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Abstract

Mechanical force modulates myriad cellular functions including migration, alignment,

proliferation, and gene transcription. Mechanotransduction, the transmission of mechanical forces

and its translation into biochemical signals, may be mediated by force induced protein

conformation changes, subsequently modulating protein signaling. For the paxillin and focal

adhesion kinase interaction, we demonstrate that force-induced changes in protein complex

conformation, dissociation constant, and binding Gibbs free energy can be quantified by lifetime-

resolved fluorescence energy transfer microscopy combined with intensity imaging calibrated by

fluorescence correlation spectroscopy. Comparison with in vitro data shows that this interaction is

allosteric in vivo. Further, spatially resolved imaging and inhibitor assays show that this protein

interaction and its mechano-sensitivity are equal in the cytosol and in the focal adhesions

complexes indicating that the mechano-sensitivity of this interaction must be mediated by soluble

factors but not based on protein tyrosine phosphorylation.
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1. Introduction

Cellular processes such as proliferation, differentiation, and migration are regulated by

biochemical signals transduced through protein-protein interactions. In order to study these

processes, assays have been developed to quantify the complex signaling network. To detect

intracellular protein assembly, there are well-established in vitro assays such as co-

immunoprecipitation [1, 2]. More quantitative approaches can further measure protein

binding constants in purified protein solutions, including isothermal titration calorimetry

(ITC) [3-5], nuclear magnetic resonance (NMR) [6], surface plasmon resonance (SPR)

[7-9], and fluorescence correlation spectroscopy (FCS) [10-13]. Given their in vitro nature,

the applicability of these methods in understanding dynamic cellular processes is fairly

limited. Clearly, the development of quantitative assays that are applicable to track dynamic

intracellular processes would be very useful. An important advance is the development of

genetically expressible proteins that enable tagging and tracking of proteins with minimal

perturbation [14-16]. Within the past decade, FCS and its variants such as fluorescence

cross-correlation spectroscopy (FCCS) have been shown to be powerful methods to study

protein binding in vivo. Kim et al. utilizes two-photon FCCS to measure binding constants

between calmodulin (CaM) and Ca2+ / CaM-dependent protein kinase II (CaMKII) under

various conditions, in what is probably the first to quantify intracellular binding constant

[17]. Subsequently, others have measured intracellular association/dissociation constants of

other proteins based using similar approaches [18-20]. In this paper, we report a new

approach based on combining Förster or fluorescence resonance energy transfer (FRET)

with intensity imaging calibrated by FCS that is able to: (1) determine whether protein

binding occurs and the conformation information of the bound protein complex, (2) quantify

the fraction of bound and free proteins, (3) measure thermodynamic constants of protein

binding such as the dissociation constant and Gibbs free energy. Importantly, this method is

relatively fast and allows all these parameters to be measured throughout the cell, producing

distribution maps of protein-protein interaction parameters.

FRET can be readily measured by fluorescence lifetime microscopy (FLIM) and is

increasingly used to answer questions related to binding of intracellular proteins [21, 22].

Peter and co-workers demonstrated a novel receptor-kinase interaction between the

chemokine receptor (CXCR4) and protein kinase C (PKC)α in carcinoma cells using an

EGFP-mRFP1 FRET pair [23]. A GFP-Cy3 FRET pair used by Parsons et al. detected

activated Cdc42 interacting with PAK1 in a location-dependent manner [24]. Due to the

nanometer scale distance over which FRET is relevant, a positive FRET readout detected

through changes in donor fluorescence lifetime most likely denotes direct protein

interaction. However, most current FRET/FLIM studies stop at the determination of average

lifetimes or calculation of interfluorophore distance. It is important to note that FRET also

provides information on the ratio of bound to free protein. Combining this information with

intensity-concentration measurements calibrated by FCS, it is possible to determine

intracellular bound protein distribution and to map dissociation constant and binding free

energy of binding for our protein pair of interest within cells.

As a demonstration of quantitative thermodynamic measurement of protein-protein

interactions in vitro, we study an aspect of the mechanotransduction process in endothelial
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cells. The endothelium experiences mechanical forces in the form of hemodynamic shear

stress and pulsatile pressure-induced stretch. While signaling cascades that result from

mechanical forces have been extensively characterized [25, 26], the initiating processes for

mechanotransduction are still not fully understood. Adherent cells can sense deformation of

their substrate where an external mechanical perturbation to the basal membrane is

transmitted to the cytoskeleton through integrins and the associated proteins at focal

adhesions (FAs). Extensive schematic maps of the more than fifty different proteins

associated with FAs are available [27, 28], and many of these have been implicated in

mechanotransduction. The quantification of the mechano-sensitivity of the binding affinities

of these proteins and the conformations of these molecular complexes would provide

valuable insights. In this study, we chose to characterize the interaction between two of

these proteins, paxillin (Pax) and focal adhesion kinase (FAK) [29, 30]. Paxillin is a 70 kDa

protein with five peptide sequence, LD motifs, close to its N-terminus that are involved with

binding to other proteins [31]. Specifically LD2 and LD4 are known to be involved with

FAK binding. FAK is an even larger protein of 125 kDa. The FAK domain that directly

interacts with Pax is referred to as the focal adhesion targeting sequence (FAT) [32] [33].

FAT is known structurally as a four helix bundle with two hydrophobic sites on its front and

back that are involved with Pax binding. Recent advances in FCS and related techniques

such as FCCS and N&B analysis have produced a wealth of data in characterizing the

binding stoichiometry and diffusion properties of these protein pairs at the FAs and the

cytosol [34-38]. Our studies on Pax-FAK interactions extend this foundation.

In this report, we will specifically study the interaction between the full length Pax and the

truncated targeting sequence of FAK. We will demonstrate that the binding energy between

Pax and FAT can be quantified in vitro and is in close agreement with other published in

vitro measurements. We further seek to study whether, and how, the interaction between our

protein pair of interest is affected by a step change in strain applied to its substrate.

2. Materials and Methods

2.1. Cell preparation

Bovine aortic endothelial cells (BAECs) were cultured in Dulbecco's Modified Eagle

Medium (DMEM) (Gibco, Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine

serum,1% penicillin/streptomycin, and 1% L-glutamine. Cells were seeded at an initial

density of 160,000 cells/well in fibronectin-coated 35mm glass-bottom (#1.5) dishes

(MatTek Corporation, Ashland, MA). Transfection was carried out at ~80% confluence with

either or both GFP-Paxillin (GPax), FAT-mCherry (FATmCh) plasmids, using the FuGene6

transfection reagent from Roche Diagnostics (Indianapolis, IN) and manufacturer's

transfection protocols. Note that plasmid notation indicates position of fluorophore within

the fusion protein, whereby GFP is at the N- terminus of Paxillin and mCherry is at the C-

terminus of FAT. Lifetime imaging was carried out 24 h after transfection. For the study of

chemical interruption to stretch induced mechano-response, we added 2 µM cytochalasin D

(Sigma-Aldrich, MO) for 30 mins prior to imaging or with 100 µM Genistein (EMD

Biosciences, CA) for 60 mins prior to imaging. Just before imaging, cells were washed with
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PBS and DMEM supplemented with 10% fetal bovine serum, 1% penicillin/streptomycin,

and 1% L-glutamine but with no phenol red was replaced in the wells.

