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Feedback of power during running is a promising tool for training and determining
pacing strategies. However, current power estimation methods show low validity
and are not customized for running on different slopes. To address this issue, we
developed three machine-learning models to estimate peak horizontal power for
level, uphill, and downhill running using gait spatiotemporal parameters,
accelerometer, and gyroscope signals extracted from foot-worn IMUs. The
prediction was compared to reference horizontal power obtained during
running on a treadmill with an embedded force plate. For each model, we
trained an elastic net and a neural network and validated it with a dataset of
34 active adults across a range of speeds and slopes. For the uphill and level
running, the concentric phase of the gait cycle was considered, and the neural
network model led to the lowest error (median ± interquartile range) of 1.7% ±
12.5% and 3.2% ± 13.4%, respectively. The eccentric phase was considered
relevant for downhill running, wherein the elastic net model provided the
lowest error of 1.8% ± 14.1%. Results showed a similar performance across a
range of different speed/slope running conditions. The findings highlighted the
potential of using interpretable biomechanical features in machine learning
models for the estimating horizontal power. The simplicity of the models
makes them suitable for implementation on embedded systems with limited
processing and energy storage capacity. The proposed method meets the
requirements for applications needing accurate near real-time feedback and
complements existing gait analysis algorithms based on foot-worn IMUs.
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1 Introduction

Mechanical power generated during running is a measure of the intensity of the run. As
an indicator of intensity, power can be used to augment external loadmonitoring for training
programs and to develop pacing strategies for competitions. A reduction in running power
for a constant running speed indicates a decrease in aerobic power and thus an improvement
in running economy (Taboga et al., 2021). Internal factors, such as fatigue, stress, and
hydration, or environmental factors, such as humidity, temperature, and presence of
competitors, can influence the perception of internal load and heart rate response
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(Halson, 2014). Since running power is not directly affected by these
factors, it can serve as a useful additional metric for monitoring the
training load (Paquette et al., 2020). Unlike heart rate, which is
affected by cardiac drift and has a higher response latency (Billat
et al., 2020), power provides an immediate measure of running
intensity and can thus potentially help optimize pacing strategies. In
cycling, the widespread use of mechanical power as a tool for
optimizing training adaptation has been facilitated by the
availability of reliable power meters (Erp et al., 2019). Since the
crankshaft force and speed can be measured directly, mechanical
power can be measured with sensors integrated into the bicycle
(Passfield et al., 2017). However, such a direct measurement of force
and speed during real-world running is challenging.

Mechanical power is defined as the time derivative of
mechanical work or the rate at which work is performed. Thus,
quantification of mechanical work during running provides a way
for estimating the power. Different in-lab approaches have been
proposed to measure the total mechanical work produced by the
body and derive the power for level running over a range of speeds
(Cavagna et al., 1964; Cavagna and Kaneko, 1977; Williams and
Cavanagh, 1987; Rabita et al., 2015; van der Kruk et al., 2018).
Mechanical work is classified into two types: internal work, i.e., the
work carried out in moving the limbs with respect to the center of
mass (CoM) of the body and external work, which results from the
movement of CoM of the body with respect to the environment
(Cavagna and Kaneko, 1977). Limbmotion is usually measured with
marker-based motion tracking systems, whereas CoM kinetics and
ground reaction forces (GRFs) additionally require the use of force
plates. When comparing estimated mechanical power at similar
speeds, existing approaches based on these instrumentation resulted
in different findings, and an universally accepted approach has not
been established (Arampatzis et al., 2000; Winter et al., 2016; van der
Kruk et al., 2018). However, The inclusion of GRF and running
speed in the estimation of work and power improved accuracy and
was consistent with expected increase in power due to an increase in
running speed (Arampatzis et al., 2000). The incline of the running
surface may influence speed and GRF and possibly running power
(Wickler et al., 2000). Therefore, the GRF, running speed, and
incline of the running surface can be considered together as a
reference system for estimation. However, accurate measurement
of GRF with force plates is impractical under real-world running
conditions.

Wearable inertial measurement units (IMUs) have been used to
estimate peak braking GRF (Neugebauer et al., 2014). However, the
complete antero-posterior GRF profile is essential for the estimation
of mechanical work (and power) involved in push-off and braking
phases (Arellano and Kram, 2014). Furthermore, these estimations
of GRF have been validated for level running and may not show
similar performance under uphill and downhill conditions. Of the
commercially available body-worn devices, studies recommend the
foot-worn Stryd™ device due to its high repeatability of
measurements and its concurrent validity (r ≥ 0.911; SEE ≤7.3%)
with respect to the VO2 values (Cerezuela-Espejo et al., 2021). One
study reports the power estimated by the Stryd device for different
treadmill speeds during level running to reflect (mean difference
M.D.: −1.04 W kg-1; limits of agreement L.O.A: −2.3 to 0.18 W kg-1)
the reference power measured as a dot product of horizontal (in the
direction of running) and vertical forces and velocity, respectively,

obtained from a force plate (Taboga et al., 2021). Another study,
however, reports an underestimation of power from the Stryd™
device (Imbach et al., 2020). Furthermore, this system has not been
validated for running on slopes, which is an important requirement
for trail running or long-distance races. Finally, the estimated power
output has shown inadequate changes in response to intentional
changes in running technique and temporal parameters
(Baumgartner et al., 2021), such as step frequency (±10%
change), contact time (~ ±20 ms), and arm swing (presence/
absence). Analytical models have focused either on the
characterization of the overall race performance (Mulligan et al.,
2018) or only on the power requirement while running on flat
terrain (Jenny and Jenny, 2020). An approach based on simulated
wearable IMUs has shown promise (RMS error range 4.2%–20.1%)
but requires data from 15 body segments (Fohrmann et al., 2019). In
this study, IMU data were simulated with the virtual acceleration
and angular velocity values obtained from a full-body marker-based
motion capture system. Neither of these power estimation
approaches are suitable for accurate near real-time feedback in
the field.

