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Summary

We created a 3-dimensional
patient-specific eye model
from a T1-weighted 1.5T
magnetic resonance imaging
dataset of 37 subjects con-
sisting of healthy eyes and
eyes of uveal melanoma pa-
tients for integration into
proton radiation treatment
planning. Despite motion
and bias field artifacts, our
active shape model shows
high levels of segmentation
accuracy, even in the
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Purpose: We present a 3-dimensional patient-specific eye model from magnetic reso-
nance imaging (MRI) for proton therapy treatment planning of uveal melanoma (UM).
During MRI acquisition of UM patients, the point fixation can be difficult and,
together with physiological blinking, can introduce motion artifacts in the images, thus
challenging the model creation. Furthermore, the unclear boundary of the small ob-
jects (eg, lens, optic nerve) near the muscle or of the tumors with hemorrhage and
tantalum clips can limit model accuracy.

Methods and Materials: A dataset of 37 subjects, including 30 healthy eyes of volun-
teers and 7 eyes of UM patients, was investigated. In our previous work, active shape
model was successfully applied to retinoblastoma eye segmentation in T1-weighted
3T MRI. Here, we evaluate this method in a more challenging setting, based on
1.5T MRI acquisition and different datasets of awake adult eyes with UM. The lens
and cornea together with the sclera, vitreous humor, and optic nerve were automati-
cally segmented and validated against manual delineations of a senior ocular radiation
oncologist, in terms of the Dice similarity coefficient and Hausdorff distance.
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presence of tumor and
tantalum clips. The lens,
vitreous humor, optic nerve
and sclera (combined with
the cornea), vitreous humor,
and optic nerve were auto-
matically segmented and
validated against manual de-
lineations by a senior
radiation oncologist.

Results: Leave-one-out cross validation (mixing both volunteers and UM patients)
yielded median Dice similarity coefficient values (respective of Hausdorff distance)
of 94.5% (1.64 mm) for the sclera, 92.2% (1.73 mm) for the vitreous humor, 88.3%
(1.09 mm) for the lens, and 81.9% (1.86 mm) for the optic nerve. The average compu-
tation time for an eye was 10 seconds.

Conclusions: To our knowledge, our work is the first attempt to automatically segment
adult eyes, including patients with UM. Our results show that automated active shape
model segmentation can succeed in the presence of motion, tumors, and tantalum
clips. These results are promising for inclusion in clinical practice. © 2018 Elsevier
Inc. All rights reserved.

Introduction

Uveal melanoma (UM) is the most common primary intra-
ocular malignancy in the white adult population, making up
79% to 88% of primary intraocular cancers. The incidence of
UM has remained stable for the last 50 years (1, 2). Many
therapeutic options (3) for UM are available in ophthal-
mology specialized centers, including, for example, enucle-
ation, local resection, and brachytherapy, as well as external
beam radiation therapy. Since the 1970s, proton therapy (PT)
has emerged as the standard of care for the vast majority of
malignant melanomas of the uveal tract. PT achieves high
rates of local tumor control with acceptable ocular morbidity
due to intrinsic physical properties of protons, whereby the
dose deposition occurs at the target tissue while relatively
sparing nearby structures (4). Current clinical practice in-
cludes the need for a surgical implant of tantalum clips for
tumor localization, an invasive procedure that is essential for
planning and positioning. Currently, EYEPLAN software is
the most widely used model-based treatment planning sys-
tem for ocular PT. This software relies on a spheroidal eye
model, which is adapted to the patient’s eye length and clip
positions. Only the location of organs at risk with respect to
target are modeled, as the system does not support modern 3-
dimensional (3D) imaging for the target or organs at risk
definition. There is hence a need to create personalized PT
planning, allowing for the localization and segmentation of
eye structures. The automation of such a process would also
be beneficial to reduce interobserver variability in boundary
definitions, especially in posterior tumors with hemorrhage
and tantalum clips.