2.2 Plasmids

GPax plasmids were obtained as a gift from K. Yamada of the NIH, Bethesda, MD. Mouse

FAT from the dsRed-FAT plasmid (N. Mochizuki, National Cardiovascular Center Research

Institute, Japan) was amplified by PCR with primer pairs (5-

CTAAGCAACCTGTCCAGCATCAGC3-) and (5-

CGGATCCGGGTGTGGCCGTGTCTGCCCTAGC3-). The resulting PCR fragment was

ligated into pcDNA4/HisMax© TOPO® vector (Invitrogen, Carlsbad, CA). mCherry from

the pRSET-B mCherry plasmid (R. Tsien, UCSD) was digested with EcoRI and BamHI and

ligated into the pcDNA4-FAT vector at the 3′ end of FAT. The FAT-mCherry plasmid was

amplified using the Qiagen MaxiPrep kit (Qiagen, Valencia, CA).

2.3. Biaxial stretch experiment

A schematic of our stretch device is found in Fig.1. Once assembled, cells are in an

enclosed, sterile compartment, suitable for long-term monitoring. Another significant

advantage is that the distance between the membrane, where cells are plated, and the glass

coverslip is held constant while stretch is applied. This is important in order to ensure focus

on the cell adhesion plane is not lost during stretch application, especially since cell position

changes in the x-y plane with applied stretch. The device produces an equibiaxial strain

profile [39].

A 2″ × 2″ silicon sheet (Specialty Manufacturing, Inc., MI) was affixed to the membrane

holder with 1/16″ O-ring (McMaster-Carr, NJ). Wells were cut from a 0.5″ thick piece of

PDMS and adhered onto the silicon sheet (Fig. 1 inset). Surface contact is sufficient to

provide a good seal between the membrane and PDMS. This assembly was incubated with 5

µg/ml fibronectin applied to the membrane for 2 h before cell seeding and transfection. To

assemble the device for imaging, high vacuum grease (Dow Corning, was applied to the

outer edge of a #1 glass coverslip (VWR, PA) and the coverslip was carefully lowered into

the base and firmly attached to the bottom, resulting in a complete seal around the coverslip.

2 ml and 0.3 ml DMEM with no phenol red was added to the base and cells respectively.

Castrol grease (Structure Probe, Inc, PA) was applied to the piston tip to ensure good

lubrication and facilitate slip between the piston tip and the membrane during strain

application. The cell culture assembly was affixed to the piston by screws (McMaster-Carr,

NJ), being very careful to use a spacer to prevent the piston from applying strain to the

membrane at this time. The PDMS piece was removed and the whole assembly was inverted

and lowered into the base, having first removed the spacer. Care was taken to ensure that no

air bubbles were trapped between the membrane and the glass coverslip. The piston was

affixed to the base with set screws. The entire stretch device was calibrated by measuring

ink marks on the membrane as stretch is applied. The application of a 10% step strain

requires about 40s due to the need for manual adjustment.
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2.4 Microscopy imaging instrumentation

The custom-built two-photon microscope, as previously published [40], is based on a

modified inverted microscope, Axiovert 110 by Zeiss (Göttingen, Germany), with a

femtosecond laser source from the Mira family of modelocked Ti:Sapphire oscillators by

Coherent (Santa Clara, CA). The laser excites a subfemtoliter volume at the focal point of a

40× Fluar objective (1.3NA, Zeiss).

For lifetime imaging [41-43], the laser is tuned to 890nm with 40mW power to excite GFP

paxillin before the objective, resulting in low power at the sample so as to minimize

photobleaching and cell damage. In order to minimize contributions from scattered laser

light and autofluorescence, the cell's fluorescence signal is selected with a short-pass Schott

BG-39 filter and short-pass 700nm filter from Chroma (Rockingham, VT). The signal is sent

to the top port of the microscope where it is filtered for green wavelengths with HQ500LP

from Chroma (Rockingham, VT). A photomultiplier tube (PMT), R7400P from Hamamatsu

(Bridgewater, NJ), detects emitted photons and this signal is sent to a time-correlated single

photon counting card (TCSPC card), SPC-730 from Becker-Hickl (Berlin, Germany). With

890 nm excitation, the m-Cherry FAT signal in doubly transfected cells is virtually

undetectable in comparison with the GFP paxillin signal. For doubly transfected cells, fitting

the lifetime dynamics of the donor to a double exponential decay will allow recovery of the

lifetimes of the free and bound donor molecules as well as their relative intensity fraction.

For intensity imaging and FCS, a PMT with higher photon detection efficiency, H7421 from

Hamamatsu (Bridgewater, NJ) is used in the bottom port of the microscope and is combined

with single photon counting electronics. The laser is tuned either to 890nm (40mW before

the objective) or 780nm (20mW before the objective). Power is low to minimize

photobleaching throughout imaging. Green wavelengths from the cell are selected with

BG-39 and SP700 filters (Chroma, Rockingham, VT) while red wavelengths are selected

with two SP700 and a BP590-35 filters (Chroma, Rockingham, VT).

2.5 Imaging procedures

FCS calibration is needed to related intensity measurements to number concentrations.

Intracellular FCS was carried out on cells transfected singly with either GPax or FATmCh.

Intensity images of the same cells were also taken. FCS calibration factors, effective volume

(Veff) and shape factor (r0/z0)2, were obtained using an aqueous solution containing 10 nM

Alexa Fluor 488 (Molecular Probes, Eugene, OR) imaged in 8-chamber Lab- Tek® II, #1.5

coverglass slides (Thermo Fisher Scientific, Waltham, MA).

Double-transfected cells with fluorescent intensities in the middle range as observed using a

432 nm diode laser (Laserglow Technologies, Ontario, Canada) were selected for complete

sets of intensity-FLIM imaging. We attempted to select for cells that were not over-

expressing fusion proteins at too high a level but that were bright enough such that lifetime

decay curves would have sufficient photon counts and acceptable signal-to-noise ratio

(SNR). We found that the selected cells typically have fusion protein concentrations in the

tens of nM to µM range when the associated images were analyzed using FCS calibrated
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intensity measurements. These doubly transfected cells are typically slightly less bright than

singly transfected cells (within a factor of 2).