Given the potential of body-worn IMU and global navigation
satellite system (GNSS) to estimate running speed (Apte et al., 2020;
Falbriard et al., 2021), the relationship between mechanical power
and running speed (García-Pinillos et al., 2019) could be used to
predict power. However, this relationship is affected by terrain slope
and running technique. Terrain slope can be estimated using
accelerometer signals (Herren et al., 1999) or a barometer
(Moncada-Torres et al., 2014), while the running technique can
be characterized by spatiotemporal gait parameters. One such
parameter is the vertical stiffness of the spring-mass model used
to simulate running, which explains the higher efficiency of running
movement that far exceeds analytic muscle efficiency (Cavagna et al.,
1964). Although vertical stiffness cannot be measured directly under
real running conditions, it can be estimated indirectly using
spatiotemporal parameters such as contact time, flight time, and
running speed. Previous research has presented an accurate
assessment of these parameters (Falbriard et al., 2018; 2020) and
their application under real-world conditions (Apte et al., 2022;
Prigent et al., 2022) using foot-worn IMUs.

The current study aims to extend this work by estimating
horizontal running power during level and graded running at
different running speeds. Here, horizontal power is defined only
through the components of force and velocity in the running
direction and thus directly relates to the ability of the athletes to
produce higher propulsion (Jaskólski et al., 1996). This definition is
useful for application as a feedback tool for measuring and
optimizing running intensity during training and competition
and can be tracked longitudinally across multiple training
sessions to measure improvements in the capacity of runners
(Aubry et al., 2018; Paquette et al., 2020). With a single IMU on
each foot, we aimed to achieve similar, if not better, performance
(RMS error range 4.2%–20.1%) to that obtained with a simulated
whole-body setup IMU (Fohrmann et al., 2019). We considered
approaches based on machine learning because of their
demonstrated potential for unobtrusive analysis of running that
can identify movement-specific risk factors for injury (Franklyn-
Miller et al., 2017), accurate estimation of running speed, GRFs, and
lower extremity kinematics (Wouda et al., 2018; Gholami et al.,
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2020; Falbriard et al., 2021), and identification of movement
deficiencies (Richter et al., 2019) (Xiang et al., 2022). The various
situations considered here include a range of running speeds and
inclines, knowledge of which will serve as complementary
information to that obtained from IMU signals. In addition, the
models proposed here are intended to be computationally
inexpensive to allow their use in near real-time power estimation
with conventional embedded electronic devices.

2 Methods

2.1 Materials and measurement protocol

Measurements were conducted with 34 healthy subjects (age:
35 ± 11 years; height: 174 ± 10 cm; weight: 69 ± 12 kg; max. aerobic
speed: 16.89 ± 2.81 km/h) on a motorized treadmill (T-170-FMT,
Arsalis, Belgium). Ethical approval for the study was obtained from
the Human Research Ethics Committee (CER-VD 2015-00006), and
prior written consent was obtained from all the participants. The
treadmill was customized to enable an adjustable inclination and
incorporated a force plate with 3-D force recording at 1,000 Hz. The
participants were equipped with IMUs (Physilog 5, GaitUp,
Switzerland) attached to the shoelaces using rubber clips.
Acceleration (±16 g) and angular velocity (±2,000 deg/s) were
recorded at 512 Hz and were calibrated according to Ferraris
et al. (1995) before each measurement session. The participants
were allowed to wear their personal running shoes. Figure 1A
illustrates this sensor setup.

The treadmill running protocol included four sessions with
different combinations of treadmill speed and gradient, which
were separated enough (≥1 week) to allow recovery in between.

The first session aimed to evaluate participants’ fitness, based on
ventilatory threshold and VO2max assessments using an incremental
speed test. As an incentive, each participant received an evaluation of
his/her running performance (ventilatory thresholds and VO2max

level) and running technique. In sessions 2, 3, and 4, the participants
went through a series of 4-min running bouts at different running
speeds (8, 10, 12, and 14 km/h) and slope gradients (0%, ±5%, ±10%,
+15%, and ±20%). The order of these conditions was shuffled
between sessions in order to remove experimental bias. We used
VO2max assessments to personalize the different running conditions
(speeds and slopes) within each session to avoid excessive fatigue of
the participants (Morgan and Daniels, 1994; McGawley, 2017) and
prevent a bias in the measurements. Among all the participants,
100% (34) completed the first session, 88% (30) completed the
second session, 79% (27) completed the third session, and 71% (24)
completed the fourth session. Figure 1B shows a reduction in
participation with the increasing physical intensity of the
conditions, which mainly corresponded to an increasing treadmill
speed and grade. This led to an imbalanced dataset, with low-
intensity runs being represented more.

