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YEAST-TO-HYPHA TRANSITION IN FISSION YEAST 
Cassandre Kinnaer, Département de Microbiologie Fondamentale 
 

Scientific summary 

Most cells are polarized and they adopt a wide variety of morphologies. Cell polarization relies on the 

deposition of polarity factors at a restricted part of the cell, allowing growth and shaping of the cell form 

at a very constrained spatiotemporal location. Cell functionality is fundamentally tied to cell function 

and we know that several diseases originate from an improper cell shape. For example, sickle cell 

disease arises when red blood cells are defective for cell membrane elasticity and develop an abnormal 

cell shape impairing their ability to move freely in the blood vessels causing severe anemia.  

Some fungi have been described to inherently switch between two cell morphologies; they are called 

dimorphic species. Typically, these species will alternate between yeast growth and filamentous growth, 

characterized by a tremendously elongated and polarized cell shape called hypha. During my thesis, I 

studied the transition in morphology displayed by poorly studied fission yeast; Schizosaccharomyces 

japonicus. This species has been previously described to transition to filamentous growth to escape a 

harmful environment. In chapter 1 of my thesis, I describe the discovery of an inducer for filamentation 

independent of stress, the fruit extracts. I then detail the morphological transition from cytological 

observation and evidence the diverging roles of the cytoskeleton in the transition. The filamentous form 

of S. japonicus is particularly interesting because it seems to diverge a lot from other filamentous 

species indicating a different filamentation form. For example, I showed that it did not assemble a 

Spitzenkörper, a vesicular structure formed by most filamentous species. During the dimorphic switch 

there is translation of symmetrical mode of growth embodied by the yeast morphology towards an 

asymmetrical system represented by the hyphal form. This transition allows for fascinating questions 

like, how does an asymmetrical system positions nucleus or division plane? In chapter 2, I continued my 

description of this unstudied species by looking at the localization of actin based motors called Myosin 

V. By doing so, I uncovered an overlapping between cytoskeletal tracks and a potential alternate 

mechanism to move cargoes in the cell in fission yeast. Finally in chapter 3, I did a transcriptomic 

analysis of the transition from yeast to hypha to elucidate potential genes involved in the morphological 

switch. This work evidenced a complete rewiring of gene expression after the transition. 

  



LA TRANSITION DE LEVURE A HYPHE CHEZ LA LEVURE FISSIPARE 
Cassandre Kinnaer, Département de Microbiologie Fondamentale 
 

Résumé scientifique 

Dans le règne du vivant, les cellules adoptent une multitude de morphologies diverses et variées. Ce 

processus de polarisation cellulaire dépend de la déposition de facteurs de polarité à un endroit très 

précisément défini de la cellule afin de limiter la croissance cellulaire dans le temps et l’espace. Le bon 

fonctionnement d’une cellule est directement dépendant de sa forme et plusieurs pathologies humaines 

qui découlent d’une morphologie cellulaire anormale sont connues. Par exemple, la drépanocytose est 

due à une baisse d’élasticité de la paroi cellulaire, ce qui entraine une morphologie altérée de la cellule, 

une mauvaise circulation des globules rouges dans le système sanguin et une anémie très sévère.  

Certains champignons sont capables d’alterner entre deux types de morphologie cellulaire dans leur 

cycle de vie, on parle alors d’espèces dimorphiques. Typiquement, ces espèces vont alterner entre une 

morphologie de type levure et de type filamenteuse, c’est-à-dire une cellule très allongée et polarisée 

aussi appelée hyphe. Pendant ma thèse, j’ai étudié la transition dimorphique observée chez une levure 

fissipare très peu étudiée, Schizosaccharomyces japonicus. Cette espèce a tendance à former des hyphes 

pour s’échapper d’un environnement peu favorable. Dans le chapitre 1 ma thèse, je décris la découverte 

d’un inducteur sans stress de la transition dimorphique, les extraits de fruits. Je décris ensuite en détails 

la transition cytologique observée en présence de cet inducteur et je mets en évidence les rôles 

divergents du cytosquelette. La forme filamenteuse de S. japonicus est particulièrement intéressante 

parce qu’elle apparait très différente de ce qui est observé dans d’autres espèces, indiquant qu’un mode 

de filamentation alternatif est possible. Par exemple, j’ai montré que cette espèce n’assemble pas une 

structure vesiculaire formée par la plupart des espèces filamenteuses : le Spitzenkörper. La transition 

morphologique chez S. japonicus s’accompagne aussi du passage d’un système de croissance symétrique 

à asymétrique, ce qui m’a permis d’aborder des questions d’ordre très fondamental concernant le 

positionnement du site de division ou du noyau cellulaire. Dans le chapitre 2, j’ai poursuivi ma 

description du cytosquelette en analysant la localisation de moteurs d’actine, les myosines de type V, et 

ai mis en évidence l’existence d’une potentielle coopération entre les câbles du cytosquelette dans les 

levures de fission afin de bouger des vésicules de transport dans la cellule. Enfin, dans le chapitre 3, afin 

de mieux comprendre les bases génétiques de cette transition, j’ai aussi effectué une étude 

transcriptomique lors du changement de forme cellulaire. Ce travail a notamment mis en évidence un 

réarrangement total de l’expression génique lors de la transition.  
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Résumé Grand Public 

L’unité de base du vivant connu est la cellule. Dans le règne du vivant, les cellules adoptent une 

multitude de formes diverses et variées, qui correspondent à leur fonction cellulaire. Le bon 

fonctionnement d’une cellule est directement dépendant de sa morphologie et plusieurs pathologies 

humaines qui découlent d’une morphologie anormale de cellules sont connues. Par exemple, la 

drépanocytose est due à une morphologie cellulaire altérée qui entraine une mauvaise circulation des 

globules rouges dans le système sanguin et cause une anémie très sévère.  

Certaines espèces de champignons sont capables de changer de morphologie cellulaire dans certaines 

circonstances. Pendant ma thèse, j’ai étudié l’une de ces espèces, une levure fissipare, ou levure de 

fission, appelée Schizosaccharomyces japonicus. Elle alterne entre une morphologie de levure de fission, 

c’est-à-dire une morphologie de petits cylindres microscopiques et une morphologie d’hyphes qui 

correspond à une forme cylindrique beaucoup plus allongée qui peut attendre le millimètre. Mon travail 

de thèse visait à décrire le plus précisément possible cette transition de forme cellulaire. Nous avons 

d’abord découvert une nouvelle méthode d’induction de cette transition, en effet S. japonicus forme des 

hyphes en grandissant en présence de jus de raisin. J’ai décrit le changement de localisation du 

cytosquelette et de diverses autres protéines. La transition morphologique chez S. japonicus 

s’accompagne aussi du passage d’un système de croissance symétrique à asymétrique, ce qui m’a 

permis d’aborder des questions d’ordre très fondamental concernant le positionnement du site de 

division ou du noyau cellulaire. Afin de mieux comprendre les bases génétiques de cette transition qui 

est mal connue dans cet organisme, j’ai aussi effectué une étude transcriptomique lors du changement 

de forme cellulaire. Ce travail a notamment mis en évidence un réarrangement total de l’expression 

génique lors de la transition. 

En résumé mon travail de thèse offre une description d’un processus important de la vie cellulaire dans 

une espèce très largement méconnue. 
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Introduction 
From star shaped neurons to simpler rod shaped yeast, cells come in a wide variety of morphologies. 

Polarization at the cellular level is defined as the asymmetry in distribution of functions or 

components within the cell. Cell polarization is an essential process of life governing a wide range of 

functions such as cell motility, cell differentiation and cell transport. Cell morphology is directly 

correlated to an asymmetry in distribution of polarity factors within the cell to target and restrict cell 

growth to a specific location.  

Such processes can be quite intricate to study in animals both due to the scale of their 

multicellularity and the harrowing complexity of their diverse cell shapes. The field of cell polarity 

relies on certain fungi as models. Fungi represent one of the most diverse branch of the tree of life 

with an estimated 2 to 4 million species with only 120 000 currently described (Choi and Kim, 2017; 

Hawksworth and Lucking, 2017). They diverged from the metazoan branch about 1.5 billion years ago 

(Wang et al., 1999) (Fig. 1.1).  

 
Figure 1.1. Tree representing the three branches of life.  

Source: https://mrrittner.weebly.com/unit-3-the-cell.html 

The last common ancestor between fungi and animals is commonly thought to have been an aquatic 

unicellular flagellated eukaryote that was roaming the ocean in the Proterozoic earth (King, 2004). 

Interestingly, fungi seem to be genetically closer to animals than to the plants they were once 

classified with. Fungi are generally described as heterotroph eukaryotes that contain chitin in their 

cell wall, and which are unable to photosynthesize due to the absence of chloroplasts. Fungi can 

reproduce both sexually and asexually and can display very intricate and complex lifecycles. Most 

species grow predominantly as hypha, a very polarized and elongated tubular cell that can branch 

and fuse with other hyphae creating an incredibly complex multicellular network called a mycelium. 

https://mrrittner.weebly.com/unit-3-the-cell.html
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However, some species can be morphologically very distinct and grow as unicellular yeast. Other 

species can exhibit the two lifestyles and these are called dimorphic organisms. Filamentous species 

can display a wide variety of morphological features, for example some can produce septate or 

aseptate (or coenocytic) hyphae, controlling the level of interconnectdness displayed by the 

mycellium. Fungi in their mycelial form are multicellular. Interestingly, multicellularity evolved 

several times in eukaroytes (Parfrey and Lahr, 2013). Fungi evolved it in parallel of the animal branch, 

in a convergent evolutionary process probably triggererd by similar environemental pressure. The 

extreme apical growth displayed by filamentous fungi is tremendously useful to study polarisation 

processes. Moreover, dimorphic species are of particular interest; their alternance in growth types 

provides a particularly useful set up for comparison purposes. 

 

Phylogeny of fungi 

 
Figure 1.2. Tree representing the five main phyla of fungi and the animal branch. Separation between animal 

and fungi date back 1.5 billion years ago. Source: OpenStax Biology 2nd Edition. 

Establishing phylogeny for fungi is tricky due to the lack of fossil record and absence of clear common 

phenotypical traits. One way to classify them is to combine a sequence homology approach and 

biological observations made about the reproduction mode of the concerned species. In doing so, 

five main phyla distinguish themselves; the Chytridiomycetes, Zygomycetes, Glomeromycetes, 

Basidiomycetes and Ascomycetes (Fig. 1.2).  
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Figure 1.3. Microscopy image of a sexual flagellated spore from the Chytrid family. 

The Chytrids are an early-diverging lineage that presumably branched out over 500 million years ago 

and they are the only fungi to have retained flagellar motility from the last eukaryotic common 

ancestor (Fig. 1.3). Chytrids are mostly unicellular but some can be multicellular and form a 

coenocytic mycelium. They can be pathogenic, a famous example being Batrachochytrium 

dendrobatidis which contributed greatly to the worldwide amphibian population decline observed 

since the 1980s (Lips et al., 2006).  

The Zygomycetes are a small family whose most famous member is Rhizopus stolonifer or the bread 

mold, is known for being the most often culprit for kitchen and fridge contaminations. They 

reproduce sexually and asexually and form a sporangium (Fig. 1.3). They produce a vast coenocytic 

mycelium. 

 
Figure 1.4. Microscopy image of sexual sporangia filled produced by Rhizopus stolonifer. 

Source: Eric McKenzie, PaDIL. 

The Glomeromycetes are a poorly studied branch of fungi. It contains 230 species, most of which 

form symbiosis with the root of plants forming arbuscular mycorrhizae. The coenocytic hyphae of 
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these species penetrate the cortical cells of roots in a highly developed mutualistic symbiosis. 

Members of this family reproduce asexually by forming glomerospores at the hyphal tips but recent 

studies showed that some species contained the necessary genes for meiosis underlying the fact that 

they probably have a cryptic sexual cycle as well (Halary et al., 2011).  

The Basidiomycetes, or club fungi, is the branch containing most the mushrooms. They are easily 

recognizable thanks to their club-shaped fruiting body, the basidium. They can have both a sexual 

and an asexual cycle, with the sexual cycle being apparently predominant in their life cycle. In their 

sexual cycle, they form septate hyphae which will meet and fuse with the opposite mating type to 

form a “dikaryon” mycelium which will contain the haploid nuclei of both mating, unfused until the 

emergence of a terminal structure called the basidium. After meiosis, the spores will be released 

from the fruiting body.  

The Basidiomycetes also contain species that grow as unicellular yeasts (ex. Cryptococcus 

neoformans) or dimorphic fungus (ex. Ustilago maydis, see Fig. 1.5). 

 
Figure 1.5. Ustilago maydis grows as yeasts (left) or hyphae (right) (taken from: (Steinberg and Perez-

Martin, 2008)).  

The Ascomycetes is a sister phylum to the Basidiomycetes and both branches are referred to as 

Dikarya due to the state of two unfused haploid nuclei found in some of their species sexual cycles. 

Ascomycetes contain most of the known fungal species (over 64 000) and they can be filamentous, 

unicellular or dimorphic. Filamentous species tend to produce septate hyphae. Ascomycetes are 

sometimes referred to as the sac fungi due to the appearance of the terminal structure containing 

the newly formed spores after the sexual cycle; the ascus. Ascomycetes asexual cycle is predominant 
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and very diverse, yeasts can divide by medial fission (Schizosaccharomycetes) or budding 

(Saccharomycetes) and filamentous species produce spores from conidiophores, specific asexual 

structures generally formed at hyphal tips. The sexual cycle of Ascomycetes is also very varied and 

complex but the meiotic products (typically four to eight spores) are always present in a terminal 

structure called the ascus. Sexual reproduction can occur between homothallic and/or heterothallic 

partners depending on the species. We have not identified a sexual cycle for all species and one 

example is Aspergillus niger who seem to only reproduce asexually.  

It is interesting to note that yeasts appear in both the Saccharomycetes and the 

Schizosaccharomycetes families but their last common ancestor is thought to have been filamentous 

underlying the convergent evolution that occurred in parallel in both branches to regain unicellularity 

and it is probably due to similar environmental pressure and adaptation to a partial or total aquatic 

lifestyle (Berbee and Taylor, 1993).  
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Fission yeasts 

 
Figure 1.7. (left) Phylogenetic analysis of 12 species across the fungal tree. (right) Microscopy image of a fission 

yeast co-culture (S. pombe, S. japonicus and S. octosporus). 
Source: (Rhind et al., 2011)(left) and Broad Institute (right) but taken from: (Niki, 2014). 

Schizosaccharomycetes are also known as fission yeasts, because they grow as rod-shaped yeasts 

and they belong to the Ascomycetes phylum. During vegetative growth, they grow from the cell 

poles, divide in the cell middle to give rise to two daughter cells of equal sizes. There are four known 

members in the family; Schizosaccharomyces pombe, Schizosaccharomyces japonicus, 

Schizosaccharomyces octosporus and Schizosaccharomyces cryophilus (Fig. 1.7A; B). S. pombe is by 

far the most studied organism of the family and is a well-established model organism in the cell cycle 

(Nobel Prize of Medicine, 2001) and cell polarity fields. S. cryophilus was isolated recently as being a 

contaminant from a S. octosporus culture, they are closely related to each other and probably 

diverged last (Helston et al., 2010; Rhind et al., 2011). In the phylogenetic tree, the most distant 

cousin of the family is S. japonicus who diverged from the fission yeast common ancestor 220Mya 

(Rhind et al., 2011) possibly retaining some features from ancestral fission yeasts. Fission yeast 

sexual cycle gives rise to asci containing 4 or 8 spores depending on the species. S. pombe produces a 

4-spores ascus while the other three species produce 8 spores per meiotic round. These asci are 

easily isolated and readily dissectible providing great terrain for genetic investigations. 
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Cell polarization in S. pombe 

Fission yeast S. pombe has been used for decades in the field of cell polarity because of its simpler 

cell shape and ease of handling (reviewed here (Martin and Arkowitz, 2014)). Polarized secretions of 

vesicles targeted for exocytosis at the cell poles ensures growth through the long axis and a constant 

diameter throughout the life cycle. Cytoskeletal tracks and their associated motors move cargo in the 

cells providing membrane influx as well as enzymes to remodel the cell wall and permit growth. 

During mitosis S. pombe stops growth, and after medial fission, cells will resume growth but at first, 

only at the old cell pole. Only after a process named New End Take Off, or NETO, can they start 

growing in a bipolar fashion (Martin, 2009; Martin and Chang, 2005; Mitchison and Nurse, 1985) (Fig. 

1.8). 

 
Figure 1.8. Asexual cell cycle of S. pombe showing growth patterns. After mitosis and medial fission, growth 
(blue) resumes at the old cell pole. In G2 phase, cytoskeletal reorganization will permit growth at the newly 

formed cell end, in a process called NETO. The actin patches (dots) and cables are noted in brown and 
microtubules tracks are in green. (taken from (Chang and Martin, 2009)) 

Microtubules are present in bundles in the cytoplasm across the long axis of the cell. They are highly 

dynamic on their plus end tip, oriented towards the cell poles and stable on their minus end tip, on 

the nuclear membrane (Hagan, 1998). They deposit the cell end markers Tea1 and Tea4 to label the 

cell pole as a growth site. Tea4 will recruit formin For3, which will in turn nucleate actin cables 

activating polarized exocytosis and effectively start cell growth at the new end (Martin and Chang, 

2005) (Fig. 1.9). For3 is a nucleator of actin cables that is implicated in polarized processes (Feierbach 

and Chang, 2001; Nakano et al., 2002) 
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Figure 1.9. Deposition of polarity proteins Tea1/Tea4 by the microtubules will recruit formin For3 and initiate 

actin cable polymerization. (taken from (Martin and Chang, 2005)) 

Actin is necessary for cell polarization and is present in several structures in the cells; actin patches 

which are necessary for endocytosis, actin cables which provide tracks to move cargo in the cell and 

actin rings at the division plane for cytokinesis (Kovar et al., 2011) (Fig. 1.10). Myosins are motors 

that operate on actin tracks and several classes with different functions exist (Woolner and Bement, 

2009). Two type-V myosins have been identified in S. pombe. Myosin 51 does not actively participate 

in growth but is involved in cytokinetic ring formation (Wang et al., 2014) while Myosin 52 mediates 

polarized secretion of exocytic vesicles (Lo Presti and Martin, 2011; Motegi et al., 2001; Win et al., 

2001). Deletion of Myo52 in S. pombe yields dramatic growth defects (Motegi et al., 2001; Win et al., 

2001). 

 
Figure 1.10. Actin organization in S. pombe (taken from: (Kovar et al., 2011)). 
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Signaling of polarization in S. pombe is dictated at the upstream level by a conserved Rho GTPase 

called Cdc42. Rho GTPases are at the core of polarity processes in most eukaryotes (Bi and Park, 

2012; Etienne-Manneville, 2004; Park and Bi, 2007). They can fluctuate between an activated, GTP-

bound state and an inactivated GDP-bound state. Inhibitors of Rho GTPases are called GAPs (GTPase-

activating proteins) and three have been identified in S. pombe Rga3, Rga4 and Rga6 (Gallo Castro 

and Martin, 2018; Revilla-Guarinos et al., 2016; Tatebe et al., 2008). On the other hand activators of 

Rho GTPases are called GEFs (Guanine nucleotide exchange factors) and two were described in S. 

pombe namely Gef1 and Scd1. (Coll et al., 2003; Hirota et al., 2003). Cdc42 is essential and the use of 

conditional allele revealed severe polarity phenotypes with isotropic growth (Miller and Johnson, 

1994). Studies have shown that the active form of Cdc42 oscillates in localization between the two 

growing poles during bipolar growth indicating a very dynamic process and the existence of positive 

and negative feedbacks dictating active Cdc42 localization (Das et al., 2012) (Fig. 1.11). 

 
Figure 1.11. Oscillations of the localization of active Cdc42 (CRIB-GFP probe) during cell growth (taken from: 

(Das et al., 2012)). 

Interestingly, S. pombe possesses a parallel morphogenesis pathway with polarized secretions in an 

actin-independent manner through the exocyst system. Both systems are controlled upstream by 

Cdc42. (Bendezu and Martin, 2011; Martin et al., 2007).  

While microtubules contribute to cell polarization by delivering cell end markers at the cell poles they 

are not directly involved in polarized growth in S. pombe (Fig. 1.8; 1.9) (Martin, 2009). Although 

interestingly, re-routing of actin based transport on to microtubules is sufficient to target polarity 

proteins at the cell tips and maintain cell polarity (Lo Presti and Martin, 2011). Microtubules however 

play a major role in nuclear positioning. Fission yeasts place their nuclei in the cell middle and this is 

achieved through pushing forces exerted by the microtubules on the cell poles and the nucleus itself, 

effectively centering it (Daga et al., 2006). Nuclear positioning will in turn dictate the placement of 

the medial division plane (Tolic-Norrelykke et al., 2005) through the positive signaling of an anillin-

like protein called Mid1 (Sohrmann et al., 1996), which shuttles in and out of the nucleus and 

positions cortical nodes at the future location of the septum. Association of Mid1 to the plasma 

membrane depends in part on kinase Cdr2 (Almonacid et al., 2009). DYRK kinase Pom1 forms 

gradient at the cell tips and inhibits septation at the cell poles (Huang et al., 2007; Padte et al., 2006; 

Rincon et al., 2014)  (Fig. 1.12). 
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Figure 1.12. Players involved in septum positioning in S. pombe (taken from (Chang and Martin, 2009)). 

 

Microtubule shrinking and growing is controlled by two main stabilizers called Tip1 (CLIP170 

homolog) and Mal3 (EB1 homolog) (Brunner and Nurse, 2000; Busch and Brunner, 2004). Deletion of 

either promotes microtubule catastrophe and cells harbor shorter microtubules bundles. 

Another aspect of growth of yeast cells must take into account the tremendous turgor pressure they 

are subjected to and how that may be involved in growth mechanisms (Minc et al., 2014). 

Polarization processes in filamentous fungi 

The most striking even of growth as hyphae is the dramatic elongation of the cell size. Filamentous 

fungi grow through fast cell tip expansion; the process is continuous and uncoupled with cell cycle, 

unlike what we have described in the previous paragraph for fission yeast (Riquelme et al., 2003). To 

accommodate with filamentous growth, cells must bring lipids and cell wall synthases to sustain cell 

growth and remodel the cell wall. Efficient polarized secretion of vesicles is essential. Actin localizes 

as rings, cable and patches in the cell. At the hyphal tips, there is an accumulation of actin patches 

and cables (Berepiki et al., 2011) (Fig. 1.13).  

 
Figure 1.13. Hyphal tip organization of Aspergillus nidulans (taken from: (Takeshita, 2016)). 

Interestingly, filamentous fungi like Aspergillus nidulans only produces a single formin (Gladfelter, 

2006; Harris et al., 1997), and actin cables are generally difficult to observe. However, actin cables 
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are essential for polarized growth (Berepiki et al., 2011; Harris et al., 1997; Torralba et al., 1998). 

Studies of the deletion of actin based motors MyoV in A. nidulans and U. maydis (Taheri-Talesh et al., 

2012; Weber et al., 2003) yielded polarity phenotypes with respectively issues in hyphal morphology 

and improper dimorphic switch. 

Cdc42 is involved in the polarization processes of the following species, Candida albicans (Bassilana 

et al., 2003), Penicillium marneffei (Boyce et al., 2003), Ustilago maydis (Mahlert et al., 2006), 

Aspergillus nidulans (Virag et al., 2007) and Aspergillus niger (Kwon et al., 2011).  

Evidences of oscillatory mechanisms controlling growth have been evidenced in A. nidulans and N. 

crassa with Ca2+ pulses at the growing tip possibly synchronizing vesicle exocytosis (Silverman-Gavrila 

and Lew, 2003; Takeshita et al., 2017) reminiscent of the oscillatory behavior of Cdc42 activation in 

fission yeast (Fig. 1.11).  

Interestingly, the core mechanisms of cell end marking and growth site selection appear to be 

maintained in A. nidulans (Fig 1.14), and homologs of the Tea complex have been identified 

(reviewed here: (Fischer et al., 2008)). Perturbations of the Tea complex leads to hyphal morphology 

defects like highly curved hyphae and “zigzag” hyphae (Fischer et al., 2008; Konzack et al., 2005; 

Takeshita et al., 2008). 

 
Figure 1.14. Cell end marking for growth initiation in species S. pombe and A. nidulans. Homologs of 

Tea1/Tea2/Tea4 and the formin For3 have been identified (taken from: (Fischer et al., 2008)). 

 

Microtubules localize along the long axis of the cell (Fig. 1.15). The role of microtubules in 

polarization processes is a little more controversial with conflicting reports on their role in hyphal tips 

extension in the dimorphic yeast Candida albicans (Akashi et al., 1994; Yokoyama et al., 1990). Some 

filamentous fungi seem to compensate their less developed actin cytoskeleton by relying on the 

microtubules for transport. In A. nidulans, disruption of the microtubule cytoskeleton with drug 
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treatment caused a reduction of 10 times of the hyphal growth rate (Horio and Oakley, 2005). 

Moreover, deletion of microtubule based motor kinesin-1 in several species caused defects in hyphal 

growth rate (Requena et al., 2001; Schuchardt et al., 2005; Seiler et al., 1997). These findings 

evidence the potential role of microtubules as tracks for long range transport of polarity 

components. 

 
Figure 1.15. Microtubule organization in A. nidulans (taken from: (Takeshita, 2016)). 
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Figure 1.16. Hyphal tips of several filamentous fungi looked under 
phase contrast microscopy. The phase dark accumulation is the 
Spitzenkörper (taken from: (Riquelme and Sanchez-Leon, 2014)) 

Microtubules are also involved in the proper positioning of the 

Spitzenkörper, literally translating as “apical body”. This 

structure was identified in 1957 at the hyphal tips of the 

filamentous species Polystictus versicolor (Girbardt, 1957). This 

fungal specific organelle is composed of an accumulation of 

vesicles in a spherical structure positioned at the growing tip 

(Fig. 1.13). It dictates hyphal growth speed and directionality 

potentially by controlling in time and space the exocytic events 

at the cortex (Harris et al., 2005; Riquelme et al., 2018; 

Riquelme et al., 1998; Riquelme and Sanchez-Leon, 2014; Virag 

and Harris, 2006). It is observable under phase contrast 

microscopy conditions as a phase-dark object (Fig. 1.16) 

(Riquelme and Sanchez-Leon, 2014) and by fluorescent 

labelling using either endocytic dyes like FM4-64 (Fischer-

Parton et al., 2000) or tagging the vesicles directly (Sanchez-

Leon et al., 2015). The Spitzenkörper is present in most 

filamentous fungi of the Ascomycetes and Basidiomycetes and 

generally absent from earlier lineages of fungi (Grove and 

Bracker, 1970). However, studies showed that Zygomycetes 

specie Conidiobolus coronatus (Fisher et al., 2018) and Chyrtrid 

Allomyces macrogynus (Vargas et al., 1993) also assembled a 

Spitzenkörper. Studies have reported that the presence of a 

Spitzenkörper is correlated with an increased in growth rate (Fisher et al., 2018; Kohli et al., 2008). 

Spitzenkörper was absent or unstable in kinesin-1 deletions in several species indicating a vital role of 

the microtubule tracks for Spitzenkörper formation and maintenance (Lehmler et al., 1997; Seiler et 

al., 1997). 
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Work initiated in N. crassa suggests the Spitzenkörper possibly interplays with other polarity systems 

namely the polarisome and the exocyst at the hyphal tips (Araujo-Palomares et al., 2009; Fischer et 

al., 2008; Riquelme et al., 1998; Riquelme and Sanchez-Leon, 2014). The details of how the different 

systems might communicate which each other are still under investigation. (Fig. 1.17) 

 
Figure 1.17. Polarity components located at the hyphal tips in N. crassa. Polarisome is in purple, SPK in orange 

and blue and the exocyst is circled with a dotted line (taken from: (Riquelme and Sanchez-Leon, 2014)). 

 

Microtubules are involved in nuclear division but also nuclear positioning in filamentous fungi. 

Dimorphic or filamentous species are generally multinuclear and they must space out their nuclei 

evenly in the mycelium. In both A. nidulans and N. crassa, mutants with abnormal nuclear positioning 

have been identified and the genes affected are generally coding either for microtubule based dynein 

or its regulator, dynactin (Minke et al., 1999; Xiang et al., 1994; Xiang and Fischer, 2004). This 

indicates nuclei might migrate on the microtubule tracks to catch up with the incessant and 

continuous tip growth (Fig. 1.18).  
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Figure 1.18. NudA1, carrying a mutation in the heavy chain of dynein shows abnormal distribution of nuclei (in 

green) in the cytoplasm, when compared to wild type cells (taken from: (Xiang and Fischer, 2004)).  

Hyphal growth is also correlated with the apparition of vacuolated compartments in filamentous 

species (Gow and Gooday, 1982b; Weber, 2002). It is believed they contribute to growth through 

turgor pressure, and the impairment of vacuolar biogenesis provokes issues in hyphal growth and 

substrate invasion (Johnston et al., 2009; Johnston et al., 2013). 

 

Dimorphism triggers and control 

Dimorphism is triggered by a wide variety of conditions like change in pH or temperature, nitrogen or 

nutrient starvation, and the presence of serum or cAMP in the growth media to name a few (Cao et 

al., 2007; Cullen and Sprague, 2012; Martin et al., 2013a; Sanchez-Martinez and Perez-Martin, 2001). 

Transduction of dimorphism and filamentation signals is dependent on conserved cascades, one of 

which is the Mitogen Activated Protein Kinase (MAPK) pathway. Saccharomyces cerevisiae can trigger 

pseudohyphal growth in different conditions and the MAPK has been extensively studied in this 

organism (reviewed here: (Cullen and Sprague, 2012)). A well described downstream event in the 

activation of the different cascades is the regulation of Flo11, a protein involved in flocculation that is 

essential to pseudohyphal growth and media invasion in this species (Lo and Dranginis, 1998).  

  



18 
 

S. japonicus as a model to study dimorphic transition 

S. japonicus is the earliest diverging species of the fission yeast clade (Rhind et al., 2011). It was 

initially isolated from strawberries by a Japanese team in the 1920’s (Yukawa and Maki, 1931). A 

decade later, an American team isolated a variant named versatilis from home canned grape juice 

(Klar, 2013; Wickerham and Duprat, 1945). Fruit extracts therefore potentially represent a natural 

habitat for this yeast. This species was immediately characterized as dimorphic  (Wickerham and 

Duprat, 1945; Yukawa and Maki, 1931) and alternating between fission yeast and vegetative 

filamentous growth. While this species is not extensively studied, a few triggers for the dimorphic 

switch have already been identified. Initial reports described nutrient and nitrogen starvation as 

inducers of the filamentation process (Sipiczki et al., 1998b). Recently, DNA damage through the 

action of Camptothecin (CPT) was also reported to trigger hyphal growth (Furuya and Niki, 2010; 

Furuya and Niki, 2012). These three methods of induction are stressful conditions, yeasts are 

immobile and triggering filamentation might represent a way to flee from harmful environment. S. 

japonicus transition to invasive growth is more readily achieved on solid substrate, but one recent 

study states serum (Fetal Bovine Serum) can induce filamentation in liquid (Papp et al., 2014). On the 

other hand, hyphae can also revert back to yeast growth. It was shown that both light and 

temperature can synchronize successive mitotic rounds and effectively break down the hyphal form 

into yeasts (Okamoto et al., 2013; Sipiczki et al., 1998b). Interestingly, S. japonicus possesses two 

white-collar receptors sensitive to blue light ranging from 470nm to 520nm (Okamoto et al., 2013). 

This is a fascinating finding as other filamentous fungi like N. crassa and A. nidulans present orthologs 

of those genes and can also react to light (Fuller et al., 2015). Caffeine and cAMP are also negative 

regulators of filamention (Sipiczki et al., 1998a), the latter contrasting with dimorphic yeast C. 

albicans in which filamentation is promoted by cAMP (Bahn and Sundstrom, 2001). The dimorphic 

switch of S. japonicus in nutrient starvation conditions involves monopolar elongation of the cells, 

branching and vacuolization at the non-growing part of the cell (Sipiczki et al., 1998a). Recent work 

implicated the dependence on Cdc42 and regulator Ras1 for filamentation in this species (Nozaki et 

al., 2018). Random mutagenesis studies isolated mutants incapable of hyphal growth, they typically 

showed defects in polarization and vacuolization (Bozsik et al., 2002; Enczi et al., 2007).  

Dimorphism is usually linked with pathogenicity (Nemecek et al., 2006), but S. japonicus is 

nonpathogenic (Sipiczki et al., 1998b). Recent sequencing of the genome (Rhind et al., 2011), 

development of efficient transformation protocol (Aoki et al., 2010; Aoki and Niki, 2017) and other 

genetic tools (Aoki et al., 2017; Furuya and Niki, 2011; Klar, 2013; Niki, 2014) place this species as an 

attractive model to study dimorphism in this distant ascomycete clade. It has already proven to be a 

powerful organism to use in comparative and evolutionary biology, recent advances on divergence in 
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mitotic strategies showed that while S. pombe goes through a closed mitosis, S. japonicus undertakes 

an open mitotic process (Gu et al., 2012; Yam et al., 2011). Another difference between the two 

species occurs in division plane placement and it was shown that in its yeast form S. japonicus is 

unaffected by the deletion of Mid1, protein carrying the positive signal for division plane positioning 

in S. pombe (Gu and Oliferenko, 2015; Gu et al., 2015). 

In my thesis I provided an extensive description of the filamentation observed in S. japonicus. After 

the initial discovery of the fruit extracts as novel inducers of filamentation by Dr Omaya Dudin, I 

studied their inducing capabilities and the morphological change observed in S. japonicus in their 

presence. I analyzed the localization and the role of the cytoskeleton in diverse polarized processes in 

the cell. I described an asymmetrical organization of the hyphal cells and studied how this impacted 

nuclear and division site positioning. I analyzed the localization and the role of type-V myosins in 

polarity. Finally, wanting to understand the genetic bases of the dimorphic switch, I performed RNA 

sequencing to study transcriptomic changes during the transition from yeast-to-hyphae. 
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Chapter 1: Yeast-to-hypha transition in Schizosaccharomyces japonicus 
in response to environmental stimuli 
This work was submitted to Molecular Biology of the Cell (MBoC). 

Summary: 

In this chapter, I describe the filamentation observed in fission yeast Schizosaccharomyces japonicus 

in presence of natural stimuli. A previous lab member, Dr Omaya Dudin identified fruit extracts as 

natural inducers of filamentation in this poorly understood dimorphic species and I conducted the 

rest of the project. The following work is mainly descriptive and aims to propose a simple way to 

induce dimorphism in a genetically tractable organism. Highlights of this work include the discovery 

of successive morphological forms transitioning from yeast to hypha, diverging roles for cytoskeleton 

in regards to polarity processes and the description of a switch between a symmetric and asymmetric 

growth system in fission yeast.  
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Abstract 

Many fungal species are dimorphic, exhibiting both unicellular yeast-like and filamentous forms. 

Schizosaccharomyces japonicus, a member of the fission yeast clade, is one such dimorphic fungus. 

Here, we first identify fruit extracts as natural, stress-free, starvation-independent inducers of 

filamentation, which we use to describe the properties of the dimorphic switch. During the yeast-to-

hypha transition, the cell evolves from a bipolar to a unipolar system with 10-fold accelerated 

polarized growth but constant width, vacuoles segregated to the non-growing half of the cell, and 

hyper-lengthening of the cell. We demonstrate unusual features of S. japonicus hyphae: these cells 

lack a Spitzenkörper, a vesicle distribution center at the hyphal tip, but display more rapid 

cytoskeleton-based transport than the yeast form, with actin cables being essential for the transition. 

S. japonicus hyphae also remain mononuclear and undergo complete cell divisions, which are highly 

asymmetric: one daughter cell inherits the vacuole, the other the growing tip. We show these 

elongated cells scale their nuclear size, spindle length and elongation rates but display altered 

division size controls. This establishes S. japonicus as a unique system that switches between 

symmetric and asymmetric modes of growth and division. 
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1.1. Introduction 
Cellular morphologies are extremely varied. However, the overall mechanisms generating polarity 

are thought to be conserved across the species (Nelson, 2003). In fungi, whose shapes are defined by 

an external rigid cell wall, the location of polarity factors on specific cortical regions locally drives cell 

growth through cell wall expansion and remodeling, to generate specific cell morphologies. Many 

fungal species are dimorphic, exhibiting distinct morphologies depending on growth conditions. In 

this study, we used the fission yeast Schizosaccharomyces japonicus (S. japonicus), a dimorphic 

species from the early diverging ascomycete fission yeast clade, to describe the changes occurring 

during the dimorphic switch. 

S. japonicus is estimated to have diverged 220Mya from its well-studied cousin Schizosaccharomyces 

pombe (S. pombe), with which it displays at least 85% orthologous genes (Rhind et al., 2011). It can 

grow either in the yeast form, of dimensions slightly larger than S. pombe, or in a filamentous form 

(Niki, 2014). While fungal dimorphism is usually associated with pathogenicity (Nemecek et al., 

2006), S. japonicus is non-pathogenic to humans making it a convenient model to study the transition 

in growth mode. It was initially isolated on strawberries from a field in Japan in 1928 (Yukawa and 

Maki, 1931) and a variant was discovered over a decade later in grape extracts by an American team 

(Wickerham and Duprat, 1945). The S. japonicus yeast form resembles S. pombe: cells are rod-

shaped, divide medially, grow in a bipolar manner (Sipiczki et al., 1998a) and use the small GTPase 

Cdc42 for cell morphology (Nozaki et al., 2018). In S. pombe, Cdc42 controls cell shape by activating 

the formin For3 and the exocyst complex for polarized exocytosis of secretory vesicles (Martin and 

Arkowitz, 2014). However, it also displays important differences, notably in having a semi-open 

mitosis (Yam et al., 2011) and in division site positioning. In S. pombe, septum positioning relies on 

positive signals from the nucleus, itself placed medially by associated microtubules pushing against 

both cell poles, and on negative signals preventing septum assembly at cell poles. The anillin-related 

protein Mid1 conveys the positive signal, whereas the DYRK-family kinase Pom1 serves to inhibit 

septation at cell poles (Celton-Morizur et al., 2006; Chang et al., 1997; Huang et al., 2007; Padte et 

al., 2006; Sohrmann et al., 1996). In S. japonicus, Pom1 kinase similarly controls medial division, but 

Mid1 is not required for division site placement (Gu et al., 2015). 

S. japonicus filamentous form is triggered in response to environmental stresses (Sipiczki et al., 

1998b), such as nutritional or nitrogen starvation, and DNA damage stresses (Furuya and Niki, 2010), 

suggesting that the switch from a small cell to a fast growing hypha serves as an escape mechanism 

from harsh environmental conditions. Filamentous growth is also light-repressed, as blue light 

perception by two white-collar light receptors present in S. japonicus and not in S. pombe induces 

hyphal cell division (Okamoto et al., 2013). Filamentous growth in S. japonicus is poorly 
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characterized, though it is thought to share some traits common to other filamentous fungi, such as 

the presence of a large vacuole at the back of the cell (Sipiczki et al., 1998a). 

Filamentous fungi, whether dimorphic (such as Candida albicans or Ustilago maydis) or not (like 

Neurospora crassa or Aspergillus nidulans) grow through rapid apical extension mediated by a vesicle 

flux towards the growing tip (Riquelme, 2013). Polarized trafficking of vesicles provides the necessary 

membrane and wall-remodeling material to accommodate the rapid growth, from half to several µm 

per minute, of the filamentous form. Vesicles targeted for tip fusion typically accumulate in a 

spherical organelle, called the Spitzenkörper, which is located close to the growing tip and controls 

hyphal growth rate and orientation (Riquelme and Sanchez-Leon, 2014). Lower fungi, such as 

Zygomycetes, and non-fungal Oomycetes do not require a Spitzenkörper to grow but most other 

filamentous fungi assemble one and it is generally described as a landmark of true filamentous 

growth (Grove and Bracker, 1970; Read et al., 2010). The hyphal form of most filamentous fungi and 

dimorphic yeasts is multinuclear and its cytoplasm can be compartmentalized by septa that may be 

incomplete, maintaining cytosolic connection (reviewed in (Steinberg et al., 2017)). This contrasts 

with the yeast form, which is generally mononuclear and undergoes complete septal division, 

underlying a need for proper spatial coordination between mitosis and cytokinesis. 

In this work, we describe the S. japonicus switch from yeast to hypha. We first identify fruit extracts 

as new inducers of hyphal formation that are independent of nutrient starvation. The S. japonicus 

hyphal form grows much faster and longer than the yeast form, but displays unique features 

amongst filamentous fungi. Indeed, it lacks a Spitzenkörper, undergoes complete cell divisions and 

remains mononuclear. We find that cytoskeleton-based transport is more rapid in the hyphal than 

yeast form, with actin cables necessary for polarized growth, while microtubules contribute to 

nuclear positioning. S. japonicus hyphae divide asymmetrically: the front cell inherits a larger portion 

of the cytoplasm and no vacuole, and exhibit altered size, growth and division controls. Thus, the S. 

japonicus yeast-to-hypha transition involves the conversion of a symmetric to an asymmetric cell. 

 

1.2. Results 
 

1.2.1. Fruit extracts induce filamentation in Schizosaccharomyces japonicus 
Since S. japonicus was originally isolated from strawberries and grapes (Wickerham and Duprat, 

1945; Yukawa and Maki, 1931), which may represent a natural habitat, we investigated whether 

these fruits alter the fungus growth behavior. Previous work established that induction of S. 
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japonicus filamentation occurs upon stress by nutrient depletion and/or DNA damage (Aoki et al., 

2017). 

 

Figure 2.1. Fruit extracts induce invasive 
filamentation in S. japonicus. A. S. japonicus 
growing in agar plates on solid rich media (YE), 
supplemented or not with 10% fruit extracts 
before (up) and after (middle) washing of the 
plate, as well as the same plates imaged under a 
stereomicroscope (down). B. S. japonicus growing 
on solid rich media supplemented or not with a 
range of concentration of red grape extract (RGE) 
and the same plate under the stereomicroscope. C. 
S. japonicus, S. pombe, S. octosporus and S. 
cerevisiae growing on solid rich media (YE or YPD) 
and supplemented or not with RGE before (up) and 
after (down) washing of the plate. D. Tropism 
experiment to assess the directionality of S. 
japonicus hyphal growth. White filter squares were 
soaked with YE (up) or RGE (down). E. Ratio of 
positive vs. negative growth tropism in 
experiments such as in (D). Positive tropism 
denotes growth towards and negative tropism 
away from the filter; P = 0.09, t. test. Error bars 
show standard deviations. Dotted lines highlight 
penetrative filamentous growth. 

 

On solid rich media in absence of stress, S. japonicus primarily grows in the yeast form (Fig. 2.1A). By 

contrast, within 3 days of growth on rich media plates supplemented with fruit extracts, S. japonicus 

colonies extended filaments at their periphery, appearing as a white halo around the yeast colony. 

The filamentation observed at colony edges was invasive as it persisted after plate washing, 

indicating that the elongated cells have penetrated the solid media (Fig. 2.1A). Invasive growth was 

observed with grape (red or white) and strawberry extracts, but also with other berry extracts. 

Filamentation was increased in presence of higher concentration of red grape extract (RGE) and 

decreased with lower concentrations (Fig. 2.1B). Note that in low-concentration RGE, filamentation 

was often observed only on parts of the colony’s periphery, suggesting that the transition to the 

hyphal mode is a sporadic event in these conditions. In this work we used 10% RGE to induce 

filamentation. RGE did not induce filamentation in other fission yeast species, nor in Saccharomyces 

cerevisiae,  which can form pseudohyphae in certain conditions (Gimeno et al., 1992) (Fig. 2.1C). We 

note that the ability of RGE to induce filamentation on rich media suggests this is independent of 
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nutrient stress, contrasting with previous reports associating filamentation with escape from stress 

(Furuya and Niki, 2010; Sipiczki et al., 1998b). This underlies the existence of different triggers and/or 

mechanisms by which S. japonicus transitions in growth forms. A tropism assay showed that S. 

japonicus filaments formed at least as much towards the red grape extract as away from it (Fig. 2.1D-

E). Thus, although we cannot fully exclude oxidative stress as the trigger for the fruit extract-induced 

switch, this indicates it is not a repellent. Initial characterization of the molecular properties of the 

RGE inducer showed that it is unlikely to be a nucleic acid, a protein or a lipid and that it is heat-

resistant. Phase separation with chloroform/methanol further defined that the inducer is water-

soluble. However, the molecular identity of the inducer remains to be identified, as limited screening 

through candidate molecules present in fruit extracts, including glucose or fructose supplementation, 

was so far unsuccessful (Table 2.1). In summary, fruit extracts represent new, likely stress-free, 

inducers for the switch to hyphal growth in S. japonicus.  