For stretching experiments, cells are first plated in the stretch device. Initially, a complete

set of intensity-FLIM images was taken, 10% strain was applied, and another complete set

of intensity-FLIM images was taken for the same cells. The imaging protocol is identical for

chemical disruption experiments, with imaging commencing after the above-mentioned

incubation times. The experimental timeline is presented in Fig. 2. An equilibration time

after application of step strain of 5 min was chosen as FAK phosphorylation was shown to

peak at 5 min after application of stretch [44].

2.6 Data analysis

FLIM/FRET data were analyzed using the global analysis algorithm that was described

extensively in our previous publication [43]. Briefly, from GPax transfected cells, the non-

FRETting lifetime, τD, of GFP is obtained using a single-exponential fit to lifetime decays.

This value is fixed when analyzing double-transfected cells. Resulting double-exponential

fits retrieve the FRETting lifetime, τF, from which efficiency of energy transfer, E, can be

calculated as shown in equation (5). A lower photon count limit of 500 photons/pixel was

used when selecting pixels for which to fit decay curves.

FCS autocorrelation curves were analyzed with MATLAB (The MathWorks, Natick, MA)

using the lsqnonlin nonlinear least-squares curve fitting function. A mean filter with a 5 × 5

kernel was used. While having the effect of reducing the effect of noise on resulting

calculations, this step also results in loss of resolution (blurring) especially at image edges.

3. Theory/Calculation

3.1. Overview

It is well demonstrated that FRET and FCS allow in vitro detection of protein binding and

the quantification of bound complex conformation [45-47]. Detecting the presence and

absence of protein binding is clearly an important first step. While it is possible that

mechanical forces will affect protein binding in a binary fashion; it is more likely that

mechanotransduction mechanisms will up- or down-regulate protein binding affinity in the

signaling pathways. From the thermodynamics standpoint, protein binding affinity is

quantified by the steady-state dissociation constant and the associated Gibb's free energy.

Although the measurement of protein binding affinity is routine in purified protein solutions,

these measurements remain a challenge within living cells. A number of prior studies using

FRET have partly overcome this difficulty. Hoppe and co-workers have developed an

intensity based imaging methods allowing the quantification of ratio of bound and free

proteins in equilibrium [48]. Subsequently, other investigators have extended this work by

taking into account of the law of mass action to quantify the dissociation constant of

interacting proteins [49, 50]. One limitation of these studies is that while relative

dissociation constants can be determined, the absolute magnitudes cannot be measured. A

landmark study overcoming these problems used two-photon cross correlation spectroscopy

and enabled protein dissociation constants to be measured in living cells at selected locations

[17]. We describe in the following section the theoretical basis for extending this approach
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to quantitatively map the thermodynamic parameters of protein binding in living cells based

on FRET microscopy and intensity imaging calibrated by FCS.

As an overview, BAECs were transiently transfected with fusion proteins: GPax and

FATmCh (Fig. 3). Assuming steady state and the expression of fusion species is high

relative to native protein, the interaction between GPax and FATmCh can be described by

the following stoichiometric equation:

(1)

One-to-one binding is assumed and is consistent with in vitro data [51] and published results

based on FCS [38]. Given the reaction stoichiometry, the dissociation constant of FATmCh-

GPax binding can be determined via the law of mass action:

(2)

Lifetime-resolved imaging of donor fluorescence from GPax allows the quantification of

FRET process. In a dynamic equilibrium as described by equation (1), GFP fluorescence

will be generated by free, unbound GPax as well as GPax found to FATmCh. The unbound

GPax will have fluorescence lifetime of GFP in the absence of FRET. The bound GPax will

have shortened lifetime due to the presence of FRET to mCherry. Quantitative FRET

imaging further allows a measure of the relative concentrations of bound, CFATmCh–GPax,

and free, CGPax, paxillin [43]. Intensity measurements coupled with FCS calibration at the

green and red emission channels quantify the number concentrations of the green

(CFATmCh–GPax and CGPax) and red (CFATmCh–GPax and CFATmCh) fluorescent species,

respectively. These three measurements provide three equations relating the three unknown

product and reactant concentrations. Simultaneously solving these equations on a per pixel

basis then determines the distribution of the dissociation constant, and the associated Gibb's

free energy (ΔG), throughout the cell.

3.2. Quantification of cytoplasmic protein concentration based on FCS calibrated intensity
measurements

The concentrations of green and red diffusing species in the cytosol are proportional to the

fluorescence intensities measured. Intensity maps in the green and red channels can then

provide a molecular concentration map of the green and red fluorescent proteins.

These proportionality constants can be determined based on FCS calibration. FCS

measurement results in a fluctuating temporal sequence of fluorescence intensities, F(t), due

to thermally driven diffusion of fluorophores in-and-out of the two-photon excitation

volume. This temporal sequence is analyzed through the normalized temporal

autocorrelation function, G(τ), that is given by
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(3)

where δF(t) = F(t) − 〈F(t)〉 and . The autocorrelation curve is fit with the

equation

(4)

which describes freely diffusing fluorescence molecules in an approximate 3D Gaussian

excitation volume. , N is the number of particles, Veff is the effective

focal volume,  is the shape factor a measure of the aspect ratio of the focal volume (r0

= radius, z0 = height), and τD is the diffusion timescale of the molecules, related to the

molecule diffusion constant, D, by . Therefore, intracellular measurement of the

autocorrelation function will allow us to determine G(0) and hence the concentration, <C>,

of the molecules in the excitation volume if all the calibration factors are known. The

calibration factors, effective volume (Veff) and shape factor (r0/z0)2, can be obtained

independently using an aqueous solution containing a known concentration of dye.

3.3. Calculation for protein binding thermodynamic constants

For intracellular interaction of GPax and FATmCh, the binding reaction has stoichiometry

as described by equation (1). The law of mass action (equation 2) can be generalized with

spatial dependence and the dissociation constant, Kd, can be calculated:

(5)

Here C denotes concentration.

In order to calculate Kd for this reaction, it is necessary to measure concentrations, or ratios

of concentrations, of free and bound fluorescent species. As was shown in Pelet et. al [42],

equation (6) presents the per-pixel fluorescence intensity decay measured by FLIM in a

FRET system.

(6)

I(t) is a convolution of the sum of the exponentials with the instrument response G(t). Pre-

exponential factors αD and αF reflect fractional contributions to the total fluorescence from
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the free donor (no FRET) and bound donor (with FRET) species respectively, each of which

undergoes decay at rates τD and τF.

(7)

αD and αF are the fractional fluorescent intensities of the free and bound donor species, the

ratio of which is the same as the ratio of the concentrations of bound and free GPax within

the pixel. We denote this term as the FRET ratio (FR).

In addition, the FRET efficiency, E, that characterizes bound molecule conformation, can be

obtained from the recovered lifetimes:

(8)

This FRET ratio from equation (7) can be related to the ratio of Ccell
GPax / Ccell

GPax-FATmCh.