2.2 Reference power estimation

The procedure for estimating the reference horizontal power is
shown in Figure 2A. Force plate signals along the sagittal plane, in
the direction of running (Fy) and perpendicular to it (Fz), were
checked for outliers, and linear interpolation was used to replace the
removed outliers. The signals were subsequently filtered using a
zero-phase low-pass Butterworth filter of order 3 and cutoff
frequency of 25 Hz, based on the recommendation of using
approximately 20 Hz for matched low-pass filtering of kinematic

FIGURE 1
Measurement systems and protocol. (A) An IMUwas attached to each foot, and force plate data were used as the reference. XT-YT-ZT represents the
frame of reference attached to the treadmill. (B)Number of recorded running trials for each treadmill speed for all three treadmill grades. This information
was used for balancing the dataset.
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and force plate data (Mai and Willwacher, 2019). A threshold of
20 N on the Fz signal was used to detect the stance phase (Zeni et al.,
2008). First frames with Fz higher and lower than 20 N for a length
of at least 40 samples were ascertained as initial and terminal
contact. To segment the gait cycles, the signal above the
threshold of 300 N was used to detect the mid-stance using the
findpeaks function in MATLAB.

Two main approaches have been considered in literature works
for the estimation of horizontal power (Arampatzis et al., 2000): first
is based on the GRF and the CoMmotion and second is based on the
estimation of the product of force–velocity or moment–angular
velocity of all the individual limb segments (Cavagna et al., 1964;
Cavagna and Kaneko, 1977). The latter method requires precise
3D motion tracking of each segment and is more prone to outliers
in the results. Furthermore, the first method shows a better
correspondence with oxygen uptake (Arampatzis et al., 2000). In
this method (Rabita et al., 2015), the antero-posterior (in the
direction of the run) GRF is used to estimate the antero-
posterior acceleration, velocity, and horizontal power of the
CoM. This method was adapted for graded running, as illustrated
in Figure 2B, using the following equations:

ay � Fy −mg sin θ

m
, (1)

vy � v0y + ∫t

0
aydt, (2)

Py � vy × Fy, (3)
where y is the direction of running and Fy is the force recorded by
the force plate along y, ay is the instantaneous acceleration of the
CoM, vy is the instantaneous velocity of the CoM, Py is the “power,”
Wy is the “work,”m is the body mass, and t is the time elapsed since
the beginning of the stance phase. v0y is the average velocity of the
CoM during running, i.e., speed of the treadmill and the slope θ is

assumed to be positive. For downhill running (Figure 2C), the
direction of running (direction of Fy, ay, vy, and v0y) is reversed,
leading to a different equation for ay:

ay � Fy +mg sin θ
m

. (4)

During the implementation, all quantities are considered as
scalars since the direction (y) is already specified. Therefore, Py

is not power in a strict mechanical sense, as it represents only
one component of a 3-D movement. A reliable estimate of
average power requires not only a reliable estimate of power
but also the duration of the braking and propulsion segments of
the stance phase. Therefore, estimation of average power may be
prone to error when determining stance phase events. We are
not aware of methods that can separate these two segments with
a low error in the field using foot-worn IMUs. While previous
research has linked average power over the gait cycle to
metabolic power (Grabowski and Kram, 2008; Taboga et al.,
2021), our application mainly focuses on the feedback of
running intensity and propulsive performance. Thus, we
considered peak values of power as they do not require
segmentation of the stance phase. To improve the robustness
of the method, we estimated the peak values within one gait cycle
and averaged them over multiple cycles. Therefore, in case of
level and uphill running, the maximum power in the concentric
phase was assumed as the reference horizontal power (P) value
for one step (Roberts and Belliveau, 2005). For downhill
running, the minimum power (negative peak) during the
eccentric phase was considered the reference value (P) for
one step. Assuming only the concentric phase power and
averaging it over the stance phase (Taboga et al., 2021) is not
suitable for downhill running, as it involves mainly an eccentric
activation of the thigh muscles (Eston et al., 1995).

FIGURE 2
Estimation of reference horizontal power. (A) Processing force plate data. (B) Free body diagram for up-hill running on the treadmill, with the runner
represented as a single rigid body (point mass). (C) Free body diagram for downhill running.
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2.3 IMU data processing

The main steps for IMU data processing are shown in Figure 3. A
fourth-order low-pass Butterworth filter (Fc = 50 Hz) was first applied
onto the raw acceleration (as (t)) and angular velocity (ωs (t)) signals to
reduce sensor noise. The filtered IMU signals were aligned with the
functional frame (af (t), ωf (t)) of the foot using functional calibration.
The calibration process included data from a 5-s static period before the
run, followed by the initial steps of the run (Falbriard et al., 2018).
Following this, each signal (af (t), ωf (t)) was segmented into mid-
swing tomid-swing cycles, and temporal events of the gait were detected
within each cycle using previously validated methods (Falbriard et al.,
2018).

Due to the association between the changes in the duration of
the gait phases and the running speed (Apte et al., 2021), ground
contact time (tc), flight time (tf), swing time (ts), and stride duration
(strd) for each step were computed using the data from the left and
right foot. These temporal parameters were used as inputs for the
spring-mass model to estimate vertical stiffness (kvert), maximum
vertical force (fzmax), and maximum vertical displacement of the
CoM (Δz) (Morin et al., 2005). Subsequently, we computed the
orientation of the foot in the global frame (GF) XT-YT-ZT to estimate
the foot strike angle (fsa) before initial contact and transformed the
foot acceleration from the foot frame (FF) to the GF, after removing
the gravitational acceleration. The resulting acceleration (in GF) was
integrated using a trapezoidal rule to get a first estimate of the speed
of the foot. We removed the integration drift by linearly resetting the
speed at each stance phase (Falbriard et al., 2021), with the
assumption of zero speed during the stance phase. Finally, we
applied the inverse transformation to get the drift-corrected
stride velocity of the foot segments (vf (t)) in the FF that is
important subsequently to develop features for the models. It is
important to note that vf (t) is different fromv0y, which is the
treadmill speed.

