sections (12 μm) were prepared and double immunolabeled with polyclonal anti-choline acetyltransferase antibody, which stains only myelinated motor fibers (ChAT; 1:500, AB144P, Millipore, Billerica, MA) and anti-neurofilament proteins (NF 200, 1:500; AB1982, Millipore), which stains all myelinated fibers. The sections were incubated with secondary antibody, Alexa Fluor 488 Donkey anti-goat 1:200 (Invitrogen, Carlsbad, CA) and Cy3-conjugated donkey anti-rabbit (1:500; Jackson Immuno Research, West Grove, PA). Myelinated motor fibers were counted on 10 different sections (n = 5 for each mouse line) using an image-processing program (ImageJ 1.40; National Institutes of Health, Bethesda, MD) (1, 25).

Analysis and Quantification of Motor Neurons in the Spinal Cord Lumbar Enlargement

The physical disector method was used to estimate the number of motor neurons in 2-mm segments of lumbar spinal cord (26). Adjacent cryostat transverse sections, 20 μm thick, were prepared from lumbar spinal cord segments taken from 5 wild-type and 5 DMSXL mice. Approximately 50 sampling sections, called disector pairs, were prepared from each animal, and every third disector pair was used to count the number of motor neurons. The sections were immunostained with anti-ChAT and were photographed; the images of each disector pair were carefully aligned using Adobe Photoshop and then imported into the ImageJ 1.40 program. Only ChAT-positive neurons in the top section (tops) of the disector pair were marked and counted. The number of the tops was multiplied by 2 to estimate the number of neurons in the disector pair. Because we used every third disector pair, the number of neurons of each studied disector pair was multiplied by 3. Then the estimated number of neurons of 17 disector pairs was combined to obtain the total number of motor neurons present in the 2-mm segment of lumbar spinal cord. All analyses and counts were performed blinded to the animal type. The results were exported to Microsoft Excel (Microsoft Corp, Redmond, WA) for statistical analysis.

To investigate whether the surviving motor neurons of DMSXL mice express pathologic tau protein, cryostat spinal cord sections from control and DMSXL mice were incubated either with monoclonal antibody PHF-1 (developed by Dr Peter Davies, Albert Einstein College of Medicine, NY; dilution 1:500), which specifically recognizes the phosphorylated serines 396 and 404 at the C-terminus of tau protein, or with AT8 monoclonal antibody (Thermo Fisher Scientific, Waltham, MA; dilution 1:1000), which recognizes the phosphorylated serines 199 and 202. Other sections were incubated with tau-1 monoclonal antibody, which recognizes normal tau protein (produced by Dr Beat Riederer, University of Lausanne, Switzerland; dilution 1:10).

Analysis of Neuromuscular Junctions on Hind Limb Muscle Sections

Serial cryostat longitudinal 20-μm-thick sections were prepared from hind limb muscles. First, the sections were incubated for 45 minutes in 1 μg/mL tetramethyl rhodamine-conjugated α-bungarotoxin (α-BTX; Invitrogen, Life Technologies) and then incubated overnight with the primary polyclonal antibody anti-NF 200 kd (1:500; AB1982, Millipore), followed by incubation with the secondary antibody conjugated
RESULTS

Electrophysiologic Evidence of Peripheral Nerve Abnormality in DMSXL Mice

Compound muscle action potentials and NCVs were recorded after sciatic nerve stimulation of both right and left hind limbs from each DMSXL and wild-type mouse. Every DMSXL mouse examined exhibited a decrease in both CMAP parameters and NCV. In DMSXL mice, the amplitude of CMAPs recorded from gastrocnemius muscles was greatly reduced (42%) compared with controls (Fig. 1). There was a similar significant fall in CMAP (38.86%) in tibialis anterior muscles. Moreover, a slowing (14%) of sciatic NCV was observed in DMSXL compared with control mice (Fig. 1). Although the decrease in NCV is slight, it is significant ($p < 0.01$). To rule out the possibility that the reduction in CMAP and NCV in DMSXL mice was due to the small size and weight of these transgenic mice, we measured the CMAP and the NCV in control mice that had a similar size and weight range to the DMSXL. The results demonstrated that the reduction in CMAP and NCV in DMSXL mice was independent of the size and the weight of the mouse. The reduction in CMAP and NCV in DMSXL indicates muscle and nerve dysfunction.