(9)

(10)

The concentration ratio as obtained in equation (10) can be substituted into equation (5),

resulting in the following expression:

(11)

The dissociation constant can be measured if we can measure the concentration of free

FATmCh. However, it is non-trivial to measure the concentration of free FATmCh in a

doubly-transfected cell since any contribution measurement in either the green or red

channel will contain contributions from both the free protein and the bound complex.

However, as will be shown below, by measuring the concentration of both green and red

emitting species, the concentration of the free FATmCh can be determined algebraically.

In principal, the concentration of the red and green emitting species can be determined

intracellularly by FCS. However, since FCS measurement is slow, it is impractical to map

these concentration distributions throughout the cell. Instead, intensity maps will be obtained

throughout the cell and FCS calibrations will be performed to measure the brightness of the

green and red emitting species allowing the conversion of intensity values to number

concentrations. The concentration distribution of either the red or green species can then be

obtained by calibrating the intensity images with the known brightness.
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(12)

Here, i can be either red (R) or green (G) fusion proteins, making no distinction between free

and bound species, Ii(x, y) is the intensity of the cell at location (x,y) in units of photons per

unit time, <Ii
calib> is the average intensity of singly transfected cells in the calibration

experiment,  is the average concentration of fusion protein in singly transfected

cells in the calibration experiment. The molecular brightness of the fluorescent protein in the

cell as measured by our instrument can be defined as:

There are two additional complications due to the presence of FRET and spectral

bleedthrough. When converting from intensity to concentration, green channel intensities

arise from GFP excitation. For free GPax, the directly measured signal can be calibrated

from (9). For bound GPax, there is energy transfer to FATmCh and the fluorescence

contribution from bound GPax is reduced by the FRET efficiency, E. Intensities in the red

channel contain contributions from both free and bound FATmCh, as well as some bleed-

through, β from the green channel, that is subtracted.

The green channel intensity excited at 890 nm is given by,

(13)

The green species concentration is given by

(14)

The red channel intensity excited at 780 nm is given by

(15)

The last term is the bleedthrough of GFP excited at 780 nm to the red channel. β is the factor

quantifying the the spectral bleedthrough from the excited GFP into the red channel. In order

to related this quantity to the green channel intensity detected at 890 nm as defined in

equation (13), we further need a calibration factor k that related the ratio of the brightnesses

of GFP excited at 780 nm relative to being excited at 890 nm. The brightness ratio k is a

constant calibration factor that was determined from singly transfected GFP cells.

The red species intensity is given by
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(16)

Finally, the red species concentration is given by

(17)

From equations (10) and (14),

(18)

Combining this with equation (17), we obtain

(19)

A final substitution in equation (11) gives us Kd.

(20)

Using this methodology, which combines FLIM and intensity-concentration scaling, Kd can

therefore be calculated for entire cells. A conversion to the Gibbs free energy of binding

naturally follows from ΔG = RT 1n Kd. R is the universal gas constant, 8.314 JK-1mol-1, and

T is the temperature of the system, 300 K.

4. Results

4.1 FCS intensity-concentration calibration

FCS was carried out on 5 different GPax cells, totaling 26 repeated measurements, while for

FATmCh cells, FCS was carried out on three different cells, totaling 38 repeated

measurements. Representative autocorrelation curves and the resultant fit from each cell set

are presented in Fig. 4. The GPax autocorrelation curves were fit with a single component

fit, while the FATmCh curves were fit with a single component plus a constant term fit. As

can be seen from Fig 4, G(0) values are similar, thus signifying similar intracellular protein

concentrations in both groups of cells. mCherry is a dimmer fluorophore compared to GFP

[52, 53], and care must be taken to remove autofluorescence signals. In any case, mCherry

autocorrelation curves are noiser. These points are also reflected in the intensity-

concentration values calculated as following: <IG
calib>= 1.1×105 ± 1.6×104 photons/second,

<CG
calib>= 24.22 ± 6.00 nM, <IR

calib>= 8.8×103 ± 2.5×103 photons/second, < CR
calib >=

30.03 ± 17.45 nM. The brightnesses are: <BG
calib> = 4.5×103 photons/second/nM and

<BR
calib>=2.9×102 ± 1.8×102 photons/second/nM. The brightness of mCherry is

significantly lower than that of GFP due to both fluorophore photochemistry as well as the
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lower sensitivity of our imaging system in the redder spectral range. The uncertainties in

these calibration values are due to measurement noise including uncertainties in measuring

G(0) due to shot noise and due to position variations in cells in the presence of some non-

diffusing proteins. Examining the effect of these uncertainties in the measurement of ΔG, the

uncertainty in the resultant ΔG is approximately 5% of the mean value. The typical fusion

protein concentrations of PaxG and FATmCh are found to range from tens of nM to μM

range.

4.2 Single cell calculation of ΔG

A histogram of average lifetimes comparing a single-transfected GPax cell with a double-

transfected cell demonstrates a shift to lower average lifetimes in double-transfected cells

(Fig. 5). This is consistent with the occurrence of FRET and fusion protein binding.

A representative dataset from a single cell measurement is shown in Fig. 6. Fig. 6 (a) and (b)

show the intensity images of red and green species within the cell. After brightness

calibration as discussed in Section 3.2, the mean concentrations of both green and red

species are in the 500 nM range. Fig. 6(c) shows the cell pseudo-colored by FR distribution,

the ratio of free to bound GPax, based on global analysis on FLIM data. Global fitting of

FLIM data further allow the extraction of two fitted lifetimes of τD = 2.60 ns and τF = 1.94

ns. The resultant τF / τD ratio of 0.75 gives a FRET efficiency, E, of 0.2 and an

interfluorophore distance of 56Å. Fig. 6(d) shows that the distribution of dissociation

constant measured in the cytosol is approximately 209 ± 50 nM. Fig. 6(e) shows the

resultant cell map once ΔG has been calculated. Averaging over the whole cell, ΔG = -38 ±

5 kJ/mol.

4.3 Effect of FRET ratio scaling and mean filtering

FR values can be skewed at low intensity pixels during global analysis [43]. One solution is

to set an intensity threshold at a high level such that low intensity pixels are ignored but that

often left us with few workable pixels per cells. We have developed an FR scaling method

that can correct for this skew, allowing us to work with many more pixels at lower intensity,

as discussed in our previous publication [43]. In addition to FR scaling, we also found that

mean filtering is very effective in removing noise in our thermodynamic parameter

calculations. Here, we evaluate and demonstrate the effects of FR scaling and mean filtering.