 

1.2.2. The yeast-to-hypha transition involves extreme vacuolization and dramatic 
increase in cell size 
Microscopy of hyphal cells growing on solid media proved to be challenging due to the invasiveness 

of hyphae. Therefore, we performed imaging experiments in microfluidic chambers. In this set up, 

the cells are trapped between a flexible top layer made out of polydimethylsiloxane and a bottom 

glass layer, neither of which they can penetrate. Because blue light is inhibitory to filamentation 

(Okamoto et al., 2013), long-term microscopy was performed either with cells carrying a deletion of 

the white-collar light receptors Wcs1 and Wcs2 or in the presence of a blue-light filter. In these 

growth conditions, we observed a progressive transition over 24h to the filamentous form at the 

edges of micro-colonies (Fig. 2.2A) (Movie S1). Three successive stages in the transition from yeast to 

hypha can be described. The first landmark of filamentation is the appearance of multiple vacuoles 

all over the cytoplasm (Sipiczki et al., 1998a), forming a vacuolated yeast form. The vacuoles then 

polarized to one cell end in what we will refer as the transition form. Finally, once the vacuoles fused 

together into one or several large vacuoles we refer to them as the hyphal form (Fig. 2.2B). We 

confirmed that the organelles identified as vacuoles by DIC are indeed vacuoles, as these accumulate 

the water-soluble dye Lucifer Yellow (Fig. S1). We also note that Lucifer Yellow accumulates in 

smaller vacuoles present in the front of the hypha, which are difficult to detect by DIC. While the 

yeast and vacuolated yeast forms mainly grow in a bipolar manner, the transition and hyphal forms 

are always monopolar underlying a change in mode of growth (Fig. 2.2C). In time course 

experiments, the earliest sign of vacuolization was observed 12h after RGE induction, vacuole 
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polarization at one end of the cell occurred after 18h and hyphae were observed 24 hours after 

induction (Fig. 2.2D). 

 

Figure 2.2. Kinetics of the morphological yeast-to-hypha transition. A. DIC microscopy images of mini-colony 
formation in a microfluidics chamber. B. DIC microscopy images of the four identified morphological states of S. 

japonicus during the yeast-to-hypha transition in a microfluidic chamber. C. Quantification of monopolar and 
bipolar cells in the four morphological state of S. japonicus (n=51 hyphae and >100 cells for the other states). 
Yeast cells were quantified without RGE, the other forms 8-30h after RGE addition. D. Quantification showing 

time at which each morphological state first appeared after induction with RGE in microfluidic chambers (n>70 
cells per state). Box plot shows first and third quartile and median, whiskers extend 1.5 times the interquartile 

range from the first and third quartile. E. Brightfield microscopy images showing a growing hypha on solid 
media (edge of vacuole shown with arrowhead) and quantification showing a correlation between the growth 
of the vacuole over time and the growth of an entire hypha over the same amount of time. N=7 hyphae over 5 

separate experiments. R2= 0.994, linear regression. F. Quantification of the growth rate of different 
morphological forms on minimum and rich media (in minimal medium, n=60 yeasts and >30 cells for the other 
states; in rich medium, n=60 yeasts and 17 hyphae). Error bars show standard deviations. Time in h:min. Scale 

bars: 5µm. 
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In the hyphal form, recognizable by its partitioning of the cytosol to the growing end of the cell and 

the vacuole to the back end, cell extension was strongly correlated with vacuole growth, (Fig. 2.2E). 

This suggests that the turgor pressure, which is an important driving force for growth, is supported 

by vacuole growth. Hyphae also grow about ten times faster than the yeast form (Fig. 2.2F). Indeed, 

hyphae extend at an average rate of 0.58 µm/min, whether RGE is added to rich or minimum 

medium, a rate comparable to that observed in other filamentous fungi, such as Candida albicans 

and Aspergillus nidulans which respectively grow at an average rate of 0.76 µm/min and 0.5 µm/min 

(Gow and Gooday, 1982a; Horio and Oakley, 2005). The monopolar transition form also displayed 

rapid growth rates, though slightly slower than hyphae (Fig. 2.2F). 

 

1.2.3. S. japonicus does not assemble a classical Spitzenkörper 
In an effort to compare S. japonicus hyphae to other filamentous fungi and dimorphic yeasts we 

looked for the presence of a Spitzenkörper at the hyphal tip. The accumulation of vesicles at the 

Spitzenkörper can be visualized in phase contrast microscopy as a dense spherical organelle 

(Riquelme and Sanchez-Leon, 2014) or fluorescently labeled with amphiphilic dyes like FM4-64 

(Fischer-Parton et al., 2000) or with tagged Rab11 GTPase (Ypt3 in fission yeast), which decorates the 

vesicles (Cheng et al., 2002). It can also be seen by the accumulation of type V myosin (Crampin et al., 

2005). In S. japonicus, neither phase contrast imaging, nor FM4-64 showed a spherical signal at 

hyphal tips. Similarly, GFP-Ypt3 and Myo52-GFP did not reveal a spherical fluorescent signal, though 

they accumulated at the cortex of hyphal tips, consistent with local vesicle delivery at the site of 

growth (Fig. 2.3A). We further tagged other components of the polarization machinery: the exocyst 

component Exo70 and polarity proteins Bud6 and Spa2, thought to associate with formins, decorated 

the hyphal tip cortex,; the microtubule-delivered Tea1 protein also assumed a localization similar to 

that described in the cousin species S. pombe (Fig. 2.3B; movie S2) (Riquelme and Martinez-Nunez, 

2016; Takeshita et al., 2008). None of these markers exhibited a Spitzenkörper-like localization. We 

conclude that S. japonicus does not assemble a classical Spitzenkörper like other filamentous fungi. 

Moreover, the localization of these polarity factors was similar in the hyphal and the yeast form, with 

the exception of Bud6, which decorated a notably wider region around the hyphal tip, and 

comparable to that of their homologues in S. pombe (Fig. 2.3C). This suggests that the transition from 

yeast to hyphal form occurs without major re-organization of the polarity and trafficking 

machineries. 
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Figure 2.3. Localization of polarity factors in fission yeasts. A. Hyphal tips of S. japonicus visualized with a 

phase contrast objective , stained with the amphiphilic dye FM4-64, marked with GFP-tagged Rab11 GTPase 
Ypt3 and expressing Myo52-GFP. Note that there is a slightly darker area at the tip of the hypha in the phase 

contrast image, but this is also present in the yeast form next to it, suggesting it does not represent a 
Spitzenkörper. B. Fluorescence images of GFP-tagged polarity proteins Exo70, Bud6, Spa2 and Tea1 at S. 

japonicus hyphal tips. C. Fluorescence images of the same polarity proteins in S. pombe and S. japonicus yeast 
form. Scale bars: 5µm. 

 

1.2.4. Actin based trafficking is increased in the hyphal form and is essential for the 
transition 
Although S. japonicus does not assemble a Spitzenkörper, live imaging of vesicles tagged with GFP-

Ypt3 revealed an important change during the transition from yeast to hypha. Ypt3 vesicles 

accumulate at the growing tips in both the yeast and the hyphal form of S. japonicus and their 

movement can also be tracked in the cytosol (Fig. 2.4A; Movie S3-4). Ypt3 fluorescence intensity was 

significantly increased at hyphal tips compared to yeast cell tips (Fig 2.4B), suggesting a stronger 

accumulation of vesicles. This is likely to reflect an increase in membrane traffic to sustain the 

increase in cell growth. Interestingly, we found that the speed of individual vesicles was also on 

average significantly faster in hyphae than in yeast (Fig. 2.4C). Similar fast vesicle speeds and 

accumulation at cell tip were also observed in the transition form, suggesting that the change in the 

rate of trafficking happens at the beginning of the transition.  
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Figure 2.4. Actin based trafficking is increased in the induced forms. A. Middle plane fluorescence images of S. 

japonicus cells expressing GFP-Ypt3 in both non-inducing and inducing conditions. B. Quantification of GFP-
Ypt3 fluorescence intensity at the tips of yeasts (n=32), transition forms (n=13) and hyphae (n=18). Shaded 

areas correspond to standard deviations. *** indicates P < 1.2x10-05; t. test. C. Quantification of vesicle 
trafficking speed in yeasts, transition form and hyphae. *** indicates P < 4.82x10-10; ns indicates P=0.44, t. test 

D. Middle plane fluorescence images of GFP-Ypt3 in cells treated or not with solvent dimethyl sulfoxyde 
(DMSO), microtubule-depolymerizing MBC or actin-depolymerizing LatA. E. Quantification of vesicle trafficking 
speed in cells treated as in (D). F. F-actin localization in S. japonicus observed with marker LifeAct-GFP in both 

yeast and hyphal forms. Images are maximum intensity projections of 16 z-stacks (0.5µm). G. Fluorescence 
images of LifeAct-GFP in for3∆ mutants showing absence of actin cables and disorganized patches. H. DIC 

images of wild type and for3∆ mutants under non-inducing and inducing conditions. Box plots show first and 
third quartile and median, whiskers extend 1.5 times the interquartile range from the first and third quartile. 

Scale bars: 5µm. 
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Ypt3 trafficking occurred on F-actin, as actin depolymerization with LatA abolished all vesicle 

trafficking and cell tip localization (Cheng et al., 2002) (Fig. 2.4D-E; Fig. S2A). By contrast, microtubule 

depolymerization with MBC had no effect on Ypt3 trafficking. F-actin labeled with LifeAct-GFP was 

organized in actin patches, cables and rings in S. japonicus (Alfa and Hyams, 1990). We noticed an 

accumulation of actin structures at the tips of growing hyphae coinciding with the increased growth 

rate for the hyphae (Fig. 2.4F, see Fig. 2.2F). Deletion of For3, the formin responsible for actin cable 

assembly in S. pombe (Feierbach and Chang, 2001), led to loss of actin cables in S. japonicus, as in S. 

pombe. However, the resulting mutant cells were sicker than their S. pombe counterparts (Bendezu 

and Martin, 2011; Feierbach and Chang, 2001), with impairment in growth and high cell mortality 

(Fig. 2.4G, Fig. S2B). for3∆ mutant cells did not polarize growth, even in presence of the inducer (Fig. 

2.4H). S. pombe relies on two morphogenesis pathways; actin cables nucleated by For3 and the 

exocyt. A complete loss of polarity and isotropic growth is achieved by deleting both components 

(Bendezu and Martin, 2011). We therefore investigated if the exocyst complex had any role in 

morphogenesis in S. japonicus. Cells lacking Exo70 could grow as rod-shaped yeasts and transitioned 

to hyphal growth in the microfluidics chambers in presence of RGE (Fig. S6A). However, further 

analysis revealed that the dimorphic switch was inhibited on solid substrate (Fig. S6B-C). Microscopic 

observations of cells growing at the colony periphery on solid media in presence of the inducer 

showed they were all yeast (data not shown). This excludes that the phenotype observed could be 

uniquely due to a defect in solid invasion. Thus, S. japonicus yeast and hyphal growth rely on 

transport of vesicles on actin cables for polarized growth, with increased rates of vesicular transport 

in the hyphal form. 

 

1.2.5. Microtubules are dispensable for polarized growth of S. japonicus 
We used GFP-Atb2 (alpha-tubulin) to examine the microtubule cytoskeleton. Microtubules form 

bundles aligned along the length of the cell of both yeast and hyphal forms (Alfa and Hyams, 1990; 

Sipiczki et al., 1998a). In the yeast form, microtubule organization resembled that described in S. 

pombe, growing from cell middle towards cell ends, sliding along cell sides and shrinking upon 

touching the cell tip (Fig 2.5A; Movie S5). In the hyphal form, microtubule bundles were significantly 

longer, extending over the length of the cytoplasmic segment and were often observed to bend (Fig. 

2.5A; Movie S6). The bundles extended to the hyphal growing tip where they occasionally touched 

the membrane to deposit polarity factors (see Movie S2). Microtubules also extended through the 

vacuole-occupying cell segment, though rarely reached the other cell end (Fig 2.5B; see Fig. 2.7E). 

However, short-term microtubule depolymerization with MBC did not impair polarized growth in 

either yeast (data not shown) or hyphal form (Fig. 2.5C). 
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Figure 2.5. Microtubules are not involved in hyphal growth. A. Microtubule organization in S. 

japonicus yeast and hyphal forms expressing mCherry-Atb2. Images are maximum intensity 
projections of 8-14 z-stacks. B. Images of an induced strain tagged with mCherry-Atb2 and NLS-GFP 

showing microtubules can penetrate the space between the plasma membrane and the vacuole 
(arrowhead). C. Microtubule depolymerization does not perturb hyphal growth. MBC was added at 

time 0 in a microfluidic chamber. D. Wildtype and tip1∆ cells grown in microfluidic chambers in 
inducing and non-inducing conditions. E. Wildtype and tip1∆ strains grown on solid media in non-

inducing and inducing conditions. Dotted lines highlight penetrative filamentous growth. F. Mitotic 
spindles labeled with GFP-Atb2 in yeast and hypha. G. Quantification of spindle length over time, 
aligned on the steepest slope and averaged (n=30 cells per cell type). H. Quantification of spindle 

elongation rates over time. Individual profiles were aligned on the highest rate and averaged (n=30 
cells per cell type). *** indicates P < 1.59x10-10; t. test.  Error bars show standard deviations. Scale 

bars: 5µm. 
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Because long-term MBC treatment during the yeast-to-hypha transition gave inconclusive results, 

likely due to effects on cell proliferation through disruption of the mitotic spindle, we assessed the 

role of microtubules during the transition by deleting the microtubule plus-tip-associated CLIP-170 

homologue Tip1. Though tip1∆ cells had some defects, notably in septum positioning, they retained 

the ability to polarize in the yeast form and to form hyphae within the same timeframe as wild-type 

(Fig. 2.5D-E). Hyphae could also still penetrate the agar on solid medium (data not shown). We 

conclude that microtubules and microtubule plus-tip factors are not important for yeast-to-hypha 

transition or for hyphal growth. 

Microtubules labeling also allowed us to visualize mitotic spindles, which elongated to significantly 

longer sizes in hyphae than yeast cells: they reach over 30µm in length, almost covering the entire 

cytosolic hyphal segment (Fig. 2.5F-G). Interestingly, the rate of spindle elongation was also 

significantly increased (about 2.5-fold) (Fig. 2.5H), such that the total duration of mitosis tended to 

be even shorter in hyphae. We observed also less spindle buckling in hyphae (Yam et al., 2011). This 

suggests that the rates of microtubule-dependent motors and thus dependent forces, like those of 

actin-dependent motors driving vesicle movements, are increased in hyphae. 

 

1.2.6. S. japonicus hyphae display complete cell divisions and altered growth controls  
We were surprised to observe that mitotic divisions were always followed by formation of septa that 

fully constricted, giving rise to two daughter cells throughout the yeast-to-hypha transition (Fig. 2.6A; 

Fig. S3A). This was the case in cells lacking blue-light receptors as well as wild-type cells grown in the 

dark.  Indeed, most filamentous fungi are multinucleated, with some forming septa that do not 

constrict but help compartmentalize an increasingly complex filamentous network (Mourino-Perez 

and Riquelme, 2013). Consistent with the completion of cytokinesis, S. japonicus remained 

mononuclear even in the filamentous form (Sipiczki et al., 1998a) (Fig. 2.6B-C). The nuclei were 

elongated in the hyphal form with nuclear length correlating well with cytoplasm length, respecting 

the rule of constant nuclear to cytoplasm ratio (Neumann and Nurse, 2007) (Fig. 2.6D). This 

observation, together with the absence of Spitzenkörper described above, sets S. japonicus hyphae 

apart from other filamentous fungi, casting them as more similar to the yeast form than expected. 
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Figure 2.6. S. japonicus produces mononuclear hypha. A. DIC images of transition and hyphal forms showing 

completion of septation. B. Tiled confocal microscopy image of hyphae expressing NLS-GFP growing on gelatin 
plates. Dotted line shows the location of the tiling.  C. Strain expressing NLS-GFP growing in inducing conditions 

in a microfluidics plate. D. Correlation between nuclear length and cytoplasm length (n=178 cells). E. 
Quantification of cell length at septation in the different morphological forms of S. japonicus. F. Quantification 

of cell cycle length in the different morphological forms of S. japonicus. G-I. DIC images of cell growth in 
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microfluidic plates up to the septation event. White dotted lines show tip growth. Yellow dotted lines show 
absence of, or reduced, growth. J. Analysis of cell length and growth rate over time aligned on septation time 
for yeast (grey), transition (orange) and hyphal (purple) forms (n> 18 cells per cell type). Box plots show first 

and third quartile and median, whiskers extend 1.5 times the interquartile range from the first and third 
quartile. In (J), error bars show standard deviations. Scale bars: 5µm. 

 

Interestingly, in comparison to the yeast form, S. japonicus hyphae appeared to show distinct growth 

control. First, measurement of cell size at division showed an increase throughout the yeast-to-hypha 

transition whereas cell width remained roughly constant, suggesting an alteration in cell size 

regulation during the transition (Fig. 2.6E; Fig. S3B). This increase in size was not only due to the fast 

growth of the transition and hyphal forms as the length of the cell cycle also increased (Fig. 2.6F). 

Second, while S. japonicus yeast form and S. pombe stop growing during septation (Mitchison and 

Nurse, 1985), we found that the transition and hyphal forms continued to grow (Fig. 2.6G-I), similar 

to what is observed in other filamentous fungi (Riquelme et al., 2003). However, in these forms the 

growth rate decreased during septation, interestingly by a similar absolute value as in yeasts (Fig. 

2.6J). We envisage competition for polarity factors between the growing end and the septation site 

as a reason for this decrease. 

 

1.2.7. Highly asymmetric cell division of a fission yeast in S. japonicus 
One fascinating aspect of hyphal division is that this cell division is inherently highly asymmetric 

(Sipiczki et al., 1998a). Indeed, hyphae (and transition forms) have polarized vacuoles to the back end 

of the cell and grow in a monopolar manner. Septation always occurred within the cytoplasm-

containing cell segment. During cell division, one daughter cell retained the previously built vacuole 

and little cytosol and paused before growing a branch from the septation point. The other cell 

inherited most of the cytosol and the hyphal tip, which kept growing as described above. This cell 

rapidly rebuilt its vacuole close to the septation point (Fig. 2.7A; Movies S7-S8). Similar behaviors 

were observed in the transition form (Fig. S4). This raises the question of how hyphae position their 

division site.  



35 
 

 
Figure 2.7. Asymmetric cell division in S. japonicus. A. Hyphae divide asymmetrically, giving rise to a front cell 

that retains the growing end but has to rebuild a vacuole, and a back cell that retains the vacuole but has to 
rebuild a growing end (left). Hyphal cell length recording over time aligned on cell separation (right) (n=20 

hyphae). B. Quantification of nuclear positioning in the cell and in the cytoplasm. Positioning was calculated 
through ratios as explained in the left panel (n>50 cells per cell type). C. Microtubules contribute to nuclear 

positioning. Cells were grown in microfluidics chambers for three hours with DMSO or MBC and then washed 
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for 50 minutes with EMM-ALU. Nuclear position was quantified before and after the wash in >65 cells per 
condition. Note that most nuclei re-centered rapidly after wash-out but we quantified after 50min to include a 
few delayed cells. D. Fluorescence images of a hypha expressing NLS-GFP showing an example of nuclear shape 
alteration over time. Arrowheads point to nuclear envelope protrusion indicative of exerted forces. Insets show 

zoom on the nucleus. E. Schematic of the localization of microtubule plus-ends in the hyphal form. Each dot 
represents a microtubule plus end position. The nuclear position was used as reference point in all 

measurements. Shaded areas show the range of positions of the cell front, vacuole front and cell back (n=50 
microtubule tips in 10 hyphae). F. Quantification of septum position in the cytoplasm of yeast and hyphae, in 
WT, pom1∆ and mid1∆ strains. ns: P=0.22; *: P=0.03; ***: P<9.08x10-08; t. test. G. DIC images of septated WT 
and pom1Δ hyphae. Septation plane positioning in pom1Δ hyphae is biased towards the vacuole. H. Middle 

plane fluorescence images of Pom1-GFP in inducing and non-inducing conditions. In the hyphal form we show 
both the front and the back of cells. Scale bars: 5µm. 

 

We first investigated the mode of nuclear positioning. In S. pombe, the nucleus is positioned at mid-

cell due to microtubules anchored at the nuclear envelope exerting pushing forces against both cell 

poles (Daga et al., 2006; Tran et al., 2001). In S. japonicus yeast cells, nuclei were at mid-cell, as in S. 

pombe. By contrast, in hyphae, nuclei were not at mid-cell, but were displaced towards the cell front 

because the vacuole occupies the back of the cell. However, they were also not centered within the 

cytosolic segment, but displaced towards the vacuole (Fig. 2.7B). To examine the role of 

microtubules in nuclear positioning, we performed depolymerization experiments. In the yeast form, 

after over three hours of depolymerization with MBC about 70% of the cells showed a misplaced 

nucleus. After washout, most cells rapidly re-centered their nucleus to the cell middle, indicating 

microtubules control nuclear positioning (Fig. 2.7C). Similar experiment in the hyphal form proved to 

be challenging, but examination of nuclear morphology during hyphal growth showed frequent 

nuclear shape deformation indicative of forces exerted on the nuclear membrane (Fig. 2.7D). Nuclear 

envelope deformations were seen on both sides of the nucleus, suggesting that microtubules exert 

forces from both sides. We noted above that microtubules penetrate the vacuole-occupied cell 

segment (see Fig. 2.5B). The quantification of microtubule plus-end positioning within the cell 

showed a strong accumulation close to the hyphal tip, where accordingly to data in S. pombe they 

are expected to exert pushing forces. On the vacuole side, most microtubules were able to penetrate 

the space between the vacuole and the plasma membrane, though the majority ended within the 

first half of the vacuole length, suggesting that the pushing force may be partly dissipated (Fig. 2.7E). 

Thus, we hypothesize that the force exerted on the nuclei by microtubules growing towards the 

vacuole is weaker than that produced by microtubules growing towards the hyphal tip, leading to the 

observed bias in nuclear positioning towards the vacuole.  

Similar to nuclei, hyphal septa were always positioned within the cytosolic cell segment, though they 

were off-centered towards the vacuole (Fig. 2.7F). This position was unaltered in mid1∆ hyphae, 
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indicating that, as in the yeast form (Gu et al., 2015), Mid1 is not involved in septum positioning in S. 

japonicus. However, the pre-divisional nuclear position did not predict the septum position, which 

was better, though not perfectly predicted by the middle of the anaphase spindle (Fig. S5). We note 

that, as in the yeast form, hyphal mitosis is semi-open (Fig. S5) (Yam et al., 2011). These observations 

suggest that positive signals for septum assembly may be conferred by the spindle. 

Pom1 kinase constrains septum placement to mid-cell in S. japonicus yeast form, as it does in S. 

pombe (Gu et al., 2015). Similarly, we found that pom1∆ hyphae showed septum mispositioning, 

where the septum was excessively displaced towards the vacuolar segment (Fig. 2.7F). In S. pombe, 

this has been attributed to Pom1 gradients from cell poles exerting negative control to prevent 

septation at cell tips. Similar distribution is apparent in S. japonicus yeast cells (Fig. 2.7G). Curiously, 

in hyphae, though Pom1-GFP accumulated at cell poles, it was also very distinctly present along cell 

sides, and did not form an obvious long-range concentration gradient (Fig. 2.7G). This raises the 

question of how Pom1 conveys positional information for septum placement.  

 

1.3. Discussion 
 

1.3.1. A mycelium formed of single cells 
It is believed that all Ascomycetes descend from a common filamentous ancestor (Berbee and Taylor, 

1993). The fission yeasts form an early-diverging ascomycete clade, amongst which S. japonicus is the 

most divergent, suggesting that S. japonicus has retained an ancestral ability to filament present in 

the last common fission yeast ancestor (Sipiczki, 2000). In the fungal kingdom, filamentation leads to 

the formation of a mycelium, a complex multicellular network that underlies fungal spread and can 

reach several meters across (Islam et al., 2017; Smith et al., 1992). Mycelia are typically formed of a 

single, large common cytosol, which completely lacks septa in lower fungi, or is compartmentalized 

by incomplete, pore-containing septa in higher fungi (Steinberg et al., 2017). As a result, mycelia can 

typically be considered as a multinucleated syncytia. Hyphal fusion, or anastomosis, further increases 

the level of interconnectedness in fungi (Heaton et al., 2012; Read et al., 2010; Read et al., 2009), and 

this plays an important role in nutrient exchange within the fungus (Simonin et al., 2012). Although 

having a single cytoplasm extended over such lengths can appear risky, septate hyphae can easily 

seal off their septa, an absolutely vital process to prevent loss of cytoplasm in case of damage on the 

mycelium (Riquelme et al., 2018), in case of unfavorable environment (van Peer et al., 2010), or 

during aging (Bleichrodt et al., 2015). In this work we offer a description of a different kind of 

mycelium in S. japonicus.  
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The dimorphism observed in S. japonicus leads to the formation of extremely polarized and 

elongated single cells that are highly invasive of solid substrate similar to what is displayed by other 

filamentous organisms. In this work, we describe fruit extracts as novel inducers for the yeast-to-

hypha transition in S. japonicus. Previously, nutrient starvation and DNA damage had been described 

as methods of induction of dimorphism in this fungus. Our method of induction appears to be 

specific for S. japonicus, as it did not trigger morphological transition in other fission yeasts or in S. 

cerevisiae, which forms penetrative pseudohyphae in response to nitrogen starvation (Gimeno et al., 

1992). We note that filamentous forms have been reported for S. pombe (Amoah-Buahin et al., 

2005), though RGE did not promote their formation. Cues triggering dimorphism are very varied in 

fungi; for example Candida albicans undergoes hyphal formation through a multitude of signals 

including serum and pH (reviewed in (Sudbery, 2011)), and Ustilago maydis filamentation can be 

triggered by sexual pheromones and the resulting dikaryotic hyphae will infect maize plants (Nadal et 

al., 2008). Interestingly, S. japonicus was isolated from both strawberries and grape extracts 

(Wickerham and Duprat, 1945; Yukawa and Maki, 1931), both of which we have shown to promote 

hyphal growth. This raises the question of its natural habitat and which morphological form it adopts 

in the wild. The hyphae produced by S. japonicus grow in average at 0.58µm.min-1, a rate similar to 

what is observed in true filamentous fungi Aspergillus nidulans (0.5 µm.min-1, (Horio and Oakley, 

2005)) and fellow dimorphic yeast C. albicans (0.75 µm.min-1 (Gow and Gooday, 1982a)). Thus, in 

appearance, the transition of S. japonicus leads to the formation of a macroscopic mycelium.  

However, in contrast to other mycelia, our study reveals that the S. japonicus mycelium is 

fragmented. Indeed, S. japonicus hyphae not only place septa, similar to what is observed in septate 

hyphae of higher fungi, but also fully divide after mitosis. As a result, all hyphae are mononuclear, an 

unusual feature for a filamentous organism. After hyphal division, both front and back cells resume 

growth, with the back one resuming growth at an angle behind the recently formed septum, which 

superficially resembles a branch point. However, we never observed true branching. The lack of a 

Spitzenkörper in S. japonicus hyphae is another point of divergence from other filamentous 

Ascomycetes. Indeed, the Spitzenkörper, a vesicle supply center that promotes and orients hyphal 

growth, is largely associated with Ascomycetes and Basidiomycetes septate hyphae, but is usually 

absent from early-diverging fungal lineages. Instead, we find that S. japonicus hyphae accumulate 

secretory vesicles at the growing tip in a less clustered pattern, similar to what was observed in yeast 

growth and filamentous Zygomycetes species (Grove and Bracker, 1970; McClure et al., 1968; 

Roberson et al., 2010). Finally, the strict dependence of hyphae on actin-based transport and 

independent from microtubules also cast it apart from many other filamentous fungi, which use 

microtubules for long-range transport (Egan et al., 2012). These characteristics raise the question of 
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whether the S. japonicus filamentous form should be considered true hyphae or pseudohyphae. Its 

complete septation and mononuclearity and its lack of Spitzenkörper are pseudohyphae 

characteristics. However, the very large vacuoles in S. japonicus filaments are a feature of hyphae. In 

many ways, except for the apparent absence of a Spitzenkörper, S. japonicus hyphae appears quite 

similar to those of C. albicans, which also form mononucleate compartments and rely on actin-based 

transport (Sudbery, 2011). Thus, the filamentation process of S. japonicus described here represents 

an intermediate form of filamentation and participates to the wide variety of filamentous forms in 

fungi. 

 

1.3.2. Asymmetrical division in fission yeasts  
An interesting aspect of the yeast-to-hypha transition in S. japonicus is the conversion of a 

symmetrical to an asymmetrical system. In the yeast form, the cell grows at both poles and divides in 

the middle, generating two apparently equivalent daughters, similar to the case of S. pombe. By 

contrast, S. japonicus hyphae are morphologically and functionally very asymmetrical. Division yields 

a front cell that contains most of the cytoplasm and the unique growing tip, and is shorter than the 

back cell, which is largely filled with an ever-growing vacuole and has to re-initiate growth with a 

delay. This asymmetrical conversion is already apparent early in the transition when cells switch to a 

monopolar mode of growth, which coincides with the accumulation of initially fragmented vacuoles 

to the back of the cell. Because S. japonicus can be easily induced to switch from a symmetrical to an 

asymmetrical division, the signals and mechanism of this conversion are rich grounds for future 

investigations.  

One aspect we explored in a little more detail is the question of nuclear and septum positioning. 

While nucleus and septum are placed at mid-cell in the yeast form, in wild type hyphae we have 

shown that both are displaced away from the middle. The positioning mechanism for the nucleus can 

be inferred from work in S. pombe, which showed that microtubules anchored at the nuclear 

membrane exert pushing forces against cell poles, such that force balance is achieved when the 

nucleus is centered in the cell (Daga et al., 2006; Tran et al., 2001). Microtubules also exert forces for 

nuclear positioning in S. japonicus, as illustrated by the observations that decentered nuclei are re-

centered upon microtubule regrowth in yeast and the nuclear envelope is deformed by microtubules 

in hyphae. However, the nucleus is positioned neither in the middle of the hypha nor in the middle of 

the cytoplasmic region, but closer to the vacuole. We suggest that microtubule-dependent pushing 

forces position the nucleus, as in S. pombe, but that forces only become balanced at a non-medial 
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position due to force dispersion when microtubules encounter the less rigid vacuole at the back of 

the cell compared to the rigid cell wall at the front.  

The positioning of the septum is more mysterious. In S. pombe, septum positioning at mid-cell is 

widely thought to rely on two complementary signals – a positive nuclear signal transmitted through 

the anillin-like protein Mid1, and a negative cell pole signal dependent on Pom1 kinase (Celton-

Morizur et al., 2006; Chang et al., 1997; Huang et al., 2007; Padte et al., 2006; Sohrmann et al., 1996). 

In S. japonicus yeast cells, recent work showed that Mid1 plays no significant role in septum 

positioning (Gu et al., 2015). We confirm this in hyphae, as septum position is not altered in mid1∆ 

cells. Consistently, we find that the septum position is poorly predicted by the pre-divisional nucleus, 

indicating that septum position is defined at later time than in S. pombe. The septum was closer to 

but not perfectly predicted by the center of the anaphase spindle, suggesting positioning signals may 

be more similar to those used in metazoan cells, where the spindle is the key determinant 

(Oliferenko et al., 2009). By contrast, Pom1 kinase regulates division site positioning in both yeast 

and hyphae ((Gu et al., 2015) and this work). For this function, Pom1 was proposed to form an 

inhibitory concentration gradient from the cell poles that counteracts the localization of medial 

cytokinetic node precursors, which in consequence preferentially form at mid-cell (Bhatia et al., 

2014; Celton-Morizur et al., 2006; Padte et al., 2006; Rincon et al., 2014). The long distance between 

the growing pole and the septum (over 50µm on average) calls this view into question, at least in 

hyphae. Indeed, although Pom1-GFP distribution in yeast cells was very similar to that described for 

S. pombe (Hachet et al., 2011), in hyphae it was only mildly enriched at tips and decorated most of 

the plasma membrane without forming an obvious long-range concentration gradient from the tip to 

the site of division. The cortex at the back of the cell, occupied by the vacuole, was also strongly 

decorated by Pom1, without enrichment at the back cell pole. This raises the question of how Pom1 

conveys positional information for division in hyphae.  

 

1.3.3. Size control 
The S. japonicus yeast-to-hypha transition also provides an excellent system to study principles of 

size control. As the cell dramatically lengthens during the transition, several aspects of growth and 

division control are notably altered. S. pombe is arguably one of the best-studied systems for size 

control, due in part to its highly reproducible length at division. Measurements of cell size 

homeostasis concur in proposing that the system functions as a sizer (Wood and Nurse, 2015), with 

recent work suggesting that the key dimension informing on division timing is the surface area (Pan 

et al., 2014). Whether this holds true for S. japonicus yeast form is currently not known, but the 
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much longer cell length at division of transition and hyphal cells indicates a profound change or 

relaxation in the mode of size control. Because cell cycle length is also increased during the 

transition, a simple timer model, where increased cell size would be acquired due to faster growth 

during a set time, is also unsatisfactory. However, we note that the often observed correlation 

between cell and nuclear size (Jorgensen et al., 2007; Neumann and Nurse, 2007; Webster et al., 

2009) is also present in S. japonicus. This correlation is spectacular, covering over 7-fold variations in 

size. The observed correlation occurs when nuclear size is compared with the cytoplasmic hyphal 

compartment rather than the whole cell, whose length varies according to the size of the vacuole. 

This is in agreement with data in S. pombe that support the idea that cytoplasmic volume determines 

nuclear size (Neumann and Nurse, 2007). These observations suggest that any size control in hyphae 

may monitor cytosolic and/or nuclear volume excluding vacuoles rather than length or surface area.  

Many aspects of cell physiology are faster in the hyphae. First, polarized growth is over ten-fold 

faster, despite cell width remaining roughly constant. This indicates the surface of the cell tip is not 

the limiting factor for polarized growth and that growth material must be supplied at an increased 

rate. Second, we find that secretory vesicles indeed display faster linear movements in hyphae. This 

increase in transport rate may contribute, but is unlikely to fully explain the increase in growth rate, 

because it is considerably milder (about 1.5-fold). However, it indicates that myosin (likely myosin V) 

motors inherently move faster, or are less impeded in their progression in the hypha. Third, it is 

intriguing that spindle elongation rates are similarly increased (about 2.5-fold). As spindle elongation 

primarily relies on the action of kinesin motors, this suggests that kinesin motor speed is increased by 

a similar factor as myosin. As the duration of anaphase (as measured by the spindle elongation 

phase) is similar in yeast in hyphae, this produces much longer spindles in hyphae. Finally, we found 

that, in contrast to the yeast form, polar growth does not cease during hyphal division. In S. pombe, 

antagonism between two signaling pathways, the SIN and MOR pathways, is thought to control the 

alternation between cytokinesis and polarized growth (Ray et al., 2010). This suggests that crosstalk 

between these two signaling pathways, and more generally between growth and division, is altered 

upon hyphal transition. 

In summary, our detailed description of the yeast-to-hypha transition in S. japonicus provides the 

founding work for addressing important fundamental cell biological questions. The identification of 

fruit extracts as inducer permits a simple stress-free induction to study an important morphological 

transition. In particular, the conversion of the cell from a symmetrical to an asymmetrical division 

system and the massive changes in size in a single cell promise to reveal novel principles in division, 

growth and size control. 
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1.4. Materials and Methods 
Strains and media. The original wild-type auxotrophic S. japonicus strains were kindly provided by H. 

Niki (Furuya and Niki, 2009). The S. japonicus open reading frames (ORF) used in this study are the 

following: Atb2 (SJAG_02509), For3 (SJAG_04703),  Spa2  (SJAG_03625.5),  Bud6  (SJAG_04624.5),  

Tea1 (SJAG_01738), Exo70 (SJAG_04960), Ypt3 (SJAG_03915), Tip1 (SJAG_002695), Pom1 

(SJAG_02392), Myo52 (SJAG_03011), Mid1 (SJAG_01143), Wcs1 (SJAG_02860) and Wcs2 

(SJAG_05242). Cells were typically cultured in rich media (YE: yeast extract, 5g; glucose, 30g/liter) for 

agar plate based experiments and in Edinburgh minimal medium (EMM) supplemented with the 

appropriate amino acids (EMM-ALU) for microfluidic-based experiments. For plate experiments, 2µl 

of a standardized cell concentration from a liquid pre-culture were deposited to form the initial 

colony. The fast growth of S. japonicus yeast cells in YE would entirely fill the microfluidic plates before 

transitioning to hyphae in presence of the inducer, which is why we chose to work with minimum 

media in this case. Red grape extract was obtained from blending 500g of red grapes; the current 

batch of inducer was made from Crimson seedless grapes from Brazil. The blended grapes were 

placed in 50ml Falcon tubes and centrifuged at 10000rpm for 25min at room temperature 

(Eppendorf A-4-62). After recovery of the liquid supernatant by pipetting, the extract was placed 

in clean 50ml tubes and centrifuged a second time (10000rpm, 15min). Depending on the batch of 

grapes this step was sometimes repeated. The grape extract was then filtered through a 0.22µm 

filter (Millipore), aliquoted and kept at -20°C for a maximum of 2 years before degradation of the 

inducing capabilities. Hyphal formation was induced by adding 10% of red grape extract (RGE) to 

liquid or solid media, unless otherwise stated. Crosses were done on SPAS media as previously 

described (Furuya and Niki, 2009) and strains were selected by random spore analysis. 

S. pombe and S. octosporus cells were grown either on YE plates or, for imaging, in EMM-ALU. S. 

cerevisiae was grown on YPAD plates. 

 

Strains construction in S. japonicus. The genome has been sequenced (Rhind et al., 2011) and is 

available at: http://fungidb.org/fungidb/  

We used homologous recombination to introduce GFP or mCherry fluorescent markers, or to delete 

a gene. Most of the plasmids constructed in this study were derived of pJK-210 backbone 

containing the ura4+ cassette from S.  japonicus. This plasmid was  constructed  and  kindly  

provided  by  Dr.  S. Oliferenko (Crick Institute, London).  

http://fungidb.org/fungidb/
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To create a gene deletion, the 5’ untranslated region (UTR) was linked with an inverted 3’ UTR 

fragment (1Kb each at least), separated by a unique restriction site, by PCR stitching and cloned in a 

ura4+-containing pJK210 plasmid. Homologous recombination in S. japonicus is only efficient when 

homology between the fragment to be integrated and the genomic locus extend to the very end of 

the fragment. We thus chose 3’ and 5’ UTR fragments in such a way that stitching reconstitutes a 

blunt restriction enzyme site. Typically, we reconstructed a  SmaI restriction site (CCCGGG) by 

choosing a 5’UTR region to amplify that started with GGG and a 3’UTR region that ended with CCC. 

Linearization of the plasmid and transformation led to gene replacement by the plasmid through 

homologous recombination.  

To create Ypt3 fluorescently tagged N-terminally with GFP the same procedure was used and the 

linked 3’ and 5’ UTR regions were inserted before the GFP coding sequence containing no stop codon. 

The ORF, with a stop codon, was inserted after the GFP and the plasmids were linearized with SmaI 

reconstructed between the stitched 3’ UTR and 5’ UTR regions.  

To create a N-terminally tagged protein mCherry-Atb2, we generated a plasmid containing the 

putative promoter of Atb2 (we amplified 1.4Kb upstream of the Atb2 ORF) followed by the mCherry 

coding region without the stop codon and the ORF of Atb2. This plasmid was linearized with AfeI 

located in the ura4 coding sequence on the plasmid and was transformed in a strain with a mutated 

ura locus where it reconstructed a functional ura gene.  

To create a protein tagged with a fluorescent marker at the C-terminus, we amplified at least 1kB of 

the end of the ORF containing a restriction site and no stop codon, and inserted it in the plasmid 

containing GFP or mCherry coding sequences. After linearization, the plasmid was transformed 

and inserted in the native loci of the genes of interest.  

To mark the nuclei, we expressed GFP tagged with two nuclear localization signals using the promoter 

for Atb2 to drive the expression from the ura locus. 

Transformation was done as previously described (Aoki et al., 2010). Briefly, the cells were grown to 

exponential phase and then washed in ice-cold water and 1M sorbitol. After incubation with 1M 

DTT, the cells were put in contact with at least 300ng of linearized plasmid. Transformation of 

the cells was achieved through electroporation in 0.2cm cuvettes, with those exact settings: 

2.3KV, 200Ω, 25µF (Gene Pulser II, Biorad). Cells were left in liquid YE medium overnight to recover 

and plated the next day on selective media (EMM-AL, lacking uracil).  

In the case of the construction of Pom1-GFP strain, we linked together a fragment of the 3’ UTR region 

with a fragment of the end of the ORF without the stop codon and we cloned the stitched fragment in 
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a pFA6a-GFP-kanMX plasmid in front of the fluorescent marker. After linearization the plasmid was 

transformed in a wildtype prototroph strain following the same transformation protocol and selected 

on YE-G418 plates. All strains were checked for correct insertion of the plasmid with diagnostic PCR 

and in the case of deletions we also used primers inside the coding region and confirmed the ORF was 

properly deleted. 

 

Microscopy imaging. Wide-field microscopy was performed on a DeltaVision platform (Applied 

Precision) composed of a customized inverted microscope (IX-71; Olympus), a 60x/1.42 NA oil 

objective, a camera (CoolSNAP HQ2; Photometrics or PrimeBSI CMOS; Photometrics), and a color 

combined unit illuminator (Insight SSI 7; Social Science Insights). Figures were acquired using 

softWoRx v4.1.2 software (Applied Precision). Spinning-disk microscopy was performed using an 

inverted microscope (DMI4000B; Leica) equipped with an HCX Plan Apochromat 100×/1.46 NA oil 

objective and an UltraVIEW system (PerkinElmer; including a real-time confocal scanning head 

[CSU22; Yokagawa Electric Corporation], solid-state laser lines, and an electron-multiplying charge-

coupled device camera [C9100; Hamamatsu Photonics]). Stacks of z-series confocal sections were 

acquired at 0.5-to-1µm intervals using Volocity  software  (PerkinElmer). Confocal microscopy tile 

scan images were acquired with a Zeiss laser scanning microscope (LSM 710) mounted with an EC 

Plan-Neofluar 40X/1.30NA oil objective. Images of growing yeast colonies on agar plates were imaged 

with a Leica MZ16 FA stereomicroscope (magnification 80-100 times). Images of growing hyphae on 

agar pads were imaged with a Leica brightfield microscope mounted with a 20X air objective. Phase 

contrast imaging was acquired on Nikon Eclipse Ti microscope, mounted with a 100X phase contrast 

objective.  

Hyphal transition experiments. Cellasic ONIX microfluidics system was routinely used to image the 

transition (CellAsic system, Millipore, USA, (Lee et al., 2008)). To image the yeast form, cells were 

grown overnight in 3ml of liquid EMM-ALU to OD600 = 0.4 and then loaded in the plate 2 hours prior 

to imaging to give them time to settle. To image the hyphal form, the cells were grown in liquid 

EMM-ALU overnight up to an OD600 of 0.1-0.2, loaded in the microfluidics plate and grown in EMM-

ALU-10%RG for 12 to 15hours before imaging at 3 psi (20.7 kPa) in complete darkness (plate 

surrounded with aluminum foil) to induce hyphal formation. To observe the transition on solid agar 

plates (agar bacteriological, Oxoid, LP0011), we typically cultured S. japonicus overnight in 3ml EMM-

ALU and let the cells grow to exponential phase. Cells were then spun down and concentrated before 

being plated on solid agar plates containing 10% of red grape extract. Hyphal growth was assessed 4 

to 12 days later, as indicated. To assess growth rate in rich media, cells were grown on YE-2%agar 
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microscopy pads supplemented or not with RGE for 12 hours before imaging. For the confocal 

microscopy imaging, S. japonicus hyphae were grown on EMM-ALU 12% gelatin (Sigma-Aldrich, 

#48723) plates supplemented with 10% RGE for 8 days before a piece of gelatin containing hyphae 

was cut out and mounted on a slide for imaging. 

 

Drug treatments and stainings. To depolymerize actin, we used a 20mM stock of Latrunculin A 

(LatA) dissolved in dimethyl sulfoxide (DMSO) to exponentially growing cells to a final concentration 

of 200µM. Methyl benzimidazole carbamate (MBC, Sigma) was used for the depolymerization of 

microtubules. A stock solution at 2.5mg/ml in DMSO or ethanol was made freshly on the day of 

the experiment and exponentially growing cells were treated at a final concentration of 25µg/ml 

for 10min at 30°C. To depolymerize microtubules in the microfluidics chambers we flowed in EMM-

ALU containing 25µg/ml at 3psi, which led to total depolymerization within 10-15 min, similar to the 

timing observed in liquid cultures. To wash the drug away, we flowed in EMM-ALU at 3 psi and 

recovery of the cytoskeleton was observed within a few minutes. FM4-64 stainings on growing 

hyphae were performed in microfluidics chambers as previously described (Fischer-Parton et al., 

2000). To label vacuoles with Lucifer Yellow, cells were pre-grown in EMM-ALU+10%RGE for 24h at 

25°C in the microfluidics device, incubated for 1h with 4mg/ml Lucifer Yellow in H2O and further 

washed for 1h with EMM-ALU+RGE before imaging. 

 

Treatment of RGE. To identify the molecule in the red grape extract responsible for the morphological 

transition, we submitted the RGE to a variety of physical and enzymatic treatments. RGE was treated 

with 16u of proteinase K (NEB, 800u/ml), 20u and 100u of DNAse I (NEB, 2000u/ml) and 1000u of 

RNAse If (NEB, 50000u/ml). RGE was boiled to 95°C for 20min. RGE was subjected to 

chloroform/methanol mix (1:1) and left to phase separate overnight at -20°C. Both resulting aqueous 

and organic phase were dried with a nitrogen stream and subsequently suspended in PBS 1X. All 

treated RGE were then included in solid agar plates and tested for hyphal inducing capabilities (see 

Table 1). 