2.4 Feature development

2.4.1 Feature extraction
The overall feature development process is shown in Figure 3.

The feature set consisted of four different categories of features:

1. Parameters related to gait, Xg: The IMU-based gait
spatiotemporal and stiffness parameters presented in Section
2.3 form the first feature set. The latter because vertical
stiffness (kvert) modulates the maximum displacement of the
CoM (Δz) in response to maximum force (fzmax) and has been
associated with running economy, with less economical runners
exhibiting a more compliant running pattern (Heise and Martin,
1998).

2. Statistical features, Xs: Several statistical features were extracted from
the af (t), ωf (t), and vf (t) signals (Table 1). Since each of signals
contains three channels (x, y, and z), the statistics for each channel
were calculated separately. The considered antero-posterior direction
for running power was in the global frame, whereas the three
directions for the IMU variables were in the sensor frame.
Therefore, we assumed that the components of all three directions
of the IMU would be relevant to our case and were included. In
addition, the Euclidean norm was calculated for each signal, followed
by the statistics for that norm. It should be noted that the statistical
features (Xs) were captured on the signals of a single stride, as a stride-
based segmentation is more likely to capture the complete period of a
gait cycle. The featuresXs aimed to encapsulate information about the
signal intensity (e.g., mean, STD, and RMS), the shape of its
distribution (e.g., skewness and kurtosis), and its shape in a
compressed format (e.g., coefficient of the auto-regressive model).
Since the temporal parameters already contain relevant periodic
information, frequency domain features were not considered.

3. Anthropomorphic information,Xa: The height, age,mass, and the leg
length (measured from anterior superior iliac spine (ASIS) to the

FIGURE 3
Block diagram for the proposed estimation method. The process is divided into four main parts: i) processing of the IMU signals, ii) extraction of
features based on IMU signals, biomechanical and anthropomorphic parameters, treadmill speed, and slope, iii) selection of features based on reducing
redundancy andmaximizing the relevance, and iv) development and validation of the three models for level, uphill, and downhill running, respectively. P:
reference power, Xd: development feature set, Pd: development set for response variable (power), Xt: test feature set, Pt: test set for response
variable, M(x): developed model, and εn: error.
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medial malleolus) of the participants were included as features. Since
the mass is used in the calculation of Py (Eqs 1–3), it was expected to
be an important feature. Leg length is related to stride length, which
affects running speed. Since it is difficult to reliably estimate the stride
length directly from the sensor data, we considered leg length.

4. Running conditions, Xc: Information of the running conditions,
the slope (θ), and the treadmill speed (v0y) were used to complete
the feature set. However, to simulate real-world conditions where θ
and v0y will be estimated from IMU and barometer signals, we
added noise to known θ and v0y values. For v0y, the maximum
standard deviation and bias of error for IMU-based estimation were
0.16 m/s and 0.0, respectively (Falbriard et al., 2021). So awhite noise
of range [-0.16, 0.16] was added to the treadmill v0y data before
using it as a feature. Apart from this maximum noise condition
(100%), two other conditions were also considered: a smaller noise
(50%) of [-0.8, 0.8] and no noise, i.e., perfect estimation of v0y. These
three conditions allowed us to explore the performance of our
methods under different performances of speed estimation
algorithm. We repeated the same process for θ. Assuming a 10-s
window, the minimum distance estimated at the lowest treadmill
speed (2.22 m/s or 8 km/h) would be (2.22–0.16) x 10 = 20.6 m.
Assuming a relative height estimation error of ±1 m using a
barometer (Ye et al., 2018), the error in grade was computed to
be ±4.86%. So a white noise of range [−4.86, 4.86] was added to the
grade data before using it as a feature. The final feature set (Xc) thus
consisted of the noisy speed (v̂0y) and grade (θ̂) data.

The overall feature set (X), with each feature as a vector of values,
is shown as follows:

X � Xg,Xs, Xa, Xc[ ]. (5)

2.4.2 Resampling and dataset balancing
Because the feature set was based on segmentation of gait cycles,

some inevitably misidentified gait cycles resulted in missing values.
To address this problem, the data were resampled at a resolution of
one value per second. Similarly, the reference power data were
resampled at the same resolution and considered the response
variable (P). Running conditions with a high positive grade and/
or high speed had lower participation because of their high
intensity, resulting in an imbalanced dataset (Figure 1B). By
considering the speed as a class and dividing the grade into
three conditions (level, uphill, and downhill), the classes were
balanced using random over sampling (ROS) of
underrepresented classes (Pes, 2020). Compared to random
under sampling (RUS), ROS duplicates information rather
than randomly removing samples of potentially rare
conditions (e.g., high speed during uphill running). For ith

class with ni samples, ROS was implemented as follows:

�ni � ni ×
n max

ni
( )α

, (6)

where �ni is the modified sample size, n max is the size of the
largest class, and α is a hyperparameter. After trying values from
0.5 to 0.95 in steps of 0.05, α was set to 0.8. Finally, data from
one-third of the participants (n = 11) were reserved as the test

set (Xt, Pt), while the remaining data were used as the
development and validation set (Xd, Pd) for the feature
selection and model training phases. All data of a single
participant were attributed to only one of the subsets; this
removed the performance bias associated with the models
trained and tested on measurements originating from the
same subjects (Halilaj et al., 2018). Participants were selected
randomly to form the datasets.