For mean filtering, we found that for increasing kernel size, ΔG and its variance decrease to

a plateau value. A kernel size of 5 × 5 strikes a balance between increasing loss of spatial

resolution and decreasing noise. This is shown for a representative cell in Fig. 7(a), which

tracks the effect of increasing kernel size on the distribution of ΔG. Number of neighbors in

the plot refers to the number of surrounding rows of pixels that are averaged over, whereby

neighbor number of 2 corresponds to a 5 × 5 kernel size. FR scaling slightly decreases the

mean value of ΔG. The effect of FR scaling and mean filtering on ΔG distribution is further

shown Fig. 7 (b). It can be seen that FR scaling clearly increases the number of pixels

captured in the final ΔG image while mean filtering significantly narrows the distribution of

ΔG.
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4.4. Measuring ΔG across multiple cells

It is also important to evaluate our consistency in extracting thermodynamic parameters

from cells with the same preparation protocol over time. A plot of ΔG values calculated for

ten cells measured on three separate days is given in Fig. 8. It can be seen that there is

variation in the ΔG measured from cell to cell, up to 10%. These ΔG values correspond to an

average Kd value of 366.9 ± 33.7 nM. This study shows that the dissociation constant can be

reliably measured by our method despite minor variances in culture conditions.

4.5. The effect of the presence of native proteins

The levels of fusion protein expression are critical. On one hand, fusion protein expression

levels should not be too high to minimize their physiological effects on cells. One the other

hand, the fusion proteins should be expressed at sufficiently high levels relative to the native

proteins. This is important because we have assumed a law of mass action that involves only

three interacting species (equation 2). We have performed Western blot analysis and show

that this assumption is true with fusion proteins expressing at a level at least ten times that of

endogenous Pax and FAK (Fig. 9). Qualitatively, the expression levels of native proteins are

approximately over an order of magnitude lower than that of the fusion proteins. In addition

to the native Pax and FAK, both Pax and FAK may have other protein binding partners.

Interactions with these other proteins may also partly compromise the assumptions made in

the law of mass action. Here, we make the assumption that the fusion protein expression

levels are also high relative to these other native proteins. Given our need to express fusion

proteins well above native level, it is reasonable to question whether over-expression affects

native biological processes. We may note that the overall morphology and actin distribution

are not significantly differ between transfected cells and wide-type cells. However, more

subtle changes in cellular physiology cannot be ruled out. We may note that this

shortcoming is common in many cellular studies involving fluorescent proteins with the

exception of some correlation spectroscopy measurements where expression levels can be

kept fairly low.

Within these limits of fusion protein expression levels, there is also concern that expression

level differences in different cells may affect our measurement accuracy. While one may

reduce expression level difference by synchronizing the cells under study, however, we note

that protein expression levels can remain quite stochastic in nature even with synchronized

cells. Further, protein concentration at different locations within even a signal cell can be

large and may be greater than cell-to-cell variances. Therefore, we stress that our

methodology must be robust in recovering “intrinsic” parameters of protein interactions

independent of fusion protein expression level. These intrinsic parameters, that characterize

molecular level properties of protein interaction, include FRET efficiency E (characterizing

bound protein conformation), the dissociation constant, kd, and the Gibbs free energy, G,

should be independent of protein expression ratio. Further, there are other “extrinsic”

parameters, such as FRET ratio, FR, that should dependent on local fusion protein

expression levels governed by the law of mass action. Fig. 10 demonstrates the robustness of

our approach in recovering the correct intrinsic parameters in the presence of intracellular

fusion protein concentration variation. In this figure, the concentration, [FATmCh], is

plotted against concentration ratio, [FATmCh-PaxG]/[PaxG], for different pixel within a
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single cell. According to the law of mass action, the instantaneous slope is the dissociation

constant, kd of the protein and should be constant independent of reactant concentration. The

linearity of the plot demonstrates that this constancy of kd for [FATmCh] concentration

ranging from 50 nM to over 200 nM ([PaxG] distribution also has a similar range). There

may also be concerns that low fluorescence signal intensities, associated with regions of low

protein distribution, will affect FRET measurement accuracy; this issue has been discussed

extensively in our previous publications [43] where we show that with the imaging condition

and analysis protocol used, accurate FRET measurements can be performed.

Finally, the presence of fusion proteins bound to endogenous binding partners may result in

a distortion of the FCS autocorrelation curves and the resultant fits. In terms of the effect on

G(0) value, since the concentration of endogenous species is low, we do not expect

endogenous protein binding to greatly affect molecular mass and hence diffusion rate.

Approximating the diffusing fluorescent species as a homogenous sphere, its hydrodynamic

radius scales by the cube root of the molecular weight [54, 55]. Thus, a change in the

diffusion rate by a factor of two will require an increase of eight times in the mass of the

fusion protein due to binding of non-fluorescent native species. That is quite unlikely due to

the similar sizes of proteins, even in the case of FATmCh due to the presence of the fairly

large m-cherry. Therefore bound and unbound fusion proteins will exhibit diffusion times on

the same scale, averaging to one G(0) value in our measurements. In fact, our diffusion

curves fit well to the diffusion of a single species.

4.6. Comparison between FA and cytosol

We check to see as well if there are any significant differences between ΔG values

calculated at FAs compared to ΔG values calculated in the cytosol. One might expect there

to be some difference in the distribution of these ΔG values as FAs are mechanically and

biochemically different environments compared to the cytosol. Traction forces exerted by

cells onto the glass substrate presumably are transferred through the actin cytoskeleton

intracellularly and are transmitted to the substrate via focal adhesions, since these are the

sites of cell attachment to the substrate. The cytosolic region does not ‘feel’ this force. A

specific subset of proteins localize to FAs compared to those present in the cytosol, thus

potentially resulting in different binding characteristics between GPax and FATmCh.

FA and cytosolic regions within cells were identified and separately grouped based on

intensity segmentation. While FAs are always brighter than the immediate surrounding

cytosol, FA intensities are not the same throughout the whole cell. Some bright cytosolic

regions might be as bright as some FA regions in other parts of the cell. Each cell is thus

first segmented into regions with similar FA and cytosolic intensities, before further

segmentation into separate FA and cytosolic regions. An example is shown in Fig. 11, which

shows the original intensity image (Fig. 11 (a)) and the same cell segmented into FA (red),

cytosol (blue), and unselected regions (black) (Fig. 11 (b)). After segmentation, we can

compare FRET and thermodynamic measurements between FA and cytosol regions. While

there might be slight differences in ΔG between FA and cystol for some cells, there is no

clear trend for a larger population (Fig 12).
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4.7. Effect of step strain on ΔG

A 10% step strain was applied and ΔG values were calculated and compared for the same

cell before and after strain. Comparisons between cell intensity before and after applied

stretch show a 35.9% decrease in GPax intensity (Fig. 13(a)), and a much smaller decrease

of 5.5% in FATmCh intensity (Fig. 13(b)). Directly from FLIM global analysis fits, it can be

seen that FR shifts to higher values upon stretch, on average 0.072 ± 0.008, or 18.6% (5

cells) indicating tighter binding. Shifts are significant for all pairs (student t-test). A

representative histogram of FR distribution for cells under static and stretch conditions

demonstrates this (Fig. 13 (c)). A lower histogram height upon stretch, corresponding to

fewer total pixels, is also an indication of the loss in GPax intensity, since the same intensity

threshold cutoff (500 counts per pixel) was used in both cases when selecting pixels for

which to carry out FLIM analysis. Besides this, there was also a difference in fitted FRET

lifetime, τF, the lifetime being lower by 4.8% upon stretch. A lower τf corresponds to a

slight conformational change that brings the fluorophores closer by 2 Å. This tighter

conformation is consistent with the tighter binding observation indicated by FR shift.