 

Supplementation of YE media. To identify the molecule in the red grape extract responsible for the 

morphological transition, we also tried supplementing rich media with several likely molecular 

components of RGE and assess for hyphal formation. Liquid YE media was individually supplemented 

with an additional 40g.L-1 glucose, with 100g.L-1 fructose, with concentrations ranging from 2mg.L-1 to 
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40mg.L-1 resveratrol (Enzo Lifesciences) or with 270mg.L-1 ascorbic acid. All supplemented YE media 

were then included in solid agar plates and tested for hyphal inducing capabilities (see Table 1). 

 

Tropism assay. Cells were grown to exponential phase in YE and concentrated 10 times. On large petri 

dishes (120mmx120mm) containing YE-2%agar, we drew a 6 cm line in the middle of the plate on 

which 50µl of cells were deposited. 2 cm away from the center of the line, we dropped a small piece 

of chromatography paper (Whatman, 0.34mm, #3030-917) on which we pipeted 50µl of RGE or YE 

(control). Plates were covered with aluminum foil and left at 30°C for 12 days before quantification of 

the area of hyphal growth.  A ratio of positive tropism (growth towards the filter) on negative tropism 

(growth away from the filter) was calculated for both the experiment and the control plates for each 

plate and averaged over two experiments.  

 

Identification of the different morphological forms. In all our experiments we determined the stage 

of the morphological transition by looking at the polarity stage (monopolar/bipolar), the general 

localization of the vacuoles (all around the cytoplasm or already polarized at one pole) and the 

number of vacuoles.  

Yeast: bipolar growth, no apparent vacuoles 

Vacuolated yeast: bipolar growth, vacuoles all around the cytoplasm 

Transition form: monopolar growth, many small vacuoles polarized at the non-growing end 

Hypha: monopolar growth, one or two larger vacuole(s) at the non-growing end 

 

Bipolar/monopolar quantification. On DIC (differential interference contrast) movies we recorded 

how many cells had one or two poles growing in the different forms of the morphological transition.  

  

Growth rate calculations. On DIC movies we calculated the growth rate by measuring the change in 

cell or vacuole length over time. Cell growth rates on minimum media were calculated from cells 

growing in microfluidics plates in inducing and non-inducing conditions and were averaged over three 

experiments. Cell growth rates on rich media were calculated from cells growing on agar pads in 

inducing and non-inducing conditions and were averaged over three experiments. The correlation of 
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cell growth and vacuole growth was calculated from cells growing on agar pads in inducing conditions, 

each point in the graph representing a distinct hypha for which we calculated the extension length of 

the cell and the vacuole over the total time of the movies. We note that movies were of different 

length but it clearly demonstrates the correlation between both extension lengths.  

 

Fluorescence levels. On spinning disk medial focal planes of GFP-Ypt3 tagged cells (150 ms exposure, 

100% laser power) we calculated the fluorescence intensity at the tips of yeasts and transitioning cells 

by drawing a segmented line of 15 pixels in width around the cell periphery. We subtracted 

background noise averaged from two different fields of view per experiment. Fluorescence profiles 

were aligned to the geometric cell tip and averaged by cell type and over three experiments.  

 

Quantification of vesicle speed. On spinning disk movies we manually measured the total trajectory 

of individual Ypt3 dots and derived the rate by dividing by the total time. Data was averaged over 

three experiments and averaged by cell type. Box plots were generated with 

http://shiny.chemgrid.org/boxplotr/  

 

Quantification of lengths. Spindle length was measured at each timepoint from apparition to 

complete elongation on epifluorescence movies of cells tagged with GFP-Atb2. Cell length was 

measured by drawing a line across the cell length from cell pole to cell pole on transmitted light 

images on septating cells. Box plots were generated with http://shiny.chemgrid.org/boxplotr/. 

Nuclear length was calculated by drawing a line across the nuclei tagged with NLS-GFP construct on 

epifluorescence images.  

 

Cell cycle quantification. Cell cycle duration was quantified from septation to septation event. On 

transmitted light movies containing the entire transition from yeast to hypha we started our 

quantification by recording at what time the hypha septated at the end of the movie and then “went 

back in time” to the beginning of the movie following the lineage of the selected hypha and recording 

the time of each septation events in the lineage from final hypha to initial yeast. Results were 

averaged by cell type and over three experiments. Box plots were generated with 

http://shiny.chemgrid.org/boxplotr/ 

http://shiny.chemgrid.org/boxplotr/
http://shiny.chemgrid.org/boxplotr/
http://shiny.chemgrid.org/boxplotr/
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Nuclear and septum positioning. To assess nuclear positioning in the cells we measured the lengths 

from each cell tip to the middle of the nucleus on cells expressing NLS-GFP and plotted both lengths as 

a ratio. For the induced forms we plotted growing end length over non-growing end length. Cells were 

averaged by cell type and over three experiments. To assess nuclear positioning in the cytoplasm in 

yeast we used the same data as for nuclear positioning in the cell as the entire cell length is filled with 

cytoplasm. To assess nuclear positioning in the cytoplasm in hyphae we calculated the lengths from 

the growing cell tip to the middle of the nucleus and from the middle of the vacuolization zone to the 

middle of the nuclei. The vacuolization zone is the region in front of the large vacuole where small 

vacuoles are continuously delivered to the large one. We plotted the growing end length over non-

growing end length. Results were averaged over three experiments. To assess septum positioning we 

plotted a ratio of the length from the growing cell tips to the septum over the length of the cytoplasm 

from transmitted light images. We averaged by cell type and over two experiments. 

 

Quantification of microtubules plus-end localization. To measure microtubule plus end positions in 

hyphae, we used the center of the nucleus as reference point and measured the distance to each 

microtubule plus end. 10 hyphae, with a total of 50 microtubules were quantified. Microtubules 

pointing towards the growing tip have a positive distance value; those growing into the vacuolar 

compartment have a negative value. These distances were plotted on a graph, shown in Figure 7E. The 

accompanying schematic drawing indicates interval distances for the position of the vacuole and the 

two cell ends.  

 

Microtubule depolymerizing drug washing. In microfluidic chambers we flowed cells with EMM-ALU 

supplemented with MBC (25µg/ml final concentration) for three hours before washing with EMM-ALU 

only. We assessed nuclear positioning in a strain expressing NLS-GFP before and after the wash. Even 

though microtubule re-polymerization occurred in the first 10 minutes (data not shown), we 

quantified the nuclear centering 50 minutes after wash because some cells were slower to reposition 

their nuclei than others. 
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RGE treated with: yeast-to-hypha transition? Conclusion 

Boiled yes Inducer is not labile 

RNAse yes Inducer is not RNA 

DNAse yes Inducer is not DNA 

Proteinase K yes Inducer is not a protein 

Chloroform no Inducer is not a lipid 

MetOH yes (in soluble phase) Inducer is a soluble component 

   agar plates + yeast-to-hypha transition? Conclusion 

Red grape extract +++ Inducer is in RGE 

White grape extract +++ Inducer is in WGE 

Blueberry extract +++ Inducer is in BE 

Strawberry extract +++ Inducer is in SE 

Rasperberry extract +++ Inducer is in RE 

Glucose - Inducer is not extra glucose 

Fructose - Inducer is not fructose 

Resveratrol - Inducer is not resveratrol 

Ascorbic acid - Inducer is not ascorbic acid 

Volatile chambers - Inducer is not a volatile 

Ethanol + Small induction 

Apple pectin - Inducer is not apple pectin 

Aspartic acid + Small induction 

Cellulose phosphate + 
 Gelatin ++ 
  

Table 2.1: Hyphal inducing properties of fruit extracts and candidate molecules 

 



50 
 

 
Figure S1. Vacuole staining with Lucifer Yellow. Microscopy images showing several hyphae stained with 
Lucifer Yellow, which accumulates both in the large vacuoles at the back of the cell and in much smaller 

organelles in the front half. Scale bar 5µm. 

 

 
Figure S2. Importance of formin For3 and F-actin in polarized growth. A. Middle plane images of GFP-Ypt3 in 
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hyphae grown in a microfluidics chamber in presence or not of DMSO, MBC or LatA.  B. S. japonicus WT and 
for3∆ strains growing on solid rich media for three days at 25°C or 30°C. Scale bar: 5µm. 

 

 
Figure S3. Measurement of cell width and length at septation.  A. Box plot of septation length of cell 

populations over 30 hours in microfluidic chambers. Box plots show first and third quartile and median, 
whiskers extend 1.5 times the interquartile range from the first and third quartile. B. Box plot of cell width at 

septation in the different morphological forms of S. japonicus. 

 

 
Figure S4. Asymmetric formation and partitioning of vacuoles in the transition form. DIC microscopy image 
showing division of a cell growing in RGE highlighting vacuole formation at the back of the front daughter cell. 

Time in h:min. Scale bar: 5µm. 
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Figure S5. Septum position is better predicted by the middle of the anaphase spindle than the position of the 
pre-divisional nucleus. Timelapse imaging of a hypha where the positions of the pre-divisional nucleus (orange 

dotted line), the inferred middle of the anaphase spindle (black cross) and the septum (grey dotted line) are 
marked. The arrows show the distance between the position of the septum and that of either the pre-divisional 

nucleus or the middle of the anaphase spindle with their respective average and standard deviations over 20 
cells. Time in h:min. Scale bar: 5µm. 
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Figure S6. Hyphal growth in exo70Δ cells. A. WT and exo70Δ cells growing in a microfluidic chambers 

supplemented or not with RGE. B. WT and exo70Δ cells growing on solid media supplemented or not with RGE. 
C. Same plate as in (B) but washed. Experiment was duplicated. Dotted line highlight hyphal formation. Scale 

bar: 5µm. 
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Supplemental videos are available by scanning the following QR codes:  

 

 

Movie S1. Yeast-to-hypha transition of S. 

japonicus. DIC movie of a growing S. japonicus 

mini colony in a microfluidic chamber in 

presence of the inducer RGE. Time is in h:min. 

Scale bar: 5µm. 

 

 

Movie S2. Tea1 deposition at hyphal tips. 

Spinning disk movie of the hyphal form tagged 

with Tea1-GFP. Images are maximum intensity 

projections of 11 z-stacks (0.5µm step size). 

Time is in min:sec. Scale bar: 5μm. 

 

 

Movie S3. Vesicle trafficking in the yeast 

form. Spinning disk movie showing middle 

plane section of the yeast form tagged with 

GFP-Ypt3. Time is in min:sec. Scale bar: 5µm. 

 

Movie S4. Vesicle trafficking in the hyphal 

form. Spinning disk movie showing middle 

plane section of the hyphal form tagged with 

GFP-Ypt3. Time is in min:sec. Scale bar: 5µm.
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Movie S5. Microtubule organization in the 

yeast form. Spinning disk movie of the yeast 

form tagged with GFP-Atb2. Images are 

maximum intensity projections of 10 z-stacks 

(0.5µm step size). Time is in min:sec. Scale 

bar: 5µm. 

 

 

Movie S6. Microtubule organization in the 

hyphal form. Spinning disk movie of the 

hyphal form tagged with mCherry-Atb2. 

Images are maximum intensity projections of 

9 z-stacks (0.5µm step size). Time is in min:sec. 

Scale bar: 5µm. 

 

Movie S7. Asymmetrical division in the 

hyphal form. DIC movie showing hyphal 

growth and division. The front daughter cell 

rebuilds a vacuole after division. Time is in 

h:min. Scale bar: 5µm. 

 

 

Movie S8. Vacuole fusion. DIC movie showing 

fusion of smaller vacuoles into an increasingly 

larger one. Time is in h:min. Scale bar: 5µm.
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Figure Name Genotype Species Source 

1A-D, 2A-E, 3A, 6. AE-J, 7A, S1, 

S3, S4A-B, MS1, MS7-8 
JSM020 h+ mat-2017 wcs1::natMX6 wcs2::kanMX6 S. japonicus (Okamoto et al., 2013) 

4H, 5D-E, 7F, S2B JSM023 h+  ade6sj-domE ura4sj-D3   S. japonicus (Furuya and Niki, 2009) 

3A, 4A-E, S2A, MS3-4 JCK060 h+ GFP-ypt3-ura4+ ade6sj-domE S. japonicus This study 

6B-D, 7B-D, S5 JCK090 h+ pAtb2-NLS-GFP-NLS-ura4+ wcs1::natMX6 wcs2::kanMX6 S. japonicus This study 

5B-C, 7E JCK093 h- pAtb2-mCherry-Atb2-ura4+ pAtb2-GFP-NLS-GFP-ura4+ S. japonicus This study 

5F-H, MS5 JSM003 h-  pAtb2-GFP-Atb2-:ura4+ ade6sj-domE   S. japonicus (Yam et al., 2011) 

4F, 5A, MS6 JCK027 h-  pAct1-Lifeact-GFP-ura4+ pAtb2-mCherry-Atb2-ura4+  
  

S. japonicus This study 

 3A JCK005 h+  myo52-GFP-ura4+  ade6sj-domE ura4sj-D3 S. japonicus This study 

3B-C JCK024 h+  spa2-GFP-ura4+  ade6sj-domE S. japonicus This study 

3B-C JCK0026 h+  bud6-GFP-ura4+  ade6sj-domE S. japonicus This study 

3B-C, MS2 JCK033 h+  tea1-GFP-ura4+  ade6sj-domE S. japonicus This study 

3B-C JCK056 h+ exo70-GFP-ura4+ ade6sj-domE S. japonicus This study 

4G JCK049 h+ for3::ura4+  Lifeact-GFP-ura4+ ade6sj-domE S. japonicus This study 

4H, S2B JCK031 h+ for3::ura4+ ade6sj-domE S. japonicus This study 

5D-E JCK061 h+ tip1::ura4+ ade6sj-domE S. japonicus This study 

 7F JSM046 h+  mid1::ura4  ade6sj-domE urasj-D3 S. japonicus (Gu et al., 2015) 

7F JCK003 h+  pom1::ura4+ ade6sj-domE S. japonicus This study 

 7G JSM018 h-  pom1-GFP::kanMX6 S. japonicus This study 

 3C YSM735 h+  bud6-3GFP-kanMX  ade6-M216  leu1-32  ura4-D18   S. pombe (Martin and Chang, 2006) 

3C YSM1023 h-  spa2-GFP  ade6-  leu1-  ura4-   S. pombe Lab strain 

3C YSM1253 h+  tea1-GFP-kanMX  ade6-  leu1-  ura4- S. pombe (Martin et al., 2005) 

3C YSM2075 h-  exo70-GFP-kanMX  ade6-M210  leu1-32  ura4-D18   S. pombe (Bendezu et al., 2012) 

1C YSM1371 h+  WT (975)  ade6+  leu1+  ura4+  his7+   S. pombe Lab strain 

1C YSM2336 h90 WT S. octosporus (Rhind et al., 2011) 

1C W303 α  leu2-3  trp1-1 can1-100 ura3-1 ade2-1 his3-11   S. cerevisiae (Ralser et al., 2012) 

S6 JCK114 h+ exo70::ura4 ade6sj-domE S. japonicus This study 

Table S1. List of the strains used in this study. 
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Chapter 2: Myosin V localization in S. japonicus 
 

Summary:  

In this chapter I investigated the localization of type V myosins in S. japonicus and evidenced a 

colocalization between an actin-based motor, Myo51, and microtubules. This led me to uncover a 

colocalization between actin and microtubules in fission yeast underlying a putative alternate 

mechanism to move cargoes in the cytoplasm.   
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2.1 Introduction 
In chapter 1, I described actin cables as essential for polarized processes in S. japonicus. To continue 

this investigation further I studied type-V myosins (MyoV) a family of actin-based motors. 

Myosins belong to a family of motor proteins involved in diverse motility processes in eukaryotes. 

Myosins are very diverse with 18 known classes with widely different functions. MyoV are processive 

motors walking on actin tracks and move cargoes (organelles, vesicles, proteins, etc…) within the cell. 

They are highly conserved in eukaryotes and deletion of one of the myoV in humans is associated 

with the onset of a rare recessive autosomal disease; Griscelli syndrome (Menasche et al., 2003).  

In fission yeast there is two different myoV; respectively Myo51 and Myo52 (Motegi et al., 2001; Win 

et al., 2001). These proteins contain a N-terminal motor domain that interacts with F-actin and ATP, 

an arm containing several IQ repeats, a coil-coil domain for dimerization of the motors and a globular 

tail that binds the cargo (Trybus, 2008). In S. pombe both MyoV are involved in actin cable 

organization (Lo Presti et al., 2012). Single deletion of myo51 has no obvious effects on cell 

morphology but deletion of myo52 had dramatic effects on polarity (Motegi et al., 2001; Win et al., 

2001). Myo51 is involved in cytokinetic ring assembly (Wang et al., 2014) and does not appear to 

actively move cargo on actin cable but rather just decorate actin structures. 

MyoV has also been implicated in polarized processes in filamentous fungi. Indeed, deletion of myoE, 

the only type V myosin identified in Aspergillus nidulans causes defects in hyphal tip growth and 

subsequent hyphal colony establishment (Taheri-Talesh et al., 2012). Defects in polarization and 

growth rate were also reported in cells lacking myo5 in the dimorphic yeast Ustilago maydis (Weber 

et al., 2003).  

In this chapter, I studied the localization of the cytoskeleton and associated motors in comparison to 

each other in the yeast form and the hyphal form of S. japonicus but also in S. pombe in order to 

elucidate their role in the polarity processes in this species. Through colocalization studies I 

uncovered an overlap between the localization of cytoskeletal components underlying a putative 

cooperation between tracks in fission yeast. 
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2.2 Results 

2.2.1 Myosin-V in S. japonicus 

 
Figure 3.1. MyoV localization in S. japonicus. These images are maximum intensities projections of 5-6 z-stacks 

(0.5µm step). Myo51 forms cables in the cytoplasm (arrows). In the hyphal form we also observe an 
accumulation at the growing tip. Myo52 forms dots that localize at the tips and at the division site. Note: there 

is a lot of auto fluorescence in the GFP channel, the filamentous-like structure in the cytoplasm is probably 
mitochondria. In the hyphal form, Myo52 forms a dynamic cap at the growing end. Scale bars: 5µm. 

Initial investigation focused on studying the localization of Myo51 and Myo52 in S. japonicus. The 

localization of Myo51 was tricky to assess due to its very faint signal but I observed Myo51-mCherry 

formed cable-like structures in the cytoplasm (Fig. 3.1 upper panel) and was also located at the 

septum of dividing cells (data not shown), similar to its localization in S. pombe (Lo Presti et al., 

2012). Myo52-GFP formed dots accumulated at the growing tips of the cells (Fig. 3.1 lower panel), 

and I could observe some of those dots travelling to the tips (data not shown) again reminiscent of its 

localization in S. pombe. In the hyphal form Myo51 cables can also be seen in the cytoplasm and both 

MyoV accumulate at the growing tip of hyphae. The localization of Myo51 at the hyphal tips was very 

reminiscent of the localization of actin filaments as described in Chapter 1. By contrast, Myo52-

mCherry localized as a very dynamic cap at the hyphal tips. Both localization patterns suggest a 

potential role in polarized growth.  
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Figure 3.2 WT and Myo51Δ cells growing on solid media supplemented with RGE. Pictures are taken from 

below the plate. Dotted line highlights hyphal formation after 4 days of growth. 

I set out to analyze the impact of the deletion of MyoV in S. japonicus more particularly in the 

context of filamentation. I successfully deleted myo51 and the mutant cells showed no phenotype of 

length or width in the yeast form (data not shown) similar to what is observed in S. pombe. Mutant 

cells were also still able to transition to hyphal growth on solid media with no apparent colony 

establishment issues (Fig. 3.2). I attempted to delete myo52 several times but it was always was 

unsuccessful leading me to believe this gene could be essential in S. japonicus. 
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2.2.2 Colocalisation study in fission yeast 

 
Figure 3.3. Colocalizations of cytoskeletal components. A. Myo51-mCherry colocalizes with actin tracks marked 

with Lifeact-GFP. B. Myo51-mCherry colocalizes with microtubule tracks marked with GFP-Atb2. C. Actin 
depolymerization with LatA, Myo51 cables can still be observed and they colocalize with the microtubule 

tracks. D. Microtubule depolymerization with MBC shows that Myo51 still binds actin cables. E. F. 
Colocalization between Myo51 and the cytoskeleton tracks is also observable in the hyphal form. Images are 

middle plane sections acquired on a spinning disk microscope. Scale bars: 5µm. 

The localization of Myo51 as cables scattered in the cytoplasm led me to investigate its localization in 

comparison to the cytoskeleton. It is known that Myo51 decorates actin cables in S. pombe (Lo Presti 

et al., 2012). I found that in S. japonicus as well, Myo51 filaments colocalized with actin cables in 

both the yeast form and the hyphal form (Fig. 3.3A, Fig. 3.3E). Surprisingly, actin depolymerization 

using LatA did not eliminate all cable-like organization of Myo51, in fact some cables remained and 

colocalized with microtubules (Fig. 3.3C). Upon microtubule depolymerization with MBC, the Myo51 

cables still colocalized with actin tracks (Fig. 3.3D). I quantified this colocalization by counting the 

number of Myo51 cables in the yeast form and looked at the frequency of colocalization with 

microtubules or actin. I found that in 100% of the instances in which I observed Myo51 cables they 

colocalized on the actin (n=12 cells) but in 40% of the cases those cables also colocalized with the 

microtubules (n=7 cells) (Fig. 3.3A; Fig. 3.3B). At the cytoskeletal level, 20% of the microtubules (n=7 
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cells) and 50% of the actin tracks are colocalizing with Myo51 cables (n=12 cells) (Fig. 2.3A; Fig. 2.3B). 

In experiments in which I depolymerized both cytoskeletal tracks, I could not observe any Myo51 

cables in the cytoplasm anymore (data not shown). These experiments indicate that Myo51 

associates with both actin cables and microtubules. 

 
Figure 3.4. Middle plane sections of spinning disk images showing a strain tagged with Lifeact-GFP and 

mCherry-Atb2 showing that actin cables and microtubule tracks colocalize partially in both the yeast form (A) 
and the hyphal form (B). Scale bars: 5µm. 

These experiments led me to investigate the localization of both cytoskeletons in regards to each 

other so I engineered a strain that was tagged for both microtubules (mCherry-Atb2) and actin 

(Lifeact-GFP). I found that actin and microtubule cables partially colocalized in both the yeast form 

(Fig. 3.4A) and the hyphal form (Fig. 3.4B). I quantified the colocalization in the yeast form and found 

that an average of 40% of all actin cables colocalized with microtubule array and 30% of the 

microtubules colocalized with actin (n=21 cells). Because Myo51 was colocalizing with both actin and 

microtubules I investigated whether it could possibly be the link between the two cytoskeletons. I 
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found that myo51Δ cells still showed partial overlap of actin and microtubules (Fig. 3.5) indicating 

that the partial colocalization of the cytoskeleton is independent of Myo51.  

 
Figure 2.5. The colocalisation of actin cables and microtubule tracks is independent of Myo51. These images 

are spinning disk middle plane sections. Scale bar: 5µm. 

Finally, I looked at the colocalization of actin and microtubule cables in S. pombe and evidenced a 

cytoskeleton overlapping in this species as well (Fig 3.6). This result shows that a putative 

cooperation between the cytoskeleton could be conserved in fission yeast. 

 
Figure 3.6. Spinning disk images of S. pombe tagged with actin marker CHD-GFP and microtubule marker 
mCherry-Atb2 showing colocalization between the two types of cytoskeleton (arrows). Scale bar: 5µm. 
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2.3 Discussion & perspectives 

2.3.1. A cooperation between actin and microtubules? 
Even though actin filaments and microtubule cables are two different components of the 

cytoskeleton, with distinct roles, evidence through the years suggests a functional cooperation 

between the two across several species for a wide variety of functions (Goode et al., 2000). Actin 

regulates microtubule organization in motile cells (Rodriguez et al., 2003). There has been evidence 

of interaction between the cytoskeleton in transport of organelles in several organisms (Brown, 

1999; Goode et al., 2000). In fission yeast, cell end markers Tea1/Tea4 are deposited at the poles by 

the microtubules and associated kinesin-like Tea2. Tea4 will recruit For3 that will in turn nucleate 

actin cables initiating cell growth (Martin et al., 2005). In the budding yeast Saccharomyces cerevisiae 

there is cooperation between actin filaments and microtubule cables for the proper spindle 

positioning during mitosis. A protein called Kar9 serves as a link between actin and microtubules by 

binding both the tail of Myo2p (type-V myosin) a motor on the actin and a regulator of the 

microtubule plus-end binding protein (Fischer et al., 2008; Liakopoulos et al., 2003). A similar 

cooperation has been recently found in the filamentous fungus Aspergillus nidulans in which they 

identified a Kar9 homolog named MigA. Like Kar9, MigA can also indirectly link actin and 

microtubules and is involved in microtubule capture at the hyphal tips (Manck et al., 2015). There is 

also evidence of cooperation between Myosin-V and kinesins in the filamentous fungus Ustilago 

maydis for correct polarization of the cells and subsequent hyphal growth (Schuchardt et al., 2005). 

Interestingly, as described in this chapter, I observed an overlap of Myo51 with the cables of actin 

and microtubules as well as a colocalization between the cytoskeletal filaments even in absence of 

Myo51. This suggests a potential synergy between the cytoskeleton and I am wondering if this could 

be beneficial for cell growth, for example facilitating the delivery of cargo to the tips. In itself a 

cooperation of the cytoskeleton cannot explain how S. japonicus undergoes hyphal growth because I 

have observed the same cytoskeleton colocalization in the yeast form of S. japonicus and in S. 

pombe. However, cooperation through overlapping between cytoskeletal tracks has never been 

evidenced in fission yeast and is a fascinating perspective. Future efforts could be concentrated on 

studying the localization of kinesins and myosins in respect to each other. Moreover, generating 

Myo51 truncations to understand which part of the protein is necessary for the colocalization to 

microtubules and understand if it is a direct or indirect relationship could be useful (see material and 

methods).  
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2.3.2. Is Myo52 essential in S. japonicus? 
In S. pombe, Myo52 transport exocytic vesicles along the actin cables and towards the cells poles (Lo 

Presti and Martin, 2011) and the mutant for myo52 shows a severe polarity phenotype and growth 

defects (Motegi et al., 2001; Win et al., 2001). I have tried for over two years to generate a myo52 

mutant in S. japonicus. I have tried several times to replace the entire ORF with a selection marker 

and tried to generate genes truncations in the N-terminal part. All methods were unsuccessful, with 

only unusual recombinant growing on selective plate. They always retained the full ORF and 

somehow still acquired the selection cassette, making me believe myo52 might be essential in this 

species. Because S. japonicus can achieve such a dramatic polarization it could be that the role of 

Myo52 in growth and polarization is even more important than in S. pombe. This finding, along with 

the much sicker phenotype observed in for3Δ cells (see Chapter 1) suggests that the extreme 

polarized processes in S. japonicus possibly relies much more on actin tracks than S. pombe. Future 

efforts could be placed on confirming the essentiality of Myo52 in S. japonicus by transforming the 

deletion construct in a stable diploid (Furuya and Niki, 2011) and dissecting the octads after 

sporulation. If the gene is indeed essential, a 4:4 segregation of dead and alive offspring is expected. 

A second step could be to work on generating a thermosensitive allele of myo52 to study its polarity 

phenotype alone and doubled with the deletion of myo51. 
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2.4 Material and Methods 
Strains and media. Strains and plasmids were generated using the same techniques as explained in 
Chapter 1. Strains were grown according to what is described in Chapter 1. 

Figure Strain Genotype Source 
3.2 JCK001 h+  myo51::ura4 ade6sj-domE ura4sj-D3  This study 

3.1 JCK005 h+  myo52-GFP::ura4+  ade6sj-domE ura4sj-D3 This study 

3.1 JCK007 h+  myo51-mCherry::ura4+  ade6sj-domE ura4sj-D3 This study 

3.3A, C, D, 
E JCK019 h-  Lifeact-GFP-ura4 myo51-mCherry-ura4  ade6sj-domE ura4sj-D3 

This study 

3.3A, C, F JCK020 h-  GFP-Atb2-ura4 myo51-mCherry-ura4  ade6sj-domE ura4sj-D3 This study 

3.4A, B JCK027 h-  Lifeact-GFP-ura4+ mCherry-Atb2-ura4+  ade6sj-domE This study 

3.5 JCK039 h? myo51::ura4 Lifeact-GFP-ura4 mCherry-Atb2-ura4 ade6sj-domE  This study 

3.2 JSM23 h+  ade6sj-domE ura4sj-D3  ura4- (Furuya and Niki, 
2009) 

3.6 YLL369 h+  nmt41-CHD_GFP-leu+; aur-mCherry-atb2  leu1-  ura4- Lab stock 

Table 3.1. Table of strains used in this chapter. 

Depolymerization experiments. Depolymerization experiments were performed as described in 
Chapter 1. 

Truncations of Myo51. 

 
Figure 3.7. Schematic representing the different truncations of protein Myo51 planned for this experiment. 

With the help of a technician trainee (Roman Bernard, Ecole ESSanté), I planned to dissect the 

different domains of Myo51 and elucidate which part of the protein is responsible for the 

colocalization with with microtubules. The idea was to generate truncated alleles of Myo51 (Fig. 3.7) 

fused with mCherry and look at their localization in respect to actin and microtubule cables. The 

project was initiated and we managed to construct two of the plasmids planned, namely myo51-

Δmotor-mCherry (pCK085) and myo51-ΔtailΔIQ-mCherry (pCK084). I transformed these plasmids 

several times but few colonies grew and they were all incorrect. If obtained, these strains should 

later be crossed to strains carrying either LifeAct-GFP (JSM37) or GFP-Atb2 (JSM3) to see if the 

colocalization between actin or microtubules with the truncated versions of Myo51 is maintained.   
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Chapter 3: Transcriptome analysis of the yeast-to-hypha transition in 
Schizosaccharomyces japonicus 
 

Summary: 

In this chapter, I studied the transcriptome changes occurring during the yeast-to-hypha transition in 

S. japonicus. The goal of these experiments was to obtain first genetic clues as to how this species 

can undergo such dramatic morphological transition. I first designed an RNA extraction protocol for 

hyphal cells growing invasively in agar, and continued with RNA sequencing and data analysis. I 

identified a list of putative interesting genes and deleted some of the candidates to assess their 

hyphal capabilities in microfluidics and solid environments. More than half of the genome was 

differentially expressed in the hyphal form underlying a rich and complex phenomenon and a 

complete re-routing of gene expression after the transition. This study provides rich ground for 

future work. 
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3.1. Introduction 
The yeast and hyphal cells are two morphologically very distinct types of cells and little information 

has been gathered to understand which genes could be involved in this transition (Bozsik et al., 2002; 

Enczi et al., 2007). Inference from what we know from polarity mechanisms in S. pombe is likely not 

sufficient to explain entirely hyphal formation because the species diverged 220Mya (Rhind et al., 

2011) and S. pombe is incapable of dimorphic switch, at least not in the scale and relative eagerness 

observed in S. japonicus (Amoah-Buahin et al., 2005). I hypothesized that the genetic basis of the 

morphological difference between yeast and hypha could be assessed through RNA sequencing and 

transcriptome analysis performed during the dimorphic transition. Cells undergoing morphological 

change must trigger whole new genomic expression responses and studying the transcriptome would 

help uncover genes responsible for the dimorphic switch as well as information on how fast the new 

transcription program occurs after contact with the inducer. Such studies have been carried out in 

dimorphic species like Histoplasma capsulatum (Edwards et al., 2013), Candida tropicalis (Wu et al., 

2016) and Ophiostoma novo-ulmi (Nigg and Bernier, 2016) and specific dimorphism and 

filamentation related genes have been isolated (Martin et al., 2013b). In this experiment I aimed to 

compare the transcriptome of non-induced yeast and cells induced for the morphological change at 

different timepoints encompassing both early responsive genes (1h to 12h) and late responsive 

genes at 3 days of growth. 

While establishing this protocol I faced several challenges. The first one concerns the fact that S. 

japonicus does not filament in liquid media and the transition on solid media immediately implicates 

that the hyphal cells are completely embedded in agar. While RNA extraction from liquid culture is 

relatively straightforward, it is not the case from cells growing within the agar, I therefore had to 

design a protocol that would retrieve the cells of interest from inside the agar without compromising 

RNA integrity. The second issue relates to the solid media induction as well; I usually grow the cells in 

liquid media before deposition on solid media containing RGE the next day (liquid-to-solid induction 

of dimorphism) but I realized that by doing so I would probably upregulate genes involved in 

adaptation to solid media which could mask the transcriptome of actual genes of interest. I therefore 

designed a purely solid-to-solid method of induction of dimorphism. Another issue arose from the 

fact that S. japonicus cannot be synchronized to produce hyphae-only population, I therefore 

included in the protocol a step in which I attempt to exclude most of the non-induced cells from the 

induced experiment. Finally, an issue we could not bypass as it is intrinsic to our induction method; 

RGE contain a lot more glucose than standard media and I expect upregulation of glucose 

metabolism and catabolism in the induced cells. But as seen in chapter 1, we already know glucose is 

not the inducer, so all genes related to glucose pathways will be ignored from the analysis. In 
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summary, in this chapter I will describe the protocol I designed which involves a solid to solid 

induction of dimorphic switch and RNA extraction from embedded sample preservation in liquid 

nitrogen. The goal of this study is to obtain a list of genes of interest and delete them to assess 

hyphal formation phenotype in the hope of shedding light of the genetic basis of hyphal formation in 

S. japonicus. 
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Figure 4.1. Protocol for solid-to-solid induction of filamentation in S. japonicus and cell disruption prior to RNA 

extraction. 
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3.2. Results 

3.2.1. Solid-to-solid induction of hyphal growth 

As mentioned before, to avoid upregulation of different genes related to adaptation to solid media, I 

designed a solid-to-solid method of induction for filamentation in S. japonicus (Fig 4.1). On rich 

media (YE) agar plates I outlined with a blade a zone which will serve as guide for the rest of the 

protocol. In the outlined zone I deposited a line of exponentially growing cells from a liquid culture. 

After 5 minutes of drying by the flame, I deposited on top of the cells a piece of whatman paper cut 

so that it is the size of the delimited part. On top of the paper, I added a concentrated line of cells 

from the same liquid culture (50-100 times concentrated). Typical transitioning colonies growing on 

solid media contain the yeast colony on top and the transitioning cells below, invading the media. 

The aim is to trap the bottom cells (which are the cells of interest, the one that will 

transition/penetrate the agar) between agar and paper. By constructing this trap I hope to restrict 

the transcriptomic analysis to cells undergoing the morphological transition and exclude the large 

number of yeast cells on top of the transitioning cells. These cells are left to grow on agar for one 

night for adaptation to solid environment. On day two, I cut a piece of agar from the plate containing 

the cells and whatman paper and “transplanted” it on fresh YE plates containing or not the inducer 

RGE – this is the solid to solid induction method. The inducer diffuses through the agar to trigger 

hyphal formation in our cells of interest. Visible hyphal formation on the transplanted plate occurred 

in a couple of days, similar to what I described for the liquid-to-solid induction of filamentation (data 

not shown). 

Since there is little information about the genetic changes for S. japonicus dimorphism in presence of 

RGE, we did not know when the expected change in transcriptomics might occur. I therefore spanned 

the experiment over three days. I extracted RNA at time 0 for control purposes then 1h, 3h, 6h, 12h 

after plate transplantation on induced media or not, these timepoints are referred to as the early 

timepoints by contrast to extraction at 73h which is the late timepoint. Each timepoint is duplicated; 

in the end I will analyze data from 24 samples (Fig. 4.2). 
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Figure 4.2. Experimental design of this transcriptomic analysis. 

3.2.2. A protocol for robust RNA extraction from cells embedded in agar 

After induction for the period of time needed for the experiment, the filter along with the cells on 

top (all of which we assume are yeasts in both control and RGE conditions) are discarded, leaving 

only the cells that were trapped between paper and agar. I then quickly cut out a piece of agar 

containing the cells and freeze it down immediately in liquid nitrogen. With a mortar I crushed the 

cell-agar mixture until obtaining powder that I transfered in an Eppendorf tube. Total RNA extraction 

was performed using the NucleoSpin® RNA extraction kit from Macherey-Nagel respecting the given 

protocol but adding a step at the start: the frozen cell mix was resuspended in the RA1 buffer and the 

mix is heated at 50°C for 10min to dissolve the agar before carrying on with the extraction. The aim 

was to filter out the agar from the broken cells after the first passage on columns from the kit. I 

checked with the manufacturer beforehand that heating up RA1 was not detrimental to it (Fig. 4.3). 
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Figure 4.3. Total RNA extraction using the the NucleoSpin® RNA extraction (Macherey-Nagel) with the added 
melting step at 50°C to dissolve agar. Cells are then filtered out of the agar after the first passage on column 

(step 3 in the protocol). 

Purity and integrity of total RNA extraction was assessed by the Fragment Analyzer (Agilent) at the 

Genomic Technologies Facility (GTF, Génopode building, UNIL). The machine calculates the RNA 

Quality Number (RQN) which is an integrity scale ranging from 1 to 10, computing the 18S and 28S 

ribosomal RNA peaks and the resolution between peaks. It indicates the degradation status of the 

sample, with 1 being a completely degraded sample and 10 a sample of excellent purity. All 24 

samples were pure (RQN ranging from 8.9 to 10, and with concentrations ranging from 6ng.µl-1 to 

164ng.µl-1 (example of sample 1 separation in Fig 4.4, and see Annexe 1 for the purity analyses of the 

24 samples). 
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Figure 4.4. Example of the separation of total RNA extracted from sample 1 ran on the Fragment Analyzer 

(Agilent). LM is the marker peak. The blue and pink peaks are the large and small ribosomal RNA peaks. Also 
indicated are the total concentration of the RNA sample, the ratio 28S/18S ribosomal peaks and the RQN. 

3.2.3. mRNA sequencing and sequencing data analysis 

RT-PCR and Illumina sequencing were performed by Johann Weber and Richter Hannes at the GTF as 

described in the material and methods. 

Data processing was performed by Sandra Calderon at the GTF as described in the material and 

methods.  

3.2.4. Statistical analyses 

Statistical controls and analysis were performed by Sandra Calderon at the GTF using R (version 

3.2.3). 4875 genes, covering 98% of the genome, showed one count per million in at least one 

sample, the determined cut off rate to include or not a gene in the analysis. She then performed 

statistical controls to assess the quality of the data, mainly correlation between the samples and 

duplicates, and a principal component analysis (PCA). 

Data extracted from duplicates closely clustered together indicating a robust data set. However, data 

from the late timepoint highly diverged from the data of the early timepoints. This is explained by 

the fact that at 73 hours most cells will have transitioned to hyphal growth, a stark difference to the 

earlier timepoints which will show data from a cell mix of different stages of the morphological 

transition and probably some non-induced cells (Table 4.1; Fig. 4.5). 

One thing I noticed is that early and late timepoints clustered separately regardless of their induction 

with RGE. This indicates that the growth in presence of the inducer is not the only event sparking a 

variation in the data set but the growth on plate for a longer period of time also alters gene 

expression. 
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SampleID Description Condition TimePoint 
01 control T=0 control 0 
02 control T=0_2 control 0 
03 control T=0_3 control 0 
04 control T=0_4 control 0 
05 control non induced T=1h control 1 
06 control non induced T=1h_2 control 1 
07 induced T=1h induced 1 
08 induced T=1h_2 induced 1 
09 control non induced T=3h control 3 
10 control non induced T=3h_2 control 3 
11 induced T=3h induced 3 
12 induced T=3h_2 induced 3 
13 control non induced T=6h control 6 
14 control non induced T=6h_2 control 6 
15 induced T=6h induced 6 
16 induced T=6h_2 induced 6 
17 control non induced T=12h control 12 
18 control non induced 

T=12h_2 
control 12 

19 induced T=12h induced 12 
20 induced T=12h_2 induced 12 
21 control non induced T=73h control 73 
22 control non induced 

T=73h_2 
control 73 

23 induced T=73h induced 73 
24 induced T=73h_2 induced 73 

Table 4.1. List of the 24 samples of the analysis: 6 timepoints for both control and induced with RGE 
experiments, the whole duplicated. 
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Figure 4.5. Variance clustering analysis showing a good correlation between duplicates and a great variance 

between the late and early timepoints. Refer to Table 4.1 for the correspondence between number and sample 
description.  

I requested for two different statistical analyses to reveal potential genes of interest. The first one is 

a statistical analysis comparing differential gene expression between induced and non-induced 

conditions at each timepoint and the second one is a statistical test looking at variation of gene 

expression over the course of the experiment. For the latter test, S. Calderon advised to exclude the 

73h timepoint because it was too divergent from the earlier timepoints and could perturb the data, 

the second analysis was therefore performed on the early timepoints only. 

3.2.5. Early timepoints analysis 

For timepoints 1h to 12h I asked for an analysis overtime to identify genes whose expression varied 

at least once significantly during the experiment (F test). After setting up a cut off rate of 5% of false 

discovery rate (FDR), 122 genes were sorted. The complete list of those genes is located in Annexe 3.    

 

In this list, 81 genes found an ortholog in S. pombe. From the remaining 41 genes, 23 were annotated 

as coding for hypothetical proteins (Fig. 4.6). Since S. pombe cannot undergo dimorphism with the 
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same ease as S. japonicus (Amoah-Buahin et al., 2005), potential gene of interests might reside in the 

hypothetical category.  

 
Figure 4.6.  Pie chart displaying the proportion of genes having orthologs in S. pombe in the early timepoint 
analysis. Out of the genes having no orthologs in S. pombe a good portion code for hypothetical proteins of 

undefined functions.  

I also decided to do a cluster analysis on the 122 genes to identify behavior patterns in gene 

expression (represented as a heatmap in Fig. 4.7). 
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Figure 4.7. Heatmap generated after clustering of the data pertaining to the early timepoint analysis. Each line 
is one gene, and the 4 columns are the fold change of each gene at each of timepoints of the early timepoint 

analysis. In red is the downregulation and in green the upregulation represented as a fold change (FC). 

The generated heatmap shows trends; indeed, the minimum requirement to be included in the 

analysis is the existence of significant fold change in expression in at least one of the timepoints. 

Therefore, it is important to note that not all change in fold change represented in the heatmap is 

significant but at least one per gene is. Noticeable patterns were immediately visible and I decided to 

do perform a gene ontology analysis on some of the clusters. 

The first category that caught my attention is the cluster that was composed of 16 genes that were 

downregulated in the presence of RGE from the beginning of the experiment (Fig. 4.7 family A). 

When applicable, I compared with the gene ontology of the corresponding S. pombe orthologs and 

found that a majority acted in transport and transmembrane transport processes. Interestingly, I 

observed a downregulation of two genes putatively involved in response to stress (SJAG_01084 and 

SJAG_01095) (Fig 4.8). 
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Figure 4.8. Pie chart showing the different gene functions associated with the 16 genes that are downregulated 

during the early timepoints of this experiment.  

Another interesting trend in gene expression was the gene family always upregulated in presence of 

RGE (Fig. 4.7 family B). As predicted, I found an upregulation of metabolic pathways and particularly 

the glucose metabolism pathway. This is explained by the fact that the RGE brings a lot of glucose 

that the cells clearly consume. Interestingly, I found an upregulation of the gene coding for alpha-

amylase Mde5, a protein implicated in the cell wall organization and biogenesis (Fig 4.9). With the 

change in cell size during the transition (see Chapter 1), a consequent remodeling of the cell wall in 

the hyphal form is expected.  

 
Figure 4.9. Pie chart showing the different functions associated with the 8 genes that are upregulated during 

the early timepoints of this experiment. 

The third family I want to discuss is the cluster of genes seemingly upregulated from 3h after 

induction (Fig. 4.7 family C). Again, I noticed that a good portion of them were hypothetical proteins 

so I systematically performed a blast analysis of their protein sequence and analyzed putative protein 

domains to narrow down their function (Fig. 4.10, and paragraph 3.2.7 for deletion of some of these 

genes of interest). 
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Figure 4.10. Pie chart showing the different functions associated with the 8 genes that are upregulated starting 

from 3H after induction from RGE in the early timepoint analysis. 

I note also that the largest cluster contains 46 genes that are downregulated after timepoint 3h but 

gene ontology analysis was inconclusive (data not shown) (Fig. 4.7 family D). 

Surprisingly, few genes pertaining to polarity processes showed any change in gene expression and 

many genes with unknown function showed a significant fold change during the experiment. I will 

focus on some of those genes later on in this chapter.  

3.2.6. Late timepoint analysis 
 

ALL UP DOWN ALL.FC2 UP.FC2 DOWN.FC2 

induced.vs.control_73h 2580 1311 1269 858 683 175 

Table 4.2. Number of genes found with significant differential expression with False Discovery Rate (FDR) cut-
off = 0.05. UP: upregulated; DOWN: downregulation. FC2: fold change of 2. 