FIGURE 1. Representative recordings of compound muscle action potentials (CMAPs) in gastrocnemius muscle from wild-type and DMSXL mice (left panels). The histogram of mean CMAPs (upper right panel) shows a significant decrease (42%) in CMAP amplitude in DMSXL mice versus wild-type (WT; 11.35 ± 1.11 vs 19.59 ± 2.92, **$p < 0.01$). The mean sciatic nerve conduction velocity is slightly reduced (14%) in DMSXL versus wild-type mice (33.28 ± 1.37 vs 38.75 ± 0.46, **$p < 0.01$) (lower right panel). $n = 8$ mice/group.

FIGURE 2. Sciatic nerve histology and morphometry. (A–D) Transverse semithin sections of sciatic nerve stained with toluidine blue from wild-type (WT) control mice (A, C) and DMSXL mice (B, D). The low (A, B) and high (C, D) magnifications show no obvious structural abnormality in DMSXL sciatic nerves. (E) Surface area measurements of nerve sections (from 5 control and 5 DMSXL mice) reveal that mean sciatic nerve section area is significantly smaller in DMSXL mice (0.113 ± 0.011 vs $0.156 \pm 0.016 \text{ mm}^2$, **$p < 0.01$). (F) The size-frequency distribution of myelinated axon diameters demonstrates that the peak axon diameter in DMSXL mice is shifted to the left, that is, trend to smaller diameters ($p < 0.001$).

Statistical Analysis

Results of DMSXL transgenic mice analysis were compared with the values of wild-type control mice. The distribution of values was checked for normality, and transformations were applied when necessary. Then 1-way analysis of variance was performed followed by the Holm-Bonferroni post hoc test. The distribution of diameters was compared using a χ^2 test. In all performed tests, $p < 0.05$ was considered significant.
FIGURE 3. Cryostat sciatic nerve cross sections double immunolabeled for neurofilament (NFH) (myelinated axons, red), and anti-choline acetyl transferase (ChAT) (myelinated motor axons, green). In both control and DMSXL mice, low and high magnifications show numerous axons immunolabeled with NFH and not stained with ChAT. Counts of only ChAT-positive axons on 5 nerve sections from 5 wild-type and 5 DMSXL mice revealed a loss of 19% of myelinated motor axons in DMSXL mice.

FIGURE 4. Estimation of motor neuron numbers in lumbar spinal cord by the physical disector method. Twenty-micrometer-thick adjacent cryostat transverse sections were prepared from lumbar spinal cord from 5 wild-type (WT) and 5 DMSXL mice. Seventeen disector pairs were analyzed from each animal. Sections were immunolabeled with an anti-choline acetyl transferase (ChAT) antibody. (A-C) Micrographs of 1 disector pair: top section (A) and bottom section (B). The ChAT-immunolabeled neurons in the top section of the disector pair are marked in red and those in the bottom section are marked in yellow. The marks of the motor neurons in the bottom section are superimposed on the top section (C); arrows indicate the tops (i.e. neurons present only in the top section). The histogram shows that the mean estimated number of motor neurons in DMSXL mice is significantly smaller than in controls (**p < 0.01).
Axonopathy and Muscle Dystrophy Underlie the Electrophysiologic Abnormality in DMSXL Mice

Although the general cytoarchitecture of sciatic nerves did not differ noticeably between DMSXL and control mice, the mean area of nerve section in DMSXL mice was smaller than in control mice (0.113 ± 0.011 vs 0.156 ± 0.016 mm²; p < 0.01) (Figs. 2A–E). Moreover, the diameter of myelinated fibers in DMSXL sciatic nerves was smaller, and the thickness of myelin sheath was reduced (19%). The size-frequency histogram based on the measurement of approximately 1,500 fibers from each mouse line showed that the peak axon diameter in DMSXL mice was significantly shifted to a smaller diameter versus that in wild-type mice (p < 0.001) (Fig. 2F). In addition, the number of all myelinated fibers in sciatic nerves in DMSXL mice was reduced by 6%. Nevertheless, counts of ChAT-positive axons on sciatic nerve sections double immunolabeled for ChAT and NF revealed a loss of approximately 19% of myelinated motor axons in DMSXL mice (Fig. 3). Because myelinated motor axons represent only 22% of the total number of myelinated axons, the loss of 6% of the total number of myelinated fibers corresponds to a preferential loss of motor axons. Together with the morphometric results, these observations indicate the presence of an axonopathy in DMSXL sciatic nerves with a specific loss of large myelinated fibers. These results were independent of the size and weight of the mice.