The effect of 10% step strain on ΔG values for 5 different cells is shown in Fig. 14(a).

Overall, there is a shift to lower ΔG values upon application of stretch, whereby all shifts are

significant (student t- test) except for one pair. Overall, a reduction of 5 ± 1% is observed. A

lower ΔG value corresponds to a smaller Kd, which indicates a tighter binding interaction.

Grouping all ΔG values together before and after stretch before carrying out comparisons

also results in similar conclusions.

In order to verify that the change is real, complete intensity-FLIM measurements were

carried out on cells cultured in the stretch device, with a time interval of 15 min between

complete sets, but without application of stretch. 15 min corresponds to the average time it

usually takes between static and stretch imaging of the same cells. ΔG values were then

compared. This is to remove the effect of time as a potential factor in the change seen in ΔG

values. Results of this are shown in Fig. 14(b). The one pair with a significant change shows

a change in the opposite direction to the change observed upon stretch. Therefore, overall

there is no significant change in ΔG values. FLIM global analysis fits also show no

significant change in either τF or FR. This confirms our observation that the application of

stretch results in an enhancement of GPax – FATmCh binding.

4.8. Effect of chemical disruption on stretch-induced ΔG

A very interesting observation that can be made related to the changes in ΔG values we

measure is that it reflects global changes occurring throughout the cell, since we average

values over the whole cell. Therefore, the effect of force that is directed into the cell through

the FAs is translated into signals that are able to propagate throughout the whole cell. This

most likely points to some kind of soluble factor(s) effect. There are many factors that could

give rise to the change seen in ΔG values, including direct mechanical effect [56], a

phosphorylation enzyme effect [57] [58], Ca2+ signaling [59], and oxidative stress [60]. It

might well be impossible to specifically tease out the actual factor(s) that effects changes

seen in ΔG values. However, it is possible to try and negate the changes seen, by blocking
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specific processes within the cells and examining how the response changes (or not). We

biochemically alter the cell by adding either cytochalasin D or genistein to the system.

Cytochalasin D acts by capping the barbed end actin of actin filaments while allowing

depolymerization at the pointed end to still occur. This results in dismantling of the

intracellular actin network as shown in Fig. 15(a). Genistein is an ATP-competitive tyrosine

kinase inhibitor, the addition of which therefore blocks any potential tyrosine

phosphorylation signaling within the signal transduction cascade. Addition of genistein to

the system does not result in any observable morphological changes (Fig. 15(b)), or changes

in actin filament organization.

The effect of adding these two biochemical reagents (cytochalasin D: 4 cells, genistein: 6

cells) to the system is quantified in Fig. 16. For all the sub-figures, the percentages represent

changes occurred between the first (after 8 min) and the second (after 23 min) FLIM

imaging sections (see Fig. 2). The odd bars (from left) corresponds to cells that have been

subjected to bi-axial strain with procedure as described in Fig. 2. The even bars correspond

cells that the strain application step is replaced by a period passively waiting. The left two

bars are cells in standard medium without drug treatment. The middle two bars are cells

subjected to cytochalasin D treatment. The right two bars are cells subjected to gerinstein

treatment. Firstly, the results of FLIM global analysis fits are plotted in Fig. 16(a) whereby

the percentage difference in τF obtained for fits on static and stretched cells are compared.

As previously explained, stretch leads to shortening of τF, corresponding to a decrease in

interfluorophore distance. Merely adding a time interval does not significantly change the

lifetime, nor does addition of cytochalasin. This means that with these two treatments,

interfluorophore distance remains constant. Addition of genistein brings back the decrease in

interfluorophore distance. Next, the overall percentage difference in ΔG values calculated

under static and stretch conditions are plotted in Fig. 16(b). Lastly, a pixel-by-pixel

percentage difference in ΔG values was calculated and plotted in Fig. 16(c). As can be seen,

all plots display a similar overall trend. A positive stretch response corresponds to a decrease

in interfluorophore distance, i.e. the proteins are holding on to each other slightly tighter.

Merely adding a time interval between images removes the effect of stretch on calculated

ΔG values. Addition of cytochalasin D results in a slight lowering of the stretch response

while the addition of genistein does not alter the stretch response.

From our data, blocking of Tyr phosphorylation does not block the stretch response. This

means that it is not the Tyr phosphorylation pathways that lead to stretch-induced signaling,

as applied to our system of GPax – FATmCh binding. It might seem that cytochalasin D

slightly reduces the stretch response. If this is indeed true, changes in GPax – FATmCh

binding is caused in part by a direct physical effect of the applied mechanical force. A look

at the lifetime data also leads us to postulate that physical changes in protein conformation

(at least partially) gives rise to the changes seen in ΔG.
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5. Discussions

5.1. Implications on the roles of Pax and FAK on mechanotransduction

In this work, we have demonstrated a method to quantify intracellular protein binding based

on FRET imaging and intensity measurement calibrated with FCS. This approach allows us

to determine whether protein binding exists, the fraction of protein bound, the bound protein

conformation, and the binding thermodynamics. It is important to be certain that the binding

thermodynamic parameters are reasonable. We have measured a mean dissociation constant

between paxillin and FAT to be 367±33 nM. In vitro measurement of Kd values for the

FAT-LD domain interaction have been published. Gao et. al measured a Kd of ≈ 10 µM for

the interaction between a synthetic LD peptide and the FAT domain by ITC [61]. Thomas et.

al. measured a Kd of ≈ 4 µM for a similar interaction, though using the SPR technique [51].