For the late response to the inducer, the timepoint at 73 hours, we compared with a moderated T 

test the expression levels between induced and non-induced conditions. Interestingly, over half the 

genome of S. japonicus was significantly altered in expression (Table 4.2). Even with a more stringent 

cut off (FDR 5%, FC 2), 858 genes showed significant fold change expression at 73h after induction 

with RGE. This result suggests that the transcriptome is deeply altered after the transition from 

yeast-to-hypha. I noticed that most of these genes were upregulations (683/858) contrasting with 

the early timepoint analysis which showed a bias towards downregulation (Fig. 4.7). The complete 

list of the gene of this analysis is available in Annexe 4. 
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3.2.7. Deletions of genes of interest and phenotype assessment 

I deleted genes of interest and assessed if the single deletions yielded any phenotype in hyphal 

formation in microfluidic chambers or on solid media. Genes of interest were selected according to 

their expression behavior and putative protein domains.  

SJAG_04365 – Hypothetical protein. Protein domain analysis revealed a zinc binding domain in C-

terminus indicating a putative transcription factor (Fig. 4.11 A). Protein blast showed the presence of 

orthologs of unknown function in the filamentous Aspergilli family. This gene is significantly 

downregulated at 1h and up regulated at 73 h (Fig. 4.11 B). This behavior indicates this gene could be 

essential for proper hyphal growth and otherwise downregulated in the yeast form. Deletion of the 

gene yielded no obvious polarity phenotype, the mutant cells could transition and grow as hyphae on 

solid and microfluidic environments (Fig. 4.11 C-D).  
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Figure 4.11. Analysis of the deletion of 
SJAG_04365. A. Schematic of the SJAG_04365 
protein showing the location of the zinc finger 
domain between residues 36 and 72 (E-value: 
7.18x10-14). B. Gene expression of 
SJAG_014365 over the course of the RNA 
sequencing experiment; adjusted p. value t-
test; ** = 0.0027. FDR is from moderated F-
test. C. Brightfield images microscopy of 
mutants for SJAG_04365 growing in 
microfluidic chambers flowing media with or 
without RGE. D. WT and SJAG_04365Δ cells 
growing on solid media supplemented or not 
with RGE. Hyphal growth is highlighted with a 
dotted line. Scale bar: 5µm. 
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Figure 4.12. Analysis of the deletion of SJAG_01985, a flo11 domain containing protein. A. Schematic of the 

SJAG_01985 protein showing the location of the Flo11 domain between residues 1547 and 1662 (E-value: 
4.7x10-8). B. Gene expression of SJAG_01985 over the course of the RNA sequencing experiment; adjusted p. 

value, t test; *** = 6x10-4; ** = 0.009; * = 0.025; ns = 0.09. FDR is from moderated F-test. C. Brightfield images 
microscopy of mutants for SJAG_01985 growing in microfluidic chambers flowing media with or without RGE. 

D. WT and SJAG_01985Δ cells growing on solid media supplemented or not with RGE. On the right side panel is 
the same plate washed to reveal filamentation within the agar. Hyphal growth is highlighted with a dotted line. 

Scale bar: 5µm. 
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SJAG_01985 – Hypothetical protein. This gene codes for a protein of unknown function but domain 

analysis predicted a Flo11 domain at the C terminus of the protein. Flo11 is a protein involved in 

pseudohyphal formation in S. cerevisiae (Lo and Dranginis, 1998) (Fig. 4.12. A). This gene is 

significantly downregulated at the beginning of the experiment and upregulated during the transition 

starting from 3h after induction with RGE. It even remained upregulated at 73h (Fig. 4.12. B). Such 

expression behavior suggests a potential activity necessary during the transition. Deletion of this 

gene yielded no obvious phenotype as the mutant cells could grow as hyphae on solid and 

microfluidic environment (Fig. 4.12. C-D) 

SJAG_00161 – Hypothetical protein. This gene codes for a protein of unknown function but domain 

analysis revealed it to contain a Vel1 domain (Fig. 4.13 A). Vel stands for velum formation, a biofilm 

formed by some strains of S. cerevisiae during wine making (David-Vaizant and Alexandre, 2018). This 

gene is upregulated starting from 12h after induction and remains heavily upregulated at the late 

timepoint (Fig. 4.13 B). However, deletion of the gene produced no phenotype in hyphal formation in 

microfluidic chambers or on solid media (Fig. 4.13 C-D). 

SJAG_00781 – Map2, P-factor. In condition of nitrogen starvation conditions, fission yeast of 

opposite mating type (haploid M cells (h-) and P cells (h+)) can fuse to form diploids and undergo 

meiosis to produce four spores. Cells of opposite mating type can grow towards each other prior to 

fusion by sensing the opposite mating type pheromone, conveniently named P-factor and M-factor. 

Interestingly, the strain we used for sequencing is h+ and one of the hits in the early timepoint 

analysis is Map2, gene coding for the P-factor; it is slightly upregulated 12h after RGE induction (Fig. 

4.14 A). Deletion of Map2 rendered the cells sterile (data not shown) but did not impact hyphal 

formation in microfluidics or solid media (Fig. 4.14 B-C).   
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Figure 4.13. Analysis of the deletion of SJAG_00161, a vel1 domain containing protein. A. Schematic of the 
SJAG_00161 protein showing the location of the Vel1 domain between residues 7 and 209 (E-value: 1.09x10-

127). B. Gene expression of SJAG_00161 over the course of the RNA sequencing experiment, adjusted p. value 
t.test; * = 0.014. FDR is from moderated F-test. C. Brightfield images microscopy of mutants for SJAG_00161 
growing in microfluidic chambers flowing media with or without RGE. D. WT and SJAG_00161Δ cells growing 

on solid media supplemented or not with RGE. On the right side panel is the same plate washed to reveal 
filamentation within the agar. Hyphal growth is highlighted with a dotted line. 
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Figure 4.14. Analysis of the deletion of Map2. A. Gene expression of map2 over the course of the RNA 

sequencing experiment. adjusted p. value; t.test: * = 0.02. FDR is from moderated F-test. B. Brightfield images 
microscopy of map2 mutants growing in microfluidic chambers flowing media with or without RGE. C. WT and 

map2 cells growing on solid media supplemented or not with RGE. On the right side panel is the same plate 
washed to reveal filamentation within the agar. Hyphal growth is highlighted with a dotted line. 
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3.2.8. RGE does not trigger an oxidative stress response  

 
Figure 4.15. Oxidative stress response pathway from S. pombe (Papadakis and Workman, 2015). 

In chapter 1, I mentioned that I could not exclude an oxidative stress when S. japonicus when it is put 

in presence of the RGE. Therefore, I checked if the expression of genes involved in the oxidative 

response were overexpressed during the dimorphic transition. The MAPK transduction pathway in S. 

pombe involved in oxidative stress response is displayed in Fig. 4.15 (Papadakis and Workman, 2015). 

I looked for any variation in gene expression of the S. japonicus homologs over the course of the 

experiment but could only find very few significant ones and most of them were downregulations 

(Table 4.3).  
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Table 4.3. Expression levels of genes involved in the oxidative stress response in fission yeast during the entire 
experiment. Bolded, are the significative genes expression variations taking into account a 5% FDR. 

I also note that glycolic enzyme glyceraldehyde-3-phosphate dehydrogenase, Tdh1, is highly 

repetitive in the genome of S. japonicus. In S. pombe, Tdh1 has two copies and is transiently oxidized 

during oxidative stress to promote cell response (Morigasaki et al., 2008). I identified 7 repetitions of 

the gene and observed their fold change at 73h. Three isoforms showed a significant downregulation 

(Table 4.4). 

Gene Adj. P 
value Fold change Description 

SJAG_00027 0.664096 -1.123109381 glyceraldehyde-3-phosphate dehydrogenase Tdh1 
SJAG_06621 0.001863 -2.840833358 glyceraldehyde-3-phosphate dehydrogenase Tdh1 
SJAG_02945 0.141021 -1.549153322 glyceraldehyde-3-phosphate dehydrogenase Tdh1 
SJAG_02135 0.318385 -1.491527184 glyceraldehyde-3-phosphate dehydrogenase Tdh1 
SJAG_03828 0.239941 -1.331687702 glyceraldehyde-3-phosphate dehydrogenase Tdh1 
SJAG_06622 4.83E-06 -2.939468438 glyceraldehyde-3-phosphate dehydrogenase Tdh1 
SJAG_03903 8.70E-05 -2.137294587 glyceraldehyde-3-phosphate dehydrogenase Tdh1 

Table 4.4. Expression levels of dehydrogenase Tdh1. Bolded are the significative genes expression variations 
taking into account 5% FDR. 

In conclusion, the hypothesis that RGE oxidative properties are not what trigger hyphal formation in 

the cells (see Chapter 1) still stands. There is something else in the fruit extracts that is responsible 

for the morphological switch. 

  

Adj. P Value Fold change Adj. P Value Fold change Adj. P Value Fold change Adj. P Value Fold change Adj. P Value Fold change

SJAG_00331 histidine kinase Mak1 0.102475 -1.19874 0.927007 1.013271 0.34306 -1.11259 0.933761 1.011987 0.101481 -1.27576
SJAG_02183 HisK/Mak2 protein kinase Mak2 0.166009 -1.17387 0.48532 -1.0881 0.079993 -1.22596 0.337387 -1.11638 0.356078 1.150726
SJAG_01587 HisK/Mak3 protein kinase Mak3 0.254185 -1.17224 0.468586 -1.1137 0.990947 1.002076 0.809936 1.036405 0.567929 -1.14231
SJAG_06592 Regulator phosphotransferase Mpr1 0.518204 1.113817 0.537185 1.105994 0.959965 1.009793 0.839844 1.03845 0.001706 -2.21058
SJAG_00318 response regulator Mcs4 0.64336 -1.05233 0.923803 -1.01252 0.465167 -1.08012 0.612924 -1.05967 0.0011 -1.68963
SJAG_01532 transcription factor prr1 0.270339 -1.10216 0.740191 1.033736 0.846138 -1.0209 0.028089 -1.21971 2.29E-05 -1.67017
SJAG_04777 STE/STE11 protein kinase 0.820074 -1.02846 0.520989 1.068894 0.628314 1.054318 0.835736 -1.02585 0.473044 -1.16826
SJAG_03384 STE/STE11 protein kinase 0.197223 -1.13585 0.85158 -1.02276 0.873174 -1.0196 0.69617 1.043857 0.000495 -1.5668
SJAG_02342 STE/STE7 protein kinase Wis1 0.859998 1.017537 0.741969 -1.03058 0.780234 -1.02624 0.267445 -1.093 0.384435 -1.10471
SJAG_02592 CMGC/MAPK/P38 protein kinase Sty1 0.248888 1.106737 0.12684 -1.14228 0.868074 -1.01818 0.056059 -1.18281 0.000204 -1.49449
SJAG_03388 transcription factor Hsr1 0.547855 -1.13031 0.658152 -1.09744 0.666785 1.094875 0.383596 1.189811 0.000984 2.081002
SJAG_00266 transcription factor Atf1 0.377135 1.075359 0.144306 -1.12751 0.101868 -1.14807 0.34275 -1.08355 0.000588 1.64751
SJAG_02311 transcription factor Pcr1 0.998576 1.00013 0.350729 -1.0683 0.180379 -1.09806 0.051081 -1.14744 0.384435 -1.13647

GENE_ID Description
73H12H6H3H1H
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3.3. Discussion and perspectives 
In this chapter, I analyzed the transcriptome of the yeast-to-hypha transition in S. japonicus. This 

study had never been done before in this organism and I had to develop a suitable protocol for RNA 

extraction in this invasive species. I successfully managed to extract extremely pure total RNA and 

worked in collaboration with bioinformaticians for the analysis of the sequencing data.  

Several steps of controls were performed to ensure the quality of the data and it showed very clear 

correlations between the different replicates and differences between timepoints and conditions. 

Even though this indicates that the experiment is valid from a technical point of view, I note several 

discrepancies in the data set from a biological standpoint.  

One of the most striking of hyphal formation in S. japonicus is the development at the back of the cell 

of a gigantic vacuole.  From mutagenesis experiments we also know correct vacuole development is 

necessary to induce proper hyphal growth (Bozsik et al., 2002; Enczi et al., 2007). I therefore 

expected to see upregulation of genes linked to vacuole biogenesis in this assay (Rains et al., 2017). 

Moreover, almost no genes pertaining to cell polarity showed up in the screen. Finally, the variance 

analysis (Fig. 4.5) revealed that that early and late timepoints clustered separately regardless of their 

induction with RGE. This indicates that the transcriptomic changes observed are not only due to the 

induction of dimorphism but also to the fact that the cells have been growing on plates for a longer 

period of time in the late timepoint analysis. These reasons are why I doubt the biological validity of 

the experiment I performed. 

One could argue that the regulation of the hyphal transition might occur solely at the proteomics 

level, altering for example protein half-life rather than transcriptomics but this is not what has been 

observed in other filamentous species (Martin et al., 2013b).  

Another, more plausible explanation for this could be that S. japonicus does not transition to hypha 

as a population, it seems to factor in diverse environmental cues and only a fraction of the 

population will transition. Even though, I incorporated a step to have the cleanest populations 

possible, it probably was not enough. There is currently no way to have completely pure cell 

populations – for example only yeast induced for 1h, as it will always be mixed with non-responding 

yeasts. This heterogeneity in cellular response potentially adds a lot of noise in the analysis and it 

probably masks important information. The uncertainty focuses particularly on the early timepoints 

because not all cells will react to the RGE. To circumvent this issue time could be invested in 

developing single cell transcriptomics analysis in S. japonicus. The main issue is that S. japonicus can 

only undergo transition on solid substrate, but if we could couple an automated single cell 
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transcriptomic platform like the C1 Single-Cell Auto Prep System (Fluidigm) to a microfluidic 

perfusion system we could technically achieve single cell transcriptomic analysis of S. japonicus. 

The cleanest populations in the analysis are at 73 hours because in the control experiment they are 

mostly yeast and in the RGE experiment the macroscopic state of hyphal growth makes it easy to 

extract hypha only from the plate. The dataset pertaining to the late timepoint 73h indicates a 

tremendous transcriptomics alteration between control and RGE conditions with half the genes of S. 

japonicus showing significative expression change. This very clearly indicates that the hyphal form 

exhibits a strikingly different transcriptome profile but because it represents over 2000 genes it 

makes it difficult to sort manually through that amount of data. A good portion of those genes were 

coding for proteins of unknown function and/or hypothetical proteins which could potentially be 

interesting candidates to study.  

Preliminary analysis based on protein analysis and gene expression behavior revealed a strong 

candidate in SJAG_01985 as it possesses a Flo11 domain. Flo11 is required for pseudohyphal growth 

and invasion in S. cerevisiae (Lo and Dranginis, 1998). Interestingly, its deletion yielded no phenotype 

on hyphal formation in S. japonicus. Through protein blast and domain analysis I have identified a 

second gene in S. japonicus genome to contain a putative Flo11 domain (SJAG_16452). This gene 

showed no expression change during the experiment explaining why I did not focus on it immediately 

but future focus could be on deleting it and obtaining the double mutant (SJAG_01985Δ 

SJAG_16452Δ) which might yield polarity phenotype.   

Future focus could also be on deleting genes coding for hypothetical proteins and continue to assess 

hyphal growth capabilities.   
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3.4. Material and Methods 
Strains and media. The strain used for the RNA sequencing experiment is JSM20 (Okamoto et al., 

2013). This strain is knocked down for the white collar receptor and is insensitive to blue light. Blue 

light has a negative impact on hyphal formation, generally breaking down the filamentation process. 

JSM20 was cultured in 20 mL of rich media (YE) overnight before plating on rich solid media. Cells 

growing either in liquid or solid are cultured at 30°C. The deletions of genes of interest were obtained 

through homologous recombination and replacement with URA cassette as described in the material 

and methods of Chapter 1. Strains were grown as described in Chapter 1. 

Figure Strain Genotype Source 

all JSM20 h- mat-2017 wcs1::natMX6 wcs2::kanMX6 (Okamoto et 
al., 2013) 

4.11D, 
4.12D, 
4.13D, 
4.14C 

JSM23 h+  ade6sj-domE ura4sj-D3  ura4-   (Furuya and 
Niki, 2009) 

4.14B-C JCK081 h- map2::ura4 ade6sj-domE This study 
4.13C-D JCK078 h+ SJAG_00161::ura4 ade6sj-domE ura4sj-D3 This study 
4.12C-D JCK085 h+ SJAG_01985::ura4 ade6sj-domE This study 
4.11C-D JCK094 h+ SJAG_04365::ura4 ade6sj-domE This study 

Table 4.5. Table of strains used in this chapter. 

mRNA sequencing. Total RNA was extracted following the protocol I developed in the results. 

Shortly, after cell recuperation I performed a mechanical disruption of the cells and total RNA 

extraction with the NucleoSpin® RNA kit (Macherey-Nagel). The quality of the RNA was assessed with 

a Bioanalyzer platform (Agilent) (Annexe 1).  

From the total RNA samples I extracted, RT-PCR was performed with poly T primers to enrich for 

mRNA sequences and filter out the ribosomal sequences. Illumina sequencing was performed on the 

resulting cDNA amplicons with the following parameters: single read 100 with the 24 samples 

multiplexed in a single lane (performed by the GTF). 

Sequencing data analysis. Purity-filtered reads were adapters and quality trimmed with Cutadapt (v. 

1.3, (Martin, 2011)) and filtered for low complexity with seq_crumbs (v. 0.1.8). Reads were aligned 

against Schizosaccharomyces japonicus (version GCA 000149845.2) genome using STAR (v. 2.4.2a, 

(Dobin et al., 2013)). The number of read counts per gene locus was summarized with htseq-count (v. 

0.6.1, (Anders et al., 2015)) using S. japonicus (Ensembl version GCA 000149845.2.31) gene 

annotation. Quality of the RNA-seq data alignment was assessed using RSeQC (v. 2.3.7, (Wang et al., 

2012)). Sequencing data is high quality with 18-25 million total reads per sample. All samples showed 

high alignment rate (>98%) on the S. japonicus reference genome, except for samples 23 and 24 (94% 

and 93% respectively). Unmapped sequences in these two samples correspond to ribosomal RNA 
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sequences principally. Gene body coverage is rather uniform and consistent among samples except 

for sample 08, which is slightly 3' end biased. This is usually related to the quality of the RNA. All 

other metrics are within the expected values (Annexe 2) (performed by the GTF). 

Statistics. Statistical analysis was performed for genes in R (R version 3.2.3). Genes with low counts 

were filtered out according to the rule of 1 count per million (cpm) in at least 1 sample. Library sizes 

were scaled using TMM normalization (EdgeR package version 3.12.0; Robinson et al. 2010) and log-

transformed with limma voom function (Limma package version 3.26.9 ; Law et al. 2014) (performed 

by the GTF). 

The generated excel file for the early timepoint analysis contains the gene ID, average gene 

expression during the experiment, the fold change in gene expression control vs induced at each 

timepoint, the false discovery rate (FDR) associated with the moderated F-test, the group which 

indicates at which timepoint(s) the significant fold change occurred and a gene description (Rhind et 

al., 2011). The file also contains S. pombe and S. cerevisiae orthologs when available (Annexe 3). 

The generated excel file for the late timepoint analysis contain gene ID, average gene expression 

during the experiment, the expression in the control and induced experiments (as Log2Exp), the 

logFC (fold change calculated as Log2Exp_induced  - Log2Exp_control),  the P value associated with 

the T-test, a P value adjusted for this test, the fold change in gene expression and a gene description 

(Rhind et al., 2011) (Annexe 4). 

Heatmap generation. The cluster analysis and heatmap were generated using TreeView3. Clustering 

was performed with the following parameters: hierarchical clustering with uncentered Pearson 

correlation and average linkage. Average linkage uses the average value of the pairwise links within a 

cluser based upon all objects in the cluster. 122 genes chosen for the analysis were selected with a 

False Discovery Rate < 5% and at least one significative expression change over time in the early 

timepoint analysis. The heatmap was color-coded as follows: red for downregulation and green for 

upregulation, the darker shade are for values closer to 0, the brightest colors are for fold change of at 

least |5|. 

Domain and protein identification. Protein annotation was extracted from protein data for S. 

japonicus and/or S. pombe (taken from fungidb website) (Rhind et al., 2011). Domain analysis was 

performed on ExpASy and NCBI protein. Protein blasts were performed using the NCBI plateform.  

Gene ontology analysis. Gene ontology analysis was performed on S. pombe orthologs using this 

online tool https://go.princeton.edu/cgi-bin/GOTermMapper 

https://go.princeton.edu/cgi-bin/GOTermMapper
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General conclusions and perspectives 
 

In this work I provided an extensive description of the dimorphism in growth pattern exhibited by a 

fairly unstudied filamentous organism. Interestingly, the filamentous behavior triggered in S. 

japonicus adopts characteristics from both true hyphal filamentation as well as pseudohyphal 

growth. Indeed, the formation of a vacuolated compartment at the back of the cell is reminiscent of 

what we observe in the dimorphic pathogen C. albicans and in the filamentous fungi N. crassa. On 

the other hand, the absence of the specific filamentous organelle, the Spitzenkörper and the 

constricting septa are similar to what we can observe during the pseudohyphal growth of S. 

cerevisiae.   

One of the fascinating aspects of filamentation in S. japonicus is that it is more prone to transition on 

solid or solid-like medium (i.e. microfluidics) than in liquid. From an evolutionary point of view, 

growth as yeast is typically associated with life in aquatic places while filamentation and invasiveness 

behaviors are associated with food foraging on land. This underlies the putative existence of 

mechanisms of mechanosensation to probe the surroundings of the cell and signal transduction 

triggering a new mode of growth to adapt to the environment. Interestingly, while growth of S. 

japonicus in presence of the red grape extract on agar medium or in microfluidics always triggered a 

similar cellular response; i.e. growth as hyphae, we identified a mutant that can seemingly tell both 

surfaces apart. Indeed, in a mutant lacking Exo70, the dimorphic switch is only activated in the 

microfluidic devices but not on agar plates. This could indicate defects in mechanosensation or signal 

transduction and could implicate the existence different signals depending on the type of substrate 

the cells are exposed to. Geometrical constraints might also be in play in the mechanosensation 

cascade as the cells are mechanically constrained in a very narrow space (4-8µm in height) in the 

microfluidics chambers. 

My initial observations of S. japonicus growth behavior in liquid showed it was very difficult to restart 

a culture after the previous round had reached the saturating concentration (data not shown). This 

indicates S. japonicus produces signaling molecules inhibiting yeast growth in conditions of nutrient 

depletion. I also noticed during my years of imaging this species that the hyphal cells exhibit negative 

tropism and grow away from each other.  

S. japonicus therefore appears to be able to read different cues from the environment and from 

itself. Fungal language in the form of small informative molecules, similar to quorum sensing in 

bacteria, is a rapidly emerging field in fungal research (Leeder et al., 2011). Heterogeneity in the 

dimorphic transition (i.e. amount of cells initiating the transition as well as the difficulty in replicating 
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identical responses on different agar plates) might reflects the cell to cell variation of the different 

cues integration. S. japonicus could therefore represent an attractive model to study the mechanics 

and chemistry of fungal interaction and behavior in response to the environment. 
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Sample: CK_1
Well Location: B1
Created: 31 May, 2016 9:47:23

Peak Size Conc.
(nt) (ng/uL)

1 15 (LM) 0.0224
2 124 0.4844
3 155 0.0725
4 177 0.2145
5 1924 4.2603
6 3065 1.9781
7 3490 5.2869

   
 TIC: 12.2967 ng/uL
 TIM: 31.001 nmole/L
 Total Conc.: 13.3813 ng/uL

28S/18S: 1.1
RQN 9.8

Sample Peak Width (sec): 6    Sample Min Peak Height: 150   Sample Baseline V to V?: Y    Sample Baseline V to V pts: 3
Sample Filter: Binomial       # of Pts for Filter: 9        Sample Start Region (min): 0  Sample End Region (min): 40
Manual Baseline Start (min): 18     Manual Baseline End (min): 38
Marker Peak Width (sec): 6    Marker Min Peak Height: 100   Marker Baseline V to V?: Y    Marker Baseline V to V pts: 3
Lower Marker Selection: First Peak > 100 RFU                Upper Marker Selection: Last Peak > 100 RFU
Ladder Size (bp): 15, 200, 500, 1000, 1500, 2000, 3000, 4000, 6000
Quantification Using: Ladder          Final Concentration (ng/uL): 0.2000          Dilution Factor: 10.0
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Sample: CK_2
Well Location: B2
Created: 31 May, 2016 9:47:23

Peak Size Conc.
(nt) (ng/uL)

1 15 (LM) 0.0224
2 124 0.5708
3 178 0.1846
4 1375 0.5760
5 1687 1.2051
6 1941 3.5632
7 2784 1.7069
8 3022 1.1377
9 3490 3.5330

   
 TIC: 12.4773 ng/uL
 TIM: 33.021 nmole/L
 Total Conc.: 14.4960 ng/uL

28S/18S: 0.8
RQN 7.8

Sample Peak Width (sec): 6    Sample Min Peak Height: 180   Sample Baseline V to V?: Y    Sample Baseline V to V pts: 3
Sample Filter: Binomial       # of Pts for Filter: 9        Sample Start Region (min): 0  Sample End Region (min): 40
Manual Baseline Start (min): 18     Manual Baseline End (min): 38
Marker Peak Width (sec): 6    Marker Min Peak Height: 100   Marker Baseline V to V?: Y    Marker Baseline V to V pts: 3
Lower Marker Selection: First Peak > 100 RFU                Upper Marker Selection: Last Peak > 100 RFU
Ladder Size (bp): 15, 200, 500, 1000, 1500, 2000, 3000, 4000, 6000
Quantification Using: Ladder          Final Concentration (ng/uL): 0.2000          Dilution Factor: 10.0
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Sample: CK_3
Well Location: B3
Created: 31 May, 2016 9:47:23

Peak Size Conc.
(nt) (ng/uL)

1 15 (LM) 0.0224
2 124 0.4084
3 178 0.2247
4 1704 0.8750
5 1932 3.0486
6 2824 1.2649
7 3065 0.8603
8 3532 4.2157

   
 TIC: 10.8976 ng/uL
 TIM: 26.672 nmole/L
 Total Conc.: 12.6998 ng/uL

28S/18S: 1.2
RQN 8.4

Sample Peak Width (sec): 6    Sample Min Peak Height: 180   Sample Baseline V to V?: Y    Sample Baseline V to V pts: 3
Sample Filter: Binomial       # of Pts for Filter: 9        Sample Start Region (min): 0  Sample End Region (min): 40
Manual Baseline Start (min): 18     Manual Baseline End (min): 38
Marker Peak Width (sec): 6    Marker Min Peak Height: 100   Marker Baseline V to V?: Y    Marker Baseline V to V pts: 3
Lower Marker Selection: First Peak > 100 RFU                Upper Marker Selection: Last Peak > 100 RFU
Ladder Size (bp): 15, 200, 500, 1000, 1500, 2000, 3000, 4000, 6000
Quantification Using: Ladder          Final Concentration (ng/uL): 0.2000          Dilution Factor: 10.0
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Sample: CK_4
Well Location: B4
Created: 31 May, 2016 9:47:23

Peak Size Conc.
(nt) (ng/uL)

1 15 (LM) 0.0224
2 123 0.6052
3 177 0.1666
4 1932 3.0824
5 3044 1.6626
6 3511 4.3674

   
 TIC: 9.8842 ng/uL
 TIM: 28.750 nmole/L
 Total Conc.: 11.0846 ng/uL

28S/18S: 1.3
RQN 9.5

Sample Peak Width (sec): 6    Sample Min Peak Height: 150   Sample Baseline V to V?: Y    Sample Baseline V to V pts: 3
Sample Filter: Binomial       # of Pts for Filter: 9        Sample Start Region (min): 0  Sample End Region (min): 40
Manual Baseline Start (min): 18     Manual Baseline End (min): 38
Marker Peak Width (sec): 6    Marker Min Peak Height: 100   Marker Baseline V to V?: Y    Marker Baseline V to V pts: 3
Lower Marker Selection: First Peak > 100 RFU                Upper Marker Selection: Last Peak > 100 RFU
Ladder Size (bp): 15, 200, 500, 1000, 1500, 2000, 3000, 4000, 6000
Quantification Using: Ladder          Final Concentration (ng/uL): 0.2000          Dilution Factor: 10.0
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Sample: CK_5
Well Location: B5
Created: 31 May, 2016 9:47:23

Peak Size Conc.
(nt) (ng/uL)

1 15 (LM) 0.0224
2 124 0.5241
3 177 0.0831
4 1958 1.4968
5 2865 0.5711
6 3150 0.3728
7 3617 2.3534

   
 TIC: 5.4013 ng/uL
 TIM: 19.985 nmole/L
 Total Conc.: 6.4777 ng/uL

28S/18S: 1.5
RQN 8.9

Sample Peak Width (sec): 6    Sample Min Peak Height: 150   Sample Baseline V to V?: Y    Sample Baseline V to V pts: 3
Sample Filter: Binomial       # of Pts for Filter: 9        Sample Start Region (min): 0  Sample End Region (min): 40
Manual Baseline Start (min): 18     Manual Baseline End (min): 38
Marker Peak Width (sec): 6    Marker Min Peak Height: 100   Marker Baseline V to V?: Y    Marker Baseline V to V pts: 3
Lower Marker Selection: First Peak > 100 RFU                Upper Marker Selection: Last Peak > 100 RFU
Ladder Size (bp): 15, 200, 500, 1000, 1500, 2000, 3000, 4000, 6000
Quantification Using: Ladder          Final Concentration (ng/uL): 0.2000          Dilution Factor: 10.0
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Sample: CK_6
Well Location: B6
Created: 31 May, 2016 9:47:23

Peak Size Conc.
(nt) (ng/uL)

1 15 (LM) 0.0224
2 124 0.4535
3 178 0.0800
4 1958 1.2725
5 2608 0.2522
6 2878 0.2151
7 3192 0.2893
8 3639 1.9884

   
 TIC: 4.5510 ng/uL
 TIM: 17.299 nmole/L
 Total Conc.: 5.3759 ng/uL

28S/18S: 1.5
RQN 8.8

Sample Peak Width (sec): 6    Sample Min Peak Height: 150   Sample Baseline V to V?: Y    Sample Baseline V to V pts: 3
Sample Filter: Binomial       # of Pts for Filter: 9        Sample Start Region (min): 0  Sample End Region (min): 40
Manual Baseline Start (min): 18     Manual Baseline End (min): 38
Marker Peak Width (sec): 6    Marker Min Peak Height: 100   Marker Baseline V to V?: Y    Marker Baseline V to V pts: 3
Lower Marker Selection: First Peak > 100 RFU                Upper Marker Selection: Last Peak > 100 RFU
Ladder Size (bp): 15, 200, 500, 1000, 1500, 2000, 3000, 4000, 6000
Quantification Using: Ladder          Final Concentration (ng/uL): 0.2000          Dilution Factor: 10.0
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Sample: CK_7
Well Location: B7
Created: 31 May, 2016 9:47:23

Peak Size Conc.
(nt) (ng/uL)

1 15 (LM) 0.0224
2 124 0.5541
3 179 0.1256
4 1958 2.6820
5 2878 0.8610
6 3129 0.6041
7 3596 2.9650

   
 TIC: 7.7918 ng/uL
 TIM: 24.436 nmole/L
 Total Conc.: 9.0970 ng/uL

28S/18S: 1.0
RQN 9.2

Sample Peak Width (sec): 6    Sample Min Peak Height: 150   Sample Baseline V to V?: Y    Sample Baseline V to V pts: 3
Sample Filter: Binomial       # of Pts for Filter: 9        Sample Start Region (min): 0  Sample End Region (min): 40
Manual Baseline Start (min): 18     Manual Baseline End (min): 38
Marker Peak Width (sec): 6    Marker Min Peak Height: 100   Marker Baseline V to V?: Y    Marker Baseline V to V pts: 3
Lower Marker Selection: First Peak > 100 RFU                Upper Marker Selection: Last Peak > 100 RFU
Ladder Size (bp): 15, 200, 500, 1000, 1500, 2000, 3000, 4000, 6000
Quantification Using: Ladder          Final Concentration (ng/uL): 0.2000          Dilution Factor: 10.0
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Sample: CK_8
Well Location: B8
Created: 31 May, 2016 9:47:23

Peak Size Conc.
(nt) (ng/uL)

1 15 (LM) 0.0224
2 125 0.7141
3 180 0.1783
4 1983 2.3360
5 2906 0.6533
6 3192 0.4186
7 3681 2.2309

   
 TIC: 6.5312 ng/uL
 TIM: 27.503 nmole/L
 Total Conc.: 7.4057 ng/uL

28S/18S: 0.9
RQN 9.0

Sample Peak Width (sec): 6    Sample Min Peak Height: 150   Sample Baseline V to V?: Y    Sample Baseline V to V pts: 3
Sample Filter: Binomial       # of Pts for Filter: 9        Sample Start Region (min): 0  Sample End Region (min): 40
Manual Baseline Start (min): 18     Manual Baseline End (min): 38
Marker Peak Width (sec): 6    Marker Min Peak Height: 100   Marker Baseline V to V?: Y    Marker Baseline V to V pts: 3
Lower Marker Selection: First Peak > 100 RFU                Upper Marker Selection: Last Peak > 100 RFU
Ladder Size (bp): 15, 200, 500, 1000, 1500, 2000, 3000, 4000, 6000
Quantification Using: Ladder          Final Concentration (ng/uL): 0.2000          Dilution Factor: 10.0
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Sample: CK_9
Well Location: B9
Created: 31 May, 2016 9:47:23

Peak Size Conc.
(nt) (ng/uL)

1 15 (LM) 0.0224
2 176 0.3590
3 1907 7.2146
4 3490 12.5345
5 5533 1.8784

   
 TIC: 21.9866 ng/uL
 TIM: 30.413 nmole/L
 Total Conc.: 23.5656 ng/uL

28S/18S: 2.0
RQN 10.0

Sample Peak Width (sec): 6    Sample Min Peak Height: 150   Sample Baseline V to V?: Y    Sample Baseline V to V pts: 3
Sample Filter: Binomial       # of Pts for Filter: 9        Sample Start Region (min): 0  Sample End Region (min): 40
Manual Baseline Start (min): 18     Manual Baseline End (min): 38
Marker Peak Width (sec): 6    Marker Min Peak Height: 100   Marker Baseline V to V?: Y    Marker Baseline V to V pts: 3
Lower Marker Selection: First Peak > 100 RFU                Upper Marker Selection: Last Peak > 100 RFU
Ladder Size (bp): 15, 200, 500, 1000, 1500, 2000, 3000, 4000, 6000
Quantification Using: Ladder          Final Concentration (ng/uL): 0.2000          Dilution Factor: 40.0
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Sample: CK_10
Well Location: B10
Created: 31 May, 2016 9:47:23

Peak Size Conc.
(nt) (ng/uL)

1 15 (LM) 0.0224
2 177 0.2963
3 1924 5.5201
4 2514 0.4403
5 2798 0.3355
6 3532 9.2581
7 5559 0.9855

   
 TIC: 16.8358 ng/uL
 TIM: 23.813 nmole/L
 Total Conc.: 18.4193 ng/uL

28S/18S: 2.0
RQN 10.0

Sample Peak Width (sec): 6    Sample Min Peak Height: 150   Sample Baseline V to V?: Y    Sample Baseline V to V pts: 3
Sample Filter: Binomial       # of Pts for Filter: 9        Sample Start Region (min): 0  Sample End Region (min): 40
Manual Baseline Start (min): 18     Manual Baseline End (min): 38
Marker Peak Width (sec): 6    Marker Min Peak Height: 100   Marker Baseline V to V?: Y    Marker Baseline V to V pts: 3
Lower Marker Selection: First Peak > 100 RFU                Upper Marker Selection: Last Peak > 100 RFU
Ladder Size (bp): 15, 200, 500, 1000, 1500, 2000, 3000, 4000, 6000
Quantification Using: Ladder          Final Concentration (ng/uL): 0.2000          Dilution Factor: 40.0
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Sample: CK_11
Well Location: B11
Created: 31 May, 2016 9:47:23

Peak Size Conc.
(nt) (ng/uL)

1 15 (LM) 0.0224
2 123 0.3241
3 156 0.0618
4 178 0.2496
5 1932 3.9561
6 3107 1.4483
7 3532 5.5768
8 5611 0.3308

   
 TIC: 11.9475 ng/uL
 TIM: 26.724 nmole/L
 Total Conc.: 12.6983 ng/uL

28S/18S: 1.4
RQN 10.0

Sample Peak Width (sec): 6    Sample Min Peak Height: 150   Sample Baseline V to V?: Y    Sample Baseline V to V pts: 3
Sample Filter: Binomial       # of Pts for Filter: 9        Sample Start Region (min): 0  Sample End Region (min): 40
Manual Baseline Start (min): 18     Manual Baseline End (min): 38
Marker Peak Width (sec): 6    Marker Min Peak Height: 100   Marker Baseline V to V?: Y    Marker Baseline V to V pts: 3
Lower Marker Selection: First Peak > 100 RFU                Upper Marker Selection: Last Peak > 100 RFU
Ladder Size (bp): 15, 200, 500, 1000, 1500, 2000, 3000, 4000, 6000
Quantification Using: Ladder          Final Concentration (ng/uL): 0.2000          Dilution Factor: 10.0
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Sample: CK_12
Well Location: B12
Created: 31 May, 2016 9:47:23

Peak Size Conc.
(nt) (ng/uL)

1 15 (LM) 0.0224
2 177 0.4604
3 1907 7.9399
4 3511 14.3733
5 5611 2.1584

   
 TIC: 24.9319 ng/uL
 TIM: 35.056 nmole/L
 Total Conc.: 26.9394 ng/uL

28S/18S: 1.9
RQN 10.0

Sample Peak Width (sec): 6    Sample Min Peak Height: 150   Sample Baseline V to V?: Y    Sample Baseline V to V pts: 3
Sample Filter: Binomial       # of Pts for Filter: 9        Sample Start Region (min): 0  Sample End Region (min): 40
Manual Baseline Start (min): 18     Manual Baseline End (min): 38
Marker Peak Width (sec): 6    Marker Min Peak Height: 100   Marker Baseline V to V?: Y    Marker Baseline V to V pts: 3
Lower Marker Selection: First Peak > 100 RFU                Upper Marker Selection: Last Peak > 100 RFU
Ladder Size (bp): 15, 200, 500, 1000, 1500, 2000, 3000, 4000, 6000
Quantification Using: Ladder          Final Concentration (ng/uL): 0.2000          Dilution Factor: 40.0

2016 05 31 09H 24M.raw

PROSize 2.0  2.0.0.50 Copyright 2015 Advanced Analytical Technologies, Inc. Date Printed: 31.05.2016 16:37

Page 15 of 16



Sample: DNA Size Ladder
Well Location: A12
Created: 31 May, 2016 9:47:23
Import From: C:\PROSize 2.0\Ladders\ladder RNA HS 15NT 08.03.2016.SCAL
Fit Type: Point to Point
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PROSize 2.0  2.0.0.50 Copyright 2015 Advanced Analytical Technologies, Inc. Date Printed: 31.05.2016 16:37

Page 16 of 16



Fragment Analyzer Run Summary:

Filename and Data Path: \\nas.unil.ch\cig\GROUPS\GTF\common\Fragment_Analyzer\hr\2016 05
Filename and Data Path: 31\10-27-34\2016 05 31 10H 27M.raw
Created: 31 May, 2016 10:47:01
# of Capillaries: 12
Array Serial #: 011713-05SFS����
Effect Length: 33 cm
Array Usage Count: 1136
FA Version #: 1.1.0.11����
Device Serial #: 2710������

METHOD INFORMATION
Method Name: DNF-471-33 - SS Total RNA 15nt.mthds
Gel Prime: No
Full Conditioning: Yes
Gel Prime to Buffer: Yes
Gel Selection: Gel 1
Perform Prerun: 8.0 kV, 30 sec.
Rinse: No
Marker 1: No
Rinse: Tray: 3, Row: A, # Dips: 2
Sample Injection: 5.0 kV, 4 sec.
Separation: 8.0 kV, 40.0 min.
Tray Name: Tray-1

Analysis Mode: RNA (Eukaryotic)

NOTE
Kinnaer
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Gel Image
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Filename and Data Path: \\nas.unil.ch\cig\GROUPS\GTF\common\Fragment_Analyzer\hr\2016 05
 31\10-27-34\2016 05 31 10H 27M.raw

2016 05 31 10H 27M.raw

PROSize 2.0  2.0.0.50 Copyright 2015 Advanced Analytical Technologies, Inc. Date Printed: 31.05.2016 12:22

Page 3 of 16



Sample: CK_13
Well Location: C1
Created: 31 May, 2016 10:47:01

Peak Size Conc.
(nt) (ng/uL)

1 15 (LM) 0.6462
2 175 0.5426
3 1617 1.3777
4 1859 13.4763
5 3459 26.6154

   
 TIC: 42.0121 ng/uL
 TIM: 58.915 nmole/L
 Total Conc.: 43.9215 ng/uL

28S/18S: 2.2
RQN 10.0

Sample Peak Width (sec): 6    Sample Min Peak Height: 20    Sample Baseline V to V?: Y    Sample Baseline V to V pts: 3
Sample Filter: Binomial       # of Pts for Filter: 9        Sample Start Region (min): 0  Sample End Region (min): 40
Manual Baseline Start (min): 18     Manual Baseline End (min): 38
Marker Peak Width (sec): 6    Marker Min Peak Height: 100   Marker Baseline V to V?: Y    Marker Baseline V to V pts: 3
Lower Marker Selection: First Peak > 100 RFU                Upper Marker Selection: Last Peak > 100 RFU
Ladder Size (bp): 15, 200, 500, 1000, 1500, 2000, 3000, 4000, 6000
Quantification Using: Ladder          Final Concentration (ng/uL): 8.0000          Dilution Factor: 12.0
Min. RFU for Data Processing: 2      
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Sample: CK_14
Well Location: C2
Created: 31 May, 2016 10:47:01

Peak Size Conc.
(nt) (ng/uL)

1 15 (LM) 0.6462
2 28 1.0417
3 175 0.4833
4 1867 12.3405
5 2694 1.4363
6 3459 20.1268

   
 TIC: 35.4286 ng/uL
 TIM: 163.015 nmole/L
 Total Conc.: 38.3109 ng/uL

28S/18S: 1.7
RQN 10.0

Sample Peak Width (sec): 6    Sample Min Peak Height: 20    Sample Baseline V to V?: Y    Sample Baseline V to V pts: 3
Sample Filter: Binomial       # of Pts for Filter: 9        Sample Start Region (min): 0  Sample End Region (min): 40
Manual Baseline Start (min): 18     Manual Baseline End (min): 38
Marker Peak Width (sec): 6    Marker Min Peak Height: 100   Marker Baseline V to V?: Y    Marker Baseline V to V pts: 3
Lower Marker Selection: First Peak > 100 RFU                Upper Marker Selection: Last Peak > 100 RFU
Ladder Size (bp): 15, 200, 500, 1000, 1500, 2000, 3000, 4000, 6000
Quantification Using: Ladder          Final Concentration (ng/uL): 8.0000          Dilution Factor: 12.0
Min. RFU for Data Processing: 2      
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Sample: CK_15
Well Location: C3
Created: 31 May, 2016 10:47:01

Peak Size Conc.
(nt) (ng/uL)

1 15 (LM) 0.6462
2 126 0.9786
3 175 1.0156
4 1867 12.8039
5 3480 21.9515

   
 TIC: 36.7497 ng/uL
 TIM: 83.313 nmole/L
 Total Conc.: 40.3540 ng/uL

28S/18S: 1.8
RQN 10.0

Sample Peak Width (sec): 6    Sample Min Peak Height: 20    Sample Baseline V to V?: Y    Sample Baseline V to V pts: 3
Sample Filter: Binomial       # of Pts for Filter: 9        Sample Start Region (min): 0  Sample End Region (min): 40
Manual Baseline Start (min): 18     Manual Baseline End (min): 38
Marker Peak Width (sec): 6    Marker Min Peak Height: 100   Marker Baseline V to V?: Y    Marker Baseline V to V pts: 3
Lower Marker Selection: First Peak > 100 RFU                Upper Marker Selection: Last Peak > 100 RFU
Ladder Size (bp): 15, 200, 500, 1000, 1500, 2000, 3000, 4000, 6000
Quantification Using: Ladder          Final Concentration (ng/uL): 8.0000          Dilution Factor: 12.0
Min. RFU for Data Processing: 2      
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Sample: CK_16
Well Location: C4
Created: 31 May, 2016 10:47:01

Peak Size Conc.
(nt) (ng/uL)

1 15 (LM) 0.6462
2 175 3.3686
3 1859 46.4913
4 3417 76.7131

   
 TIC: 126.5731 ng/uL
 TIM: 207.876 nmole/L
 Total Conc.: 136.4312 ng/uL

28S/18S: 1.8
RQN 10.0

Sample Peak Width (sec): 6    Sample Min Peak Height: 50    Sample Baseline V to V?: Y    Sample Baseline V to V pts: 3
Sample Filter: Binomial       # of Pts for Filter: 9        Sample Start Region (min): 0  Sample End Region (min): 40
Manual Baseline Start (min): 18     Manual Baseline End (min): 38
Marker Peak Width (sec): 6    Marker Min Peak Height: 100   Marker Baseline V to V?: Y    Marker Baseline V to V pts: 3
Lower Marker Selection: First Peak > 100 RFU                Upper Marker Selection: Last Peak > 100 RFU
Ladder Size (bp): 15, 200, 500, 1000, 1500, 2000, 3000, 4000, 6000
Quantification Using: Ladder          Final Concentration (ng/uL): 8.0000          Dilution Factor: 12.0
Min. RFU for Data Processing: 2      
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Sample: CK_17
Well Location: C5
Created: 31 May, 2016 10:47:01