Evidence of Motor Neuronopathy in the Lumbar Spinal Cord of DMSXL Mice

To verify whether the loss of motor axons observed in DMSXL mice resulted from only a degeneration of myelinated motor axons ("dying back neuropathy") or rather from neuronopathy that affects neuron cell bodies, we used the physical dissector method to estimate the number of motor neurons in lumbar enlargement of spinal cord (Fig. 4). There was a 24% reduction in the number of motor neurons in DMSXL mice versus controls (1,348 ± 49 vs 1,758 ± 79; p < 0.01). These results indicate that the lumbar motor neurons in DMSXL mice are affected by a neuronopathy.

Because tau abnormalities are found in brain neurons of DM patients, we performed immunohistochemical staining for pathologic and normal tau proteins. Incubation of spinal cord sections with PHF-1 or AT8 antibodies demonstrated that, in DMSXL mice, most surviving motor neurons displayed a strong immunostaining (Figs. 5B, D), whereas in control wild-type mice, all motor neurons were PHF-1 and AT8 negative (Figs. 5A, C). In contrast, the normal tau protein was highly expressed in control motor neurons compared with DMSXL motor neurons (Figs. 5E, F). A link between overexpression of a kinase in DM brain neurons and the presence of abnormal tau protein has been reported (27).

Pathologic Changes in the Structure of Neuromuscular Junctions in DMSXL Mice

Histologic examination of gastrocnemius muscle sections labeled with rhodamine-α-BTX and NF antibody showed that control mice displayed EPs with a typical pretzel shape and strong fluorescent labeling, with 98% of them in direct contact with the nerve terminal (Figs. 6A–C). In DMSXL mice, however, numerous EPs exhibited lengthened shapes and faint labeling, and only 77% had axonal terminal contact (Figs. 6D–F). Morphometric analysis showed a significant decrease in the size (16.4%) and shape complexity (17.5%) of EPs in DMSXL mice (Figs. 6G, H). Moreover, the concentration of acetylcholine receptors on postsynaptic membranes assessed by measuring the α-BTX fluorescence labeling intensity was reduced by 23% (Fig. 6I).

DISCUSSION

Involvement of the CNS and other organs in patients with DM1 is well known, but PNS involvement in DM1 remains controversial. Clinically, the diagnosis of peripheral neuropathy in patients with DM1 is mainly detected by electrophysiologic tests and supported by neurologic examination. Several reports have described a reduction in CMAP, a slowing of maximal and minimal motor NCV, or an increase in the minimal latency of F waves in DM patients, suggesting the presence of pathologic changes in peripheral nerves...
FIGURE 6. Representative micrographs of gastrocnemius muscle cryostat sections stained with rhodamine-α-bungarotoxin (red) and neurofilament antibody (green). (A–F) In wild-type mice (WT), nearly all end plates (EPs) are innervated by branches of axons (A, B). End plates without any contact to axon terminals are easily identified in DMSXL mice (D, E). At higher magnification, representative images illustrate a single EP (C, F). In a DMSXL mouse (F), the EP has a smaller size and a less complex shape than that in a control mouse (C). (G–I) The mean surface area of EPs, the shape complexity, and the density of acetylcholine receptors on postsynaptic membranes labeled with rhodamine-α-BTX (fluorescence intensity) are represented in the 3 histograms. More than 1,400 EPs were measured from each mouse line. All 3 parameters were smaller in DMSXL mice versus WT control mice (*p < 0.05).

(12–16, 28–33). Indeed, a few histopathologic studies of peripheral nerves and muscle biopsies have confirmed the presence of peripheral neuropathy in patients with DM1 (34–40). Some authors who support the presence of neuropathy in DM1 argue that pathologic changes and peripheral nerve dysfunction are primary and are unrelated to the glucose intolerance (which may be present in some patients with DM1) or to other metabolic, nutritional, or genetic factors (12, 31, 41). The absence of impairment of nerve conduction in patients with DM1 has also been reported (17, 19, 21). These and other authors found no evidence of morphologic abnormality of peripheral nerves, no signs of muscles denervation, and no loss in the number of motor neurons in patients with DM1 (18, 20, 21). It is important to emphasize that studies confirming or denying association of peripheral neuropathy with DM1 disease involved patients of unknown genotype because the molecular basis of DM1 was not yet identified when those reports appeared. Consequently, the earlier studies did not take into consideration the relationship between the expansion of the CTG repeat and the severity of the clinical features. Therefore, we believe that the conflicting results are probably due to different lengths of CTG repeats in the patients.

We previously studied transgenic mice (DM300) carrying 350 to 500 CTG repeats and displaying mild DM1 features (23, 42), and analysis of the sciatic nerve, lumbar dorsal root
ganglia, and spinal cord of those mice revealed neither axonopathy nor neuropathy (1). Moreover, no significant changes can be detected either in CMAP index or in NCV in DM300 transgenic mice (43). These results suggest that the length of CTG repeats (350–500) probably was not sufficient to induce peripheral neuropathy in that mouse model (1).