These values are an order of magnitude higher than our new measurements in vitro. Very

interestingly, when both LD2 and LD4 are present in the protein construct, Thomas and co-

workers found that the interaction between this construct and FAT is much tighter, resulting

in a measured Kd of 300 – 600 nM [51] in close agreement with our measurement. Thomas

et. al. attribute this increase in binding affinity to the presence of both LD domains,

suggesting an allosteric effect on protein binding. While the presence of one LD domain can

result in binding between FAT and this domain, the presence of both LD domains

strengthens binding roughly tenfold, indicating positive cooperativity. Clearly, our

experiment involves the whole FAT sequence where both LD2 and LD4 domains are present

and we expect similar allosteric effect. It is interesting to note that allosteric effects observed

in vitro appear to be also important intracellularly. It might be time to rethink our

understanding of intracellular inter-protein interaction. Current methods used to predict or

depict protein binding, for example molecular dynamics simulation [62, 63] or protein

docking software [64, 65], are capable only of modeling small proteins or protein segments

solvated usually in water. Conclusions obtained from these computational methods should

thus always be carefully evaluated against the realities of an inherently complex intracellular

environment where proteins are packed together and where binding interactions with

multiple protein partners complicate the simplified one-to-one binding interaction usually

depicted in computational models.

It is also interesting to note that contrary to expectations, differences that do exist between

FA and cytosol do not appear to affect GPax / FATmCh binding. From in vitro binding

experiments, it is known that the LD2-LD4 fragment and FAT readily associate in solution.

It could be that in the cellular system, GPax and FATmCh associate in the cytosol and the

complex is recruited to FAs by GPax's other binding partners, the binding of which does not

affect the GPax-FATmCh interaction. If this were the case, then even at the FA, free

FATmCh can freely associate or exchange to bind GPax at the same rate that binding occurs

in the cytosol. It is also possible that since we are using only the targeting sequence FAT

instead of the full length protein, FAK, FAT only binds to Pax and is not a portion of the

normal force transduction pathway that a normal FAK would be a part of. In this case, it

may be logical to expect that there is no force across the Pax-FAT linkage and the

dissociation constant differs little from that of Pax and FAT in cytosol. It is important to

note that our results are also at variance with recent FCS based studies by Digman et al. and
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Choi et al. where they found that Pax and FAK interactions occur only at the FAs but not in

the cytosol [36, 38]. This variance may be due to the different choice of cell type being

studied (fibroblasts vs endothelial cells). However, it may be more likely that this

discrepancy is due to the fact that we are studying only the FAT fragment while full length

FAK was used in the other studies. Consistent with the conjecture that regulation by the rest

of the FAK sequence can play a role, Choi and coworkers found that this protein binding

interaction is strongly dependent on protein phosphorylation state where they found no FAK

cytosolic interaction with nonphosphorylatable Pax mutant (Y31F-Y118F) but found robust

interaction with phosphomimetic Pax mutant (Y31E-Y118E) [38].

In this work, we show that application of external mechanical force in the form of

equibiaxial strain results in a shift in ΔG to lower values, corresponding to smaller Kd and

thus tighter protein binding, between our proteins, GPax and FATmCh, compared to static

conditions. This change directly correlates with a change in τF. In other words, the change in

ΔG values correlate with change in interfluorophore distance, which we interpret to directly

reflect changes in average inter-protein distance between GPax and FATmCh. One may note

that we have attributed the change in FRET efficiency entirely to a change in inter-

fluorophore distance. This assumption is of course an over simplification as FRET

efficiency can also be modified due to factors such as change in fluorophore orientation and

rotational dynamics. A more precise characterization of strain induced conformation change

in the bound complex will have to await future work utilizing polarization resolved FRET

imaging. In any case, FRET efficiency is a sensitive method to detect the presence of

molecular conformation change due to mechanotransduction.

Comparing the stretch experiments to controls with measurements taken over the same time

interval demonstrates that time alone cannot explain the observed changes. In order to

explore other potential sources of change, biochemical disruption was affected by adding

either cytochalasin D or genistein, to either disrupt the actin cytoskeleton network or to

block Tyr phosphorylation. While genistein has no significant effect on blocking the stretch

response, observations related to cytochalasin D are not as conclusive. The response is

reduced slightly, though statistical significance cannot be established. In any case, we can

conclude that phosphorylation is not a key factor in strain response o f Pax-FAT strain

response.

It is also important to note that the effects of strain are seen globally throughout the cell

independent of whether measurement is made at the FA or in the cytosol. One potential

explanation is that within the 5 min allowed for equilibration, fusion proteins at FAs are

continuously modified and cycle out into the cytosol at a rate governed by the fusion protein

turnover rate at FAs. Published fluorescence recovery data of GFP-Pax in FAs [66] shows

that the koff for GFP-Pax is 0.015 s-1 when the recovery curve is fit with an exponential as

demonstrated by Lele et. al [56]. Given a best case estimate of FA area being 10% of total

basal membrane area at the adhesion plane (based on Fig. 10), and FA height being 10% of

cell height, FA volume is roughly 1% of cell volume. FA intensity is on average 1.5 times

cytosol intensity at the adhesion plane, as seen also in Fig. 10. Thus in total, the number of

fusion proteins in all FAs is 0.015 times the number of fusion proteins in the cytosol. In

order to replace all cytosolic fusion proteins with fusion proteins modified at the FA, 66.7
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turnover events are required. Within the 5 minutes allowed for equilibration, the total

number of turnover events is 5 × 60 × 0.015 = 4.5. Even allowing for the 22 minutes it takes

to complete an imaging set (Fig. 3), this number increases only to 20. Therefore this is an

unlikely explanation for our results.

We attribute the effect of strain on Pax-FAT binding to soluble factor(s) with cytosol

concentration(s) that is(are) strain dependent. One possible factor is talin. Though we have

shown that endogenous Pax and FAK expression levels are much lower compared to fusion

protein expression levels, this may not be true for other native proteins such as talin. It is

possible that under stretch conditions, competitive binding of talin for FATmCh may

displace GPax, thus affecting FATmCh-GPax binding.

Even with chemical disruption, the magnitude of change in ΔG values calculated correlates

with the change in fit τF. This really is a major strength in our measurement technique. With

our technique, the origin of change in measured thermodynamic constants can hereby be

directly linked to changes in inter-protein distances, thus relating the mechanotransduction

phenomena to molecular conformational change.

5.2. Additional discussions on assumptions and limitations of this work

While we have shown that FRET is a powerful method to quantify intracellular protein

interactions, this approach is based on many assumptions and thus has certain limitations.

The main assumption made in this work that allows us to formulate the equations for our

system is that the system is under thermodynamic equilibrium. While the cell might remain

relatively static, internal processes that occur might affect local environments, and thus

binding events, for example changes in the rate of fusion protein translation. However, the

assumption of thermodynamic equilibrium within cells is reasonable considering the much

longer timescale for translation, and most other cellular processes, compared to our

measurement timescale.

Results from FCS intensity-concentration calibration are based on the implicit assumption

that the fluorescent species observed diffusing in and out of the focal volume are of the same

species, all of which are free molecules available for binding. This would be false if other

proteins bind to the fusion proteins in such a way to prevent subsequent GPax-FATmCh

interaction. If the levels of all endogenous protein expression are much lower than fusion

protein expression, this factor can be ignored. While this can be shown to be true for

endogenous Pax and FAK compared to GPax and FATmCh as shown in Fig. 9 above, and

extrapolating to other endogenous proteins lead us to the same conclusion, this point cannot

be definitively proven for comparisons between protein species. If the expression levels of

some endogenous fusion protein binding partners, such as talin are indeed comparable to

fusion protein expression levels, their binding will affect our result as discussed previously.