Ocular magnetic resonance imaging (MRI) provides a
large amount of information about the eye anatomy and the
tumor compared with traditional A- and B-scan ultrasound
given its high spatial resolutions, multiplanar capabilities,
and high intrinsic contrast. This can be achieved with
conventional head coils or surface coils (5-7). The pre-
dominant MRI signal is from the aqueous and vitreous
humor (VH), which have more than 98% water content,
resulting in a bright T2 signal and low T1 signal relative to
the extraocular muscles. This specific characterization
helps the differential diagnosis and follow-up monitoring
owing to its contributions to the construction of 3D UM

patient-specific eye models. In clinical practice, however,
ocular MRI acquisition can be challenging, in particular for
patients with compromised vision.

Patients are asked to fixate on a point during the entire
acquisition, reducing but not fully excluding motion arti-
facts in the image. In addition, the presence of large
amounts of fat within the orbit, poor contrast, and the small
size of the eye anatomy (including tumors and clips)
located near muscles can be challenging for an automatic
segmentation algorithm. Figure la shows an example of
T1-weighted vibe 1.5T MRI (with surface loop coil) of a
patient with UM. Figure 1b illustrates the presence of the
motion (yellow arrow) and the tumor (red arrow). Figure Ic
shows an example of a 3D UM patient-specific eye model:
the sclera (CS) (red), lens (green), VH (white), optic nerve
(pink), tumor (blue), and clips (yellow).

The aim of this study is to improve PT planning by
integrating a patient 3D MRI and its derived patient-
specific eye model. Our goal is the inclusion of patient-
specific 3D eye structures and the tumor shape not only for
a better dose distribution but also for the standardization of
the segmentation procedure. Achieving this goal would
reduce both the time needed and the variability observed in
manual delineations, which necessitate careful checking of
semiautomated procedures, especially for poor contrast
image or small eye anatomy structures (Fig. 2).

Some works have addressed the segmentation of healthy
eyes in 3D imaging such as MRI or computed tomography
(CT). For example, McCaffery et al proposed a para-
metrical model (7) for a coarse segmentation of each
different eye structure (eg, lens or VH). Other approaches
include the 3D measurement of shape of the retina to study
abnormal shape changes and peripheral vision (8) or the
construction of 3D meshes in MRI with morphologic pa-
rameters such as distance from the posterior corneal pole
and deviation from sphericity (9) However, owing to the
lack of statistical information extracted from the variability
of a population, the previously mentioned parametric
models are often inconsistent with the pathology of ocular
MRI, especially for UM patients wherein motion and bias
field artifacts in MRI acquisition can be observed.

Our previous work provided a framework (10) to auto-
matically segment the pediatric eye from MRIs based on a
3D active shape model (ASM) (11). This model captures
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Fig. 1.

An example of a Tl-weighted vibe magnetic resonance image of a patient with uveal melanoma (UM) to

demonstrate the challenge of 3D UM eye model construction (with the presence of motion and tumors with hemorrhage and
tantalum clips). (a) Example of whole magnetic resonance image. (b) Example of cropping image with the motion (yellow
arrow) and the tumor (red arrow), and (c) Example 3D UM patient-specific eye model. (A color version of this figure is

available at https://doi.org/10.1016/].ijrobp.2018.05.004.)

both the shape of deformation of structures and the in-
tensity variations. It was applied to segment different
structures (the CS, VH, and lens) in T1-weighted 3T MR
images of healthy and asleep children’s eyes. In this work,
we reproduced this image processing schema for awake
adult eyes in which more challenges such as motion and
bias field artifacts can be observed. It should be noted that
the lower clinical field-strengths (1.5T) MRI acquisition is
more difficult for the measurement of the UM tumors and
eye structures dimensions than other high-field (3T or 7T)
ocular MRI (12). The higher tesla MR images with high
resolution can minimize the motion images of the eye in
which the tumor and surrounding tissues can clearly be
discriminated. This work is the first step toward building a
3D patient-specific eye model with the presence of tumors
and clips that would help reduce unnecessary radiation of
normal ocular structures in PT treatment. We have simpli-
fied the eye model that could be further improved by the
inclusion of other structures such as the ciliary body,
macula, retina, and cornea. Note, however, that the macula,
the retina, and the border between the sclera and the cornea
are not clearly visible in T1-weighted MR images at 1.5T.
In this article, we considered the lens, VH, optic-nerve, and
CS. It should also be noted that there is no obstacle to

extending the segmentation method for the ciliary body and
the anterior chamber. The optic disc can be extracted from
the intersection of the CS and optic nerve. The separation
of cornea and sclera from the CS structure can be inferred
by using their neighboring structures, that is, a cut of CS to
obtain the whole of ciliary body, lens, and anterior chamber
will contain the cornea.