Peak Size Conc.
(nt) (ng/uL)

1 15 (LM) 0.6462
2 174 1.6495
3 1850 40.0680
4 3396 76.0519

   
 TIC: 117.7694 ng/uL
 TIM: 166.819 nmole/L
 Total Conc.: 126.8043 ng/uL

28S/18S: 2.1
RQN 10.0

Sample Peak Width (sec): 6    Sample Min Peak Height: 50    Sample Baseline V to V?: Y    Sample Baseline V to V pts: 3
Sample Filter: Binomial       # of Pts for Filter: 9        Sample Start Region (min): 0  Sample End Region (min): 40
Manual Baseline Start (min): 18     Manual Baseline End (min): 38
Marker Peak Width (sec): 6    Marker Min Peak Height: 100   Marker Baseline V to V?: Y    Marker Baseline V to V pts: 3
Lower Marker Selection: First Peak > 100 RFU                Upper Marker Selection: Last Peak > 100 RFU
Ladder Size (bp): 15, 200, 500, 1000, 1500, 2000, 3000, 4000, 6000
Quantification Using: Ladder          Final Concentration (ng/uL): 8.0000          Dilution Factor: 12.0
Min. RFU for Data Processing: 2      
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Sample: CK_18
Well Location: C6
Created: 31 May, 2016 10:47:01

Peak Size Conc.
(nt) (ng/uL)

1 15 (LM) 0.6462
2 176 1.4527
3 1867 31.9163
4 3438 51.0634

   
 TIC: 84.4324 ng/uL
 TIM: 125.346 nmole/L
 Total Conc.: 88.4268 ng/uL

28S/18S: 1.7
RQN 10.0

Sample Peak Width (sec): 6    Sample Min Peak Height: 50    Sample Baseline V to V?: Y    Sample Baseline V to V pts: 3
Sample Filter: Binomial       # of Pts for Filter: 9        Sample Start Region (min): 0  Sample End Region (min): 40
Manual Baseline Start (min): 18     Manual Baseline End (min): 38
Marker Peak Width (sec): 6    Marker Min Peak Height: 100   Marker Baseline V to V?: Y    Marker Baseline V to V pts: 3
Lower Marker Selection: First Peak > 100 RFU                Upper Marker Selection: Last Peak > 100 RFU
Ladder Size (bp): 15, 200, 500, 1000, 1500, 2000, 3000, 4000, 6000
Quantification Using: Ladder          Final Concentration (ng/uL): 8.0000          Dilution Factor: 12.0
Min. RFU for Data Processing: 2      
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Sample: CK_19
Well Location: C7
Created: 31 May, 2016 10:47:01

Peak Size Conc.
(nt) (ng/uL)

1 15 (LM) 0.6462
2 175 4.6773
3 1875 63.4823
4 3438 104.5712

   
 TIC: 172.7308 ng/uL
 TIM: 283.539 nmole/L
 Total Conc.: 184.5994 ng/uL

28S/18S: 1.8
RQN 10.0

Sample Peak Width (sec): 6    Sample Min Peak Height: 50    Sample Baseline V to V?: Y    Sample Baseline V to V pts: 3
Sample Filter: Binomial       # of Pts for Filter: 9        Sample Start Region (min): 0  Sample End Region (min): 40
Manual Baseline Start (min): 18     Manual Baseline End (min): 38
Marker Peak Width (sec): 6    Marker Min Peak Height: 100   Marker Baseline V to V?: Y    Marker Baseline V to V pts: 3
Lower Marker Selection: First Peak > 100 RFU                Upper Marker Selection: Last Peak > 100 RFU
Ladder Size (bp): 15, 200, 500, 1000, 1500, 2000, 3000, 4000, 6000
Quantification Using: Ladder          Final Concentration (ng/uL): 8.0000          Dilution Factor: 12.0
Min. RFU for Data Processing: 2      
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Sample: CK_20
Well Location: C8
Created: 31 May, 2016 10:47:01

Peak Size Conc.
(nt) (ng/uL)

1 15 (LM) 0.6462
2 123 2.7317
3 152 0.8733
4 172 4.5584
5 1684 63.8502
6 2960 71.3205

   
 TIC: 143.3341 ng/uL
 TIM: 362.459 nmole/L
 Total Conc.: 155.1891 ng/uL

28S/18S: 1.4
RQN 9.9

Sample Peak Width (sec): 6    Sample Min Peak Height: 50    Sample Baseline V to V?: Y    Sample Baseline V to V pts: 3
Sample Filter: Binomial       # of Pts for Filter: 9        Sample Start Region (min): 0  Sample End Region (min): 40
Manual Baseline Start (min): 18     Manual Baseline End (min): 38
Marker Peak Width (sec): 6    Marker Min Peak Height: 100   Marker Baseline V to V?: Y    Marker Baseline V to V pts: 3
Lower Marker Selection: First Peak > 100 RFU                Upper Marker Selection: Last Peak > 100 RFU
Ladder Size (bp): 15, 200, 500, 1000, 1500, 2000, 3000, 4000, 6000
Quantification Using: Ladder          Final Concentration (ng/uL): 8.0000          Dilution Factor: 12.0
Min. RFU for Data Processing: 2      
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Sample: CK_21
Well Location: C9
Created: 31 May, 2016 10:47:01

Peak Size Conc.
(nt) (ng/uL)

1 15 (LM) 0.6462
2 175 4.1691
3 1867 33.0498
4 2747 3.3573
5 3438 49.3568

   
 TIC: 89.9330 ng/uL
 TIM: 177.849 nmole/L
 Total Conc.: 100.1664 ng/uL

28S/18S: 1.6
RQN 9.6

Sample Peak Width (sec): 6    Sample Min Peak Height: 50    Sample Baseline V to V?: Y    Sample Baseline V to V pts: 3
Sample Filter: Binomial       # of Pts for Filter: 9        Sample Start Region (min): 0  Sample End Region (min): 40
Manual Baseline Start (min): 18     Manual Baseline End (min): 38
Marker Peak Width (sec): 6    Marker Min Peak Height: 100   Marker Baseline V to V?: Y    Marker Baseline V to V pts: 3
Lower Marker Selection: First Peak > 100 RFU                Upper Marker Selection: Last Peak > 100 RFU
Ladder Size (bp): 15, 200, 500, 1000, 1500, 2000, 3000, 4000, 6000
Quantification Using: Ladder          Final Concentration (ng/uL): 8.0000          Dilution Factor: 12.0
Min. RFU for Data Processing: 2      
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Sample: CK_22
Well Location: C10
Created: 31 May, 2016 10:47:01

Peak Size Conc.
(nt) (ng/uL)

1 15 (LM) 0.6462
2 175 6.5608
3 1659 7.7004
4 1867 48.3556
5 2734 4.4858
6 3438 85.5062

   
 TIC: 152.6087 ng/uL
 TIM: 294.477 nmole/L
 Total Conc.: 164.0927 ng/uL

28S/18S: 1.9
RQN 9.4

Sample Peak Width (sec): 6    Sample Min Peak Height: 50    Sample Baseline V to V?: Y    Sample Baseline V to V pts: 3
Sample Filter: Binomial       # of Pts for Filter: 9        Sample Start Region (min): 0  Sample End Region (min): 40
Manual Baseline Start (min): 18     Manual Baseline End (min): 38
Marker Peak Width (sec): 6    Marker Min Peak Height: 100   Marker Baseline V to V?: Y    Marker Baseline V to V pts: 3
Lower Marker Selection: First Peak > 100 RFU                Upper Marker Selection: Last Peak > 100 RFU
Ladder Size (bp): 15, 200, 500, 1000, 1500, 2000, 3000, 4000, 6000
Quantification Using: Ladder          Final Concentration (ng/uL): 8.0000          Dilution Factor: 12.0
Min. RFU for Data Processing: 2      
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Sample: CK_23
Well Location: C11
Created: 31 May, 2016 10:47:01

Peak Size Conc.
(nt) (ng/uL)

1 15 (LM) 0.6462
2 127 12.9701
3 154 2.0159
4 175 5.0831
5 1867 22.2338
6 3480 32.4134

   
 TIC: 74.7162 ng/uL
 TIM: 514.163 nmole/L
 Total Conc.: 77.9370 ng/uL

28S/18S: 1.5
RQN 9.2

Sample Peak Width (sec): 6    Sample Min Peak Height: 20    Sample Baseline V to V?: Y    Sample Baseline V to V pts: 3
Sample Filter: Binomial       # of Pts for Filter: 9        Sample Start Region (min): 0  Sample End Region (min): 40
Manual Baseline Start (min): 18     Manual Baseline End (min): 38
Marker Peak Width (sec): 6    Marker Min Peak Height: 100   Marker Baseline V to V?: Y    Marker Baseline V to V pts: 3
Lower Marker Selection: First Peak > 100 RFU                Upper Marker Selection: Last Peak > 100 RFU
Ladder Size (bp): 15, 200, 500, 1000, 1500, 2000, 3000, 4000, 6000
Quantification Using: Ladder          Final Concentration (ng/uL): 8.0000          Dilution Factor: 12.0
Min. RFU for Data Processing: 2      
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Sample: CK_24
Well Location: C12
Created: 31 May, 2016 10:47:01

Peak Size Conc.
(nt) (ng/uL)

1 15 (LM) 0.6462
2 126 10.2270
3 154 2.1953
4 175 7.3261
5 1867 34.1743
6 3480 46.5755

   
 TIC: 100.4982 ng/uL
 TIM: 524.689 nmole/L
 Total Conc.: 104.2878 ng/uL

28S/18S: 1.4
RQN 9.5

Sample Peak Width (sec): 6    Sample Min Peak Height: 40    Sample Baseline V to V?: Y    Sample Baseline V to V pts: 3
Sample Filter: Binomial       # of Pts for Filter: 9        Sample Start Region (min): 0  Sample End Region (min): 40
Manual Baseline Start (min): 18     Manual Baseline End (min): 38
Marker Peak Width (sec): 6    Marker Min Peak Height: 100   Marker Baseline V to V?: Y    Marker Baseline V to V pts: 3
Lower Marker Selection: First Peak > 100 RFU                Upper Marker Selection: Last Peak > 100 RFU
Ladder Size (bp): 15, 200, 500, 1000, 1500, 2000, 3000, 4000, 6000
Quantification Using: Ladder          Final Concentration (ng/uL): 8.0000          Dilution Factor: 12.0
Min. RFU for Data Processing: 2      
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Sample: DNA Size Ladder
Well Location: A8
Created: 31 May, 2016 10:47:01
Import From: C:\PROSize 2.0\Ladders\ladder RNA standard15 nt 04.11.15.SCAL
Fit Type: Point to Point
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 Lausanne Genomic Technologies Facility

RNA-seq Project QC Report

Project
Project ID Project_Sjaponicus_SM
Laboratory
Submitter
Ref Organism
Library Created by
Protocol
Run Type
Number of Cycles
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Project alignment metrics (1/2)

METRIC 01 02 03 04 05 06 07 08 09 10 11 12
TOTAL_READS 21051101 20123023 20683101 19141543 21527072 20474912 25361894 19643224 20957868 24017202 22394290 19774826
PF_READS 21051101 20123023 20683101 19141543 21527072 20474912 25361894 19643224 20957868 24017202 22394290 19774826
PF_READS_ALIGNED 20799439 19875431 20448542 18907541 21291424 20218773 25100912 19366972 20731148 23787185 22131311 19510423
PCT_PF_READS_ALIGNED 98.80 98.77 98.87 98.78 98.91 98.75 98.97 98.59 98.92 99.04 98.83 98.66
PF_ALIGNED_BASES 1910077148 1826727000 1879595108 1736818006 1955097631 1856953365 2306406356 1778621796 1902907618 2190496915 2034353622 1793052047
MEAN_READ_LENGTH 92.08 92.13 92.15 92.10 92.07 92.08 92.11 92.10 92.04 92.31 92.15 92.13
READS_ALIGNED_IN_PAIRS 0 0 0 0 0 0 0 0 0 0 0 0
PCT_READS_ALIGNED_IN_PAIRS 0 0 0 0 0 0 0 0 0 0 0 0
STRAND_BALANCE 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51
UNPAIRED_READ_DUPLICATES 17245638 16457459 17017445 15523286 17626899 16713125 21311057 16280229 17276650 20207593 18758553 16325046
READ_PAIR_DUPLICATES 0 0 0 0 0 0 0 0 0 0 0 0
PERCENT_DUPLICATION 82.91 82.80 83.22 82.10 82.79 82.66 84.90 84.06 83.34 84.95 84.76 83.67
UNIQUELY_ALIGNED 19862555 18940835 19450103 17986827 20139257 19070009 23779757 18131021 19738048 22499521 20840770 18424892
MULTIPLE_ALIGNMENT 936884 934596 998439 920714 1152167 1148764 1321155 1235951 993100 1287664 1290541 1085531
READ_ALIGNED_TO_REF_EXONS 18502280 17723568 18157504 16730976 18718423 17706813 22159705 16895076 18490324 21133848 19711190 17387425
NO_FEATURE 1262239 1129894 1189801 1153850 1256635 1208547 1463718 1085364 1135526 1221881 1016562 942042
AMBIGUOUS 98036 87373 102798 102001 164199 154649 156334 150581 112198 143792 113018 95425
TOO_LOW_AQUAL 0 0 0 0 0 0 0 0 0 0 0 0
NOT_ALIGNED 0 0 0 0 0 0 0 0 0 0 0 0
ALIGNMENT_NOT_UNIQUE 2361160 2380236 2526395 2324531 2851792 2850214 3294749 3109224 2458923 3241219 3295220 2778074
READS_ALIGNED_TO_rRNA 385911 368847 411979 398350 596394 628361 561506 587955 436914 540552 486244 441745
READS_ALIGNED_TO_rRNA_% 1.83 1.83 1.99 2.08 2.77 3.07 2.21 2.99 2.08 2.25 2.17 2.23
READS_ALIGNED_TO_MITOCHONDRIA 7606 7030 8074 8329 13192 13630 12505 13182 9362 11397 9620 8280
READS_ALIGNED_TO_MITOCHONDRIA_% 0.04 0.03 0.04 0.04 0.06 0.07 0.05 0.07 0.04 0.05 0.04 0.04
bias_index_50 54.42 55.11 55.12 54.25 55.64 54.69 55.58 59.15 53.78 54.82 55.03 54.42
5over3_cov_ratio 0.65 0.60 0.60 0.65 0.57 0.63 0.57 0.41 0.68 0.60 0.59 0.63

10



Project alignment metrics (2/2)

METRIC 13 14 15 16 17 18 19 20 21 22 23 24
TOTAL_READS 23583500 18453330 21931237 19498300 17634932 23251976 21898591 19465081 25217092 21330424 19923768 19383992
PF_READS 23583500 18453330 21931237 19498300 17634932 23251976 21898591 19465081 25217092 21330424 19923768 19383992
PF_READS_ALIGNED 23254924 18147516 21685723 19244428 17395441 22942617 21600948 19189648 24826943 20884727 18785535 18104885
PCT_PF_READS_ALIGNED 98.61 98.34 98.88 98.70 98.64 98.67 98.64 98.58 98.45 97.91 94.29 93.40
PF_ALIGNED_BASES 2135083188 1666957006 1992418378 1769380596 1595483690 2111952561 1985523257 1762483673 2277482180 1917286574 1722155675 1659481467
MEAN_READ_LENGTH 92.07 92.10 92.12 92.17 91.97 92.28 92.14 92.08 91.98 92.07 91.97 91.94
READS_ALIGNED_IN_PAIRS 0 0 0 0 0 0 0 0 0 0 0 0
PCT_READS_ALIGNED_IN_PAIRS 0 0 0 0 0 0 0 0 0 0 0 0
STRAND_BALANCE 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.56 0.54 0.65 0.63
UNPAIRED_READ_DUPLICATES 19677172 14908788 18194192 15948790 14119251 19309834 18017444 15762593 21606606 17837856 16872532 16278081
READ_PAIR_DUPLICATES 0 0 0 0 0 0 0 0 0 0 0 0
PERCENT_DUPLICATION 84.62 82.15 83.90 82.87 81.17 84.17 83.41 82.14 87.03 85.41 89.82 89.91
UNIQUELY_ALIGNED 22156347 17258468 20513535 18227974 16535304 21791523 20410958 18212324 22300178 19087994 14466358 14717097
MULTIPLE_ALIGNMENT 1098577 889048 1172188 1016454 860137 1151094 1189990 977324 2526765 1796733 4319177 3387788
READ_ALIGNED_TO_REF_EXONS 20783169 16197074 19396875 17232792 15453463 20387281 19110926 16936837 19985024 17355631 11260579 11710942
NO_FEATURE 1265554 977883 1019074 910449 991670 1285460 1179177 1155617 1654440 1315922 1642298 1816351
AMBIGUOUS 107624 83511 97586 84733 90171 118782 120855 119870 660714 416441 1563481 1189804
TOO_LOW_AQUAL 0 0 0 0 0 0 0 0 0 0 0 0
NOT_ALIGNED 0 0 0 0 0 0 0 0 0 0 0 0
ALIGNMENT_NOT_UNIQUE 2769084 2238584 3030688 2612960 2157790 2895656 3032610 2487203 6368362 4491523 11097773 8628277
READS_ALIGNED_TO_rRNA 494041 436084 404668 386906 382969 505660 533705 511393 2406436 1614708 6060960 5009395
READS_ALIGNED_TO_rRNA_% 2.09 2.36 1.85 1.98 2.17 2.17 2.44 2.63 9.54 7.57 30.42 25.84
READS_ALIGNED_TO_MITOCHONDRIA 9444 8118 8328 7579 7591 9746 10131 9949 44289 30298 114920 81313
READS_ALIGNED_TO_MITOCHONDRIA_% 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.18 0.14 0.58 0.42
bias_index_50 54.80 54.96 55.42 55.38 53.80 55.05 54.64 53.34 55.45 56.27 56.11 54.74
5over3_cov_ratio 0.62 0.60 0.58 0.58 0.69 0.60 0.63 0.72 0.57 0.52 0.52 0.60
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Annexe 3: Early timepoint analysis

1 

Gene_ID AveExpr FC_ind_vs_ctr.1FC_ind_vs_ctr.3FC_ind_vs_ctr.6FC_ind_vs_ctr.1FDR Groups Description Spombe_GeneID Scerevisiae_GeneID

SJAG_02435 5.527198533 1.065432809 1.334246407 1.667115692 3.19515205 0.003274181 ind_vs_ctr.12h alpha-amylase Mde5 SPAC25H1.09

SJAG_00240 6.634195617 -1.344516886 1.867023908 2.894141715 5.586624408 0.04033424 ind_vs_ctr.12h alcohol dehydrogenase Adh4 SPAC5H10.06c YGL256W

SJAG_01368 6.773724546 1.080304768 1.162600656 1.356635515 2.008537325 0.027210765 ind_vs_ctr.12h methionyl-tRNA formyltransferase Fmt1 SPAC1805.09c YBL013W

SJAG_01306 6.989666051 1.093107607 -1.365512779 1.250184587 2.851822457 0.002280074 ind_vs_ctr.12h hypothetical protein

SJAG_00246 7.110579977 1.567204492 -1.530939324 -1.412894767 -3.676117648 0.009224475 ind_vs_ctr.12h acetyltransferase

SJAG_00217 7.19451431 1.100654664 1.478513814 1.373337587 2.186108829 0.009679622 ind_vs_ctr.12h eukaryotic protein SPAC11E3.12

SJAG_02124 7.486524055 -1.740707686 -1.754827246 1.307272648 4.276370526 0.023022547 ind_vs_ctr.12h cobW

SJAG_00922 8.264667854 -1.123407213 1.361585376 1.435087995 2.25136698 0.003903818 ind_vs_ctr.12h OPT oligopeptide transporter Isp4 SPBC29B5.02c

SJAG_00781 8.6432588 1.210582383 -1.209161741 -1.440132464 2.181527816 0.045496532 ind_vs_ctr.12h P-factor pheromone Map2 SPCC1795.06

SJAG_00161 9.598700014 1.120814939 -1.255933167 1.489593044 2.384707974 0.018401334 ind_vs_ctr.12h hypothetical protein SPBPB2B2.15,SPAC977.05c,SPBC1348.06c YGL258W,YOR387C

SJAG_00827 10.29154329 1.305911922 1.154789034 1.373210581 -2.93139884 0.041701958 ind_vs_ctr.12h thiazole biosynthetic enzyme SPBC26H8.01 YGR144W

SJAG_04258 4.789148297 2.407564704 1.004883369 -1.07111722 1.882860124 0.043703461 ind_vs_ctr.1h P-type proton ATPase Pma2 SPCC1020.01c YPL036W,YGL008C

SJAG_04365 6.334597706 -2.006260294 1.154353431 -1.828684276 -1.180796171 0.005704267 ind_vs_ctr.1h hypothetical protein

SJAG_03999 7.336113873 -2.03052015 1.151160432 1.387636839 1.741652345 0.018309403 ind_vs_ctr.1h_ind_vs_ctr.12h meiotically upregulated Mug97 SPBC146.11c

SJAG_02945 11.50376368 1.448668439 2.435302791 1.921574115 1.361510399 0.0009048 ind_vs_ctr.1h_ind_vs_ctr.3h_ind_vs_ctr.6h glyceraldehyde-3-phosphate dehydrogenase Tdh1 SPBC354.12,SPBC32F12.11 YGR192C,YJR009C,YJL052W

SJAG_05896 11.65089053 1.327893268 -2.576641101 -2.088526134 -1.165279589 6.36E-05 ind_vs_ctr.1h_ind_vs_ctr.3h_ind_vs_ctr.6h hypothetical protein SPBC30B4.09

SJAG_05181 12.39117667 1.542923778 -2.417233001 -1.804336944 1.206114627 0.000780867 ind_vs_ctr.1h_ind_vs_ctr.3h_ind_vs_ctr.6h glutathione S-transferase Gst3 SPAC688.04c

SJAG_00372 12.47710068 1.424929641 -2.34217926 -1.476134111 -1.146520267 0.000631925 ind_vs_ctr.1h_ind_vs_ctr.3h_ind_vs_ctr.6h plasma membrane proteolipid Pmp3 SPBC713.11c

SJAG_02135 8.438275569 1.589724691 2.839175053 2.2865724 1.695453834 0.00056197 ind_vs_ctr.1h_ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h glyceraldehyde-3-phosphate dehydrogenase Tdh1 SPBC354.12,SPBC32F12.11 YGR192C,YJR009C,YJL052W

SJAG_01029 10.32376639 1.202901073 -1.361090834 -1.461193222 -2.2319618 5.30E-06 ind_vs_ctr.1h_ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h alpha-amylase Aah2 SPAC23D3.14c

SJAG_04042 10.90099939 1.277352404 -2.059178747 -1.954788549 -1.830665318 1.09E-05 ind_vs_ctr.1h_ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h FAD binding protein SPAC1783.01 YPR048W

SJAG_04823 11.22123555 1.334009187 -2.134813366 -1.492317008 -1.497117317 0.000365614 ind_vs_ctr.1h_ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h catalase SPCC757.07c YDR256C

SJAG_02142 11.63076607 1.28872228 -2.414685865 -1.820716344 -1.34187818 6.13E-05 ind_vs_ctr.1h_ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h cytochrome b2

SJAG_02107 12.21511602 1.509899686 2.327612096 1.552003174 1.45595423 0.000697254 ind_vs_ctr.1h_ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h enolase SPBC1815.01 YPL281C,YMR323W,YOR393W

SJAG_04608 12.33508649 1.226017825 -1.677492732 -2.109592939 -2.436582299 7.01E-07 ind_vs_ctr.1h_ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h flavin dependent monooxygenase SPBP16F5.08c YHR176W

SJAG_00308 12.46227407 1.302023214 -1.791277344 -2.699400507 -1.507817979 2.75E-07 ind_vs_ctr.1h_ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h peptide release factor SPBC1105.18c YLR281C

SJAG_01432 12.59685352 1.574260835 -1.724514397 -1.520344156 -2.382076284 6.13E-05 ind_vs_ctr.1h_ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h hydroxyacid dehydrogenase SPACUNK4.10

SJAG_03475 12.67097248 1.713437472 2.806489098 2.744956506 1.667310045 7.40E-06 ind_vs_ctr.1h_ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h sulfate adenylyltransferase SPBC27.08c YJR010W

SJAG_03815 12.71460048 1.726417572 -2.291506834 -1.455387139 1.479205923 0.000335759 ind_vs_ctr.1h_ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h hsp16-like protein SPBC3E7.02c

SJAG_04658 12.82918494 1.597047059 -3.246197737 -4.930094122 -3.539058397 2.27E-07 ind_vs_ctr.1h_ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h methyltransferase SPCC70.08c

SJAG_01985 12.97752514 -1.560070584 2.66524329 2.35240351 1.968458543 5.59E-05 ind_vs_ctr.1h_ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h hypothetical protein

SJAG_00635 13.15829127 1.411063824 -1.755793616 -1.908311083 -2.449089315 3.04E-06 ind_vs_ctr.1h_ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h ornithine carbamoyltransferase Arg3 SPAC4G9.10 YJL088W

SJAG_03608 13.40914511 -1.375689111 1.271200449 2.294956586 1.593305817 5.98E-05 ind_vs_ctr.1h_ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h hexose transporter Ght5 SPCC548.06c,SPCC1235.14,SPCC548.07c

SJAG_04577 14.69280875 1.273958126 -1.605172566 -1.938026633 -2.748779778 7.01E-07 ind_vs_ctr.1h_ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h argininosuccinate synthase SPBC428.05c YOL058W

SJAG_03312 14.99385405 1.309088097 -1.236584407 -1.500605863 -2.368399208 2.95E-05 ind_vs_ctr.1h_ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h aromatic aminotransferase SPAC56E4.03,SPCC569.07,SPBC1773.13 YGL202W

EFSJAG0000000 7.157878011 -1.402876885 -1.14477354 -4.6555803 -1.634382451 0.002590447 ind_vs_ctr.1h_ind_vs_ctr.6h U2 spliceosomal RNA [Source:RFAM;Acc:RF00004]

SJAG_01095 6.598815068 -1.431300212 -1.477939292 -5.386413252 -3.381268085 4.56E-05 ind_vs_ctr.1h_ind_vs_ctr.6h_ind_vs_ctr.12h hypothetical protein SPAC17G6.02c YOR049C

EFSJAG0000000 7.784125861 -1.395649939 -1.1477112 -4.466264469 -2.141572719 0.001159263 ind_vs_ctr.1h_ind_vs_ctr.6h_ind_vs_ctr.12h U2 spliceosomal RNA [Source:RFAM;Acc:RF00004]

EFSJAG0000000 8.129275137 -1.427254192 1.100691474 -14.50298142 -11.01328159 0.000147563 ind_vs_ctr.1h_ind_vs_ctr.6h_ind_vs_ctr.12h U1 spliceosomal RNA [Source:RFAM;Acc:RF00003]

EFSJAG0000000 9.664008188 -1.256270039 -1.087110949 -2.351269452 -1.939530959 0.005136942 ind_vs_ctr.1h_ind_vs_ctr.6h_ind_vs_ctr.12h Nuclear RNase P [Source:RFAM;Acc:RF00009]

SJAG_02568 10.27745684 1.915640845 1.034794575 2.054272824 1.542905632 0.00239627 ind_vs_ctr.1h_ind_vs_ctr.6h_ind_vs_ctr.12h hypothetical protein

SJAG_01363 10.41634745 1.41583219 -1.212563264 -2.205870958 -1.598316585 0.00010525 ind_vs_ctr.1h_ind_vs_ctr.6h_ind_vs_ctr.12h trichothecene 3-O-acetyltransferase YLL063C

SJAG_00310 11.83229825 1.551471651 1.053982148 2.031867573 2.12217869 7.31E-07 ind_vs_ctr.1h_ind_vs_ctr.6h_ind_vs_ctr.12h mannan endo-1,6-alpha-mannosidase DCW1 SPBC1198.07c

SJAG_00691 11.91292895 -1.260768306 -1.204083628 -2.073150951 -1.28441754 0.00067901 ind_vs_ctr.1h_ind_vs_ctr.6h_ind_vs_ctr.12h glutamine aminotransferase subunit SPAC222.08c YMR095C,YNL334C,YFL060C

SJAG_03420 12.33752775 1.44594968 -1.161786637 -1.807592718 -3.229295956 8.23E-06 ind_vs_ctr.1h_ind_vs_ctr.6h_ind_vs_ctr.12h hypothetical protein

SJAG_06614 5.975810634 -1.104517284 -2.858175781 -1.105299637 -1.448908963 0.036091662 ind_vs_ctr.3h hypothetical protein

SJAG_06256 6.682314135 1.233652054 -2.521934356 -1.344439523 1.15345915 0.026941305 ind_vs_ctr.3h hypothetical protein SPCC1620.03

SJAG_01690 7.293271502 1.556511873 2.083255728 -1.859046269 1.055032907 0.036501191 ind_vs_ctr.3h NADP-dependent L-serine/L-allo-threonine dehydrogenase SPAC521.03

SJAG_03432 8.70383332 1.04434275 -2.529049918 -1.144827664 1.352140161 0.037786945 ind_vs_ctr.3h WDR44 family WD repeat protein SPBC18H10.05 YMR102C,YKL121W

SJAG_03830 9.262897999 1.054981367 -2.588782843 -1.498818424 1.190791181 0.022334859 ind_vs_ctr.3h hypothetical protein

SJAG_06471 10.76023985 1.188315939 -2.720410999 -1.525747608 -1.080453101 0.032746405 ind_vs_ctr.3h hypothetical protein

SJAG_00165 11.68369565 1.337022454 -2.492976034 -1.092775352 1.41582772 0.020982096 ind_vs_ctr.3h hypothetical protein

SJAG_04072 11.77711993 1.140869148 -2.585566668 -1.281663577 1.003403511 0.01031466 ind_vs_ctr.3h hypothetical protein SPBC11C11.06c

SJAG_03132 12.55257192 -1.087512982 -2.417372057 -1.567862304 -1.141860233 0.048065637 ind_vs_ctr.3h ribonuclease II family protein SPBC609.01 YDR293C

SJAG_03253 12.64555587 1.270810296 -2.631827803 -1.543349959 -1.026928208 0.007293895 ind_vs_ctr.3h hypothetical protein SPAC19A8.16

SJAG_02230 12.92380354 1.046400142 -2.175719283 -1.210149789 1.126900808 0.022976164 ind_vs_ctr.3h phosphoketolase SPBC24C6.09c
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SJAG_02696 13.5034216 1.082094914 -2.812048513 -1.564850103 -1.045920207 0.005862572 ind_vs_ctr.3h glucose-6-phosphate 1-dehydrogenase SPAC3C7.13c

SJAG_04567 13.6182695 1.519123469 -2.369608688 -1.274787598 1.264867117 0.009623574 ind_vs_ctr.3h hsp16-like protein SPBC3E7.02c

SJAG_04764 13.76023711 -1.174508957 -2.289946728 -1.504820216 -1.086629292 0.023298261 ind_vs_ctr.3h hypothetical protein

SJAG_05005 13.88511295 -1.131820355 -2.493538081 -1.493049098 -1.106691947 0.00852869 ind_vs_ctr.3h fungal protein SPAC32A11.02c

SJAG_00625 14.25658823 1.232284762 -2.868458051 -1.610711294 -1.128796046 0.001818829 ind_vs_ctr.3h hypothetical protein

SJAG_03824 11.39123817 1.515315198 -3.543306181 1.120499248 1.966149493 0.015666738 ind_vs_ctr.3h_ind_vs_ctr.12h alpha-glucosidase SPAC30D11.01c,SPAPB24D3.10c,SPAC1039.11c

SJAG_00709 5.21121814 -1.472632324 2.80300347 3.27250527 1.741482696 0.022172487 ind_vs_ctr.3h_ind_vs_ctr.6h hypothetical protein

SJAG_00708 5.59202663 1.416001734 1.822147526 2.591474495 1.69427268 0.023409003 ind_vs_ctr.3h_ind_vs_ctr.6h hypothetical protein

SJAG_06595 5.977270825 -1.094233541 -4.744366252 -2.778453845 -1.8143788 0.002303671 ind_vs_ctr.3h_ind_vs_ctr.6h hypothetical protein

SJAG_02047 8.381754917 1.090693146 2.306507865 2.701324663 -1.231419501 5.59E-05 ind_vs_ctr.3h_ind_vs_ctr.6h TENA/THI domain-containing protein SPBC530.07c

SJAG_01742 8.553774758 -1.190018016 4.109657872 4.941060656 1.349445221 9.99E-05 ind_vs_ctr.3h_ind_vs_ctr.6h TENA/THI domain-containing protein SPBC530.07c

SJAG_01845 8.657344881 1.09626945 -1.922592942 -2.54284401 1.012262813 0.001284078 ind_vs_ctr.3h_ind_vs_ctr.6h glutamine synthetase

SJAG_04167 10.62563989 -1.269609655 -2.575244612 -1.826971594 -1.518525466 0.031591735 ind_vs_ctr.3h_ind_vs_ctr.6h P-type ATPase SPBC839.06

SJAG_04359 10.73830358 1.110329576 -2.389680561 -1.44218899 -1.035694822 0.001104184 ind_vs_ctr.3h_ind_vs_ctr.6h cytoplasm protein SPAC6G10.06 YHR009C

SJAG_04450 10.79968357 -1.0396112 -2.773052198 -1.728076136 1.015678842 0.018196791 ind_vs_ctr.3h_ind_vs_ctr.6h fungal protein SPBC3H7.08c

SJAG_00084 11.16302464 1.085682758 2.225286017 1.493314378 1.102844715 0.000164368 ind_vs_ctr.3h_ind_vs_ctr.6h adenylyl-sulfate kinase SPAC1782.11 YKL001C

SJAG_04861 11.91290085 1.310524144 -2.141030917 -1.518965003 -1.069857578 0.003654472 ind_vs_ctr.3h_ind_vs_ctr.6h hypothetical protein

SJAG_00223 12.18873143 1.46684683 -2.717672797 -1.726285433 -1.229649155 0.006254341 ind_vs_ctr.3h_ind_vs_ctr.6h hsp9-like protein SPAP8A3.04c

SJAG_04625 12.20854933 1.289743955 -2.143979081 -1.544941689 -1.202257691 0.001330464 ind_vs_ctr.3h_ind_vs_ctr.6h DUF1761 family protein SPAC15E1.02c

SJAG_02122 12.23685165 1.312513449 -2.655189326 -2.256837465 -1.110136085 0.000320976 ind_vs_ctr.3h_ind_vs_ctr.6h hypothetical protein

SJAG_00788 12.27890819 1.061418967 -2.696119987 -2.064936329 -1.094733262 0.026250743 ind_vs_ctr.3h_ind_vs_ctr.6h hypothetical protein

SJAG_03509 12.52063563 1.196567778 -2.809557922 -2.473036298 -1.27006237 1.57E-05 ind_vs_ctr.3h_ind_vs_ctr.6h C-5 sterol desaturase Erg32 SPBC27B12.03c

SJAG_04243 12.58402155 1.182944641 -2.278645813 -1.672041482 -1.033027475 0.008619351 ind_vs_ctr.3h_ind_vs_ctr.6h hypothetical protein SPCC1393.12

SJAG_01869 13.12019063 1.265368677 -2.019060828 -1.617340126 1.009373889 0.000476476 ind_vs_ctr.3h_ind_vs_ctr.6h NADH/NADPH dependent indole-3-acetaldehyde reductase SPAC19G12.09

SJAG_01084 13.22633485 -1.195945328 -2.176163968 -1.573440128 -1.281338745 0.003549077 ind_vs_ctr.3h_ind_vs_ctr.6h CAMK/CAMK1 protein kinase Srk1 SPCC1322.08 YLR248W,YGL158W

SJAG_02744 13.24368864 1.247983436 -2.155222805 -1.657969633 -1.192216678 0.000643625 ind_vs_ctr.3h_ind_vs_ctr.6h cytochrome c SPCC191.07 YJR048W,YEL039C

SJAG_01815 13.2699323 1.318748106 -2.502160482 -1.962794481 -1.066586595 0.000171951 ind_vs_ctr.3h_ind_vs_ctr.6h hypothetical protein

SJAG_00487 13.74397891 1.124704525 -2.972447835 -2.286844006 -1.068568184 0.000224531 ind_vs_ctr.3h_ind_vs_ctr.6h SBDS family protein Rtc3 SPBC21C3.19

SJAG_02442 14.98709973 1.164250934 -2.729080335 -1.916460786 -1.205460683 0.005316321 ind_vs_ctr.3h_ind_vs_ctr.6h hypothetical protein

SJAG_03743 15.78901437 1.236010225 -2.575237047 -2.062021262 -1.051969067 0.001538873 ind_vs_ctr.3h_ind_vs_ctr.6h pyruvate decarboxylase SPAC13A11.06 YLR134W,YLR044C,YDL080C,YGR087C

SJAG_03778 3.730500873 -1.040721003 -2.883588466 -5.141626648 -3.549444291 0.00891581 ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h hypothetical protein

SJAG_02126 6.118195824 1.039882652 -1.878262044 -3.513553828 -3.263983121 0.000404945 ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h trichothecene 3-O-acetyltransferase YLL063C

SJAG_00025 6.606099517 1.067804276 -1.629113915 -2.326943886 -1.627969328 0.004934391 ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h hypothetical protein

SJAG_01971 9.109939448 1.206924321 -2.272853212 -1.454436933 1.215537732 0.001298126 ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h DNA-3-methyladenine glycosylase Mag1 SPAPB24D3.04c YER142C

SJAG_00981 9.239488761 -1.358430688 -1.568924071 -2.255703305 -3.709877202 0.001209727 ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h fungal cellulose binding domain-containing protein SPAC2E1P3.05c

SJAG_02946 9.645524153 1.008776581 -1.645777015 -3.96532412 -3.200679784 0.0001206 ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h amino acid permease SPBPB2B2.01 YLL061W,YOL020W,YCL025C,YBR069C,YDR046C,YPL274W,YBR068C,YDR508C

SJAG_00262 10.61300442 1.093116149 -1.583173613 -2.323480712 -1.832608576 1.66E-05 ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h F-box protein SPAPB1A10.14

SJAG_04866 11.06470932 1.542010418 1.871604972 3.027635951 -1.61544683 0.001209727 ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h hypothetical protein SPCC1223.02 YJR156C,YNL332W,YDL244W,YFL058W

SJAG_04787 11.0943296 -1.012148429 -1.522007517 -2.09844201 -1.880560001 4.70E-05 ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h PQ loop protein SPAC2E12.03c YDR090C

SJAG_01911 11.30125911 1.088719695 -2.077087933 -2.621935423 -2.251390529 7.40E-06 ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h hexaprenyldihydroxybenzoate methyltransferase SPBC1347.09

SJAG_04828 11.56406644 1.074572773 -1.954416306 -2.928004661 -2.29826406 2.79E-05 ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h membrane transporter SPCC757.11c

SJAG_03652 11.64767133 -1.229931393 2.030009991 1.649622343 -1.676686728 0.000644663 ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h high-affinity import carrier for pyridoxine SPAC17A2.01

SJAG_04983 11.69233683 -1.033355783 -1.426150158 -2.288481693 -1.99678151 0.000206826 ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h inner membrane transport protein yieO SPBC16A3.17c

SJAG_03288 13.27064827 1.184357894 -1.37544626 -1.757086054 -2.081875349 6.13E-05 ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h N-acetyltransferase Ats1 SPAC1002.07c

SJAG_05889 13.48841746 1.031743053 -2.213100464 -2.254253111 -1.578554046 2.75E-07 ind_vs_ctr.3h_ind_vs_ctr.6h_ind_vs_ctr.12h hypothetical protein

EFSJAG0000000 2.370573693 -1.074779882 -1.830745074 -5.972155847 -3.182925883 0.04346624 ind_vs_ctr.6h ACEA small nucleolar RNA U3 [Source:RFAM;Acc:RF01848]

EFSJAG0000000 6.225302842 -1.343536006 -1.333083949 -3.617210919 -2.472223512 0.034141372 ind_vs_ctr.6h U4 spliceosomal RNA [Source:RFAM;Acc:RF00015]

SJAG_02113 7.273189375 1.028778957 -1.396251208 -2.088224335 -1.011822655 0.027785829 ind_vs_ctr.6h amino acid permease SPAC1039.01,SPCC74.04

EFSJAG0000000 7.591716697 1.312500611 -1.231574002 -2.101558353 -1.227863568 0.031591735 ind_vs_ctr.6h Small nucleolar RNA Z13/snr52 [Source:RFAM;Acc:RF00335]

SJAG_00587 8.637397834 1.161750176 1.06162534 -2.513639217 -2.494337416 0.047446059 ind_vs_ctr.6h sphingoid long-chain base transporter RSB1 SPAC17G6.02c YOR049C

EFSJAG0000000 9.774403971 1.134197815 -1.199991038 -2.571382655 -1.434584048 0.02141596 ind_vs_ctr.6h small nucleolar RNA snR3 [Source:RFAM;Acc:RF01434]

SJAG_04048 13.2362684 1.015470882 -1.644910376 1.985199624 2.037975639 0.047446059 ind_vs_ctr.6h glycerol dehydrogenase Gld1 SPAC13F5.03c

SJAG_03446 5.591852215 1.429534451 -1.719501054 -2.450743649 -3.736897232 0.009623574 ind_vs_ctr.6h_ind_vs_ctr.12h hypothetical protein

SJAG_03099 5.79411401 1.620890721 -1.347874229 2.692386458 1.857818535 0.012694958 ind_vs_ctr.6h_ind_vs_ctr.12h hypothetical protein SPBC30D10.21

SJAG_01096 6.216302043 -1.041568235 -1.265389153 -3.554392892 -2.55583082 0.000983384 ind_vs_ctr.6h_ind_vs_ctr.12h amino acid permease SPAC1039.01,SPCC74.04

SJAG_00658 8.709902053 -1.184198806 1.451133746 2.048474109 1.892139067 0.001256208 ind_vs_ctr.6h_ind_vs_ctr.12h hypothetical protein

SJAG_02515 9.844899934 1.153365613 -1.129005752 -1.647045875 -3.699226046 0.000278024 ind_vs_ctr.6h_ind_vs_ctr.12h thioredoxin peroxidase SPBC1773.02c YIL010W
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EFSJAG0000000 10.32742154 -1.062007983 -1.101799919 -2.083027607 1.296748186 6.14E-05 ind_vs_ctr.6h_ind_vs_ctr.12h Small nucleolar RNA SNORD14 [Source:RFAM;Acc:RF00016]

SJAG_02834 11.26696073 -1.243677896 -1.333079421 -1.850111122 -2.142494681 0.029028073 ind_vs_ctr.6h_ind_vs_ctr.12h siderophore iron transporter 1 SPBC4F6.09 YOL158C

SJAG_00493 11.34145563 1.178299848 -1.117512711 -1.456717693 -2.232949678 0.000295365 ind_vs_ctr.6h_ind_vs_ctr.12h fumarylacetoacetate hydrolase SPBC21C3.09c YNL168C

SJAG_03818 11.40149271 -1.023204217 -1.525134475 1.826314146 3.630900431 0.001201662 ind_vs_ctr.6h_ind_vs_ctr.12h gal10

SJAG_04905 11.43072069 -1.17610783 1.01922042 -2.292513357 -3.50980132 2.29E-06 ind_vs_ctr.6h_ind_vs_ctr.12h hexose transporter Ght6 SPAC1F8.01,SPBC1683.08

SJAG_02150 12.58454763 -1.046216546 1.042382673 -1.432250103 -2.038492438 0.001045289 ind_vs_ctr.6h_ind_vs_ctr.12h amino acid permease inda1 YLL061W,YOL020W,YCL025C,YBR069C,YDR046C,YPL274W,YBR068C,YDR508C

SJAG_00923 13.2156073 -1.285729055 -1.149623491 -2.80107221 -1.775160875 1.57E-05 ind_vs_ctr.6h_ind_vs_ctr.12h CobW/HypB/UreG nucleotide binding domain-containing pr SPBC15D4.05 YNR029C

SJAG_00885 14.11131168 -1.126761809 1.040145166 -1.398309507 -2.082666049 0.000138526 ind_vs_ctr.6h_ind_vs_ctr.12h ribonucleotide reductase small subunit Suc22 SPBC25D12.04 YJL026W

SJAG_03398 14.31908034 1.133046621 -1.111345338 -1.452062095 -2.114133846 8.86E-05 ind_vs_ctr.6h_ind_vs_ctr.12h arginase SPBP26C9.02c,SPAC3H1.07 YPL111W
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Gene_ID AveExpr log2Exp_induced_7log2Exp_control_7logFC P.Value adj.P.Val Fold_Change Description

SJAG_02132 4.238600296 2.686125015 5.752848293 -3.066723278 0.000291231 0.003318725 -8.378681757 hypothetical protein

SJAG_01589 6.520242264 3.021845726 5.279068742 -2.257223016 0.006033304 0.040479436 -4.780703777 tricarboxylate transporter

SJAG_00809 8.564664262 6.207909169 8.460598794 -2.252689625 0.000196715 0.002380794 -4.765704914 DNA replication protein Dre4

SJAG_04303 9.118620279 8.040337147 10.28435819 -2.244021043 8.34E-06 0.000169032 -4.737155542 meiotic recombination protein Rec25