2.5 Feature selection

The feature set obtained as a result of feature extraction
included a total of 171 features. To develop a simpler and more
efficient model, we performed a feature selection process
(Figure 3) using filter methods to remove the redundant and
irrelevant features (Li et al., 2017). To identify the redundant
feature pairs, we calculated the correlation between all possible
feature pairs. Kendall’s τ was used to quantify the correlation
between features; it is more robust than Spearman’s ρ and less
sensitive to errors and discrepancies in the data (Newson, 2002).
Whereas Pearson’s correlation only considers the linear
relationship between variables, Kendall’s τ relies on the
number of concordant and discordant pairs in the variables
and does not require a specific functional relationship between
variables (de Siqueira Santos et al., 2014). For feature pairsXd[m]
and Xd[n] with N samples, τ is quantified as

τ � 2
N N − 1( )∑i < j

sgn(Xd m, i[ ]
−Xd m, j[ ]) × sgn Xd n, i[ ] −Xd n, j[ ]( ), (7)

sgn x( ) �
1∀x> 0
0∀x � 0
−1∀x< 0

⎧⎪⎨⎪⎩ . (8)

TABLE 1 Statistical features (Xs) extracted for each stride on the continuous
acceleration af (t), angular velocity ωf (t), and speed vf (t). Variables T and C
correspond to the signal (a, ω, and vf) and the channel (x, y, z, or n, i.e., norm),
respectively. AR, auto-regressive model.

Type Feature Description

Intensity µTC Mean value

σTC Standard deviation

medTC Median

iqrTC Interquartile range

maxTC Maximum

rmsTC Root mean square

Shape kurtTC Kurtosis

skewTC Skewness

Compression arm1TC First coefficient of the third order AR model

arm2TC Second coefficient of the third order AR model

arm3TC Third coefficient of the third order AR model
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Feature pairs with τ < 0.8 (selected based on trials with a range
from 0.5 to 0.95) were selected for model development (see
Figure 3), while others were further examined for their relevance
to the response variable (yd) using the mutual information (I)
metric, which quantifies the amount of information obtained
about one variable, through the availability of another variable
(Kraskov et al., 2004). If Xd[m] is considered as X and Pd as Y,
I can be expressed as

I X;Y( ) � ∑
y∈Y

∑
x∈X

p X,Y( ) x, y( ) log p X,Y( ) x, y( )
pX x( )pY y( )( ), (9)

where pX and pY are the marginal probability density function forX
and Y and p(X,Y) is the joint probability mass function of X and Y.
For feature pairs with τ(Xd[m], Xd[n]) > 0.8, feature Xd[m] was
selected if I(Xd[m];yd) > I(Xd[n];yd) and vice versa (Vergara and
Estévez, 2014). The selected feature set contained 117, 125, and
120 features for level, uphill, and downhill running, with
approximately 30% features being removed from each feature set.
This process was not repeated for the testing set, with the selected
features remaining the same.

2.6 Model development

2.6.1 Model training
Our goal was to develop one model for each of the three

running conditions. To ensure that features contributed equally
to the model training and that coefficients were properly scaled,
the features were rescaled using a z-score normalization method
(Jain et al., 2005). Two approaches were pursued for model
development—a linear model using elastic net (EN)
regularization and a non-linear model using a neural network.
Linear models enable computationally efficient implementation
for near real-time analyses on conventional embedded devices.
For similarly performing linear and non-linear models, EN
allows us to understand the feature importance. EN linearly
combines the L1 penalty of the LASSO regression method and
the L2 penalty of the ridge regression method (Zou and Hastie,
2005). EN tends to maintain similar feature sparsity as the LASSO
method while providing improved accuracy. Similarly, it
overcomes the LASSO limitation of retaining only one of a
group of linearly correlated predictors and tends to include
the entire group (Zou and Hastie, 2005; Hastie et al., 2008a).
The EN was implemented as shown in Eq. 10 and 11 with Pd,i

being the response at observation i, N being the total number of
observations, Xd,i being the feature vector with k features at
observation i, λ being the positive regularization parameter
corresponding to one value of lambda, β being the coefficient,
and β0 being the intercept.

min
β0 ,β

∑N

i�1 Pd,i − β0 −XT
d,iβ( )2 + λKγ β( )( ), (10)

Kγ β( ) � ∑k

j�1
1 − γ( )
2

β2j + γ βj
∣∣∣∣∣ ∣∣∣∣∣( ), (11)

where γ is the hyperparameter that sets the balance between the
LASSO and ridge regressionmethods. Based onmanual trial and error,
γ was set at 0.5 for the model development. To account for interactions

between biomechanical features and non-linear relationships between
biomechanical parameters and “power,” a neural network (NN) was
also implemented with the output layer of one neuron and a hidden
layer of 10 neurons (Hastie et al., 2008b). The default MATLAB
feedforward network was trained using the Levenberg–Marquardt
backpropagation algorithm (Yu and Wilamowski, 2011), with a tan-
sigmoid and linear transfer functions for the hidden and output layers,
respectively. We trained two configurations of the NN, with differing
distributions of the training dataset (Xd, yd)—NN15: 80%
development, 15% validation, and 5% test; NN35: 60%
development, 35% validation, and 5% test.