Methods and Materials
Clinical dataset

Our study contains images of 30 healthy eyes from 16
volunteers, ranging in age from 23 to 46 years with a mean
of 29 £ 5.4 years and 7 eyes from UM patients aged 63 +
14 years (range 36-74). All subjects gave written informed
consent before participation. Cohort median eye size is 24.9
mm of diameter (range 23-26.5). All MRI examinations
were performed on a large-bore 1.5T MRI system (Siemens
Magnetom Aera, Erlangen, Germany) using a surface coil
of 7 cm. Tl-weighted 3D volume interpolated gradient
echo MR images were acquired with the following acqui-
sition parameters: repetition time 6.55 ms; echo time 2.39

Fig. 2.

Different challenges of manual uveal melanoma eye anatomy delineations in magnetic resonance imaging. The

border of the vitreous humor (VH) (a) and of the lens (b) cannot be correctly segmented in some slices; (c) a small, noisy
object with the same image characteristic of the VH located outside (green arrow); (d) because of the big tumor, the VH with
poor contrast cannot be segmented. (A color version of this figure is available at https://doi.org/10.1016/j.ijrobp.2018.05.

004.)
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ms; flip angle 120; voxel size 0.5 x 0.5 x 0.5 mm’; gap
20% and dimension 256 x 256 x 80. The volunteers
received an MR image without contrast, and the patients
received the MR image with and without contrast.

Special care was taken to position the surface coil above the
eye to avoid an asymmetric signal reduction from the center to
the periphery of the acquisition field. Subjects were instructed
to fix their gaze on a spot centered in the middle of the scanner
during acquisition. Acquisition time was around 4 minutes per
sequence, and native acquisition direction was transversal,
with middle slice defined as the plane that goes through the
pupil center and optical nerve insertion and field center placed
just before the optical nerve head.

Manual segmentation

In order to train and validate our method, manual de-
lineations of the lens, VH, CS, and optic nerve were done
by one senior radiation oncologist in our institution using
the radiation therapy planning software Velocity (Varian
Medical System, Palo Alto, CA). This procedure is done in
a semisupervised way. First, the expert set the intensity
value to choose the best fit candidate for the CS and VH.

Main pipeline of our proposed active shape model applied to an adult ocular magnetic resonance imaging dataset.

Then, manual editing was done to refine borders and
remove outlier regions. Manual segmentations of the lens
and optic nerve were performed by direct delineation of the
border using a stylus.

Method

The input of this study is a DICOM-RT dataset that in-
cludes both MR images and manual segmentations of
anatomic structures of the eye. Our proposed scheme con-
sists of extracting, training, and generating 2 pieces of in-
formation: intensity profiles and shape statistics. Figure 3
shows the main pipeline of our proposed ASM model
applied to an adult ocular MRI dataset. In the following
subsection, we describe in detail the creation of intensity
profile, the estimation of shape statistic from the training
dataset, and how to segment a new subject.

Intensity profile generation

Manual delineations are used to define a volume of interest
(VOI) in the eye from the whole MR image. In practice, we
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mm) of volunteer eyes (red+) and patient eyes (blue*) compared with manual segmentation. (A color version of this figure is

available at https://doi.org/10.1016/.ijrobp.2018.05.004.)

expand the VOI to 22.5 mm in each orthogonal direction
from its center to make sure that the optic nerve is always
included (ie, a 45 x 45 x 45 mm? volume; see Fig. 1b). For
a new subject, the center of the eye can be either manually
determined (mouse-click) or automatically estimated by
using the fast radial symmetry algorithm (13). MR image
quality is affected by many factors, such as noise, low
varying intensity, variations due to nonuniform magnetic
fields, imperfections of coils, and magnetic susceptibility at
interfaces, and can be influenced by different parameters
such as signal-to-noise ratio or acquisition time. Therefore,
the intensities are not uniform throughout our training MRI
dataset. To compensate for such effects, we processed the
MRI volumes with an anisotropic diffusion filter (14),
which reduces noise without removing significant image
content. Then, we applied the N4 algorithm (15) to correct
the bias field variations of MRI and histogram-based in-
tensities normalization (16) to build an intensity profile
over the training dataset.