SJAG_03526 14.32839235 12.44629428 14.65830256 -2.212008281 0.000921523 0.008864294 -4.633197818 Lsd90 protein

SJAG_02515 10.31968023 6.943549209 8.963335098 -2.019785889 4.50E-05 0.000687106 -4.055236035 thioredoxin peroxidase

SJAG_03331 9.14897182 7.90087542 9.911994486 -2.011119066 4.00E-07 1.34E-05 -4.030947703 hypothetical protein

SJAG_05182 12.33511244 7.942545383 9.861006732 -1.918461349 0.000798324 0.007830645 -3.780196812 allantoate permease

SJAG_04603 8.504337712 7.235537695 9.09454788 -1.859010185 0.000182166 0.002223485 -3.627586925 inner membrane protein

SJAG_01622 11.38140691 9.021451496 10.86912944 -1.847677944 1.43E-10 1.94E-08 -3.599204171 RSC complex subunit Rsc9

SJAG_04580 13.47661446 10.40279561 12.21753161 -1.814736 5.09E-06 0.000112508 -3.517952491 2-OG-Fe(II) oxygenase superfamily protein

SJAG_04711 16.16961028 11.78320712 13.57529432 -1.792087202 1.97E-07 7.29E-06 -3.463155583 GTP cyclohydrolase II

SJAG_01451 9.417167857 7.521370873 9.300836776 -1.779465903 5.48E-07 1.73E-05 -3.43299059 hypothetical protein

SJAG_01093 4.672683718 7.980218339 9.61267954 -1.632461201 4.44E-06 9.98E-05 -3.100414707 hypothetical protein

SJAG_00715 10.13008666 8.425682178 9.992353464 -1.566671286 2.26E-07 8.18E-06 -2.96220459 hypothetical protein

SJAG_06622 16.05570885 13.82152038 15.37707567 -1.555555287 1.22E-07 4.83E-06 -2.939468438 glyceraldehyde-3-phosphate dehydrogenase Tdh1

SJAG_05196 10.6932764 9.02006267 10.54942771 -1.529365035 2.41E-07 8.59E-06 -2.886587655 spindle pole body protein Sad1

SJAG_05231 8.643341873 6.554513734 8.079579981 -1.525066247 0.000199625 0.002413617 -2.877999312 CMGC/SRPK protein kinase

SJAG_06621 12.43793422 10.29196581 11.79828002 -1.506314206 0.000146399 0.001863429 -2.840833358 glyceraldehyde-3-phosphate dehydrogenase Tdh1

SJAG_01169 13.4130492 12.74237051 14.2193934 -1.477022891 2.67E-09 2.04E-07 -2.783736953 RNA-binding protein Mrd1

SJAG_00524 9.725094044 7.243657696 8.720528825 -1.47687113 0.000253617 0.002969219 -2.783444139 prefoldin subunit 4

SJAG_04575 10.55064448 10.08684168 11.55502869 -1.468187015 7.24E-07 2.17E-05 -2.766739883 meiotic chromosome segregation protein Meu6

SJAG_04301 14.51698145 13.59381844 15.02995565 -1.436137211 0.002436546 0.019698441 -2.705953807 invertase

SJAG_00987 11.1305815 9.32553824 10.75899815 -1.433459912 4.79E-06 0.000106869 -2.700936855 MBF transcription factor complex subunit Res2

SJAG_02332 10.78458905 9.880740236 11.31279479 -1.432054555 3.42E-05 0.000548416 -2.698307102 spindle pole body protein Cut12

SJAG_02997 10.91017334 8.563370946 9.981352841 -1.417981895 0.000151286 0.001911658 -2.672114624 peroxin-6

SJAG_01764 13.38810791 12.69705228 14.10921944 -1.412167158 2.40E-09 1.88E-07 -2.661366424 U3 snoRNP-associated protein Nan1

SJAG_00139 13.45026383 12.4227188 13.83053576 -1.407816959 2.62E-09 2.02E-07 -2.653353618 RNA polymerase II associated Paf1 complex subunit Tpr1

SJAG_04558 10.85517158 9.636063243 11.02864762 -1.392584376 2.80E-05 0.000463849 -2.62548577 spindle pole body protein Kms2

SJAG_02084 12.34530733 11.57711763 12.95823549 -1.381117861 1.08E-06 3.09E-05 -2.604701162 moeb/ThiF domain-containing protein

SJAG_04126 11.67027341 10.20190834 11.57190426 -1.369995928 1.41E-07 5.47E-06 -2.584698365 TTK protein kinase Mph1

SJAG_01664 16.91236804 16.17785256 17.54636836 -1.368515796 6.92E-08 3.01E-06 -2.582047957 hsp90-like protein

SJAG_02720 11.98748249 10.68726261 12.05533093 -1.368068322 2.00E-10 2.51E-08 -2.581247219 poly(A) polymerase Pla1

SJAG_02446 10.22737465 8.793049276 10.15121312 -1.358163848 2.02E-06 5.12E-05 -2.56358698 glucosidase

SJAG_02150 12.86579835 8.641937166 9.994073248 -1.352136082 0.001627373 0.014216222 -2.552898328 amino acid permease inda1

SJAG_03370 16.57089462 15.18032929 16.52745028 -1.347120991 2.58E-07 9.13E-06 -2.54403936 alcohol dehydrogenase Adh1
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SJAG_02733 9.430299284 6.92920636 8.27570306 -1.346496701 0.00011246 0.001488357 -2.542938728 chitin synthase regulatory factor Chr2

SJAG_00141 11.88275781 9.290133198 10.63479904 -1.344665843 3.68E-06 8.53E-05 -2.539713648 neddylation pathway protein But1

SJAG_04318 10.90870137 9.100336414 10.44360478 -1.343268368 1.38E-08 7.92E-07 -2.537254731 splicing factor Sap114

SJAG_05257 7.473118674 6.727897754 8.069747673 -1.341849919 0.001186325 0.010957431 -2.534761344 DNA-3-methyladenine glycosidase Mag2

SJAG_02776 10.06856375 8.243476489 9.578127427 -1.334650938 0.000207018 0.00248738 -2.522144507 pig-U

SJAG_04713 13.36041116 10.13166493 11.46556913 -1.333904206 1.78E-05 0.000315892 -2.520839395 uracil phosphoribosyltransferase

SJAG_01380 8.816197184 7.278673264 8.60668557 -1.328012305 0.000474548 0.005029182 -2.510565396 RNA-binding protein

SJAG_01936 12.28665913 11.98355146 13.3084816 -1.324930145 2.04E-11 4.06E-09 -2.505207573 SMR domain-containing protein

SJAG_02445 8.322091594 6.875267481 8.187109667 -1.311842186 0.004905317 0.034437527 -2.482583403 hypothetical protein

SJAG_00882 14.04279833 12.55938346 13.87049365 -1.311110194 1.67E-08 9.20E-07 -2.481324114 pescadillo-family BRCT domain-containing protein

SJAG_02143 12.53340931 11.16736114 12.47504543 -1.307684289 2.69E-08 1.36E-06 -2.475438812 hypothetical protein

SJAG_04718 11.28098642 8.382073052 9.68763619 -1.305563138 0.000435838 0.004679974 -2.471801923 proline specific permease

SJAG_02252 11.89513006 8.737185028 10.04170118 -1.30451615 0.000186447 0.00227232 -2.470008745 transcription factor Ace2

SJAG_04862 10.88860988 9.180370568 10.4846391 -1.304268533 9.35E-05 0.001277614 -2.469584842 translation elongation factor G

SJAG_04145 12.24694511 10.15569761 11.45593255 -1.300234938 9.58E-09 5.75E-07 -2.462689835 alanine aminotransferase

SJAG_05185 8.048087392 8.325124845 9.608066571 -1.282941726 0.000255742 0.002984061 -2.433346426 actin-like protein Arp10

SJAG_00042 8.537681163 6.680193407 7.962565242 -1.282371835 0.00422861 0.030612523 -2.4323854 hypothetical protein

SJAG_01001 10.30303036 7.657508822 8.939538859 -1.282030037 0.000303336 0.003437381 -2.431809196 Erd1

SJAG_00440 10.48220262 8.855569723 10.13702937 -1.281459648 9.68E-06 0.000192406 -2.430847937 RSC complex subunit Rsc4

SJAG_02059 14.26816375 14.56683121 15.84044438 -1.273613168 3.89E-08 1.83E-06 -2.417663013 spermidine family transporter

SJAG_01352 13.7967837 11.78066329 13.04332668 -1.262663394 1.58E-07 6.03E-06 -2.399382881 cytoplasmic glycine-tRNA ligase Grs1

SJAG_04462 10.39203061 9.202317574 10.46172876 -1.259411188 9.61E-05 0.001304959 -2.393980146 rho-type GTPase activating protein Rga5

SJAG_02419 12.63595431 10.42511608 11.68276493 -1.257648851 6.64E-08 2.90E-06 -2.391057544 ubiquitin carboxy terminal hydrolase Ubp3

SJAG_02180 17.73183936 16.81537598 18.07079156 -1.255415583 1.87E-05 0.000328315 -2.387359091 translation elongation factor EF-1 alpha Ef1a-c

SJAG_04995 8.685474677 6.739251705 7.990585574 -1.25133387 0.004685467 0.033197082 -2.380614253 DNA replication checkpoint protein Drc1

SJAG_04789 9.540458075 8.704039958 9.953459466 -1.249419508 0.00050029 0.005254015 -2.377457429 alpha-amylase Aah4

SJAG_03777 13.78215805 13.08004354 14.32237973 -1.242336192 1.31E-08 7.54E-07 -2.365813243 transmembrane transporter

SJAG_01707 11.76820534 10.42992985 11.66389822 -1.233968371 1.73E-08 9.45E-07 -2.352130933 transcription elongation regulator

SJAG_00913 11.5428418 10.48404136 11.71561268 -1.231571316 2.22E-08 1.17E-06 -2.348226085 hira protein

SJAG_02118 10.92378305 9.670086472 10.90078696 -1.23070049 4.40E-07 1.46E-05 -2.346809098 pheromone-regulated membrane protein

SJAG_00102 11.00548236 9.10375313 10.32964004 -1.22588691 8.69E-05 0.001209665 -2.338991972 N-myristoyltransferase 1

SJAG_03606 15.33650939 14.70087491 15.92562511 -1.224750193 0.004729189 0.033441825 -2.337149778 hexose transporter Ght6

SJAG_03668 9.946695858 8.914785826 10.12859329 -1.213807461 9.82E-06 0.000193671 -2.319489734 SAGA complex subunit Spt3

SJAG_01440 10.99154739 9.720423479 10.93286535 -1.212441875 2.26E-06 5.65E-05 -2.317295255 U1 snRNP-associated protein Usp109

SJAG_00875 12.03810184 10.88323026 12.09461712 -1.211386857 1.39E-09 1.22E-07 -2.315601276 SCY1 protein kinase Ppk32

SJAG_01965 12.65545984 9.121632402 10.33032221 -1.208689806 0.001238055 0.011359641 -2.311276413 hypothetical protein

SJAG_02922 12.08218111 11.57106314 12.77682038 -1.205757242 7.92E-09 4.89E-07 -2.306583056 myb family protein Eta2
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SJAG_04677 15.59486738 13.01510736 14.22049895 -1.205391591 2.06E-08 1.09E-06 -2.305998526 iron transport multicopper oxidase Fio1

SJAG_04068 15.33396172 11.64691402 12.8480704 -1.201156379 0.006613376 0.043509051 -2.299238906 high-affinity fructose transporter ght6

SJAG_01185 12.70713281 11.50557135 12.70455932 -1.198987967 1.94E-07 7.23E-06 -2.295785679 nucleoporin Npp106

SJAG_01699 12.57480127 11.02884881 12.22746013 -1.198611317 3.31E-05 0.00053422 -2.295186388 G-protein coupled receptor Git3

SJAG_01298 16.74372403 16.63766399 17.83571382 -1.198049837 1.74E-09 1.46E-07 -2.294293301 IMP dehydrogenase Gua1

SJAG_03633 10.36675735 8.02955538 9.227263379 -1.197708 8.76E-06 0.000175957 -2.293749748 inner membrane translocase Oxa102

SJAG_00886 11.71336217 11.06248047 12.26010019 -1.197619719 1.12E-06 3.17E-05 -2.293609395 N2,N2-dimethylguanosine tRNA methyltransferase

SJAG_01026 12.65648184 11.28558432 12.47944443 -1.19386011 2.08E-06 5.26E-05 -2.287640115 RNA-binding protein

SJAG_04943 10.85900301 9.292662807 10.485802 -1.193139197 5.49E-07 1.73E-05 -2.28649727 two-component GAP Byr4

SJAG_04456 10.25602799 8.918247354 10.10922603 -1.190978679 2.62E-06 6.42E-05 -2.283075674 BRCT domain-containing protein

SJAG_04424 13.00083008 11.38448741 12.56936504 -1.184877636 3.98E-08 1.86E-06 -2.273441114 U3 snoRNP protein Utp14

SJAG_03267 10.8297962 9.626960816 10.80821585 -1.181255034 1.20E-05 0.000227135 -2.267739672 tel Two Interacting protein 1

SJAG_03846 14.03753946 13.4480877 14.62528405 -1.177196344 3.67E-08 1.74E-06 -2.261368875 GTP binding protein Bms1

SJAG_04694 10.87737043 9.747679117 10.92207704 -1.17439792 4.20E-06 9.58E-05 -2.256986705 WD repeat protein Prp5

SJAG_02079 10.66611586 8.659299146 9.828246688 -1.168947543 0.000445624 0.004762359 -2.24847609 DNA recombination protein Rad22

SJAG_00604 11.55423711 9.531912142 10.70067345 -1.168761304 1.14E-05 0.000218611 -2.248185851 SUMO E1-like activator enzyme Fub2

SJAG_04874 15.13445575 14.82096262 15.98090897 -1.159946347 2.36E-08 1.22E-06 -2.234491175 GTP binding protein

SJAG_01320 10.03113463 9.274418219 10.42508914 -1.150670922 3.69E-05 0.000583223 -2.22017119 WD repeat protein Pop3

SJAG_05006 9.06063959 9.184912736 10.33425278 -1.149340045 5.56E-07 1.74E-05 -2.21812404 homeobox transcription factor Phx1

SJAG_01063 9.992945419 8.642348201 9.788568382 -1.146220181 2.90E-05 0.000479922 -2.213332475 NADPH-adrenodoxin reductase Arh1

SJAG_06592 9.845474139 8.495179547 9.639602608 -1.14442306 0.000131926 0.001705936 -2.210577111 histidine-containing response regulator phosphotransferase Mpr1

SJAG_00044 14.6346209 13.01828688 14.16150229 -1.143215409 1.37E-07 5.33E-06 -2.208727455 adenylosuccinate synthetase Ade2

SJAG_16455 13.50407903 12.13762491 13.27777247 -1.140147562 6.89E-08 3.00E-06 -2.204035654 hypothetical protein

SJAG_02097 13.25659948 12.2477374 13.38745965 -1.139722244 4.72E-10 5.07E-08 -2.203385982 transcription elongation factor Spt5

SJAG_00746 11.10293202 9.550937507 10.68950093 -1.138563426 3.58E-06 8.34E-05 -2.201616864 Ino80 complex subunit Ies4

SJAG_02540 13.2004967 12.62925647 13.76603169 -1.136775215 6.50E-10 6.60E-08 -2.198889665 CCR4-Not complex subunit Ccr4

SJAG_01291 12.49187966 11.36532668 12.49668007 -1.131353388 8.35E-08 3.49E-06 -2.190641473 TTC27 family TPR repeat protein

SJAG_01777 11.98457059 11.00068122 12.13033714 -1.12965592 2.11E-06 5.30E-05 -2.188065491 TRF Taz1

SJAG_04766 12.09045405 11.24875996 12.37715097 -1.128391005 1.05E-07 4.25E-06 -2.186147897 RNA polymerase I upstream activation factor complex subunit Rrn5

SJAG_02250 12.36878894 11.02515965 12.15308308 -1.127923425 8.32E-09 5.09E-07 -2.185439476 RNA-binding protein Nop9

SJAG_04385 13.76455966 14.54345488 15.66951388 -1.126059002 1.22E-07 4.81E-06 -2.182617015 RNA-binding protein Cip1

SJAG_00104 11.66817056 10.31750983 11.43870242 -1.121192593 6.61E-09 4.27E-07 -2.175267151 AP-2 adaptor complex subunit Apl1

SJAG_00720 9.677024686 7.854210786 8.971915563 -1.117704776 0.00021741 0.002595183 -2.170014641 COP9/signalosome complex subunit Csn5

SJAG_03959 13.24495322 11.72731155 12.84366391 -1.116352366 5.27E-06 0.000115531 -2.16798138 karyopherin Kap104

SJAG_01374 12.63802041 11.00729549 12.12155714 -1.114261649 2.71E-09 2.05E-07 -2.164841872 nucleoporin Nup132

SJAG_02856 11.76468466 10.90885993 12.0229118 -1.11405187 0.00062075 0.006308906 -2.16452711 translation initiation factor IF-2Mt

SJAG_04916 10.06321303 7.878623792 8.991371833 -1.112748041 0.005712229 0.038838378 -2.162571813 RNase P and RNase MRP subunit p30
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SJAG_02667 11.37887043 9.324847609 10.43583684 -1.110989231 9.31E-05 0.001276313 -2.159936997 DNA polymerase epsilon catalytic subunit B

SJAG_05343 11.84065053 11.34264076 12.44957113 -1.106930376 3.37E-06 7.91E-05 -2.153868804 transcription factor

SJAG_04687 12.38617943 11.18119433 12.28416006 -1.102965726 2.76E-09 2.06E-07 -2.147957913 rRNA processing protein Rrp12-like protein

SJAG_00637 13.51893335 12.90496095 14.00204755 -1.097086605 8.85E-08 3.66E-06 -2.139222589 DNA-directed RNA polymerase III complex subunit Rpc2

SJAG_04351 10.19416922 9.528446007 10.62524289 -1.096796884 7.49E-05 0.001068182 -2.138793035 GTPase

SJAG_03903 14.15779816 13.45580718 14.55159295 -1.095785771 3.77E-06 8.70E-05 -2.137294587 glyceraldehyde-3-phosphate dehydrogenase Tdh1

SJAG_03664 11.49846937 10.2416389 11.33681425 -1.095175356 1.39E-06 3.80E-05 -2.136390473 jmjc domain chromatin associated protein Epe1

SJAG_04749 14.4034614 12.66217329 13.75480939 -1.0926361 4.89E-10 5.20E-08 -2.132633567 transcription factor Zip1

SJAG_03069 11.11511354 9.235560493 10.32742583 -1.091865337 1.84E-06 4.73E-05 -2.131494506 biotin-protein ligase

SJAG_01654 13.06100863 12.40952582 13.49997434 -1.090448513 2.58E-11 5.00E-09 -2.129402262 U1 snRNP-associated protein Usp104

SJAG_03097 11.2645501 10.00350578 11.09100945 -1.087503677 1.28E-05 0.00023904 -2.12506015 replication fork protection complex subunit Swi3

SJAG_05192 9.75079822 8.984840835 10.06885972 -1.084018881 0.000119207 0.001562188 -2.119933311 Swr1 complex subunit Vps71

SJAG_01340 9.790648974 8.727464573 9.81015097 -1.082686398 1.31E-05 0.000243676 -2.117976229 hypothetical protein

SJAG_01761 10.90355055 9.530283479 10.60659116 -1.076307677 4.32E-06 9.78E-05 -2.108632498 meiotically upregulated Mug174

SJAG_01420 13.02299263 11.43366616 12.50543583 -1.071769675 1.92E-06 4.93E-05 -2.102010207 U3 snoRNP-associated protein Cic1/Utp30 family protein

SJAG_02647 12.72097803 12.06012234 13.12932151 -1.069199174 7.44E-10 7.40E-08 -2.098268316 cycloisomerase 2 family protein

SJAG_04065 12.33873116 11.2064859 12.27534386 -1.068857968 3.02E-10 3.51E-08 -2.097772122 tRNA pseudouridine synthase

SJAG_01612 12.24753962 11.13848818 12.20730032 -1.068812143 1.23E-07 4.86E-06 -2.09770549 gamma-glutamyltranspeptidase Ggt1

SJAG_04372 10.17483516 8.770345071 9.835208109 -1.064863037 0.000100957 0.001362588 -2.091971268 Ku domain-containing protein Pku80

SJAG_00197 16.93574757 17.74777026 18.81091515 -1.06314489 4.95E-07 1.60E-05 -2.089481363 dihydroorotate dehydrogenase Ura3

SJAG_00917 10.83197369 9.770659131 10.82833014 -1.057671011 0.000146897 0.001867819 -2.081568465 hypothetical protein

SJAG_03578 14.84127675 13.92112653 14.97807085 -1.05694432 6.34E-06 0.000135362 -2.080520234 DNA-directed RNA polymerase I complex subunit Rpa2

SJAG_04205 11.14858448 11.71225175 12.76691193 -1.054660184 1.68E-08 9.25E-07 -2.077228873 SAGA complex subunit Ada2

SJAG_01441 12.0299028 11.14785089 12.20233261 -1.054481716 3.96E-09 2.78E-07 -2.076971926 transcription factor

SJAG_04628 12.25700265 11.32995702 12.38202509 -1.052068068 2.99E-09 2.22E-07 -2.073500029 ethanolamine-phosphate cytidylyltransferase

SJAG_03459 9.783726607 7.831452893 8.882581709 -1.051128816 0.000828602 0.008091821 -2.072150537 ribosomal protein subunit L15

SJAG_03356 11.54484937 10.1485466 11.1977848 -1.049238202 1.72E-06 4.50E-05 -2.069436817 RNA-directed RNA polymerase Rdp1

SJAG_00443 14.57983254 13.77350536 14.82145743 -1.047952071 3.96E-08 1.86E-06 -2.067592783 cytoplasmic valine-tRNA ligase Vrs1/Vas1

SJAG_02172 10.26245974 7.966096044 9.013729448 -1.047633404 0.00053643 0.005573517 -2.067136136 DNA polymerase alpha B-subunit

SJAG_04768 12.25331765 12.21737733 13.26365242 -1.046275083 7.87E-08 3.31E-06 -2.065190809 hypothetical protein

SJAG_04265 12.95314488 11.95535912 13.00123359 -1.045874468 3.08E-05 0.00050296 -2.064617416 wybutosine biosynthesis protein Tyw1

SJAG_05007 14.23470896 13.45593766 14.50153077 -1.045593109 2.26E-07 8.18E-06 -2.064214807 tryptophan synthase

SJAG_01325 10.15974217 10.78330114 11.82438172 -1.041080581 0.000115676 0.001521641 -2.057768349 Set1C PHD Finger protein Spf1

SJAG_03494 14.17727928 12.10521283 13.14549592 -1.040283093 3.20E-07 1.11E-05 -2.056631177 glutamate-cysteine ligase regulatory subunit

SJAG_03538 12.03011522 10.96274564 12.00003857 -1.037292931 5.67E-08 2.52E-06 -2.052372971 transcription factor Thi1

SJAG_05315 10.65790952 8.987767609 10.02479686 -1.037029251 0.000665952 0.00667733 -2.051997895 hypothetical protein

SJAG_16454 10.97106619 10.53463937 11.57018168 -1.035542303 3.25E-08 1.58E-06 -2.049884044 hypothetical protein
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SJAG_04464 11.96358986 10.6560058 11.69105986 -1.035054066 0.000393626 0.004290986 -2.04919044 ran GDP/GTP exchange factor

SJAG_03787 11.72329274 11.19084329 12.22454343 -1.033700144 2.81E-08 1.41E-06 -2.047268243 RSC complex subunit Rsc1

SJAG_00972 12.18916917 11.51430295 12.54768875 -1.033385809 6.67E-09 4.29E-07 -2.046822233 NADPH-dependent diflavin oxidoreductase

SJAG_00077 9.961947471 9.575050968 10.6081285 -1.033077536 0.000255207 0.002979249 -2.046384916 hypothetical protein

SJAG_04141 11.09694175 9.726318067 10.75747722 -1.031159154 0.000253765 0.002969527 -2.043665604 fungal protein

SJAG_02471 12.27172581 10.79156124 11.82199174 -1.0304305 3.59E-06 8.35E-05 -2.042633681 translation initiation factor eIF2B epsilon subunit

SJAG_04426 13.01915917 12.63050251 13.65812632 -1.027623813 1.83E-10 2.35E-08 -2.03866371 serine/threonine protein phosphatase Pzh1

SJAG_01746 15.67990251 16.26267735 17.29011647 -1.027439119 3.05E-08 1.51E-06 -2.038402735 hypothetical protein

SJAG_02757 13.47131225 12.03393389 13.06081662 -1.026882732 4.28E-06 9.72E-05 -2.037616761 nucleoporin Nup157/170

SJAG_02545 11.78299727 10.3847888 11.41099124 -1.026202435 8.44E-08 3.52E-06 -2.036656158 Smc5-6 complex SMC subunit Smc6

SJAG_00859 12.05639496 11.39474457 12.42043575 -1.025691179 4.51E-07 1.49E-05 -2.035934545 complexed with Cdc5 protein Cwf3

SJAG_04745 11.79125487 10.38779889 11.41276892 -1.024970029 5.73E-07 1.78E-05 -2.03491711 kinesin-like protein Cut7

SJAG_02518 10.57921522 9.042477887 10.06574226 -1.023264375 7.84E-05 0.001107295 -2.032512711 meiotically upregulated Mug184

SJAG_03945 11.75715451 12.03467505 13.05607427 -1.021399222 5.51E-08 2.47E-06 -2.029886725 PHD finger containing protein Phf2

SJAG_01453 12.14879359 10.98513264 12.0061759 -1.021043255 2.47E-07 8.80E-06 -2.029385937 1,3-beta-glucan synthase regulatory factor Chf3/Chr4

SJAG_04712 11.51177416 10.19036181 11.21012908 -1.019767261 0.000395893 0.004309909 -2.027591838 transcription factor

SJAG_03897 12.88195506 13.0870701 14.10565314 -1.01858304 2.01E-09 1.63E-07 -2.025928193 ATP-dependent RNA helicase Prh1

SJAG_02841 15.78134639 15.97095749 16.98645805 -1.01550056 9.35E-08 3.85E-06 -2.021604191 2-isopropylmalate synthase

SJAG_02509 13.61641656 12.31764758 13.32976525 -1.01211767 6.09E-06 0.000130693 -2.016869404 tubulin alpha 2

SJAG_01506 9.59793437 8.366569626 9.376956104 -1.010386478 5.41E-05 0.000810798 -2.014450672 meiotically up-regulated 132 protein

SJAG_00693 9.949021375 8.920492301 9.929340072 -1.008847772 0.000120586 0.001579305 -2.012303304 MBF transcription factor complex subunit Res1

SJAG_02663 11.30355373 10.03507449 11.04220429 -1.007129809 0.000867854 0.008414451 -2.009908478 ubiquitin protease cofactor

SJAG_02628 15.19658109 14.85879524 15.86507985 -1.006284609 8.37E-07 2.47E-05 -2.008731322 translation initiation factor eIF3a

SJAG_01953 11.31377047 9.450880326 10.45622991 -1.005349588 0.00010606 0.00141889 -2.00742987 ATP-dependent RNA helicase A-like protein

SJAG_04036 13.59523719 13.23684023 14.23937085 -1.002530616 3.71E-08 1.76E-06 -2.003511257 transcription factor Pap1/Caf3

SJAG_02321 13.19009551 12.89559384 13.89783223 -1.002238386 7.82E-08 3.30E-06 -2.00310547 inositol polyphosphate kinase

SJAG_00311 12.56574414 11.22170578 12.22336715 -1.001661364 9.48E-08 3.89E-06 -2.002304466 Noc2p-Noc3p complex subunit Noc3

SJAG_01970 12.67314487 13.27091825 14.27125226 -1.000334008 3.24E-05 0.000524724 -2.000463086 thiamine-repressible acid phosphatase pho4

SJAG_00544 16.04958115 17.74136473 16.74010723 1.001257501 5.31E-06 0.000116189 2.001744027 40S ribosomal protein S9

SJAG_04611 11.58935511 12.50757039 11.50610606 1.001464336 4.23E-08 1.95E-06 2.002031032 ribosome biogenesis protein Nop8

SJAG_00940 15.78462245 17.80623557 16.80377117 1.002464402 3.02E-08 1.50E-06 2.003419307 60S ribosomal protein L17

SJAG_00235 12.69486641 13.1615375 12.15776156 1.003775939 1.43E-10 1.94E-08 2.00524142 cytochrome b5 reductase

SJAG_05746 13.84134017 15.46282292 14.45887349 1.00394943 2.68E-05 0.000447253 2.005482573 hypothetical protein

SJAG_03782 12.73912701 14.95455391 13.9501126 1.004441311 8.79E-08 3.64E-06 2.006166452 CIA30 family protein

SJAG_00959 12.44612203 13.5268834 12.52130526 1.00557814 3.86E-09 2.73E-07 2.007747913 translocon gamma subunit Sss1

SJAG_00562 11.53021815 12.35884769 11.3521427 1.00670499 5.97E-07 1.84E-05 2.009316723 rRNA processing protein

SJAG_05349 10.72023943 12.61180413 11.60413862 1.00766551 1.72E-06 4.50E-05 2.010654935 complexed with Cdc5 protein Cwf21
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SJAG_00373 11.66413838 13.4370404 12.42920361 1.007836784 3.61E-08 1.73E-06 2.01089365 TIM23 translocase complex subunit Tim16

SJAG_00233 9.051682999 10.44641943 9.438175159 1.008244269 0.000152359 0.001921517 2.011461701 SPX/EXS domain-containing protein

SJAG_02547 9.101141584 10.3820872 9.373524778 1.008562417 1.11E-06 3.14E-05 2.011905325 RNase MRP

SJAG_02605 13.13384624 15.52366357 14.51438548 1.009278091 2.36E-06 5.86E-05 2.012903613 rheb GTPase Rhb1

SJAG_00097 10.16782508 11.98939202 10.97648925 1.012902771 1.18E-05 0.000224988 2.017967265 5-aminolevulinate synthase

SJAG_05236 10.82378686 11.78149155 10.76478482 1.016706735 7.32E-09 4.60E-07 2.023295073 anaphase-promoting complex subunit Apc11

SJAG_00748 16.02038124 17.79981028 16.78226602 1.017544261 1.10E-07 4.40E-06 2.024469995 60S ribosomal protein L9

SJAG_04656 12.43773453 14.37432024 13.35541084 1.0189094 1.51E-09 1.31E-07 2.026386541 nuclear export factor

SJAG_02405 10.47357545 10.85564637 9.835047828 1.020598543 8.29E-06 0.000168365 2.028760474 acid phosphatase

SJAG_03049 16.75899551 17.10804618 16.08485119 1.023194985 1.60E-06 4.26E-05 2.032414955 fungal protein

SJAG_05009 12.70449047 14.5104465 13.48630293 1.024143564 2.88E-10 3.41E-08 2.033751717 U1 snRNP-associated protein Usp101

SJAG_01860 12.00983437 12.74357845 11.71878996 1.024788485 3.06E-10 3.54E-08 2.034661059 phosphoprotein phosphatase

SJAG_05273 10.16660461 11.72951348 10.70460512 1.024908362 6.03E-06 0.00012976 2.034830131 kinetochore protein Mis18

SJAG_03368 13.41937277 14.80600014 13.78007818 1.025921964 1.63E-06 4.31E-05 2.036260254 COPI-coated vesicle associated protein

SJAG_04850 12.75312836 15.06647428 14.04032245 1.026151829 4.08E-09 2.85E-07 2.036584718 mannan endo-1,6-alpha-mannosidase

SJAG_02387 9.549856575 10.59869715 9.570778447 1.027918703 2.51E-05 0.000423588 2.039080459 hypothetical protein

SJAG_02425 13.5902929 14.00798502 12.97812639 1.029858635 1.46E-09 1.28E-07 2.04182417 nuclear transport factor Nxt2

SJAG_04222 11.65633922 13.83083303 12.80058836 1.030244666 1.68E-05 0.000301123 2.042370586 U4/U6 X U5 tri-snRNP complex subunit Dim1

SJAG_01524 12.74181024 12.31909485 11.28696056 1.03213429 6.20E-06 0.000132844 2.045047411 succinate-CoA ligase alpha subunit

SJAG_04086 8.677444926 11.10434095 10.07069212 1.033648828 7.59E-06 0.000156709 2.047195424 transcriptional regulatory protein Spp41

SJAG_02224 14.44687203 15.8940634 14.85500579 1.039057615 1.11E-09 1.03E-07 2.054884941 40S ribosomal protein S30

SJAG_05198 11.99738591 13.07086388 12.03058883 1.040275048 4.89E-09 3.30E-07 2.056619708 hypothetical protein

SJAG_01409 11.86872406 13.08126742 12.04091119 1.040356236 5.25E-07 1.67E-05 2.056735448 rab GTPase binding protein

SJAG_04879 11.97660825 12.85417387 11.81340955 1.040764325 2.00E-05 0.000349118 2.057317311 DNA polymerase epsilon subunit Dpb4

SJAG_05896 13.0116255 15.43475161 14.39383202 1.040919586 0.000116712 0.001532516 2.057538728 hypothetical protein

SJAG_01959 16.92186284 16.50687594 15.46581561 1.041060328 0.001349964 0.012231206 2.057739461 Uba3-binding protein but2

SJAG_01744 12.75304432 14.58627328 13.54420417 1.042069104 7.72E-10 7.62E-08 2.059178797 ribosomal DNA transcription factor Rrn3

SJAG_01810 11.10905693 12.53552968 11.49320662 1.04232306 6.27E-06 0.000134285 2.059541304 complexed with Cdc5 protein Cwf18

SJAG_03990 13.04173938 16.56830716 15.52536227 1.042944886 6.90E-05 0.000996908 2.060429192 proteasome interacting protein

SJAG_00280 11.24917227 13.09193826 12.04812686 1.043811395 4.52E-07 1.49E-05 2.061667096 fungal protein

SJAG_05230 12.64447555 13.78078804 12.73614442 1.044643624 3.31E-10 3.77E-08 2.062856727 alanine racemase

SJAG_03610 8.326920154 9.973080455 8.928093608 1.044986848 1.16E-05 0.00022103 2.063347548 hypothetical protein

SJAG_01783 12.08487417 13.94258948 12.89696484 1.04562464 3.88E-08 1.83E-06 2.064259922 WD repeat protein

SJAG_00812 13.26394243 13.93373015 12.88793862 1.045791525 3.81E-09 2.70E-07 2.064498721 phosphatidyl-N-methylethanolamine N-methyltransferase

SJAG_03010 7.467978092 8.844671595 7.795373277 1.049298318 2.66E-05 0.000444054 2.069523051 BAR adaptor protein

SJAG_00083 15.2690566 17.15923954 16.10624153 1.05299801 4.24E-08 1.95E-06 2.074837011 RNA-binding protein Nhp2

SJAG_00666 11.67593381 10.68369308 9.630257945 1.053435131 0.000168675 0.002087033 2.075465759 sleepy Slp1
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SJAG_04982 13.61691012 14.10905326 13.05488784 1.05416542 1.12E-09 1.03E-07 2.076516622 profilin

SJAG_01864 9.787892874 10.80485905 9.749434172 1.055424874 7.21E-07 2.16E-05 2.078330185 Pot1 associated protein Poz1

SJAG_04978 12.23176341 14.0621871 13.00616796 1.056019136 0.000396222 0.004311562 2.079186449 SNARE Tlg2

SJAG_02010 14.32795219 16.21352849 15.15661193 1.056916558 1.61E-06 4.27E-05 2.0804802 glucose 1-dehydrogenase

SJAG_03388 13.51963232 14.77491593 13.71763785 1.057278078 6.79E-05 0.000984369 2.081001606 transcription factor Hsr1

SJAG_02474 11.30611995 12.46557913 11.40825573 1.057323402 6.06E-07 1.87E-05 2.081066983 BolA domain-containing protein

SJAG_01238 12.05088686 14.10547376 13.04713557 1.058338188 3.49E-08 1.69E-06 2.082531312 type II fatty acid synthase component

SJAG_04223 8.416835612 9.605602934 8.547183504 1.05841943 2.15E-05 0.000372169 2.082648589 ubiquinone binding protein Coq10

SJAG_01873 14.38911008 14.90944517 13.85052122 1.058923955 8.55E-08 3.56E-06 2.083377039 histone H2A alpha

SJAG_02126 7.644520048 11.1218537 10.06277779 1.059075913 1.03E-05 0.000201638 2.083596491 trichothecene 3-O-acetyltransferase

SJAG_01710 13.38285115 15.21451808 14.15484387 1.059674213 5.06E-07 1.63E-05 2.08446076 transcription factor TFIIA complex large subunit

SJAG_02803 16.21701257 17.8500359 16.7903365 1.059699408 4.95E-06 0.00010998 2.084497162 40S ribosomal protein S0A

SJAG_04261 13.33234301 14.3084763 13.24736588 1.061110428 1.74E-10 2.30E-08 2.08653689 DNA-directed RNA polymerase I

SJAG_00538 13.56931676 15.23993694 14.17793172 1.062005221 3.55E-09 2.55E-07 2.08783141 CGI-48 family protein

SJAG_01780 10.66458658 10.91155292 9.849538224 1.062014691 2.05E-07 7.52E-06 2.087845116 metaxin 1

SJAG_03028 13.37081308 15.27917531 14.21614493 1.063030378 8.33E-09 5.09E-07 2.089315519 U3 snoRNP-associated protein Rrp9

SJAG_02891 15.41756822 16.8419631 15.77640221 1.065560883 1.03E-08 6.09E-07 2.09298342 ribosomal-ubiquitin fusion protein Ubi1

SJAG_01894 13.2856257 15.29302479 14.22717943 1.065845355 5.56E-08 2.48E-06 2.093396157 F-actin capping protein alpha subunit

SJAG_02894 15.62442035 17.15097005 16.08504768 1.065922372 7.17E-08 3.08E-06 2.093507914 40S ribosomal protein S26

SJAG_01223 11.52627112 13.36081823 12.29399226 1.066825969 2.20E-09 1.75E-07 2.094819543 protein involved in protein folding in the ER

SJAG_02749 15.38377907 16.68799266 15.61875159 1.069241074 9.18E-09 5.54E-07 2.098329256 40S ribosomal protein S28

SJAG_03510 11.70423697 12.68356903 11.61410966 1.069459373 1.79E-07 6.71E-06 2.098646786 hypothetical protein

SJAG_02805 11.64321021 13.04228911 11.97170892 1.070580185 2.85E-07 1.00E-05 2.100277831 AP-2 adaptor complex subunit Aps2

SJAG_04422 11.60624357 12.55772502 11.48493891 1.072786105 7.96E-06 0.000162573 2.10349167 hypothetical protein

SJAG_01826 12.3054637 14.22743274 13.15318227 1.074250475 5.19E-09 3.48E-07 2.105627848 NatB N-acetyltransferase complex catalytic subunit Nat3

SJAG_04277 13.46619478 13.2071365 12.13262389 1.074512611 2.51E-05 0.000423588 2.106010473 brefeldin A resistance protein

SJAG_04332 13.2924318 13.09228062 12.01533919 1.076941424 2.92E-08 1.46E-06 2.109558981 M phase inducer phosphatase Cdc25

SJAG_03796 10.10562492 10.6505307 9.571006562 1.07952414 2.28E-05 0.000390878 2.1133389 RNase P and RNase MRP subunit

SJAG_04672 16.25418427 17.33758372 16.25787135 1.07971237 2.66E-08 1.35E-06 2.113614648 40S ribosomal protein S25

SJAG_01172 11.1885245 12.41125313 11.3300188 1.081234322 1.43E-08 8.07E-07 2.115845555 tRNA pseudouridylate synthase

SJAG_03201 11.11786449 12.37786238 11.29636631 1.081496073 4.25E-07 1.42E-05 2.116229471 hypothetical protein

SJAG_03080 14.62530025 17.47789163 16.39560667 1.082284963 3.27E-07 1.13E-05 2.117386977 fungal protein

SJAG_03458 13.05932019 14.59843705 13.51563627 1.082800778 1.48E-06 4.01E-05 2.118144154 nucleolar protein Nop52 family protein

SJAG_03351 11.5750103 12.29355971 11.20894112 1.084618597 2.49E-08 1.28E-06 2.120814733 anaphase-promoting complex subunit Apc8

SJAG_04390 12.43296354 13.60762178 12.52008882 1.087532958 1.68E-08 9.25E-07 2.12510328 fungal protein

SJAG_01666 11.24988443 12.8310268 11.74338026 1.087646537 1.26E-06 3.51E-05 2.12527059 fungal protein

SJAG_03365 12.35841986 15.23805978 14.14879506 1.089264721 8.02E-09 4.94E-07 2.127655714 hypothetical protein
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SJAG_01190 11.82309246 13.77858165 12.68798284 1.090598816 5.23E-09 3.49E-07 2.12962412 cytochrome c oxidase subunit VIa

SJAG_06309 10.98650713 14.06433424 12.97184769 1.092486551 3.48E-07 1.19E-05 2.13241251 autophagy associated ubiquitin-like modifier Atg12

SJAG_02065 9.968152938 10.22952817 9.13535271 1.094175458 1.74E-05 0.000309822 2.134910305 TPR repeat protein Oca3/ER membrane protein complex Ecm2

SJAG_04305 13.71937185 14.44786145 13.35013147 1.097729982 8.33E-10 8.02E-08 2.1401768 homoserine O-acetyltransferase

SJAG_01087 15.91140419 17.65545935 16.55650144 1.098957905 1.32E-08 7.57E-07 2.141999147 60S ribosomal protein L23

SJAG_00921 16.41913485 17.66151423 16.5624642 1.099050031 3.66E-08 1.74E-06 2.142135931 60S ribosomal protein L26

SJAG_00360 11.78815341 13.23163092 12.13137199 1.100258932 4.01E-10 4.44E-08 2.143931678 signal recognition particle receptor beta subunit Srp102

SJAG_04125 12.46433757 12.64828831 11.54364633 1.104641979 3.26E-07 1.13E-05 2.150455055 sulfiredoxin

SJAG_00306 9.67537671 10.89506123 9.7901621 1.104899129 5.47E-07 1.73E-05 2.150838393 RNase P subunit Rpr2

SJAG_00566 14.03737141 15.57573398 14.47024005 1.105493932 1.29E-09 1.14E-07 2.151725335 small nucleolar ribonucleoprotein Nop10

SJAG_03284 9.658829557 10.19430605 9.086741601 1.107564446 9.69E-06 0.000192452 2.154815646 ribosomal protein subunit L1

SJAG_00410 10.38740752 11.57725722 10.46917262 1.108084598 3.98E-06 9.12E-05 2.155592689 hypothetical protein

SJAG_00458 12.90404557 13.91520248 12.80449628 1.110706205 5.01E-11 8.31E-09 2.159513305 DNA-directed RNA polymerase II complex subunit Rpb4

SJAG_00332 9.984283485 10.99704827 9.884623621 1.112424649 7.44E-05 0.001062818 2.162087108 kinesin-like protein Klp3

SJAG_00634 13.26863328 13.98009903 12.86696125 1.11313778 3.43E-08 1.67E-06 2.163156102 hypothetical protein

SJAG_04404 13.90123665 15.28198576 14.16804341 1.113942353 2.99E-10 3.48E-08 2.164362804 ThiJ domain-containing protein

SJAG_02225 9.797813018 10.94179468 9.827025109 1.114769574 3.42E-07 1.17E-05 2.165604175 4-amino-4-deoxychorismate lyase

SJAG_01784 13.52939038 14.66933035 13.55414931 1.115181042 5.43E-11 8.76E-09 2.166221911 UDP-glucose 4-epimerase Gal10

SJAG_03051 9.982649627 11.23281111 10.11619725 1.116613859 1.52E-07 5.83E-06 2.16837437 SWIM domain containing-Srs2 interacting protein 1

SJAG_00759 9.584043087 11.40002903 10.28321039 1.11681864 3.16E-05 0.000512749 2.168682177 RNA-binding protein Mcp2

SJAG_03611 10.4607508 11.28599517 10.16870149 1.117293679 0.000230457 0.002728466 2.169396382 hypothetical protein

SJAG_04286 10.31947478 11.12958891 10.00999808 1.119590835 4.28E-07 1.42E-05 2.172853391 hypothetical protein

SJAG_03425 16.68403195 18.27828433 17.15799424 1.120290097 3.52E-08 1.70E-06 2.173906811 60S ribosomal protein L7

SJAG_00772 13.54159708 15.98501992 14.86414386 1.120876065 0.000107362 0.001433158 2.174789949 rRNA processing protein Fcf1

SJAG_04719 10.55953008 9.990756504 8.869783585 1.12097292 0.000665915 0.00667733 2.174935956 ornithine cyclodeaminase family protein

SJAG_02280 15.28949915 16.75918236 15.63690931 1.122273059 3.17E-06 7.51E-05 2.176896865 60S ribosomal protein L11

SJAG_04553 10.63925332 12.17420459 11.0508709 1.123333693 4.99E-06 0.000110545 2.178497856 copper chaperone Sco1

SJAG_00453 12.59503282 13.71130334 12.58614376 1.12515958 2.36E-08 1.22E-06 2.181256726 Erg28 protein

SJAG_02073 12.4718248 13.04346507 11.91817323 1.125291848 1.69E-07 6.42E-06 2.181456715 hypothetical protein