2.6.2 Model validation and testing
The EN, NN15, and NN35 models were tested with the test set

(Xt, Pt) to estimate horizontal power P̂t. Following this, Pt and P̂t

were smoothed by averaging over a 10-s sliding window with an
overlap of 5 s. This provided a power estimate every 5 s, which we
considered satisfactory for use as a running feedback tool based on
our discussions with sports practitioners, while also allowing
estimation of running speed (v̂0y) and terrain grade (θ̂) from the
foot IMU and barometer signals. The estimated power P̂t was
compared to the reference power Pt using the percentage error (εn):

εn � Pt − P̂t

Pt
× 100. (12)

Median and interquartile range (IQR) of εn were calculated to
determine the bias and precision of the power estimate. Median and
IQR were also computed for each grade and treadmill speed to
understand performance of the algorithm under different running
conditions. The mean absolute error (MAE) was also computed using
ϵn to understand the overall error. In addition, the Bland–Altman
approach (Bland and Altman, 2003) was used with Pt and P̂t to
investigate the agreement between our algorithm and the force plate-
based power estimation. Finally, cumulative distribution plots of εn
were constructed for three noise assumptions (ϵ100, ϵ50, ϵ0) on speed
and slope, to provide an insight into the effects of the noise in the
features on the error distribution.

3 Results

We analyzed 34 participants who ran on a treadmill at various
speeds and inclines, including a total of 210.7 min level, 74.6 min
uphill, and 112.4 min downhill running, which were used for training
and testing the algorithm. The reference horizontal power estimated
from the force plate data followed a nearly linearly increasing
relationship with treadmill speed (Supplementary Figure S1), with
uphill running exhibiting a higher peak power during the concentric
phase of stance than level running, at the same speed. Figures 4A, B
show the best case and worst case scenarios for the prediction in level
running, respectively.

The increasing power (stair pattern) corresponds to different
running trials, each with higher speed than the preceding trial. The
former (Figure 4A) does not exhibit a substantial difference between
the prediction for the zero-noise level (ϵ0). All three noise levels of
running conditions resulted in excellent agreement (R2 > 0.9)
between the predicted and reference values based on the linear
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correlation (Figure 4C). An increase in noise levels resulted in a
higher deviation between predicted and reference power at high
magnitudes of power. linear correlation (R2) between Pt and P̂t and
the bias (median), precision (IQR), and the MAE for the error (%)
are presented in Table 2. Even with the assumption of max. noise
(ϵ100), the median ± IQR for error was low (1.7% ± 12.5% for level,
3.2% ± 13.4% for uphill, and 2.0% ± 13.3% for downhill) under all
three running conditions. The reduction in noise typically led to a
reduction in the IQR of the error. Kendall’s test showed a high
correlation (R2 = 0.95 for level, R2 = 0.91 for uphill, and R2 = 0.93 for
downhill) between Pt and P̂t.

The Bland–Altman plot for power estimation with maximum
noise (ϵ100) is presented in Figure 5, with samples from different
participants represented by unique colors. It confirms low
correlation between the error and estimated speed values (τ =
0.08 for level, τ = −0.01 for uphill, and τ = 0.09 for downhill
running) and an increase in error values with an increase in mean
values. However, only two or three participants out of 11 show a
high error at higher mean values under the three running
conditions. Downhill running (Figure 5C) indicates a possible

nonlinear relationship between the mean and difference of
reference (Pt) and estimated power (P̂t) for power estimation.

The cumulative distribution of the error for all running
conditions and noise levels is shown in Supplementary Figure S2.
For 90% of the participants and under all conditions, the error
remained below 20%, including any outliers. In contrast to level
running, there was a larger influence of noisy running conditions
(Xc) on the error distribution for running on inclines. For all three
running conditions, the coefficients and labels for the 15 most
important features of the EN models are presented in Table 3.
The most important features were usually the mass (m) and the
treadmill speed (v̂0y), followed by the slope (θ̂). The linear
correlation between the biomechanical features in Table 3 and
the reference power for the training set is presented in
Supplementary Table S1.

Figures 6A, B present the bias and precision for the estimation
error across all treadmill speeds and slopes. For each positive slope
and the −10% and −20% slopes, the bias was the largest at the highest
speed reached (10.4% at 20% slope and 18.4% at −20% slope).
However, the bias and the precision at the lowest treadmill speed

FIGURE 4
Illustration of actual and predicted horizontal power values for level running for all three noise levels on features. (A) Participant with the best
estimation of power and (B) participant with the worst estimation. (C) Linear agreement between predicted and estimated power values.

TABLE 2 Bias (median), precision (IQR), and mean absolute error (MAE) for the three running conditions, with different levels of noise on the features of speed and
grade.

Condition Noise Best model MAE (%) Bias (%) Precision (%) R2

Level running ϵ100 NN35 6.5 1.7 12.5 0.95

ϵ50 NN35 6.4 3.3 10.9 0.96

ϵ0 NN35 5.2 2.1 9.6 0.97

Uphill running ϵ100 NN15 7.1 3.2 13.4 0.91

ϵ50 NN15 6.3 −0.2 13.1 0.91

ϵ0 NN35 5.4 2.4 8.9 0.95

Downhill running ϵ100 EN 6.8 2.0 13.3 0.93

ϵ50 NN35 6.9 2.1 11.9 0.95

ϵ0 NN35 4.6 −1.9 8.4 0.97
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(8 kmh-1) was generally high (21% ± 5.9%) at all slopes, including
level running. At the 10 kmh-1 and 12 kmh-1 speed conditions, the
estimation error showed a typically better precision (10.7% ± 2.0%).