Statistical shape modeling

We represented manually segmented eye surfaces as a point
cloud by using a mesh construction. We then selected an
even distribution of points over the surface of each struc-
ture. To build a standard landmark for the ASM, we fixed
the number of points for each type of eye structures: 400
points for the lens, 1000 points for the optic nerve, and
2000 points for the CS and the VH. Rigid registration (17)
was applied to find the optimal rotation and translation
between corresponding 3D point clouds throughout the
training dataset. We then applied a nonrigid registration
algorithm (18) to recover the spatial transformation of these
point clouds.

Once the landmark points of surface were extracted and
aligned, the principal components were computed in order
to describe the observed variation under a simpler and
smaller dimension. Then, a constrained model-based al-
gorithm that can take into account the shape’s deformation
from the variability of a population is used to form the basis
of a statistical shape information. ASMs proposed by
Cootes et al (11) are certainly among the most popular
statistical shape models (19). It has been applied to
numerous image segmentation applications. ASMs define a
point distribution model x by the transformation 7 and the
vector of shape parameters b as follows:

x=T(x+ ®b) (1)

where x is the mean shape and ® = (¢, ¢, .....d,) is the
matrix of eigenvectors corresponding to the variation of the
model at each point. The shape model is constrained within
the range of training shapes by modifying the bi value
under the constraints £3+/4;,i = 1...n; A is the eigenvalue
corresponding to the matrix ®. Shape adjustments are
calculated by updating the transformation 7" and shape pa-
rameters b to better fit the current x onto the set of points
given by x + dx.

Automated segmentation of a new subject

After training, automated segmentation of a new subject is
carried out. The subject MR image is cropped using a VOI
centered on the eye and of the same size as in the training set
(45 x 45 x 45 mm®). The same preprocessing pipeline as in
the training case is applied to improve the quality of the MR
image and to normalize the intensity with anisotropic diffusion
denoising, bias field correction, and histogram equalization.
The shapes of CS, VH, lens, and optic nerve are independently
generated using the statistical shape information of the


https://doi.org/10.1016/j.ijrobp.2018.05.004

818 Nguyen et al.

International Journal of Radiation Oncology e Biology e Physics

Example of best cases: result segmentation: object; manual segmentation: solid line.

a (s b Lens

¢ VH d optic nerve

Example of worst cases: result segmentation: red, manual segmentation: white.

e (S f Lens

g VH h optic nerve

Example of big Hausdorff distance: result segmentation: object, manual segmentation: solid line.

Fig. 5.

Examples of automated segmentation for the sclera (SC), lens, vitreous humor (VH), and optic nerve: The first row shows

the best segmentation cases (a-d); the second row shows some worst cases (e-h); the last row shows an example of big Hausdorff
distance values observed at the end of the object (j), although the good segmentation was obtained with the rest of the object.

training dataset. Considering each landmark point of shapes,
the intensity perpendicular to the surfaces (11 voxels for the
CS and the VH, and 7 voxels for the lens and the optic nerve) is
compared with the intensity profiles provided by the ASM
using Mahalanobis distance. The new matched shape is con-
structed minimizing this distance at all landmark points. The
average calculation time for each testing eye structure was 10 s
using a Core i5 computer with 8 GB of memory. An open
source implementation in Python will be made available. It
allows DICOM-RT format as input and produces the seg-
mentation output with different common medical image file
formats, for example, point cloud (VTK), binary file (.hdr,
.nii), and the like.