SJAG_03461 12.59879924 13.18139892 12.05518953 1.126209384 5.60E-09 3.70E-07 2.182844537 translation elongation factor EF-Tu Tuf1

SJAG_01818 12.5357791 13.28498114 12.15789016 1.127090978 7.47E-09 4.67E-07 2.184178824 exosome subunit Csl4

SJAG_01116 12.10374421 14.18101324 13.05282935 1.128183895 5.28E-08 2.36E-06 2.18583408 eukaryotic protein

SJAG_06355 7.266617512 7.562648261 6.433169947 1.129478314 0.001741371 0.015023519 2.187796141 hypothetical protein

SJAG_01662 11.55340016 12.82052889 11.6905387 1.129990194 1.63E-09 1.39E-07 2.188572526 dynein light chain Dlc2

SJAG_02243 15.50111861 17.10945548 15.97726478 1.132190704 1.07E-07 4.31E-06 2.191913254 60S ribosomal protein L24

SJAG_02413 14.36297097 15.58122212 14.44888269 1.132339439 1.71E-09 1.45E-07 2.192139242 cyclophilin family peptidyl-prolyl cis-trans isomerase Cyp4

SJAG_03251 12.09143552 14.79895337 13.66601394 1.132939426 2.72E-08 1.37E-06 2.193051096 short chain dehydrogenase
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SJAG_03358 13.0564643 14.40717628 13.27323433 1.133941947 5.49E-10 5.75E-08 2.194575566 TOM complex subunit Tom20

SJAG_02870 15.2227302 17.221657 16.08437822 1.137278779 5.70E-08 2.53E-06 2.199657308 40S ribosomal protein S15

SJAG_03928 11.95442155 13.76708146 12.62789141 1.139190051 2.13E-10 2.62E-08 2.202573329 hypothetical protein

SJAG_04959 10.74460287 11.65435832 10.51501953 1.139338784 7.66E-06 0.000157662 2.202800413 hypothetical protein

SJAG_02788 6.735879949 6.992825464 5.851658038 1.141167425 0.002052552 0.01720608 2.205594271 fungal protein

SJAG_01588 15.71316343 16.88801269 15.74531078 1.142701915 1.42E-08 8.01E-07 2.207941449 60S ribosomal protein L27

SJAG_00694 14.06939673 15.97043211 14.82741692 1.143015195 3.46E-09 2.49E-07 2.208420955 orotate phosphoribosyltransferase Ura5

SJAG_01271 10.97832448 12.5995502 11.45522212 1.144328085 4.75E-08 2.16E-06 2.210431589 lipoate-protein ligase

SJAG_02600 11.31009421 13.10474612 11.9554012 1.149344924 2.13E-06 5.34E-05 2.218131541 DNA-directed RNA polymerase III complex subunit Rpc25

SJAG_00358 9.390812144 8.751450032 7.601085872 1.15036416 0.003633969 0.027146181 2.219699162 tRNA(5-methylaminomethyl-2-thiouridylate)-methyltransferase

SJAG_01669 14.43495477 14.54827337 13.39776606 1.150507311 5.74E-06 0.000124447 2.219919422 P-type proton ATPase Pma1

SJAG_01548 13.95270838 15.72212822 14.56996525 1.152162968 2.85E-06 6.88E-05 2.222468494 40S ribosomal protein S14

SJAG_04428 10.7549929 11.83492552 10.68118621 1.153739311 7.78E-09 4.82E-07 2.224898175 hypothetical protein

SJAG_00629 15.75681596 17.20462543 16.05086046 1.153764972 4.09E-07 1.37E-05 2.224937749 60S ribosomal protein L9

SJAG_05200 11.43518544 12.84062634 11.68613822 1.15448812 3.14E-10 3.61E-08 2.226053275 3-methyl-2-oxobutanoatehydroxymethyltransferase

SJAG_01347 11.04025799 12.46314882 11.30760716 1.155541662 3.07E-09 2.26E-07 2.227679465 rRNA processing protein Faf1

SJAG_05268 8.590968053 10.52253595 9.366481117 1.156054832 1.89E-06 4.85E-05 2.228471997 hypothetical protein

SJAG_03636 10.0356365 11.28046225 10.12361706 1.156845192 2.67E-08 1.36E-06 2.229693169 ribosomal protein subunit L27

SJAG_00091 10.08053689 10.05611272 8.898970291 1.157142432 5.25E-06 0.000115166 2.230152602 fungal protein

SJAG_03937 10.56794667 11.11268872 9.952780718 1.159908 2.32E-07 8.37E-06 2.234431783 RNA-binding protein

SJAG_04861 13.27762749 15.90532355 14.74317597 1.162147582 3.09E-05 0.000504003 2.237903119 hypothetical protein

SJAG_01985 13.79737022 13.4740501 12.3101269 1.163923203 0.00142959 0.012764198 2.240659151 hypothetical protein

SJAG_03524 10.60926281 11.2639122 10.09902609 1.16488611 1.74E-08 9.50E-07 2.242155147 phosphatidylserine decarboxylase Psd1

SJAG_02843 11.6054055 12.21529959 11.04968378 1.165615815 4.45E-08 2.04E-06 2.243289501 Sm snRNP core protein Smf1

SJAG_04830 12.54407407 12.24096532 11.07419221 1.166773107 5.97E-08 2.64E-06 2.24508973 NiCoT heavy metal ion transporter Nic1

SJAG_00060 8.540489608 9.325252629 8.157638424 1.167614205 0.000148887 0.001888195 2.24639901 fungal protein

SJAG_02910 11.89339181 13.26959217 12.10145218 1.16813999 2.87E-06 6.91E-05 2.247217852 UNC-50 family protein

SJAG_06428 11.26646425 12.66172487 11.49309016 1.168634707 2.32E-08 1.21E-06 2.247988581 hypothetical protein

SJAG_01241 11.21750132 11.21096399 10.0415505 1.169413486 1.54E-06 4.13E-05 2.249202391 alkaline phosphatase

SJAG_04987 9.753299661 10.14430372 8.974824692 1.169479029 3.61E-06 8.38E-05 2.249304577 HbrB family protein

SJAG_01691 11.48634944 12.02696649 10.85681664 1.170149846 8.17E-05 0.001148311 2.25035069 hypothetical protein

SJAG_03257 7.219704457 7.894243939 6.722804048 1.171439891 0.004787212 0.033729155 2.252363833 Poly(A) RNA polymerase cid11

SJAG_02857 12.78271927 14.49310891 13.32097869 1.172130221 1.31E-10 1.83E-08 2.253441849 hypothetical protein

SJAG_00018 5.280714583 8.702188391 7.528062458 1.174125932 0.000338356 0.003765951 2.256561241 hypothetical protein

SJAG_00902 11.18961995 13.20468964 12.0295464 1.175143233 5.12E-09 3.44E-07 2.258152992 acyl-CoA thioesterase

SJAG_02783 14.25587424 15.25322412 14.07626503 1.176959085 6.14E-10 6.26E-08 2.260997011 phosphomannomutase Pmm1

SJAG_04871 9.612360758 11.26283495 10.085605 1.177229947 7.14E-09 4.53E-07 2.261421547 calcipressin
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SJAG_03318 11.34460444 12.04043214 10.86015893 1.18027321 2.20E-05 0.000380568 2.266196891 N-acetyltransferase

SJAG_00269 13.98347417 15.70309144 14.52232528 1.180766158 2.53E-08 1.29E-06 2.26697135 transcriptional coactivator

SJAG_04543 12.89746955 14.30598111 13.1251378 1.180843311 2.74E-09 2.06E-07 2.267092587 DUF3074 family protein

SJAG_02113 8.724178697 12.00638529 10.82529102 1.181094267 8.57E-08 3.56E-06 2.26748698 amino acid permease

SJAG_01157 10.25284169 10.35581178 9.173365086 1.182446698 1.27E-06 3.54E-05 2.269613596 MBF complex negative regulatory component Yox1

SJAG_00307 9.192488973 9.564786166 8.381982844 1.182803322 1.46E-06 3.97E-05 2.270174697 centromere-specific histone H3 CENP-A

SJAG_05208 9.146400239 9.60001978 8.417192364 1.182827416 0.00027394 0.003156911 2.270212611 splicing factor 3B

SJAG_04281 10.25450459 10.10932839 8.925503836 1.183824557 4.76E-08 2.16E-06 2.271782247 ribosomal protein subunit S18

SJAG_04890 11.76956014 13.47243712 12.28848909 1.183948038 6.94E-08 3.01E-06 2.271976697 tRNA (guanine-N2-)-methyltransferase regulatory subunit Trm112

SJAG_06613 10.83194807 12.40042131 11.21513898 1.185282324 7.20E-08 3.09E-06 2.274078922 RNAseP RNAse MRP subunit Pop6

SJAG_00454 10.86276643 13.12993907 11.9438907 1.186048362 1.76E-10 2.31E-08 2.275286727 hypothetical protein

SJAG_01296 15.41102969 17.71085586 16.51783717 1.193018692 1.10E-09 1.03E-07 2.286306292 40S ribosomal protein S19

SJAG_03759 11.6599474 11.20190919 10.00830069 1.193608499 6.86E-05 0.000991989 2.287241179 phosphoglycerate mutase

SJAG_04420 9.405199567 10.16697167 8.972318809 1.194652857 5.07E-05 0.000765616 2.288897498 hypothetical protein

SJAG_03989 7.79163123 8.519130871 7.322648021 1.19648285 0.000270139 0.003128093 2.291802703 shugoshin Sgo1

SJAG_00970 13.59819029 14.92854203 13.73123159 1.197310435 1.77E-10 2.31E-08 2.293117745 actin cortical patch component Lsb4

SJAG_04396 11.09192831 13.16209304 11.96305722 1.199035822 8.76E-05 0.001215553 2.295861833 histone lysine methyltransferase Set3

SJAG_02778 11.15484428 12.57552073 11.37635298 1.199167756 2.50E-09 1.95E-07 2.296071798 chromatin silencing protein Clr2

SJAG_04999 11.21151288 12.75806664 11.55753943 1.200527213 9.49E-08 3.89E-06 2.298236416 protein phosphatase inhibitor

SJAG_05250 4.522527289 8.923224636 7.719664593 1.203560043 0.00123806 0.011359641 2.303072844 hypothetical protein

SJAG_03598 12.7341885 13.28531643 12.08150731 1.203809119 1.00E-10 1.47E-08 2.303470496 C-8 sterol isomerase Erg2

SJAG_00384 15.61521583 17.18023819 15.97619541 1.20404278 1.85E-09 1.53E-07 2.303843599 60S ribosomal protein L19

SJAG_03037 9.104015539 10.52030028 9.316118574 1.20418171 5.22E-07 1.67E-05 2.304065467 anaphase-promoting complex subunit Apc15

SJAG_01155 8.725756756 8.489931579 7.285134375 1.204797204 0.000146577 0.001864726 2.305048656 fungal protein

SJAG_04901 14.20489012 15.48859976 14.28303634 1.205563419 1.18E-11 2.69E-09 2.306273192 calmodulin Cam1

SJAG_02653 12.92040185 13.55947854 12.35169417 1.207784361 1.81E-09 1.51E-07 2.309826295 DNA-directed RNA polymerase I complex subunit Ker1

SJAG_01750 11.38472075 13.07674484 11.86739493 1.209349913 8.17E-10 7.97E-08 2.312334182 hypothetical protein

SJAG_01466 13.88170596 15.49479484 14.28538145 1.209413393 1.71E-07 6.46E-06 2.312435928 methylenetetrahydrofolate reductase Met11

SJAG_00480 13.75123947 15.53881408 14.3268572 1.211956879 1.75E-10 2.31E-08 2.316516373 3,4-dihydroxy-2-butanone 4-phosphate synthase

SJAG_02114 7.789791404 9.685341908 8.473348155 1.211993754 1.39E-05 0.000255906 2.316575583 hypothetical protein

SJAG_01364 16.6421635 18.54955579 17.33311858 1.216437213 7.08E-10 7.14E-08 2.323721568 60S ribosomal protein L14

SJAG_00785 12.49253309 13.788178 12.57100802 1.21716998 2.75E-07 9.70E-06 2.324902122 Sed5 Vesicle protein Svp26

SJAG_00187 9.875208834 9.951349794 8.7336749 1.217674894 7.56E-07 2.25E-05 2.325715932 bromodomain containing protein 1

SJAG_02477 16.79945603 18.74273951 17.52329928 1.21944023 1.57E-09 1.35E-07 2.328563508 40S ribosomal protein S5

SJAG_00909 11.18004619 13.23728803 12.01754131 1.219746724 1.51E-09 1.31E-07 2.329058253 mediator complex subunit Med10

SJAG_04304 16.39637023 18.15840447 16.93689577 1.221508705 6.59E-09 4.27E-07 2.331904497 60S ribosomal protein L25

SJAG_03287 8.219287876 9.761410625 8.53871181 1.222698816 1.81E-06 4.68E-05 2.333828931 bouquet formation protein Bqt2
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SJAG_05181 13.74979906 16.20412631 14.97675352 1.22737279 1.40E-05 0.000257036 2.341402219 glutathione S-transferase Gst3

SJAG_03762 16.57922924 18.40823859 17.17990471 1.228333881 1.25E-10 1.78E-08 2.342962528 40S ribosomal protein S15a

SJAG_04164 9.438580605 9.887314529 8.657539906 1.229774623 2.81E-06 6.81E-05 2.345303488 ribosomal protein subunit Mrp21

SJAG_03232 10.03581994 12.12046556 10.89035321 1.230112347 7.06E-07 2.13E-05 2.345852569 translation termination factor Rrf1

SJAG_02524 11.54976413 12.85917851 11.62819176 1.230986757 1.39E-08 7.92E-07 2.34727481 TIM22 inner membrane protein import complex subunit Tim8

SJAG_01714 15.38765703 17.36734588 16.13301455 1.234331334 1.01E-07 4.13E-06 2.352722773 cyclophilin family peptidyl-prolyl cis-trans isomerase Cyp2

SJAG_03326 14.55206014 16.35008194 15.11374721 1.236334736 2.64E-09 2.02E-07 2.355992156 60S ribosomal protein L37

SJAG_03922 14.54628501 15.58498444 14.34619876 1.238785683 4.82E-08 2.18E-06 2.359998075 60S ribosomal protein L24

SJAG_02726 12.06100882 14.50580644 13.26680802 1.238998423 4.18E-08 1.94E-06 2.360346106 N-acetyltransferase

SJAG_01273 7.156368648 7.911587367 6.671174719 1.240412649 0.001664482 0.014469239 2.362661009 hypothetical protein

SJAG_03309 14.11603455 15.28950646 14.04664221 1.24286425 4.19E-11 7.25E-09 2.36667934 endosulphine family protein

SJAG_01066 12.24382352 13.60453568 12.35982799 1.244707695 5.45E-07 1.72E-05 2.369705366 hypothetical protein

SJAG_03164 12.72291263 13.40161132 12.15548056 1.246130755 1.13E-07 4.50E-06 2.372043973 orotidine 5'-phosphate decarboxylase Ura4

SJAG_03848 12.45954903 14.03975757 12.78962164 1.250135936 3.82E-07 1.29E-05 2.378638344 SNARE Pep12

SJAG_00792 13.92950058 16.56033663 15.31001486 1.250321768 4.23E-08 1.95E-06 2.378944753 iron-sensing transcription factor Fep1

SJAG_03962 13.2132309 14.82250767 13.57047178 1.252035888 9.05E-10 8.55E-08 2.381772945 hypothetical protein

SJAG_00084 11.82033176 10.7859798 9.531172806 1.254806992 0.000137315 0.001766253 2.386352211 adenylyl-sulfate kinase

SJAG_04751 8.523159808 9.089554949 7.831451835 1.258103114 0.000239205 0.002819453 2.391810537 ELLA family acetyltransferase

SJAG_02442 16.39564023 18.93849988 17.67987517 1.258624705 0.001203872 0.011102678 2.392675427 hypothetical protein

SJAG_01941 11.51368372 12.17828586 10.91825564 1.260030223 2.54E-09 1.97E-07 2.395007582 sulfate transporter

SJAG_02675 5.057413836 7.956097837 6.695933139 1.260164698 0.004431864 0.031725898 2.395230833 hypothetical protein

SJAG_00026 8.034947522 10.1764911 8.914501982 1.261989123 6.12E-07 1.88E-05 2.398261746 hypothetical protein

EFSJAG00000000 11.97710329 15.3044518 14.04188298 1.262568819 1.17E-11 2.69E-09 2.399225597 Small nucleolar RNA SNORD14 [Source:RFAM;Acc:RF00016]

SJAG_00836 11.7038455 13.6712203 12.40782094 1.263399356 5.08E-11 8.31E-09 2.400607192 F0-ATPase subunit

SJAG_03079 11.31483046 12.86166996 11.59550339 1.266166569 7.73E-06 0.000158552 2.405216181 membrane transporter

SJAG_03043 15.1581501 17.45644366 16.18970325 1.266740405 8.27E-10 8.00E-08 2.406173052 60S ribosomal protein L43-B

SJAG_04106 9.634503924 11.15288957 9.881868341 1.271021228 1.63E-06 4.32E-05 2.413323349 DNA-directed RNA polymerase complex I subunit Rpa12

SJAG_02871 15.83254933 17.43301298 16.15869588 1.274317107 4.58E-09 3.11E-07 2.418842959 60S acidic ribosomal protein P2-alpha

SJAG_04324 16.73960568 18.58521523 17.31081021 1.274405021 5.61E-08 2.50E-06 2.418990361 40S ribosomal protein S4

SJAG_03468 12.6601866 14.47294792 13.19834077 1.274607153 1.90E-09 1.56E-07 2.419329304 DNA-directed RNA polymerase I complex subunit Rpa34

SJAG_01660 14.28471988 14.01188053 12.73621037 1.275670163 1.55E-10 2.07E-08 2.421112577 glutathione transporter Pgt1

SJAG_00855 12.44361331 15.015165 13.73822434 1.276940653 1.18E-07 4.68E-06 2.423245636 ubiquitin conjugating enzyme Ubc8

SJAG_04759 8.279722528 9.332648857 8.05330763 1.279341227 4.47E-05 0.000685484 2.427281155 mitocondrial FUN14 family protein

SJAG_05211 9.522689424 12.65260424 11.37096071 1.281643533 2.52E-06 6.21E-05 2.431157791 hypothetical protein

SJAG_03270 12.93442558 14.12092989 12.83608884 1.284841044 9.09E-11 1.35E-08 2.436552053 COPII-coated vesicle component Erp2/3/4

SJAG_01206 12.69757967 14.40937242 13.12143469 1.287937727 1.87E-10 2.40E-08 2.441787626 hypothetical protein

SJAG_02944 3.557527864 7.890762289 6.601931807 1.288830482 0.003388343 0.025697219 2.443299096 hypothetical protein
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SJAG_00580 10.76051705 11.9971708 10.70833834 1.288832462 1.31E-06 3.63E-05 2.44330245 farnesyl pyrophosphate synthetase

SJAG_00983 10.38797954 12.61314868 11.32161828 1.291530395 7.23E-09 4.56E-07 2.447875858 ADP-ribosylation factor Alp41

SJAG_06420 7.929632611 10.43987109 9.1468949 1.292976187 4.82E-06 0.000107396 2.450330218 hypothetical protein

SJAG_04009 13.70456785 13.7217404 12.4260311 1.295709303 1.06E-06 3.03E-05 2.45497665 transcription factor Ste11

SJAG_03607 3.81167029 7.09186242 5.795827205 1.296035215 0.002778567 0.02190852 2.455531305 hypothetical protein

SJAG_03430 10.28287372 11.30911231 10.01254382 1.29656849 2.04E-06 5.17E-05 2.456439131 WW domain-binding protein 4

SJAG_03297 10.19164375 12.36612387 11.06406927 1.302054602 5.81E-10 6.03E-08 2.465797973 ribosomal protein subunit L19

SJAG_01551 16.33104539 17.90651724 16.59828102 1.308236221 5.21E-08 2.35E-06 2.476386022 60S ribosomal protein L7

SJAG_04880 12.35424799 14.0121863 12.70383726 1.308349044 3.47E-09 2.49E-07 2.476579689 mRNA decapping complex subunit

SJAG_04112 10.25038257 10.46837721 9.159405097 1.308972109 5.65E-07 1.76E-05 2.477649496 hypothetical protein

SJAG_04290 12.62967402 14.41079058 13.1010359 1.309754676 2.16E-07 7.90E-06 2.478993823 proteasome maturation factor Ump1

SJAG_02682 10.18893034 11.95527606 10.64451723 1.310758826 4.17E-05 0.000647543 2.480719861 40S ribosomal protein S23

SJAG_03537 11.02157355 12.76083542 11.44975942 1.311076002 5.43E-10 5.70E-08 2.481265306 histone N-acetyltransferase

SJAG_01567 11.30296788 14.1463358 12.83331672 1.313019077 2.27E-05 0.000390102 2.484609418 hypothetical protein

SJAG_01139 11.05958454 12.0482727 10.7338954 1.314377299 9.04E-08 3.72E-06 2.486949649 phosphopantothenate-cysteine ligase

SJAG_04155 14.68089284 15.67109865 14.35399811 1.317100539 1.69E-11 3.55E-09 2.491648464 FKBP-type peptidyl-prolyl cis-trans isomerase Fkh1

SJAG_06002 9.970654039 12.15697779 10.83972546 1.31725233 1.23E-07 4.85E-06 2.491910633 hypothetical protein

SJAG_04212 11.94765163 13.58590792 12.2649849 1.320923024 5.60E-05 0.000835097 2.498258952 hypothetical protein

SJAG_05216 13.5840798 15.19540854 13.87332562 1.322082923 5.34E-11 8.67E-09 2.500268311 60S ribosomal protein L34

SJAG_01246 11.56926758 12.53554276 11.21299701 1.322545746 2.72E-08 1.37E-06 2.501070537 cyclophilin family peptidyl-prolyl cis-trans isomerase Cyp2

SJAG_01199 15.85026908 15.60556294 14.28285825 1.322704694 2.80E-07 9.87E-06 2.501346105 thioredoxin peroxidase Tpx1

SJAG_02786 16.66998533 19.31977061 17.99656537 1.323205241 1.54E-08 8.59E-07 2.502214105 translationally controlled tumor protein

SJAG_00950 11.54556176 12.74851692 11.42414335 1.324373576 1.52E-09 1.31E-07 2.50424129 peptidyl-prolyl cis-trans isomerase NIMA-interacting 4

SJAG_01261 11.58571211 12.39602523 11.06913944 1.32688579 0.000132984 0.001716894 2.508605809 leucine carboxyl methyltransferase

SJAG_03245 13.110402 15.49571666 14.1688033 1.326913363 4.14E-08 1.93E-06 2.508653755 RING finger-like protein Ini1

SJAG_01014 13.56899146 15.38187776 14.05267318 1.329204583 1.29E-11 2.86E-09 2.512641044 20S proteasome component beta 2

SJAG_03483 7.280400101 10.08314426 8.753116522 1.330027743 3.86E-06 8.87E-05 2.514075094 GPI anchored cell surface protein

SJAG_02462 12.46965596 15.14703139 13.81565936 1.331372023 6.45E-09 4.20E-07 2.516418761 YjeF family protein

SJAG_01251 9.295793083 11.20992678 9.878283502 1.331643282 2.90E-06 6.99E-05 2.516891949 autophagy C terminal domain family protein

EFSJAG00000000 8.93211767 10.49264644 9.160884643 1.331761794 9.43E-06 0.000187996 2.51709871 Small nucleolar RNA snR87 [Source:RFAM;Acc:RF01216]

SJAG_04836 5.427653569 8.946180781 7.6114056 1.334775181 4.75E-05 0.000721094 2.522361721 hypothetical protein

SJAG_03984 12.05928096 14.32855238 12.99369677 1.334855616 5.64E-11 9.00E-09 2.522502355 zinc knuckle TRAMP complex subunit Air1

SJAG_05292 10.6222224 11.59111588 10.25503469 1.336081182 3.76E-09 2.68E-07 2.524646125 hypothetical protein

SJAG_00601 10.28389735 11.98137675 10.6406832 1.340693545 5.75E-06 0.000124497 2.532730451 ubiquinol-cytochrome-c reductase complex subunit 5

SJAG_04174 15.96139376 18.09012551 16.74900361 1.341121893 9.09E-09 5.51E-07 2.533482551 40S ribosomal protein S21

SJAG_04015 12.36989544 13.6147365 12.26825126 1.346485234 1.97E-11 3.97E-09 2.542918516 V-type ATPase V1 subunit F

SJAG_01996 10.4049773 11.3152131 9.96768292 1.347530177 7.33E-07 2.19E-05 2.544761017 copper chaperone



Annexe 4: Late timepoint analysis

 13

SJAG_02740 13.45269806 15.16849396 13.82014205 1.348351907 1.83E-05 0.00032228 2.546210874 hypothetical protein

SJAG_05246 7.247216518 9.445706196 8.096611975 1.349094221 6.12E-07 1.88E-05 2.547521321 hypothetical protein

SJAG_00194 12.07524986 14.61594792 13.2662538 1.349694118 1.30E-08 7.49E-07 2.548580844 hypothetical protein

SJAG_02531 17.09191145 18.69605468 17.34380718 1.352247502 2.90E-09 2.17E-07 2.553095498 60S ribosomal protein L10a

SJAG_03062 13.67141242 14.67035098 13.31573819 1.35461279 5.09E-07 1.64E-05 2.557284712 WDR8 family WD repeat protein

SJAG_02480 9.449291602 12.5280988 11.17290334 1.35519546 9.16E-09 5.54E-07 2.558317747 hypothetical protein

SJAG_02189 16.95573676 17.91740527 16.56110009 1.35630518 2.99E-08 1.49E-06 2.560286359 translation elongation factor eIF5A

SJAG_04007 11.6408709 14.89985741 13.54067704 1.359180362 1.49E-07 5.72E-06 2.565393905 fungal protein

SJAG_01149 11.0488565 12.20659965 10.84648755 1.360112098 1.51E-10 2.04E-08 2.567051248 domain kinase I gamma subunit

SJAG_01721 14.89953829 16.08930185 14.72834538 1.360956465 3.11E-08 1.53E-06 2.568554107 60S ribosomal protein L17

SJAG_02170 10.40324334 11.69274668 10.32974202 1.363004656 1.02E-07 4.15E-06 2.572203268 Set1C complex subunit Shg1

SJAG_04953 15.1418736 15.75457675 14.38888227 1.365694483 7.52E-12 1.84E-09 2.577003475 cytosolic thioredoxin Trx1

SJAG_04612 12.6522789 14.36594042 12.99374766 1.372192761 1.61E-13 1.15E-10 2.588637159 ubiquitin conjugating enzyme Ubc7/UbcP3

SJAG_02192 14.83936016 16.58932875 15.21688472 1.372444026 5.92E-08 2.62E-06 2.589088044 glucan 1,3-beta-glucosidase Bgl2

SJAG_04430 14.19535657 15.99290636 14.61809868 1.374807676 1.97E-08 1.05E-06 2.593333373 hypothetical protein

SJAG_03476 11.216525 13.44057627 12.06534896 1.375227305 4.33E-09 2.97E-07 2.594087792 NADPH quinone oxidoreductase/ARE-binding protein

SJAG_00147 11.53469678 12.86214824 11.48402712 1.378121117 4.17E-09 2.90E-07 2.599296332 Sm snRNP core protein Smd1

SJAG_03931 12.87544567 14.28519855 12.90561121 1.37958734 8.66E-12 2.07E-09 2.60193936 CK2 family regulatory subunit

SJAG_03669 11.51123025 12.70286716 11.32072028 1.382146878 8.94E-09 5.43E-07 2.606559654 hypothetical protein

SJAG_04474 13.42442905 15.41485757 14.03241499 1.382442581 2.82E-11 5.21E-09 2.607093964 coatomer zeta subunit

SJAG_04998 16.50731989 18.95285639 17.56987193 1.382984467 2.94E-11 5.38E-09 2.60807339 40S ribosomal protein S27

SJAG_01747 10.66769531 12.6614934 11.2777643 1.383729095 4.88E-07 1.58E-05 2.60941986 nuclear distribution protein NUDC

SJAG_00450 10.3638649 11.8441141 10.46017603 1.383938065 4.07E-10 4.49E-08 2.609797855 hypothetical protein

SJAG_04131 10.64726518 12.0229002 10.63675046 1.386149738 5.03E-11 8.31E-09 2.613801782 NatC N-acetyltransferase complex catalytic subunit

SJAG_04867 11.7233448 12.70357109 11.31159993 1.391971158 8.65E-10 8.21E-08 2.624370042 ferrous iron transporter Pcl1

SJAG_00751 12.57218341 15.33083166 13.93835894 1.392472723 1.92E-10 2.45E-08 2.625282585 fungal protein

SJAG_04196 13.62932672 15.22899649 13.83480573 1.394190759 2.17E-13 1.27E-10 2.62841077 COPII-coated vesicle component Emp24

SJAG_05301 11.95860388 13.17837942 11.78384323 1.394536189 6.33E-06 0.000135362 2.629040176 origin recognition complex subunit Orp3

SJAG_01051 11.40267841 13.46342524 12.06652668 1.396898563 2.17E-10 2.65E-08 2.633348684 CUE domain-containing protein Cue1/4 family protein

SJAG_04654 11.48411204 13.66733426 12.26913171 1.398202545 1.27E-11 2.83E-09 2.635729917 transcription factor TFIID complex subunit Taf13

SJAG_02046 17.0492783 18.93126781 17.53146717 1.399800647 2.21E-09 1.75E-07 2.638651185 40S ribosomal protein S7

SJAG_05279 12.45170163 14.67791686 13.27774026 1.400176594 0.000287464 0.003285018 2.639338872 hypothetical protein

EFSJAG00000000 7.138330911 8.138653389 6.738292078 1.400361311 2.37E-05 0.00040273 2.639676825 Small nucleolar RNA snR75 [Source:RFAM;Acc:RF01185]

SJAG_04344 12.7768991 15.89391171 14.49279105 1.401120658 4.84E-05 0.000734733 2.641066556 hypothetical protein

SJAG_03362 12.56745242 14.97906873 13.57742902 1.401639701 4.78E-09 3.23E-07 2.642016912 thiamine diphosphokinase Tnr3

SJAG_00931 12.22183298 13.79619615 12.39409847 1.402097686 2.17E-08 1.14E-06 2.642855755 ubiquitin conjugating enzyme Ubc1

SJAG_00449 9.088899647 10.31531722 8.910063182 1.405254036 1.19E-05 0.000226439 2.648644165 cytochrome C oxidase copper chaperone Cox17
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SJAG_06135 7.834308326 8.656550762 7.249019567 1.407531195 3.59E-05 0.00056978 2.652828103 hypothetical protein

SJAG_03821 15.37415414 17.59384652 16.18561923 1.408227288 1.88E-06 4.85E-05 2.654108387 hypothetical protein

SJAG_00765 15.81563037 17.42044126 16.01205626 1.408384999 1.27E-10 1.79E-08 2.654398541 60S ribosomal protein L19

SJAG_00310 12.44677441 11.24951853 9.837015436 1.412503094 0.000163018 0.002031759 2.661986204 mannan endo-1,6-alpha-mannosidase DCW1

SJAG_02860 10.77967096 13.6911318 12.27784016 1.413291637 1.24E-09 1.11E-07 2.66344158 PAS family protein

SJAG_01216 15.19409321 16.26646463 14.85189926 1.414565368 2.70E-05 0.000450644 2.665794125 glutathione peroxidase Gpx1

SJAG_00020 9.408092134 12.45385281 11.03758041 1.416272405 1.05E-09 9.89E-08 2.668950235 trichothecene 3-O-acetyltransferase

SJAG_06600 3.783543711 8.499951956 7.082648079 1.417303877 0.001653235 0.014392002 2.670859115 hypothetical protein

SJAG_05221 9.847705362 12.66387833 11.24088965 1.422988681 1.23E-08 7.14E-07 2.681404145 translation release factor

SJAG_04487 10.28947563 10.16720317 8.743686333 1.423516835 9.60E-09 5.75E-07 2.682385956 deoxyuridine 5'-triphosphate nucleotidohydrolase

SJAG_03166 15.35266613 14.80229675 13.37727999 1.425016759 4.00E-08 1.87E-06 2.685176198 thioredoxin peroxidase

SJAG_02581 9.447497411 12.49555218 11.06841465 1.427137528 2.75E-09 2.06E-07 2.689126323 hypothetical protein

SJAG_03252 13.42523947 16.29443137 14.86686342 1.42756795 4.20E-10 4.59E-08 2.689928731 U3 snoRNP-associated protein Imp4

SJAG_01018 10.1788168 11.5052296 10.07713211 1.428097493 3.96E-08 1.86E-06 2.690916254 NEDD8-conjugating enzyme Ubc12

SJAG_04204 15.30292877 17.59149415 16.15593423 1.435559923 4.23E-09 2.94E-07 2.704871247 40S ribosomal protein S17

SJAG_03955 12.61525098 14.37418682 12.93820311 1.435983711 2.04E-10 2.55E-08 2.705665913 ER protein translocation subcomplex subunit Sec72

SJAG_00808 13.96672046 15.77577641 14.33891171 1.436864699 5.17E-07 1.65E-05 2.707318645 20S proteasome component alpha 3

SJAG_06595 7.246592186 8.534930036 7.096725259 1.438204778 0.00037125 0.004079896 2.709834565 hypothetical protein

SJAG_04799 8.869283232 9.748526157 8.308293862 1.440232295 1.37E-05 0.000253507 2.713645557 hypothetical protein

SJAG_04626 16.91111614 18.98057902 17.53732119 1.443257835 3.41E-10 3.85E-08 2.719342435 60S ribosomal protein L36/L42

SJAG_02469 11.27915372 12.90736188 11.4557693 1.451592582 7.92E-10 7.79E-08 2.735098106 U6 snRNP-associated protein core protein

SJAG_05237 12.59556753 15.37127619 13.91661704 1.454659148 6.67E-09 4.29E-07 2.740917963 structure-specific endonuclease catalytic subunit

SJAG_03929 12.27647634 14.42347438 12.9675885 1.455885882 6.93E-10 7.01E-08 2.743249576 cytochrome b5

SJAG_01355 12.13625318 13.77736866 12.3186798 1.458688858 5.21E-09 3.48E-07 2.748584547 cytochrome c oxidase subunit VI

SJAG_00300 12.8666045 15.89936237 14.44031445 1.459047911 1.88E-08 1.01E-06 2.749268692 ubiquitin conjugating enzyme Ubc15

SJAG_01218 12.48742825 14.14056312 12.6799862 1.460576919 1.16E-12 4.79E-10 2.752183987 ski complex subunit Rec14

SJAG_00507 14.54059938 17.08699886 15.62522962 1.46176924 5.94E-10 6.10E-08 2.75445948 translation initiation factor eIF4E

SJAG_06383 9.0857039 10.0928202 8.629407582 1.463412622 3.36E-07 1.15E-05 2.757598888 hypothetical protein

SJAG_01853 16.61788645 18.68511519 17.22034991 1.464765282 5.83E-09 3.83E-07 2.760185604 60S ribosomal protein L34

SJAG_04625 13.30079319 14.63704727 13.17039082 1.46665645 3.47E-07 1.18E-05 2.763806187 DUF1761 family protein

SJAG_05153 13.09199463 13.56095611 12.09424838 1.466707733 3.62E-06 8.39E-05 2.763904433 mating-type m-specific polypeptide mc

SJAG_01054 9.203424852 9.87649316 8.409172545 1.467320615 4.90E-07 1.59E-05 2.765078838 CMP/dCMP deaminase family protein

SJAG_02890 13.96068244 15.37439816 13.90479531 1.469602856 1.32E-10 1.83E-08 2.769456458 60S ribosomal protein L14

SJAG_00550 11.65465689 13.39180657 11.92053592 1.47127065 6.51E-11 1.00E-08 2.772659874 WD40/YVTN repeat-like protein

SJAG_04601 12.72304298 14.49069117 13.01778625 1.47290492 3.51E-10 3.93E-08 2.775802494 poly(A) binding protein Pab2

SJAG_05199 9.963103904 11.50674441 10.03293911 1.473805308 9.85E-06 0.000194028 2.777535417 inner membrane protein

SJAG_00138 13.90992652 15.83776492 14.35354397 1.48422095 3.47E-09 2.49E-07 2.797660597 fungal protein
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SJAG_00316 11.29204619 13.59335744 12.10724488 1.486112561 3.44E-10 3.87E-08 2.801331197 hypothetical protein

SJAG_04026 10.99366823 12.84114803 11.35412711 1.487020923 1.57E-09 1.35E-07 2.80309555 hypothetical protein

SJAG_02510 15.64200417 17.30121507 15.81197676 1.489238311 3.70E-09 2.64E-07 2.807407154 60S ribosomal protein L43-B

SJAG_03068 11.65865667 12.11018215 10.61528868 1.494893466 6.34E-09 4.13E-07 2.818433379 DNA repair protein

SJAG_01458 12.78863478 14.64111434 13.14258331 1.498531028 1.28E-10 1.79E-08 2.825548646 acyl-coenzyme A binding protein

SJAG_01624 11.79428906 13.4650834 11.96208255 1.503000847 3.26E-11 5.84E-09 2.834316456 GINS complex subunit Sld5

SJAG_04918 8.543925542 10.20796883 8.699698504 1.508270322 1.12E-07 4.49E-06 2.844687789 ribosomal protein subunit S19

SJAG_03171 6.359700874 8.785884765 7.276597769 1.509286996 1.33E-05 0.00024747 2.84669316 hypothetical protein

SJAG_03954 11.37535423 13.43194311 11.92166132 1.510281788 1.20E-09 1.09E-07 2.848656738 U6 snRNP-associated protein Lsm6

SJAG_00341 9.678328075 10.4768058 8.966288458 1.510517345 4.40E-07 1.46E-05 2.849121893 RING-box protein 1

SJAG_04506 13.42416825 16.20323387 14.69242749 1.510806381 8.27E-10 8.00E-08 2.849692756 myo-inositol transporter Itr1

SJAG_04838 13.19375493 15.85748597 14.34439 1.513095974 2.30E-09 1.81E-07 2.85421888 rRNA processing protein Fcf2

SJAG_03773 10.56198628 12.25445894 10.74025095 1.514207989 1.74E-09 1.46E-07 2.85641973 2' O-ribose methyltransferase Mrm2

SJAG_01545 12.17668084 14.39377411 12.87799038 1.515783733 7.24E-09 4.56E-07 2.859541281 prefoldin subunit 6

SJAG_03438 8.650128142 9.597277317 8.080988839 1.516288477 2.89E-05 0.000478919 2.860541901 CAMK/RAD53 protein kinase Mek1

SJAG_05154 11.45194359 11.57261145 10.04818463 1.524426827 0.002475788 0.019929767 2.87672403 hypothetical protein

SJAG_01526 10.73965176 12.27522806 10.7442785 1.530949559 3.32E-11 5.91E-09 2.88975976 tubulin specific chaperone cofactor C

SJAG_01000 10.97138749 12.6916324 11.15952414 1.532108256 1.39E-07 5.39E-06 2.892081596 CMGC/CDK protein kinase Csk1

SJAG_02504 11.2020082 13.92106277 12.38837209 1.532690681 4.17E-10 4.58E-08 2.893249381 cytochrome c oxidase subunit VIb

SJAG_03472 15.41004473 18.49340497 16.95688795 1.536517013 7.08E-11 1.08E-08 2.900933076 translation initiation factor eIF3g

SJAG_04674 11.21011924 12.31690486 10.77706179 1.539843072 0.000686568 0.006861458 2.907628742 hypothetical protein

SJAG_06591 2.214948918 8.056059684 6.515620755 1.540438929 0.000400797 0.004351638 2.908829889 hypothetical protein

SJAG_06468 10.40734617 11.8526745 10.30999556 1.542678936 3.69E-11 6.52E-09 2.913349806 hypothetical protein

SJAG_00273 13.92453481 17.77780097 16.23447777 1.5433232 4.16E-06 9.49E-05 2.914651109 hypothetical protein

SJAG_00064 13.00317474 14.7025165 13.15892985 1.543586642 2.51E-13 1.39E-10 2.915183385 translocon beta subunit Sbh1

SJAG_04908 13.3071117 15.32901789 13.78152003 1.547497858 1.77E-11 3.68E-09 2.923097312 U3 snoRNP-associated protein Utp7

SJAG_03253 13.91879223 16.0952785 14.54620759 1.549070908 1.73E-05 0.000308182 2.926286263 hypothetical protein

SJAG_04746 16.3196095 18.92567128 17.37430801 1.551363273 4.45E-10 4.80E-08 2.930939671 40S ribosomal protein S28

SJAG_00593 12.02884976 14.27141859 12.71941817 1.552000418 2.73E-11 5.07E-09 2.932234364 short chain dehydrogenase DHRS family protein

SJAG_04909 12.94505851 14.62379799 13.06591359 1.557884406 2.59E-12 8.25E-10 2.944217814 alpha SNAP

SJAG_02745 10.92644034 12.90022711 11.33929925 1.560927863 6.15E-12 1.58E-09 2.950435385 DUF1715 family protein

SJAG_01330 11.41615075 13.43522874 11.87316919 1.562059546 6.08E-11 9.50E-09 2.952750681 spindle checkpoint protein Mad2

SJAG_05223 11.0273802 13.67214498 12.10758205 1.564562932 6.14E-14 6.24E-11 2.957878786 zf-HIT protein Hit1

SJAG_02081 15.36112548 17.78088527 16.21483485 1.566050419 9.97E-10 9.38E-08 2.960930072 60S ribosomal protein L38

SJAG_00960 12.6256446 14.88044612 13.31420115 1.566244963 0.000594323 0.006086821 2.961329373 fungal protein

SJAG_00179 9.108249217 10.91367067 9.346821728 1.566848944 2.11E-07 7.72E-06 2.962569387 glutathione S-transferase Gst2

SJAG_00113 8.662882656 10.49113541 8.922704778 1.568430632 1.56E-06 4.17E-05 2.965819159 hypothetical protein
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SJAG_00389 14.55601983 17.78092968 16.21232606 1.568603617 0.000279448 0.003206946 2.966174794 hypothetical protein

SJAG_01670 11.94664353 13.01101399 11.44132555 1.569688435 3.76E-08 1.78E-06 2.968406014 DNAJC9 family DNAJ domain-containing protein

SJAG_01665 12.16394762 13.49233274 11.92250414 1.569828606 2.91E-10 3.42E-08 2.968694435 myosin II regulatory light chain Rlc1

SJAG_01839 13.23055876 15.47132553 13.89984457 1.571480961 9.73E-12 2.30E-09 2.972096504 RNA-binding protein

SJAG_03149 11.1557362 12.24443085 10.6711128 1.573318048 5.89E-10 6.08E-08 2.975883498 acetylglucosaminyltransferase

SJAG_03133 15.13333261 16.93121654 15.34806279 1.583153755 1.43E-09 1.25E-07 2.996241177 60S ribosomal protein L36

SJAG_04690 11.3856646 12.82436094 11.23940544 1.584955505 4.28E-09 2.95E-07 2.999985453 beta-glucan synthesis-associated protein

SJAG_03254 15.25866856 17.73332431 16.14686558 1.586458726 1.71E-08 9.36E-07 3.003112927 40S ribosomal protein S29

SJAG_02708 12.2335448 14.60700332 13.01337661 1.59362671 7.62E-09 4.73E-07 3.018070925 RecA family ATPase Rhp55

SJAG_03118 12.83310944 14.34062193 12.74597083 1.594651101 1.36E-13 1.10E-10 3.020214678 RNA polymerase II associated Paf1 complex

SJAG_01280 13.45746118 16.3156619 14.71959881 1.596063086 1.39E-11 3.05E-09 3.023172051 zinc finger protein

SJAG_02887 12.08091608 12.34280947 10.74288793 1.599921542 7.53E-09 4.69E-07 3.03126828 nucleoside diphosphate kinase Ndk1

SJAG_02218 12.53784167 13.43562014 11.83332159 1.602298555 3.46E-12 1.01E-09 3.036266773 MADS-box transcription factor Mbx1

SJAG_04364 11.69252615 12.0700332 10.46368321 1.606349986 8.42E-10 8.08E-08 3.044805317 hypothetical protein

EFSJAG00000000 10.1769829 11.60561265 9.994917165 1.610695485 2.35E-08 1.22E-06 3.05399031 Small nucleolar RNA SNORD24 [Source:RFAM;Acc:RF00069]

SJAG_04776 7.540008809 8.713240565 7.099068337 1.614172228 6.49E-06 0.000137751 3.061358981 hypothetical protein

SJAG_06392 10.73591091 12.23602665 10.619559 1.616467646 2.05E-09 1.65E-07 3.066233672 hypothetical protein

SJAG_04984 10.7144532 13.07342034 11.4453594 1.628060943 4.54E-09 3.09E-07 3.090972766 carrier with solute carrier repeats

SJAG_04450 12.50021438 16.90637205 15.27199814 1.634373905 5.14E-06 0.000113161 3.104527917 fungal protein

SJAG_05872 9.631202606 11.42541665 9.789357834 1.636058812 2.09E-10 2.60E-08 3.108155778 hypothetical protein

SJAG_04217 14.36699565 15.99685698 14.35824956 1.638607421 2.36E-13 1.34E-10 3.113651378 cytochrome b5