Our imaging procedure takes at best 16 mins. The bottleneck in the imaging sequence lies in

the time it takes to acquire a sufficiently good FLIM dataset. This time is governed by the

need to acquire data for a sufficiently long time in order to build up decay curves with

enough photon counts and good SNR. Excitation power is kept low so as to not cause

damage to the cell. Within this imaging time frame, the cell undergoes many processes, the
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most obvious of which is morphological change and motion. Due to this, our calculations

should be considered an average measure over both space and time. This time could be

reduced by further improvements in FLIM techniques. One example is to carry out video

rate FLIM [67, 68]. One could also explore the possibility of multifocal multiphoton [69] or

temporal focusing [70] FLIM which would acquire images at multiple points in the sample

simultaneously, thereby reducing the image acquisition time and removing motion artifacts.

Our measured intracellular Kd values are reasonable compared to in vitro measurements,

though a direct comparison is not necessarily accurate given the differences in both actual

proteins used, and in microenvironment inhabited. Expected differences between FA and

cytosolic measurements were not observed, leading to the conclusion that the binding

interaction proceeds similarly at the FA and in the cytosol, probably due to the GPax-

FATmCh complex being perched to the side of the direct traction force transmission

pathway. It would be highly advantageous if a separate method could be used to verify our

results. The use of two fluorophores in our system suggests that it would be possible to

apply the TPCCS method as published by Kim et. al. [17] in order to achieve this

verification. This would essentially involve carrying out FCS measurements on double-

transfected cells and quantifying the autocorrelation and cross-correlation amplitudes in

order to back out binding stoichiometry. The capability of carrying out spectrally resolved

fluorescence correlation spectroscopy based on global analysis (SRFCS-G) [71] readily

lends itself to this measurement technique.

6. Conclusions

By developing a new fluorescent spectroscopic assay, the mechanosensitivity of Pax-FAT

binding reaction have been characterized both structurally and thermodynamically. We have

demonstrated that imposing an external strain results in larger fraction of Pax bound to FAT

and forming more compact molecular complex with tighter binding characteristics. This

mechanosensitivity can be abolished by partly relaxing intracellular strain by disrupting the

actin cytoskeleton. Spatially resolved mapping suggests that this effect is mediated by

diffusible molecular factors instead of direct force-induced protein deformation. While the

identification of these molecular factors provides interesting future research directions, we

have further excluded protein phorphorylation enzymes as responsible for the observed

mechano-sensitivity.

Although the development of this new spectroscopic assay is motivated by studying Pax-

FAT interaction, this technique is generally applicable to study intracellular protein

interactions in a broad class of cellular biological problems. This technique is built upon

prior FRET studies [49]. By including FCS calibrated intensity information, this technique

allows the determination of the absolute magnitude of dissociation constants and other

thermodynamic variables. The use of lifetime based method further allows more precise

determination of relative concentrations of bound and free protein fractions in cells. This

method is complementary to two-photon cross-correlation spectroscopy (TPCCS) [17] that

can also quantify intracellular binding affinities quantitatively but only at selected locations

inside cells. This FRET based assay affords greater experimental efficiency and enables

protein binding affinity to be imaged with 3D resolution in living cells. Importantly, this
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technique further provides molecular structural information of the bound complex allowing

the changes in inter-protein distances to be correlated with protein binding changes in

affinity and energies. While significant progress is made in the quantitative study of protein

interaction in cells, studying the Pax-FAK system highlights some of the future challenges.

First of all, Pax and FAK both have over ten different protein binding partners and many of

these binding processes may exhibit allosteric character. While many binding assays are

geared towards studying binary interactions, they are ill matched to understand these

complex interactions in vivo. Second, many quantitative affinity assays, especially image

based assays, are relatively slow taking seconds to minutes while many cellular processes

exhibit significantly faster dynamics. Improving the speeds of these binding assays is

important. Finally, signal to noise consideration often requires over-expression of the

proteins of interest in many assays resulting in biological systems that may be far from their

native states. The development of assays with molecular sensitive that can work with

fluorescent proteins in their native concentration remains a priority.
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Highlights

• Demonstrated a new method to map protein interaction dissociation constant

and Gibbs free energy distribution in living cells.

• Demonstrated that the fraction of bound proteins and their conformation can be

measured in living cells.

• Demonstrated that paxillin-FAT interactions in vivo is allosteric.

• Demonstrated that paxillin-FAT interaction is mechanosensitive and this

mechanosensitivity is mediated by soluble factors.

• Demonstrated that Paxillin-FAT mechanosensitivity is not based on protein

tyrosine phosphorylation.
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Fig. 1.
Schematic of the equibiaxial stretch device before and during applied stretch. Membrane

holder orientation with cultured cells when in the incubator is shown in the inset.
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Fig. 2.
Timeline for the stretch experiment.

Abdul Rahim et al. Page 26

Methods. Author manuscript; available in PMC 2015 March 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 3.
A simplified schematic representation of GPax and FATmCh equilibrium in BAECs.
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Fig. 4.
Representative FCS curves and resultant fit from (a) GPax or (b) FATmCh only cells.
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Fig. 5.
(a) Mean lifetime map of a cell transfected with only GPax (top) and a cell transfected with

both GPax and FATmCh (bottom). (b) The lifetime distributions of the singly and doubly

transfected cells.
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Fig. 6.
Representation measured and calculated image for a cell transfected with GPax an

FATmCh. (a) Green channel intensity image, (b) Red channel intensity image, (c) FR

distribution image, (d) histogram of Kd value distribution, (e) Gibbs free energy distribution

image.
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Fig. 7.
Effects of FR scaling and mean filtering on calculated ΔG values. (a) Plot of ΔG vs mean

filtering kernel size. A neighbor number of two corresponds to a 5 × 5 kernel. Error bars

indicate standard deviation. (b) Histogram of ΔG values with FR scaling and mean filtering.

ΔG without FR scaling or mean filtering (blue), ΔG with just FR scaling (cyan), ΔG with

just mean filtering (red), ΔG with both FR scaling and mean filtering (purple).
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Fig. 8.
Consistency of ΔG measurements over ten cells.
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Fig. 9.
Western bolts comparing expression ratio of native and fusion proteins.
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Fig. 10.
Concentration of FATmCh vs concentration ratio of FATmCh-PaxG and PaxG measured at

different pixels of a single doubly transfected cell. A linear dependence is expected given

one-to-one binding and the law of mass action. The slope corresponds to a dissociation

constant of 209 nM.
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