4 Discussion

The proposed method was able to track the reference horizontal
peak power estimated from the force plates over a speed range from
8 kmh-1 to 14 kmh-1 and at slopes from −20% to 20%. It achieved a
MAE 6.5%–7.1%, an IQR (precision) of 12.5%–13.4%, and a R2 ≥
0.91 under all running conditions (Table 2). Although obtained
using only foot-worn IMUs, these error magnitudes lie within the
range of RMSE values (4%–20%) obtained using a simulated full-
body IMU setup (Fohrmann et al., 2019). At the same speed, uphill
running exhibited a higher peak power during the concentric phase
of stance than level running (Supplementary Figure S1). These
results are in agreement with the findings of Arampatzis et al.
(2000) who compared different methods of estimating power
from kinematic and ground reaction forces (GRF) data and
recommended the use of GRF data-based methods. The best
models for level, uphill, and downhill running (Table 2) were the
neural network with 35% validation set (NN35), the neural network
with 15% validation set (NN15), and elastic net (EN) regularization,
respectively.

The bias (median error) was the highest under the conditions
with the highest speed and slope (Figure 6A). Running under
these intense conditions is highly demanding, which limited the
availability of data for model training and likely biased the
models toward lower or moderate intensity running
conditions. The precision (IQR for the error) at the lowest
treadmill speed (8 kmh-1) was generally high (21% ± 5.9%).
The high IQR may also be the result of the running
biomechanics associated with the low speed, as 8 kmh-1 is
within the average range of walk-to-run transition speeds
(4.68–9.18 kmh-1) for healthy participants (Thorstensson and
Roberthson, 1987). In addition to biomechanics, the higher
IQR may also be the result of noise added to the speed value.

Because the amount of noise was fixed, the signal-to-noise ratio
(SNR) was lowest at the lowest speed (8 kmh-1). Considering the
fact that speed is one of the most important features (Table 3) for
the EN model, a low SNR can lead to a higher error. Compared to
the 8 kmh-1 condition, the 10 kmh-1 and 12 kmh-1 speed
conditions resulted in a lower IQR of error (10.7% ± 2.0%).

FIGURE 5
Bland–Altman analysis for horizontal power estimation with maximum noise (100), samples from each participant in the test set are shown in
different colors. Pt and P̂t are measured in terms of Watts (W). (A) Level running, (B) uphill running, and (C) downhill running.

TABLE 3 Labels and coefficients for the 15 most important features of the EN
models under all three conditions. Statistical features are defined according to
Table 1 and are indicated in bold, with the signal direction (or norm) indicated
using a subscript. Other features are defined as follows: kvert: vertical stiffness,
fzmax: maximum vertical force, Δz: maximum vertical displacement of the
CoM, strd: stride duration, and fsa: foot strike angle before initial contact. For
downhill running, the negative sign indicates a positive contribution to the
power estimation model since the predicted power is negative.

Level Uphill Downhill

Label Coefficient Label Coefficient Label Coefficient

v̂0y 73.8 m 48.9 v̂0y −139

m 60.0 iqray 34.0 m −97.9

kvert 51.5 v̂0y 32.6 θ̂ 93.8

fzmax 42.8 σωy −32.4 arm1ωy 67.4

skewvfn −39.2 µvfy 28.7 kurtωx −65.1

µaz 37.4 iqrvfx 27.4 fzmax −59.8

skeway −36.5 kurtaz −26.2 meday 59.1

maxvfn 34.7 µay −25.6 σan −57.2

µay −33.5 strd 19.9 fsa −54.8

Δz 29.2 skewωx −19.9 maxaz 52.0

rmsay 27.7 Δz 19.7 rmsan −51.9

iqray 26.3 maxωx −19.3 µay −50.9

arm1vfz 22.4 θ̂ 18.5 iqrωy 50.5

skewvfy −22.4 lenleg −18.1 arm3ωy 48.9

σvfz 21.6 maxaz −17.0 skeway −47.6
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These two conditions are within the range of average preferred
running speeds in the field: 9.86 kmh-1 (95% CI: 9.54–10.15 kmh-

1) for female participants and 11.7 kmh-1 (95% CI: 11.45–12 kmh-

1) for male participants (Selinger et al., 2022). Furthermore, these
conditions also correspond to the optimal treadmill speeds in the
laboratory, which result in minimal net metabolic cost of
transport (energy expenditure per unit distance travelled) for
running (Selinger et al., 2022). Thus, in the context of real-life
scenarios, we can expect the algorithm to perform adequately.
Furthermore, it is important to note that these results are for the
condition with the highest amount of noise (ϵ100, Table 2). With a
more accurate estimation of speed and slope, we can only expect
the error IQR to reduce, as is evident in the error distribution plot
(Supplementary Figure S2) and Table 2.

Taboga et al. (2021) compared commercially available power
meters with force plate measurements for level running only and
found a good agreement (L.O.A: −154.8 to 12.6 W; M.D.:
−70.8 W, assuming a reported average mass of 68.1 kg). While
the upper L.O.A is lower than our findings (L.O.A: −179.8 to
216.3 W; M.D.: 18.2 W), the M.D. is higher. However, L.O.A in
our case has been extended mainly due to the samples from two
participants (Figure 5A). We could not find existing validation
studies ith graded running for comparison. As vertical force and
velocity is considered for the estimation of power in case of
commercial devices (Arampatzis et al., 2000; Taboga et al., 2021),
hopping on the spot or increased vertical movement of the CoM
during running may result in a higher power measurement. If the
goal of using power as a feedback tool is to understand the
intensity of the run, “power” in the direction of running
(horizontal power) is a more interesting metric as it relates to
the propulsion produced by the athlete (Jaskólski et al., 1996).
This is despite the fact that power is a scalar quantity and
“directional power” does not mechanically represent power
(van der Kruk et al., 2018; Vigotsky et al., 2019). During the

terminal stance phase, maximum mechanical power correlates
with the push-off force generated by the concentric contraction
of the thigh muscles, while maximum mechanical power
absorbed during the initial contact indicates the energy
absorbed by the eccentric contraction of the calf muscles
(Mann and Hagy, 1980). The ability to run downhill at the
same speed and gradient, but with a lower negative
mechanical work, i.e., lower magnitude of “power” in the
eccentric contraction phase is beneficial, as exercise-induced
muscle damage during eccentric loading has a significant
adverse effect on endurance performance (Marcora and Bosio,
2007). The reduction in impact forces can decrease the muscle
fatigue accumulated during downhill running and possibly
reduce injury risk in a trail running training program.
Commercial devices only consider the power produced during
the concentric phase and average this power over the entire
stance phase duration, thus providing no insight into the
“power” during the motion cycle. If both phases are
considered together, it can lead to the averaging of positive
and negative power, leading to their negation.