SJAG_03460 11.93021576 14.03933274 12.39764649 1.641686245 8.64E-11 1.29E-08 3.120303249 U6 snRNP-associated protein Lsm3

SJAG_03793 13.65804442 15.52027408 13.87664533 1.643628749 2.07E-14 2.97E-11 3.124507383 calcineurin regulatory subunit

SJAG_01282 11.83653229 13.08950181 11.44449989 1.645001925 2.05E-11 4.06E-09 3.127482746 signal recognition particle subunit Srp14

SJAG_04939 10.38382276 12.81069945 11.16152154 1.649177909 2.48E-10 3.01E-08 3.136548583 bis(5'-adenosyl)-triphosphatase

SJAG_02002 10.97643387 12.37625638 10.72684964 1.64940674 6.19E-09 4.04E-07 3.13704612 eukaryotic protein

SJAG_03739 11.54918481 14.07133532 12.42183775 1.64949757 3.48E-12 1.01E-09 3.137243632 inositol monophosphatase

SJAG_04195 13.10132224 16.18549567 14.53544101 1.650054663 2.40E-10 2.93E-08 3.138455304 leydig cell tumor protein

SJAG_00569 11.41677219 13.12111488 11.4676971 1.65341778 4.87E-08 2.20E-06 3.14578 TOM complex assembly protein Mim1

SJAG_01413 10.64742156 12.84374524 11.18751139 1.656233857 5.65E-11 9.00E-09 3.151926421 ribosomal protein subunit L9

SJAG_00365 10.47552052 13.02507121 11.36870292 1.656368281 1.21E-09 1.09E-07 3.152220119 methionine sulfoxide

SJAG_01407 14.6013453 16.05601306 14.39941645 1.656596615 1.12E-12 4.73E-10 3.152719056 niemann-Pick disease type C2 protein hE1

SJAG_00080 10.32512771 14.93997008 13.27845352 1.661516568 3.88E-09 2.74E-07 3.163488975 ubiquinol-cytochrome-c reductase complex subunit 7

SJAG_03766 3.370229593 7.789158407 6.124410783 1.664747624 0.001493333 0.013221938 3.170581856 hypothetical protein

SJAG_02664 15.07931553 17.155145 15.48311445 1.672030553 8.57E-13 3.98E-10 3.186627869 CENP-H Fta3

SJAG_04964 13.02048509 14.99524921 13.32295534 1.672293863 2.05E-13 1.25E-10 3.187209524 phosphoric monoester hydrolase

SJAG_03104 8.120818348 8.62561415 6.952211727 1.673402423 0.001535384 0.013545054 3.189659501 Mam33 family protein



Annexe 4: Late timepoint analysis

 17

SJAG_03490 11.15863167 12.97154986 11.29794376 1.673606103 2.10E-06 5.30E-05 3.190109849 ubiquinol-cytochrome-c reductase complex subunit 6

SJAG_00264 10.60265402 11.39899263 9.725174794 1.673817839 7.20E-08 3.09E-06 3.190578077 hypothetical protein

SJAG_02003 12.10820001 15.64380453 13.96621557 1.677588969 3.65E-08 1.74E-06 3.198928993 yippee-like protein

SJAG_02731 9.938666288 10.24378043 8.566115128 1.677665303 1.76E-06 4.56E-05 3.199098254 DASH complex subunit Dad5

SJAG_03334 11.15150005 13.50357612 11.82426524 1.679310882 8.74E-14 7.89E-11 3.20274932 coenzyme A/diphosphate transporter

SJAG_03142 9.888024842 11.70280881 10.02273329 1.680075518 2.87E-10 3.41E-08 3.204447242 guanyl-nucleotide exchange factor

SJAG_04448 3.956195032 7.563690942 5.883458966 1.680231977 0.000257022 0.002996128 3.204794781 hypothetical protein

SJAG_03996 11.8447836 13.01362839 11.33172286 1.681905525 7.63E-12 1.84E-09 3.208514548 translation initiation factor eIF1A-like protein

SJAG_00688 10.66812458 12.13198849 10.44476527 1.687223216 1.71E-12 5.86E-10 3.220362771 hypothetical protein

SJAG_04403 11.75880286 13.75078055 12.06100432 1.689776229 1.30E-12 4.95E-10 3.226066615 metallochaperone Ccs1

SJAG_05322 11.41256357 13.08309222 11.39190286 1.691189362 3.46E-09 2.49E-07 3.229228125 RNA-binding protein

SJAG_02106 9.685893245 10.42274356 8.73112242 1.691621142 6.19E-09 4.04E-07 3.230194735 hypothetical protein

SJAG_00115 11.2545166 13.44206621 11.74136613 1.700700079 4.91E-10 5.20E-08 3.250586576 WD repeat protein

SJAG_06111 6.596426777 8.593598557 6.881483069 1.712115487 0.000187302 0.002281604 3.276409057 hypothetical protein

SJAG_03047 12.21944643 15.58144828 13.86776908 1.713679198 3.43E-09 2.49E-07 3.279962221 histone H2A variant H2A.Z

SJAG_00120 13.9501097 16.02678143 14.31289912 1.713882311 2.98E-10 3.48E-08 3.280424031 delta-1-pyrroline-5-carboxylate reductase

SJAG_01239 9.579625706 13.02620752 11.31069406 1.715513458 2.70E-09 2.05E-07 3.284135058 protein phosphatase Fmp31

SJAG_03072 12.3914483 14.49873015 12.77561091 1.723119243 4.22E-10 4.59E-08 3.3014945 GTPase Ypt71

SJAG_05265 12.37836733 13.90101656 12.17547348 1.725543072 8.43E-06 0.000170444 3.307045907 Jmj1 protein

SJAG_02361 10.89143533 13.05115883 11.31511736 1.736041474 1.01E-11 2.38E-09 3.331198847 hypothetical protein

SJAG_01648 11.96221295 14.35536327 12.61902789 1.73633538 4.72E-14 5.23E-11 3.331877547 FEN-1 endonuclease

SJAG_01769 6.194389795 7.464610881 5.719991357 1.744619524 0.000658517 0.006621981 3.351064659 septin Spn5

SJAG_03531 14.36258904 15.37018333 13.62452835 1.745654982 1.02E-13 8.91E-11 3.353470664 sterol 24-C-methyltransferase Erg6

SJAG_06617 5.901584464 6.188596117 4.441141149 1.747454967 0.00225449 0.018546468 3.35765725 LYR family protein

SJAG_00237 6.872527252 9.425345462 7.677668837 1.747676625 1.05E-07 4.26E-06 3.358173166 hexitol dehydrogenase

SJAG_02195 7.711206123 9.928655073 8.178153984 1.750501088 7.47E-08 3.17E-06 3.364754131 hypothetical protein

SJAG_03159 15.95478854 18.39105264 16.6364575 1.754595133 1.09E-10 1.58E-08 3.374316108 60S ribosomal protein L27/L28

SJAG_03411 12.4776468 14.40923537 12.65334383 1.755891542 1.97E-10 2.49E-08 3.37734964 signal recognition particle subunit Srp21

SJAG_04541 13.54095788 15.32520884 13.56472284 1.760486001 2.85E-14 3.86E-11 3.388122414 20S proteasome component beta 7

SJAG_03645 9.083178417 9.263437973 7.498904366 1.764533607 1.99E-08 1.06E-06 3.397641432 hypothetical protein

SJAG_01668 10.66007743 13.83967202 12.07080395 1.768868063 1.97E-09 1.60E-07 3.40786471 NADH-dependent flavin oxidoreductase

SJAG_02359 9.322011593 11.20408538 9.43253429 1.771551088 1.28E-08 7.41E-07 3.414208319 ribosomal protein subunit S17

SJAG_06546 8.285944865 11.06618312 9.292277334 1.773905786 1.38E-09 1.21E-07 3.419785379 hypothetical protein

SJAG_01616 11.69614507 14.96119903 13.18714655 1.774052478 1.92E-12 6.51E-10 3.420133117 5-formyltetrahydrofolate cyclo-ligase

SJAG_02755 15.81891021 18.17395294 16.39956218 1.774390759 8.51E-13 3.98E-10 3.420935159 60S ribosomal protein L31

SJAG_01207 10.02744776 11.86693986 10.08886936 1.778070499 2.95E-12 9.02E-10 3.429671738 transcription factor TFIIH complex subunit Tfb5

SJAG_05637 8.585021844 11.36716291 9.585914182 1.781248725 1.52E-08 8.50E-07 3.437235559 hypothetical protein
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EFSJAG00000000 3.231532503 7.737846404 5.955691203 1.782155201 0.000350165 0.003876143 3.439395925 Small nucleolar RNA R38 [Source:RFAM;Acc:RF00213]

SJAG_04458 15.73313063 17.54669793 15.76435369 1.782344243 0.000530205 0.005520614 3.439846632 NAD binding dehydrogenase

SJAG_03502 10.91290421 13.5094057 11.72343432 1.785971373 8.19E-09 5.03E-07 3.448505751 TOM complex subunit Tom7

SJAG_01327 11.06836404 13.34597957 11.55950247 1.786477103 1.04E-11 2.42E-09 3.449714821 U6 snRNP-associated protein Lsm5

EFSJAG00000000 5.488400205 9.14876041 7.359923443 1.788836966 3.86E-06 8.87E-05 3.45536225 Small nucleolar RNA Z196/R39/R59 family [Source:RFAM;Acc:RF00134]

SJAG_00904 13.50857895 15.59108721 13.80146569 1.789621525 2.96E-12 9.02E-10 3.457241838 mediator complex subunit Srb4

SJAG_04185 16.00195915 16.58107581 14.78875192 1.792323887 2.83E-12 8.83E-10 3.463723786 ZIP zinc transporter Zrt1

SJAG_04180 12.5526058 14.29045163 12.49624777 1.794203861 2.86E-10 3.41E-08 3.468240302 fungal protein

SJAG_01194 15.96987633 18.00885562 16.21297524 1.795880383 2.66E-11 5.05E-09 3.472273005 60S ribosomal protein L37

SJAG_05118 4.811747337 7.584910373 5.78403854 1.800871833 0.000100675 0.001359532 3.484307213 hypothetical protein

SJAG_00831 12.8521544 15.07189678 13.26759742 1.804299358 1.19E-13 9.96E-11 3.492595 dolichol-phosphate mannosyltransferase subunit 3

SJAG_04820 11.87004348 15.2073357 13.39882185 1.808513849 1.41E-11 3.06E-09 3.502812705 mediator complex subunit Pmc6

SJAG_00703 6.348315897 7.216657106 5.407330918 1.809326188 0.000414821 0.00447996 3.50478559 hypothetical protein

SJAG_01287 15.54816252 18.27766306 16.46537818 1.812284874 1.67E-09 1.41E-07 3.511980596 40S ribosomal protein S30

SJAG_00347 9.854256941 12.74086356 10.91861439 1.82224917 6.76E-12 1.68E-09 3.536320835 hypothetical protein

SJAG_02697 16.26915281 16.89222633 15.06748503 1.824741301 4.16E-08 1.94E-06 3.542434804 ubiquitinated histone-like protein Uhp1

EFSJAG00000000 10.52928727 10.58739657 8.762431125 1.824965447 2.48E-07 8.80E-06 3.542985219 Small nucleolar RNA snR79 [Source:RFAM;Acc:RF01184]

SJAG_02744 14.35654718 15.80411746 13.97890128 1.825216179 6.72E-09 4.31E-07 3.543601024 cytochrome c

SJAG_02248 9.843566936 11.01542518 9.190034239 1.825390945 1.05E-08 6.20E-07 3.544030316 hypothetical protein

SJAG_00844 10.67666157 13.01161285 11.18463869 1.826974157 1.33E-12 4.95E-10 3.547921666 ribosomal protein subunit L32

SJAG_03637 13.35629396 16.04657986 14.21132284 1.835257023 1.14E-10 1.64E-08 3.56834974 morphogenesis protein Mor2

SJAG_00166 14.6364572 17.45385237 15.61848887 1.835363495 5.48E-12 1.44E-09 3.568613096 60S ribosomal protein L35a

SJAG_02458 12.04475097 14.26965723 12.43332869 1.836328536 5.20E-06 0.000114198 3.571000996 transcription factor TFIID complex subunit A/SAGA complex subunit

SJAG_04122 9.645982327 12.00797107 10.17080034 1.837170724 2.17E-09 1.73E-07 3.573086211 F0-ATPase subunit E

SJAG_03894 8.435444577 9.453434678 7.6114056 1.842029078 3.54E-07 1.21E-05 3.585139058 SMN family protein Smn1

SJAG_01553 9.038573841 11.74253271 9.897657091 1.844875619 5.40E-09 3.58E-07 3.592219777 hypothetical protein

SJAG_04349 10.24237335 12.45224708 10.60650841 1.845738678 7.18E-11 1.09E-08 3.594369383 ESCRT I complex subunit Vps28

SJAG_04647 10.99741568 13.20308583 11.35511404 1.847971787 1.18E-10 1.69E-08 3.59993732 mediator complex subunit Med31

SJAG_02495 11.77446065 14.33640974 12.48208822 1.854321521 4.59E-15 1.24E-11 3.615816644 monothiol glutaredoxin Grx3

SJAG_06382 11.54731369 14.63391037 12.7787635 1.855146871 1.04E-14 1.81E-11 3.617885804 hypothetical protein

SJAG_01775 10.86935628 12.98685581 11.13132194 1.855533878 9.45E-11 1.40E-08 3.618856441 DASH complex subunit Dad1

SJAG_00531 10.71016031 10.76425285 8.905681659 1.858571194 4.39E-05 0.000677476 3.626483271 U4/U6 X U5 tri-snRNP complex subunit Prp4 family protein

SJAG_03487 10.30512896 12.78371062 10.92498711 1.858723507 2.42E-11 4.72E-09 3.626866158 histone lysine methyltransferase Set7

SJAG_02441 12.67237087 15.29374692 13.43406856 1.859678363 4.56E-08 2.08E-06 3.629267416 meiotically upregulated Mug66

EFSJAG00000000 4.518056979 8.80883481 6.94860234 1.86023247 1.55E-06 4.14E-05 3.630661605 Fungal signal recognition particle RNA [Source:RFAM;Acc:RF01502]

SJAG_00617 10.92697208 13.09910665 11.23390175 1.865204909 3.49E-12 1.01E-09 3.643196748 fungal family protein

EFSJAG00000000 10.9705018 13.17453088 11.30896949 1.865561396 1.82E-08 9.86E-07 3.644097085 small nucleolar RNA snR3 [Source:RFAM;Acc:RF01434]
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EFSJAG00000000 12.11735592 16.30520058 14.42778847 1.877412108 2.67E-11 5.05E-09 3.674154026 small nucleolar RNA snR100 [Source:RFAM;Acc:RF01449]

SJAG_02304 11.26252898 12.75028697 10.8717432 1.878543768 2.49E-12 8.19E-10 3.677037189 Sm snRNP core protein Smd2

SJAG_00047 11.82534874 14.50465771 12.62343152 1.881226187 1.29E-09 1.14E-07 3.683880305 hypothetical protein

SJAG_00709 6.420629412 8.445102864 6.562148505 1.882954359 0.000206551 0.002483805 3.688295787 hypothetical protein

SJAG_02236 11.3519513 11.93866438 10.04898855 1.889675829 5.08E-11 8.31E-09 3.70551953 proline-tRNA ligase

SJAG_02812 14.70369175 14.83781812 12.94636757 1.891450559 3.02E-09 2.23E-07 3.710080677 translation elongation factor eIF5A

SJAG_00075 10.02036211 10.52693032 8.630727182 1.89620314 4.85E-07 1.58E-05 3.72232272 trichothecene 3-O-acetyltransferase

SJAG_01649 13.3026591 16.09371637 14.1940898 1.899626563 1.11E-08 6.49E-07 3.731166042 Mvp17/PMP22 family protein 1

SJAG_06449 10.53842034 13.19786786 11.29257704 1.905290815 1.89E-11 3.83E-09 3.745843991 Sm domain-containing protein

SJAG_00699 10.27076058 11.31016151 9.402931077 1.907230431 0.00550295 0.037699385 3.75088344 tspO/peripheral benzodiazepine receptor

SJAG_04515 11.17177287 13.75688761 11.84550056 1.911387048 4.95E-12 1.33E-09 3.761705871 hypothetical protein

SJAG_01127 13.04895327 15.70496579 13.79242556 1.912540227 1.33E-12 4.95E-10 3.764713889 eukaryotic protein

SJAG_04648 10.63755907 13.10813938 11.19103653 1.917102848 4.43E-12 1.21E-09 3.776638899 fungal protein

SJAG_02398 10.02948838 14.80005831 12.87487354 1.925184769 1.21E-09 1.09E-07 3.797854851 TIM22 inner membrane protein import complex anchor subunit Tim18

SJAG_00217 8.225568037 9.126257616 7.189773879 1.936483736 1.54E-06 4.13E-05 3.827715852 eukaryotic protein

EFSJAG00000000 13.28611845 15.45743659 13.51390483 1.943531762 4.23E-11 7.26E-09 3.846461216 Small nucleolar RNA snR61/Z1/Z11 [Source:RFAM;Acc:RF00476]

SJAG_03719 11.73814497 13.77646439 11.82798895 1.948475433 4.97E-11 8.31E-09 3.859664463 hypothetical protein

SJAG_01555 3.015163446 9.30839341 7.354580611 1.953812799 9.53E-05 0.001298807 3.873970047 hypothetical protein

SJAG_06269 10.88637911 13.66430281 11.71015202 1.954150791 6.22E-12 1.58E-09 3.874877739 hypothetical protein

SJAG_00155 16.30944968 18.71399912 16.75961552 1.9543836 4.40E-12 1.21E-09 3.875503083 60S ribosomal protein L21

SJAG_03127 16.50272389 19.21784122 17.2602193 1.957621917 7.25E-10 7.25E-08 3.884211925 60S ribosomal protein L29

SJAG_05242 12.49443581 15.61647771 13.65395678 1.962520929 7.95E-10 7.79E-08 3.897424104 hypothetical protein

EFSJAG00000000 9.269723016 11.08556591 9.121120899 1.964445015 3.59E-08 1.73E-06 3.902625468 Small nucleolar RNA snR60/Z15/Z230/Z193/J17 [Source:RFAM;Acc:RF00309]

SJAG_00707 11.86952601 14.52420017 12.55789658 1.966303596 2.07E-08 1.10E-06 3.907656343 fungal protein

SJAG_05840 5.142850834 7.435036232 5.468572297 1.966463936 0.000123508 0.001614207 3.908090661 hypothetical protein

SJAG_04664 9.268283892 11.75209428 9.783885426 1.968208858 2.62E-10 3.14E-08 3.91282031 protein disulfide isomerase

SJAG_02007 12.52593128 15.08303164 13.11329462 1.969737022 2.61E-10 3.14E-08 3.916967131 enoyl-[acyl-carrier protein] reductase

SJAG_00487 15.01064776 17.42894923 15.45173771 1.977211515 1.29E-07 5.05E-06 3.9373133 SBDS family protein Rtc3

SJAG_03679 11.13032935 13.34034585 11.3583657 1.981980152 6.56E-14 6.24E-11 3.950349099 pantoate-beta-alanine ligase

SJAG_00523 15.83223011 18.15487251 16.16900449 1.985868021 2.19E-13 1.27E-10 3.961009113 40S ribosomal protein S5

SJAG_01815 14.77063489 18.31208279 16.31934417 1.992738625 3.54E-08 1.71E-06 3.979917774 hypothetical protein

SJAG_01763 9.674485663 12.49494238 10.49777227 1.997170104 1.22E-09 1.09E-07 3.992161553 ubiquinol-cytochrome-c reductase complex subunit 9

SJAG_05312 12.5648813 15.33050355 13.33106123 1.999442313 1.58E-12 5.49E-10 3.998454063 hypothetical protein

SJAG_01904 9.043057345 13.90131182 11.90118975 2.000122062 1.12E-12 4.73E-10 4.000338443 hypothetical protein

SJAG_04636 5.604825001 9.54418869 7.543879811 2.000308879 7.17E-06 0.000149588 4.000856485 hypothetical protein

SJAG_02957 6.619798765 9.137672646 7.136733088 2.000939558 1.53E-07 5.87E-06 4.002605857 hypothetical protein

SJAG_00704 11.11786213 14.60295598 12.60143538 2.001520592 5.59E-05 0.000834048 4.004218198 AGC protein kinase Ppk31
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SJAG_04567 15.44517529 20.58928094 18.57090273 2.018378204 1.72E-05 0.000306648 4.051281137 hsp16-like protein

SJAG_04837 11.82798535 14.62719399 12.60458139 2.022612602 2.60E-12 8.25E-10 4.063189361 TRAPP complex subunit Bet5

SJAG_00176 10.98749596 10.77020447 8.739468497 2.030735978 8.64E-07 2.54E-05 4.086132475 Svf1 family protein Svf2

SJAG_05305 8.723581683 10.44673078 8.415157283 2.031573499 2.33E-07 8.38E-06 4.088505268 membrane protein complex assembly protein

SJAG_03820 11.86993801 13.51462412 11.47366929 2.040954828 3.07E-09 2.26E-07 4.115177979 hexose transporter Ght8

SJAG_01447 13.68107745 16.61037133 14.5656635 2.044707834 1.57E-12 5.49E-10 4.125897081 V-type ATPase subunit G

SJAG_06440 10.70958944 13.711963 11.66360925 2.048353746 1.79E-13 1.15E-10 4.136337042 distribution and morphology protein Mdm35

SJAG_00626 10.97118309 12.66326272 10.61056912 2.052693594 1.11E-09 1.03E-07 4.148798512 carrier with solute carrier repeats

SJAG_04166 12.25025759 13.83370479 11.77609998 2.057604811 1.66E-13 1.15E-10 4.162945904 Cdc25 family phosphatase Ibp1

SJAG_00779 11.46678822 12.57802407 10.51817854 2.059845531 6.64E-12 1.67E-09 4.1694166 uridylate kinase

SJAG_05191 11.24090252 13.31058862 11.24634279 2.064245828 3.10E-11 5.63E-09 4.182152958 prefoldin subunit 2

EFSJAG00000000 9.949099384 14.12347386 12.05918696 2.064286902 1.78E-10 2.31E-08 4.182272028 small nucleolar RNA snR92 [Source:RFAM;Acc:RF01444]

SJAG_02424 12.13403502 14.93664728 12.86406768 2.072579607 3.01E-15 9.18E-12 4.206381223 nucleoporin Seh1

EFSJAG00000000 10.67554997 13.0668207 10.99062142 2.076199277 3.28E-07 1.13E-05 4.216948132 small nucleolar RNA snR99 [Source:RFAM;Acc:RF01452]

SJAG_01418 12.46116146 17.84902154 15.77194082 2.07708072 5.16E-10 5.44E-08 4.219525347 diphthamide biosynthesis protein Dph3

SJAG_01650 13.9769353 16.52025207 14.43922679 2.081025276 1.44E-12 5.23E-10 4.231077984 RNA-binding protein Rnp24

SJAG_06097 10.85357897 13.79007818 11.68877095 2.101307231 4.31E-12 1.21E-09 4.290980161 hypothetical protein

SJAG_03390 9.544498384 12.8224231 10.71480635 2.107616758 2.47E-09 1.93E-07 4.309787563 hypothetical protein

SJAG_02914 10.50069971 12.04912304 9.932463747 2.116659292 2.11E-12 7.06E-10 4.336885313 ER membrane protein complex subunit 4

SJAG_01845 9.921455547 12.47836565 10.34484119 2.133524456 7.58E-10 7.51E-08 4.387881169 glutamine synthetase

SJAG_00468 16.71418704 19.51354955 17.37825915 2.135290395 1.50E-11 3.19E-09 4.393255469 40S ribosomal protein S24

SJAG_00731 12.96568425 16.22122487 14.08300412 2.138220749 1.27E-12 4.95E-10 4.402187971 DNA-directed RNA polymerase I and III subunit Rpc19

SJAG_00827 10.97049104 10.55217115 8.412707691 2.139463463 0.000737949 0.007294207 4.405981579 thiazole biosynthetic enzyme

SJAG_00967 10.53228508 13.0081681 10.86667519 2.141492907 4.37E-14 5.07E-11 4.412183847 hypothetical protein

SJAG_01518 7.397285754 8.785884765 6.639590184 2.146294581 2.39E-07 8.54E-06 4.426893239 peptide chain release factor

SJAG_05105 5.457245219 7.226725604 5.077356074 2.14936953 7.41E-06 0.000153533 4.436338746 hypothetical protein

SJAG_02365 8.34832151 12.13812215 9.98259119 2.155530956 5.76E-11 9.06E-09 4.455325867 hypothetical protein

SJAG_04336 11.08230644 13.44204315 11.26907698 2.172966178 1.31E-12 4.95E-10 4.509495927 TIM23 translocase complex subunit Tim15

SJAG_01117 15.11886259 18.75590066 16.57961962 2.17628104 1.10E-08 6.44E-07 4.519869252 translation initiation factor eIF1

SJAG_05750 11.22148019 16.34474421 14.16780283 2.176941377 3.77E-11 6.62E-09 4.521938518 hypothetical protein

SJAG_00308 14.09989911 18.5108192 16.33383984 2.176979353 4.28E-11 7.29E-09 4.52205755 peptide release factor

SJAG_00789 16.19245317 19.78429397 17.60471352 2.179580446 5.48E-06 0.000119137 4.530217904 hypothetical protein

SJAG_00894 11.71977813 15.18502521 13.00233256 2.18269265 2.68E-11 5.05E-09 4.540001109 iron sulfur cluster assembly protein Isd11

SJAG_03999 8.535820938 10.71716585 8.530190067 2.186975787 1.03E-07 4.19E-06 4.553499693 meiotically upregulated Mug97

SJAG_03616 12.02747789 14.71252434 12.52207922 2.190445117 4.91E-13 2.49E-10 4.564462927 ubiquitin family protein Urm1

SJAG_01226 16.98030394 19.38201153 17.18120659 2.200804932 6.05E-10 6.19E-08 4.597357736 ribomal-ubiquitin fusion protein Ubi5

EFSJAG00000000 3.690084006 8.222723122 6.018007077 2.204716045 0.000319211 0.003592233 4.609837978 U6 spliceosomal RNA [Source:RFAM;Acc:RF00026]
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SJAG_02696 14.76954347 17.355521 15.14562944 2.209891559 1.72E-06 4.50E-05 4.626404976 glucose-6-phosphate 1-dehydrogenase

SJAG_01801 10.02068483 13.10002037 10.88909367 2.210926706 1.50E-11 3.19E-09 4.629725655 anaphase-promoting complex subunit Hcn1

EFSJAG00000000 2.154730246 7.476045948 5.255296794 2.220749154 7.79E-05 0.001103121 4.661354237 Small nucleolar RNA snR69 [Source:RFAM;Acc:RF00475]

SJAG_03815 13.94619277 16.18510181 13.96315246 2.221949351 1.91E-09 1.56E-07 4.665233694 hsp16-like protein

SJAG_06212 6.633764557 9.726641898 7.497836091 2.228805807 3.99E-09 2.79E-07 4.687458141 hypothetical protein

SJAG_01776 11.1474696 14.45652053 12.2205218 2.235998728 4.03E-13 2.09E-10 4.710887005 Smc5-6 complex non-SMC subunit 2

SJAG_01742 9.579477153 10.68857718 8.444185479 2.244391696 8.18E-06 0.000166388 4.738372756 TENA/THI domain-containing protein

SJAG_00943 16.47902666 20.34733148 18.09404359 2.253287885 5.81E-13 2.89E-10 4.76768158 fibrillarin

SJAG_01079 10.87000448 13.4514647 11.19780354 2.253661162 2.97E-13 1.57E-10 4.768915308 methyltransferase Rrg1

SJAG_05180 8.743003694 9.796897132 7.540797319 2.256099813 1.16E-09 1.06E-07 4.776983234 structure-specific endonuclease subunit

SJAG_01905 10.05042176 15.15741096 12.89102406 2.266386901 2.70E-11 5.05E-09 4.811167079 progesterone binding protein

SJAG_06585 6.08076043 10.62883402 8.357901603 2.270932416 8.59E-10 8.18E-08 4.826349579 hypothetical protein

SJAG_01870 11.89647641 15.31817668 13.03945833 2.278718344 1.79E-11 3.68E-09 4.852466805 Sm snRNP core protein Smg1

SJAG_02047 9.41866961 10.77899147 8.499471672 2.279519795 2.99E-07 1.05E-05 4.855163213 TENA/THI domain-containing protein

EFSJAG00000000 6.088524717 11.32410408 9.044558207 2.27954587 2.31E-09 1.82E-07 4.855250966 Fungal signal recognition particle RNA [Source:RFAM;Acc:RF01502]

SJAG_01164 10.73202437 13.34740899 11.05823921 2.289169786 1.78E-14 2.71E-11 4.887747596 lipoate-protein ligase A

SJAG_01032 10.31530417 13.03172611 10.73546497 2.296261146 1.36E-14 2.21E-11 4.911831758 hypothetical protein

SJAG_04243 14.01399867 17.28241168 14.98365987 2.298751809 8.31E-08 3.48E-06 4.920318851 hypothetical protein

SJAG_03871 6.281274181 9.00776293 6.704982559 2.302780371 1.50E-06 4.06E-05 4.934077482 alpha-1,2-galactosyltransferase gmh3

SJAG_01757 9.01104258 10.97044918 8.662642695 2.307806489 2.70E-09 2.05E-07 4.951296994 hypothetical protein

SJAG_00439 12.50275809 15.97854639 13.66285351 2.31569288 3.00E-12 9.02E-10 4.978437024 cyclin-dependent protein kinase regulatory subunit Suc1

SJAG_01975 11.63458617 12.81615956 10.49750706 2.318652498 7.08E-07 2.13E-05 4.988660526 kinetochore protein fta5

EFSJAG00000000 12.51871596 15.38914036 13.06972978 2.319410585 3.63E-14 4.42E-11 4.991282583 Small nucleolar RNA SNORD14 [Source:RFAM;Acc:RF00016]

SJAG_02494 11.12908603 14.89875177 12.57445296 2.324298818 5.72E-15 1.29E-11 5.008223054 mediator complex subunit Med19/Rox3

SJAG_00615 11.2034007 13.90691994 11.57416989 2.332750049 1.23E-12 4.95E-10 5.037647058 ubiquitin-like protein modifier Ned8

SJAG_04764 15.28841395 19.20540694 16.86842661 2.336980327 5.27E-07 1.67E-05 5.052440151 hypothetical protein

SJAG_03367 12.0655132 15.03439755 12.67879219 2.355605364 5.20E-14 5.51E-11 5.118089458 tRNA methyltransferase

SJAG_03818 12.7299784 15.61564684 13.25849999 2.357146843 1.55E-07 5.92E-06 5.123560916 gal10

SJAG_03977 11.11935645 14.06308423 11.7048596 2.358224631 1.90E-09 1.56E-07 5.12738998 ADP-ribose diphosphatase

SJAG_01476 14.1922489 17.96978113 15.61145079 2.358330338 1.84E-09 1.53E-07 5.12776568 RNA 3'-terminal phosphate cyclase

SJAG_04382 3.516332924 7.871504153 5.487424353 2.384079799 9.37E-05 0.001280689 5.220108521 hypothetical protein

EFSJAG00000000 4.162946551 7.976444812 5.59005617 2.386388642 6.71E-05 0.000974816 5.228469303 Fungal signal recognition particle RNA [Source:RFAM;Acc:RF01502]

SJAG_00668 15.5956004 18.18021569 15.79282583 2.387389857 1.50E-12 5.37E-10 5.232099065 superoxide dismutase Sod1

SJAG_00535 5.104685221 8.973158798 6.572851994 2.400306804 8.89E-06 0.000178354 5.279154191 hypothetical protein

SJAG_04742 9.617480827 11.90050104 9.490820105 2.40968094 3.66E-08 1.74E-06 5.313568 hypothetical protein

SJAG_02232 13.13894326 16.24246844 13.82575824 2.416710198 2.42E-15 8.43E-12 5.339520525 SIN component Cdc14

SJAG_02567 11.03007295 13.05733819 10.63915337 2.41818482 7.13E-13 3.48E-10 5.344981 phosphoprotein phosphatase
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SJAG_04592 13.03976728 15.82254724 13.38763735 2.434909895 6.24E-15 1.29E-11 5.407305603 COPII-coated vesicle component Erv46

SJAG_03683 11.12139397 14.81013688 12.37225402 2.437882855 4.54E-11 7.68E-09 5.418459922 kinetochore protein Spc25

SJAG_06618 4.098530867 6.446962375 4.003677628 2.443284747 0.00206826 0.017306504 5.438786325 hypothetical protein

SJAG_02677 4.960510606 8.212835246 5.767281365 2.445553881 1.59E-05 0.000285588 5.447347416 hypothetical protein

EFSJAG00000000 11.51333729 13.70100718 11.24615832 2.454848856 7.38E-11 1.12E-08 5.48255681 small nucleolar RNA snR90 [Source:RFAM;Acc:RF01442]

SJAG_02928 4.153584613 8.758910651 6.298364665 2.460545986 1.70E-06 4.46E-05 5.504249955 hypothetical protein

SJAG_05558 13.35159447 15.95637041 13.48464131 2.471729101 1.78E-13 1.15E-10 5.547082188 fungal protein

SJAG_02121 14.38883761 17.29096206 14.81855894 2.472403124 1.80E-13 1.15E-10 5.549674374 60S ribosomal protein L36

SJAG_00372 13.66237661 15.91658379 13.4422587 2.474325088 6.29E-11 9.76E-09 5.557072598 plasma membrane proteolipid Pmp3

EFSJAG00000000 10.29820717 13.81861773 11.33983354 2.478784191 1.18E-09 1.08E-07 5.574275049 small nucleolar RNA snR5 [Source:RFAM;Acc:RF01435]

EFSJAG00000000 10.70019984 13.09699241 10.61279639 2.484196016 1.11E-10 1.60E-08 5.595224489 small nucleolar RNA snR42 [Source:RFAM;Acc:RF01440]

SJAG_06046 11.54125239 15.39163404 12.90640516 2.485228881 1.76E-13 1.15E-10 5.599231699 hypothetical protein

SJAG_03155 12.62364886 15.52362641 13.03253512 2.491091288 6.65E-14 6.24E-11 5.622030531 Mam33 family protein

EFSJAG00000000 9.598517324 14.86780421 12.37531758 2.492486628 2.26E-11 4.45E-09 5.627470651 U2 spliceosomal RNA [Source:RFAM;Acc:RF00004]

SJAG_03778 4.679713376 6.154258283 3.660311444 2.493946839 0.000408209 0.004420298 5.633169331 hypothetical protein

SJAG_05629 9.016311429 13.79876214 11.29415354 2.504608601 7.58E-12 1.84E-09 5.674953616 hypothetical protein

SJAG_00708 6.575929156 7.890762289 5.376790327 2.513971963 8.14E-06 0.000165833 5.711904912 hypothetical protein

SJAG_02802 16.65667503 20.23648167 17.71950571 2.51697596 8.64E-13 3.98E-10 5.723810702 60S ribosomal protein L27

SJAG_00919 12.21745753 16.20210703 13.67301588 2.529091143 3.74E-12 1.07E-09 5.77207939 trafficking protein Pga2

SJAG_00007 7.527138104 8.599910479 6.061443694 2.538466784 1.98E-06 5.05E-05 5.809712549 hypothetical protein

SJAG_02360 13.78916922 17.108749 14.56467549 2.544073509 5.28E-17 2.58E-13 5.832334681 6,7-dimethyl-8-ribityllumazine synthase

EFSJAG00000000 9.671067993 13.57300602 11.02292145 2.550084563 1.41E-10 1.93E-08 5.856686062 U1 spliceosomal RNA [Source:RFAM;Acc:RF00003]

SJAG_00973 10.72623158 14.02507762 11.46624315 2.558834479 7.18E-16 2.92E-12 5.892314675 cyclin L family cyclin

SJAG_03765 2.404858057 7.955523089 5.388557072 2.566966017 1.41E-05 0.000258785 5.925619613 hypothetical protein

SJAG_01072 14.78026425 17.67796098 15.09353777 2.584423204 9.75E-13 4.32E-10 5.997757546 subtilisin cleaved region like protein

SJAG_00672 6.9351615 8.717814903 6.126913624 2.590901278 5.53E-08 2.47E-06 6.024749586 hypothetical protein

SJAG_00006 4.153168427 6.177984169 3.578233595 2.599750574 0.000524863 0.005472 6.061818153 hypothetical protein

EFSJAG00000000 3.123761952 8.866531861 6.266446847 2.600085014 1.27E-05 0.000237627 6.063223545 Fungal signal recognition particle RNA [Source:RFAM;Acc:RF01502]

EFSJAG00000000 10.25222126 13.68588832 11.08555866 2.600329661 1.34E-12 4.95E-10 6.064251811 small nucleolar RNA snR35 [Source:RFAM;Acc:RF01438]

SJAG_02339 10.89764709 14.21237647 11.60046952 2.611906952 2.81E-17 1.71E-13 6.113111799 RecA family ATPase Rlp1

SJAG_04436 10.82029417 14.36760584 11.75414156 2.613464286 1.80E-11 3.68E-09 6.119714233 hypothetical protein

EFSJAG00000000 8.028168572 13.29572526 10.67274248 2.622982781 4.81E-10 5.14E-08 6.160223871 U4 spliceosomal RNA [Source:RFAM;Acc:RF00015]

SJAG_02975 8.689782501 11.14864444 8.521574758 2.62706968 1.70E-10 2.26E-08 6.177699432 hypoxia induced family protein

EFSJAG00000000 6.940927274 12.00897147 9.377435436 2.631536037 2.07E-09 1.66E-07 6.19685425 U5 spliceosomal RNA [Source:RFAM;Acc:RF00020]

SJAG_04188 16.08532378 19.55251761 16.91073908 2.641778529 6.36E-15 1.29E-11 6.241005699 40S ribosomal protein S18

SJAG_00161 10.72851122 12.80580787 10.16374846 2.642059413 3.12E-09 2.29E-07 6.242220903 hypothetical protein

SJAG_01091 4.472103601 8.176186144 5.527364158 2.648821986 4.32E-08 1.99E-06 6.271549739 hypothetical protein
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SJAG_06013 7.755745544 10.47494672 7.810321476 2.664625243 1.88E-09 1.55E-07 6.340625826 hypothetical protein

EFSJAG00000000 9.725063066 11.81768522 9.152294262 2.66539096 1.94E-09 1.58E-07 6.343992036 Small nucleolar RNA snR56 [Source:RFAM;Acc:RF01188]

SJAG_04534 14.84384425 18.23798552 15.57069714 2.66728838 1.54E-13 1.15E-10 6.352341087 60S ribosomal protein L38

SJAG_02234 12.73870192 15.64891013 12.97579166 2.673118469 1.34E-17 1.63E-13 6.378063536 coatomer epsilon subunit

SJAG_02585 16.09082668 19.32949515 16.61338038 2.716114775 1.03E-12 4.50E-10 6.571008349 40S ribosomal protein S24

EFSJAG00000000 9.065124681 14.71499827 11.9454157 2.769582574 4.67E-12 1.26E-09 6.819105826 U2 spliceosomal RNA [Source:RFAM;Acc:RF00004]

SJAG_01636 4.075627734 7.389147278 4.615445451 2.773701828 4.50E-05 0.000687106 6.838603892 azole resistance protein

SJAG_02982 11.36301922 14.17195755 11.36474862 2.807208931 8.26E-15 1.55E-11 6.999291683 cytochrome P450 regulator Dap1

EFSJAG00000000 9.033863332 12.11716583 9.299217288 2.817948543 5.41E-12 1.43E-09 7.051589746 Small nucleolar RNA SNORD18 [Source:RFAM;Acc:RF00093]

EFSJAG00000000 11.10935465 14.62954249 11.79643317 2.833109321 9.11E-13 4.11E-10 7.126083167 Nuclear RNase P [Source:RFAM;Acc:RF00009]

SJAG_00023 5.675953518 10.60785302 7.76172477 2.846128248 1.50E-11 3.19E-09 7.190680197 hypothetical protein

SJAG_04796 4.286634907 7.625622502 4.778876347 2.846746155 8.95E-06 0.00017949 7.193760629 hypothetical protein

SJAG_05404 5.699489384 8.91888484 6.052177661 2.866707179 1.42E-08 8.01E-07 7.293984727 hypothetical protein

EFSJAG00000000 9.077027257 12.9849325 10.10384771 2.881084786 1.20E-11 2.72E-09 7.367038521 Small nucleolar RNA Z13/snr52 [Source:RFAM;Acc:RF00335]

SJAG_00994 9.565747415 13.86685957 10.97654523 2.890314341 1.96E-13 1.23E-10 7.414319785 hypothetical protein

SJAG_01477 13.85960409 18.33025764 15.397193 2.933064642 1.06E-09 9.89E-08 7.637310307 fungal protein

SJAG_05358 6.727906856 11.20342936 8.242657077 2.960772282 3.51E-14 4.42E-11 7.785406031 hypothetical protein

SJAG_01869 14.72704625 19.40160962 16.43660487 2.965004749 5.68E-11 9.00E-09 7.80827979 NADH/NADPH dependent indole-3-acetaldehyde reductase AKR3C2

SJAG_02357 6.476512871 9.755439596 6.757306803 2.998132793 2.58E-12 8.25E-10 7.989652705 DUF1769 family protein

SJAG_01396 5.713906107 8.969411737 5.967650558 3.001761179 7.38E-08 3.14E-06 8.009772011 hypothetical protein

SJAG_03830 10.8950859 15.53925239 12.52623658 3.013015817 2.76E-13 1.49E-10 8.072501571 hypothetical protein

SJAG_00388 6.516531138 11.47048607 8.427546272 3.042939797 3.38E-10 3.83E-08 8.2416877 hypothetical protein

EFSJAG00000000 6.434888342 11.13461462 8.082661813 3.051952808 8.48E-10 8.10E-08 8.293337517 U5 spliceosomal RNA [Source:RFAM;Acc:RF00020]

SJAG_06471 12.21187518 16.18359382 13.12326788 3.060325936 1.97E-10 2.49E-08 8.341610421 hypothetical protein

SJAG_00976 10.55814552 14.17868841 11.1113916 3.067296813 1.49E-13 1.15E-10 8.382013312 cytochrome c oxidase subunit IV

SJAG_00927 3.761204196 6.849869939 3.775308059 3.07456188 2.24E-06 5.61E-05 8.424329586 hypothetical protein

SJAG_03361 12.85295111 16.45595422 13.36737626 3.088577964 2.46E-17 1.71E-13 8.506572563 rho GDP dissociation inhibitor Rdi1

SJAG_04365 7.855288907 11.80434989 8.693349277 3.111000616 4.01E-12 1.14E-09 8.63981617 hypothetical protein

SJAG_02105 8.10239009 11.20980457 8.085230225 3.124574344 7.48E-11 1.12E-08 8.721488272 F0-ATPase subunit J

SJAG_02683 11.34784605 14.79994664 11.63108929 3.168857344 4.04E-19 9.84E-15 8.993342072 ICE2 family ER membrane protein

SJAG_05353 3.710667429 7.58771762 4.177827399 3.409890222 4.33E-06 9.80E-05 10.62867772 ATP-dependent DNA helicase

SJAG_02967 4.138313853 8.801808436 5.335835793 3.465972643 2.25E-08 1.18E-06 11.04998605 hypothetical protein

SJAG_05173 3.303196708 7.226725604 3.660311444 3.566414161 7.30E-06 0.000151772 11.84670678 hypothetical protein

SJAG_05143 5.71378139 11.56219563 7.958952831 3.6032428 4.19E-11 7.25E-09 12.15301865 hypothetical protein

SJAG_00012 5.539356506 9.225290102 5.588526817 3.636763285 4.20E-08 1.95E-06 12.43869549 hypothetical protein

SJAG_06596 4.367710716 7.976444812 4.318643244 3.657801567 1.52E-06 4.09E-05 12.62141335 hypothetical protein

SJAG_00780 7.923204175 10.5848173 6.919632974 3.665184324 5.59E-12 1.45E-09 12.68616691 hypothetical protein
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SJAG_05354 2.039243288 6.744625138 2.843193938 3.9014312 3.90E-05 0.000613216 14.94334479 hypothetical protein

SJAG_00013 1.514019589 6.706731483 2.582015279 4.124716204 1.35E-06 3.71E-05 17.4446918 hypothetical protein

SJAG_06640 1.456171501 7.435223107 3.195331386 4.239891721 4.73E-07 1.54E-05 18.89446444 hypothetical protein

SJAG_06639 4.372018256 10.29849598 5.767281365 4.531214613 2.13E-10 2.62E-08 23.12232574 hypothetical protein

SJAG_02124 8.720886148 11.86064003 7.320224184 4.540415848 2.77E-08 1.39E-06 23.27026682 cobW

SJAG_00121 3.99677326 7.820224389 2.997673015 4.822551374 1.01E-05 0.000197742 28.29649338 hypothetical protein

SJAG_00240 7.883320447 11.92144262 6.592721636 5.328720986 9.91E-09 5.91E-07 40.18878304 alcohol dehydrogenase Adh4

SJAG_06641 2.76784921 9.274173492 3.857885554 5.416287938 1.95E-08 1.05E-06 42.70366351 hypothetical protein - chp1
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