Because CMAP amplitude represents the total number of stimulated axons and NCV provides information about the rate at which a neural impulse propagates along myelinated fibers (44), the reduction in CMAP amplitude and NCV detected in DMSXL mice indicates nerve dysfunction. This correlates with clinical studies that found peripheral nerve dysfunction in patients with DM1 (12–16, 29, 32, 33). Structural pathologic changes that probably caused the dysfunction of peripheral nerves in the mice were detected in sciatic nerves, lumbar motor neurons, and neuromuscular junctions. In particular, the size-frequency distribution of myelinated fiber diameters indicates that the 6% reduction in the total number of myelinated fibers in DMSXL mice was essentially a loss of large axons, which correspond to motor fibers in sciatic nerve (45). The reduction of 19% of ChAT-positive axons confirmed a preferential loss of motor axons, and the decrease in the number of motor neuron cell bodies indicates the presence of a motor neuropathy. Moreover, the higher expression of hyperphosphorylated tau protein in DMSXL mice motor neurons argues for increased kinase activity (27). It is worth noting that comparable motor neuropathy and pathologic changes in neuromuscular junctions have been described in patients with DM1 (46). Indeed, Wheeler et al. (46) demonstrated the presence of ribonuclear foci in motor neurons spinal cord autopsy and the high expression of CUGexp RNA and sequestration of MBNL1 protein in postsynaptic nuclei of neuromuscular junctions in muscle biopsies. Other studies have emphasized that dramatic changes in tau isoform expression in brain neurons is associated with the presence of large CTG expansion in the brains of patients with DM1 (27, 47–49); the expanded CUG repeats may affect RNA metabolism of several genes and act as a gain-of-function mutation (48).

We believe that the motor neuropathy detected in DMSXL mice is independent of possible alterations in the thyroid or pancreatic β-cell function because the DM300 transgenic mice used to generate DMSXL mice did not develop either motor or sensory neuropathy (1). Moreover, the neuropathy detected in DMSXL transgenic mice showed a loss in the number of motor neurons, whereas neuropathies induced by hypothyroidism or diabetes are mainly characterized by a deficiency in myelination and progressive distal loss of axonal terminals but without perikaryal loss (50, 51). Our data are consistent with other studies demonstrating a selective loss of functioning motor units and alterations of neuromuscular excitability in patients with DM1 (52–55).

Genotype-phenotype correlation studies also report that muscular disability and the severity of hand muscle myotonia depend on the CTG repeat length in leukocyte DNA (56–61). The severity of cardiac conduction abnormalities and arrhythmia in DM1 is also directly related to age and CTG repeat length (62). Moreover, an association between the CTG repeat size and cognitive impairment has been described (63, 64).

Because transgenic mice carrying 350 to 500 CTG repeat did not have peripheral neuropathy (1), whereas DMSXL mice undoubtedly have motor neuropathy, we conclude that there is a correlation between the development of neuropathy in DM1 transgenic mice and the size of the CTG triplet. However, it should be noted that the relationship between the length of the CTG repeat and the severity of DM1 features does not always hold true, and there are some exceptions. Indeed, some authors claim that cataract, gastrointestinal, respiratory insufficiency sleep disorder, and other DM features are not correlated with the length of the CTG triplet (56, 58). Because in DM1-affected individuals the instability of the triplet repeat induces somatic mosaicism might be an possible explanation for the lack of precise correlation between the number of CTG repeats in leukocyte DNA and the severity of DM1 in its multisystemic aspect.

In conclusion, analyses of DMSXL transgenic mice carrying a large CTG expansion and expressing a severe DM1 phenotype provide evidence that these mice have a motor neuropathy that we infer to be linked to their large CTG expansion. In the future, we will investigate whether sensory neuropathy can also be linked to the long CTG repeat and severe form of DM1.

ACKNOWLEDGMENTS

The authors thank Dr M. Price for critical reading of the article and Drs P. Davies and B. Riederer for providing the PHF-1 and tau-1 antibodies.

REFERENCES

© 2011 American Association of Neuropathologists, Inc.

Copyright © 2011 by the American Association of Neuropathologists, Inc. Unauthorized reproduction of this article is prohibited.
37. MacFarlane V. The histology of the neuromuscular junction in dystrophia myotonica. Brain 1961;84:75–84
47. Legrand J. Thyroid hormone effects on growth and development. In: Henneman E, ed. Thyroid Hormone Metabolism, New York, NY: Marcel Dekker; 1986:503–508