The EN model allows us to rank the features according to
their importance (Zou and Hastie, 2005) based on the magnitude
of their coefficients. We have presented the 15 most important
features to explore the biomechanical contributions to the
estimation of horizontal running power. However, it is important
to point out that the proposed models cannot perform well by
including only the 15 features presented. The list of features shows
the mass (m) and the treadmill speed (v̂0y), followed by the slope (θ̂).
This is expected due to the use of θ, v0y, and θ in Eqs 1–4 for the
estimation of the reference power from force plate. The SNR for θ̂
is much lower for lower values of the gradient (e.g., ±4.86% noise
for a gradient value of 5%). Compared to downhill running,
uphill running has less than half the data samples at higher
gradients (15 or 20%) and thus likely shows relatively much lower

FIGURE 6
Estimation of error (%) for all running conditions. (A) Median error and (B) error IQR.
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feature importance (Table 3) for the gradient. Biomechanical
parameters such as vertical stiffness (kvert), maximum vertical
force (fzmax), maximum vertical displacement of the CoM (Δz),
stride duration (strd), and foot strike angle immediately before
initial contact (fsa) were also among the important features. All
these parameters showed a significant linear correlation
between −0.52 and 0.82 (Supplementary Table S1) with the
reference power for the training set. The magnitude of the
correlation coefficient was the highest for kvert and fzmax
under the level running condition and the lowest for fsa in
downhill running. During graded running, kvert can exhibit
large variability and there is a reasonable doubt about the
validity of using the spring-mass model to estimate kvert
under this running condition (Meyer et al., 2023). This could
explain the inclusion of kvert as an important feature for
level running but not for graded running. With an increase in
speed, Δz decreases, fzmax increases, and so does the total
contribution of ay and Fy, leading to an increase in power
(Farley and Ferris, 1998; Cavagna et al., 2005). While this
implies that features are correlated, their strength of
correlation (τ) was likely below the selected threshold of 0.8.
kvert, fzmax, and Δz are directly related to the storage and return
of elastic energy in the spring-mass model of running, and a
decrease in kvert due to fatigue has been associated with a
decrease in performance (Morin et al., 2005; 2006; Prigent
et al., 2022).

4.1 Limitations and future work

Some of the important statistical features (Table 3) are associated
with signals in the X direction, i.e., the axis perpendicular to the
sagittal plane. This suggests that the 2-Dmodel (Figures 2B, C) used to
estimate reference power can be extended to account for motion in all
three dimensions. In addition, this model assumes that the athlete is a
point mass driven by the GRF. Although the model is mechanically
driven in equilibrium (van der Kruk et al., 2018), it can be augmented
to include the 3-D kinetics of the body segments. Body weight
normalization of the estimated power could help compensate for
variations across individuals, although weight-normalized errors
would translate differently to heavier and lighter individuals. Total
power, including vertical and horizontal components, has been shown
to correlate with metabolic power (Arampatzis et al., 2000). If the
reported total power decreases at the same running speed (with
training), one can assume improved efficiency. While we only
considered horizontal power in this study, our methods could be
extended to estimate total power, which could be useful as feedback on
running efficiency.

To enable the application of our method in practice,
algorithms using accelerometer signals (Herren et al., 1999) or
barometer (Moncada-Torres et al., 2014) can be devised to
identify uphill, downhill, and level running. Furthermore, the
ratio between the absolute power from concentric work and
eccentric work could potentially be utilized as a metric of
mechanical efficiency (Vernillo et al., 2017). While our model
has been tested on young healthy adults running on treadmills, it
can be extended further and personalized to account for different
populations (Hoenig et al., 2020). In addition to foot-worn

sensors, IMUs on other segments, particularly the wrist and
trunk, must be examined to estimate power. Wrist location
offers ease of use and has been used for running gait analysis
(Kammoun et al., 2022), while the trunk provides a position close
to the CoM of the body.

5 Conclusion

In this work, we developed a method for accurate estimation of
horizontal running power with foot-worn IMUs under various
simulated real-world conditions. Different inclines (−20% to 20%)
and running speeds (8 kmh-1 to 14 kmh-1) were considered to test the
method with the force plate data used to estimate reference power.
The proposed neural network model resulted in the lowest errors
(median ± interquartile range) of 1.7% ± 12.5% and 3.2% ± 13.4% for
the uphill and level running, respectively, whereas the proposed elastic
net model showed the lowest error of 1.8% ± 14.1% for downhill
running.We accurately estimated peak concentric power for downhill
running and peak eccentric power for level and uphill running, which
can potentially be used to define the training load for level and trail
running. Athletes susceptible to or recovering from muscle injuries
can use the eccentric power peak as a threshold for designing training
programs with an appropriate mechanical load. This work can
provide athletes and coaches with a more comprehensive
understanding through reliable in-field quantitative feedback and
help further personalize training programs.
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