Evaluation tools

We performed a leave-one-out cross-validation to quanti-
tatively compare the results of the proposed segmentation

approach and ocular adult MRI data (mixing both volun-
teers and UM patients), that is, we iteratively chose 1
observation from all data as a validation subject and its
manual segmentation as the ground truth, while the
remaining subjects were considered for the training set. The
quality of the segmentations was evaluated by computing
the volume overlap using the Dice similarity coefficient
(DSC; see Equation 2) and the contour distance using the
Hausdorff distance (HD; see Equation 3).
_ 2|SNG|

DSC=———+
S| +1G]

2)

HD(S,G) = max{supinfd(s,g),supinfd(s,g)} (3)

seS geG geGsesS

where S is the segmentation result, G is the ground truth
and sup (respectively inf ) represents the supremum (the
infimum).
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Results

Results are presented as boxplots in Figure 4. The midline
of the box represents the median, bounding boxes are
constructed from the 25th and 75th percentile, and whis-
kers are showing minimum and maximum of the distri-
bution. Figure 4a shows the result of DSC measurement.
The median of the DSC was 94.5 &+ 1.6% for the CS, 92.2
+ 2.4% for the VH, 88.3 + 2.8% for the lens, and 81.9 +
3.4% for the optic nerve. High volume overlap values
were obtained for the segmentation of both the CS and the
VH, similar to previously reported results for the child
study (10). The DSC values of small objects located
nearby muscles (such as lens and optic nerve; Fig. 5f and
5h) were less optimal compared to the CS or the VH.
Some outliers (or other big errors in overlap) can be
identified as they are related to the biggest or smallest
eyes used as validation subjects according to each corre-
sponding set of training data (Fig. 5e and 5g). Recall that
the DSC is sensitive to small structures, that is, 1 missed
voxel of thin structure will have a stronger penalty than in
a larger structure (20). Because previously reported MRI
segmentation results for the lens or optic nerve were rare,
we refer to the reported DSC values of Fortunati et al (21)
in CT images (with 67% for the lens and 62% for the optic
nerve) and of Deeley et al (20) in combining CT and MR
images (with 60% for the optic nerve). They also reported
an interexpert delineation for the optic nerve with the
DSC lower than 60%. (20) Our segmentation framework
achieves 88.3% and 81.9% for lens and optic nerve,
respectively.

Figure 4b shows the boxplot of a contour HD mea-
surement. Median HD was of 1.64 + 0.35 mm (= 3.28
voxels) for the CS, 1.73 4+ 0.36 mm (= 3.46 voxels) for the
VH, 1.09 + 0.2 mm (= 2.18 voxels) for the lens and 1.86
4+ 0.4 mm (= 3.72 voxels) for the optic nerve. The lens
presents the best accuracy in terms of the HD measurement,
while its slightly lower DSC is explained by its small size.
In this experiment, results for optic nerve regions of interest
delineation were less optimal both in terms of the DSC and
the HD, because the real shape of the optic nerve presents

An example of automated segmentation results of the sclera with the presence of a uveal melanoma tumor

large variability. This region is also difficult to segment
owing to its nearby muscles. The maximum HD value that
can be observed in the slices with the end of object is 2.5
mm (= 5 voxels) (Fig. 5i). In this region, the variation of
the manual segmentation used as input for training is large
over each eye subject in training. The HD evaluation of the
optic nerve is 1.86 mm versus 6.63 mm as reported in
Fortunati et al (21).

In the first row of Figure 6, the accuracy capacity of
ASM segmentation to retrieve the real shape of the eye
anatomy in MRI with the presence of motion is shown,
while the last row also shows that automated ASM seg-
mentation can succeed in UM patients with a large mela-
noma and 4 clips.

Conclusions

To our knowledge, our work is the first to attempt to
automatically segment anatomic adult eye structures with
UM. Our results show that automated ASM segmentation
can successfully be performed in the presence of motion,
tumor, and tantalum clips. It allows for potential improve-
ments in diagnosis, treatment planning, and follow-up
monitoring while reducing the time spent by the multidis-
ciplinary ocular oncology teams (ophthalmologists, radia-
tion oncologists, and medical physicists). Our pipeline can
be also extended to other ocular magnetic fields 3T or 7T by
creating a corresponding training set. Our framework
would benefit from the higher spatial resolution and in-
tensity contrast provided at high and ultra-high MR fields
(12). However, 7T is not widely available and remains an
area of high research focus with clinical use to follow.
Further developments are needed for precise segmentation
of the tumor and tantalum clips (eg, including other MR
contrasts for tumor segmentation or a specific clip ASM
model). We will focus our future work on the segmentation
of a larger dataset with diversity in eye sizes, based on a
combination of datasets from many sites with different
acquisition conditions (include mixed adult-children eyes)
or imaging multimodalities.
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